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Abstract

Fine-tuning large-scale pretrained models has led
to tremendous progress in well-studied modalities
such as vision and NLP. However, similar gains
have not been observed in many other modalities
due to a lack of relevant pretrained models. In this
work, we propose ORCA, a general cross-modal
fine-tuning framework that extends the applica-
bility of a single large-scale pretrained model to
diverse modalities. ORCA adapts to a target task
via an align-then-refine workflow: given the target
input, ORCA first learns an embedding network
that aligns the embedded feature distribution with
the pretraining modality. The pretrained model is
then fine-tuned on the embedded data to exploit
the knowledge shared across modalities. Through
extensive experiments, we show that ORCA ob-
tains state-of-the-art results on 3 benchmarks con-
taining over 60 datasets from 12 modalities, out-
performing a wide range of hand-designed, Au-
toML, general-purpose, and task-specific meth-
ods. We highlight the importance of data align-
ment via a series of ablation studies and demon-
strate ORCA’s utility in data-limited regimes.

1. Introduction
The rise of large-scale pretrained models has been a hall-
mark of machine learning (ML) research in the past few
years. Using transfer learning, these models can apply what
they have learned from large amounts of unlabeled data to
downstream tasks and perform remarkably well in a number
of modalities, such as language, vision, and speech pro-
cessing (e.g., Radford & Narasimhan, 2018; Carion et al.,
2020; Baevski et al., 2020). Existing research focuses on
in-modality transfer within these well-studied areas—for
example, BERT models (Devlin et al., 2019) are typically
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only adapted for text-based tasks, and vision transformers
(Dosovitskiy et al., 2021) only for image datasets.

But imagine if we could use pretrained BERT models to
tackle genomics tasks, or vision transformers to solve PDEs?
Effective cross-modal fine-tuning could have immense im-
pact on less-studied areas, such as physical and life sciences,
healthcare, and finance. Indeed, designing specialized net-
works in these areas is challenging, as it requires both do-
main knowledge and ML expertise. Automated machine
learning (AutoML) (e.g., Roberts et al., 2021; Shen et al.,
2022) and general-purpose architectures (e.g., Jaegle et al.,
2022) can be used to simplify this process, but they still
require training models from scratch, which is difficult for
data-scarce modalities. Applying models pretrained in data-
rich modalities to these new problems can potentially alle-
viate the modeling and data concerns, reducing the human
effort needed to develop high-quality task-specific models.

Despite the potential impact, the general feasibility of cross-
modal fine-tuning remains an open question. While recent
work has demonstrated its possibility by applying pretrained
language models to vision tasks (Dinh et al., 2022; Lu et al.,
2022), referential games (Li et al., 2020c), and reinforce-
ment learning (Reid et al., 2022), many of these approaches
are ad-hoc, relying on manual prompt engineering or archi-
tecture add-ons to solve specific tasks. Besides, they often
do not yield models that are competitive with those trained
from scratch. We aim to tackle both of these shortcomings.

In this work, we propose a fine-tuning workflow called
ORCA that bridges the gap between generality and effec-
tiveness in cross-modal learning. Our key insight is to per-
form task-specific data alignment prior to task-agnostic fine-
tuning. By matching the data distribution of an unfamiliar
modality with that of a familiar one, ORCA can prevent the
distortion of the pretrained weights and exploit the knowl-
edge encoded in the pretrained models, achieving signifi-
cantly better results than naive fine-tuning and state-of-the-
art performance on 3 benchmarks—NAS-Bench-360 (Tu
et al., 2022), PDEBench (Takamoto et al., 2022), and
OpenML-CC18 (Vanschoren et al., 2014)—which contain
over 60 datasets from 12 distinct data modalities.

Concretely, ORCA adapts any pretrained transformer model
to a downstream task via a three-stage workflow (Figure 1).
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Figure 1: ORCA’s three-stage fine-tuning workflow enables fast and automatic exploitation of large-scale pretrained models
for solving diverse tasks. In stage 1, given target data (xt, yt) and a pretrained transformer body gs, ORCA constructs an
embedder architecture f t to map the input to the dimensionality of gs, and a predictor architecture ht to convert the output
of gs to the target output, e.g., classification logits. In stage 2, ORCA learns f t by minimizing the distributional distance
between the embedded target features and some in-modality source features. In stage 3, ORCA fine-tunes f t, gs, and ht to
minimize the task loss.

First, ORCA generates a task-specific embedding network
architecture that maps the target inputs to sequence features
which can be processed by the pretrained transformer layers
(dimensionality alignment). Then, the embedding network
is trained to minimize the distributional distance between the
embedded target features and the features of an in-modality
reference dataset (distribution alignment).1 Finally, the
entire target model is fine-tuned to calibrate its weights with
the task goal. In Section 3.4, we evaluate several standard
distance metrics for distribution alignment. We find that
the Optimal Transport Dataset Distance (Alvarez-Melis &
Fusi, 2020) attains the best empirical performance, possibly
because it takes the label distribution and the clustering
structure of the data into consideration. Thus, we use it in
our subsequent experiments.

We validate ORCA’s effectiveness along three axes: breadth,
depth, and comparison with existing work. Breadthwise,
we evaluate ORCA on NAS-Bench-360 (Tu et al., 2022),
an AutoML benchmark that includes 10 tasks with diverse
input dimensions (1D and 2D), prediction types (point and
dense), and modalities (vision, audio, electrocardiogram,
physics, protein, genomics, and cosmic-ray). The empirical
results, combined with our analysis, show the following:

• Cross-modal fine-tuning is promising: ORCA outper-
forms various hand-designed models, AutoML methods,
and general-purpose architectures, ranking first on 7 tasks
and in the top three on all tasks. We also observe ORCA’s
effectiveness in a simulated limited-data setting.

• Alignment is crucial: We find an empirical correlation
between alignment quality and downstream accuracy. The
fact that ORCA significantly outperforms naive fine-tuning
demonstrates that data alignment is important.

1Due to privacy and computational efficiency concerns, we do
not assume access to the pretraining data and instead work with
publicly available proxy data, e.g., CIFAR-10 for vision models.

• Alignment can be performed efficiently: Our embedder
learning time is only ∼10% of the fine-tuning time.

Depthwise, we study two established benchmarks in prac-
tical modalities: PDEBench for solving partial differential
equations (Takamoto et al., 2022) and OpenML-CC18 for
classifying tabular data (Vanschoren et al., 2014). We per-
form in-depth analysis to show that ORCA adapts vision and
language transformers to learn meaningful representations
of the target tasks. It matches the performance of state-
of-the-art approaches, including FNO (Li et al., 2021) for
PDEBench, AutoGluon (Erickson et al., 2020) and TabPFN
(Hollmann et al., 2022) for OpenML-CC18.

Finally, we compare with task-specific cross-modal methods
that convert tabular data into text (Dinh et al., 2022) or
images (Zhu et al., 2021) to reuse existing models. The
results clearly suggest that ORCA is both more effective
and more general. Our code is made public at https:
//github.com/sjunhongshen/ORCA.

2. Related Work
In this section, we review several groups of related work in
the areas of AutoML, in-modality transfer, and cross-modal
transfer. Table 1 summarizes these groups along relevant
axes, and contrasts them with ORCA.

AutoML for diverse tasks is a growing research area, as ev-
idenced by the NAS-Bench-360 benchmark (Tu et al., 2022),
the 2022 AutoML Decathlon competition, and recent neural
architecture search (NAS) methods that target this problem,
such as AutoML-Zero (Real et al., 2020), XD (Roberts et al.,
2021), and DASH (Shen et al., 2022). Unlike NAS methods
which repeatedly incur the overhead of designing new
architectures and train them from scratch, ORCA takes a
fine-tuning approach and reuses existing models in data-rich
modalities. That said, given the shared underlying motiva-
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Table 1: Summary of existing approaches for model development for diverse tasks.

Task-specific General-purpose Supports transfer to different:
adaptation? workflow? input dim? output dim? modality?

Task-specific Hand-designed models ✓
learning AutoML models ✓ ✓

In-modality transfer
Unimodal DA ✓ ✓

Uni/Multimodal fine-tuning ✓ ✓ ✓
General-purpose models ✓ ✓ ✓ ✓

Cross-modal
transfer

Heterogeneous DA ✓ ✓ ✓
Task-specific fine-tuning ✓ ✓ ✓ ✓

FPT ✓ ✓ ✓ ✓
ORCA ✓ ✓ ✓ ✓ ✓

tion, we use NAS-Bench-360 in our experimental evaluation
and compare against state-of-the-art AutoML baselines.

Unimodal domain adaptation (DA) is a form of transduc-
tive transfer learning where the source and target tasks are
the same but the domains differ (Pan & Yang, 2009; Wang
& Deng, 2018). Most DA methods assume that the source
and target data have the same input space and support, and
are concerned with different output spaces or joint/marginal
distributions. Recent work studies more general settings
such as different feature spaces (heterogeneous DA) or label
spaces (universal DA). Our focus on cross-modal fine-tuning
goes one step further to the case where neither the input-
space nor the output-space support overlaps.

Unimodal fine-tuning is a more flexible transfer approach
that can be applied to downstream tasks with different label
or input spaces. Pretrained models are used for in-modality
fine-tuning in fields like language (e.g., Jiang et al., 2020;
Aghajanyan et al., 2021), vision (e.g., Li et al., 2022; Wei
et al., 2022), speech (e.g., Jiang et al., 2021; Chen et al.,
2022), protein (Jumper et al., 2021), and robotics (Ahn et al.,
2022). Adapter networks (He et al., 2022) have been devel-
oped to improve the performance of in-modality fine-tuning.
Multimodal fine-tuning expands the applicable modalities
of a single pretrained model by learning embeddings of
several modalities together (e.g., Radford et al., 2021; Hu
& Singh, 2021; Kim et al., 2021; Alayrac et al., 2022), but
these methods still focus on adapting to in-modality tasks.

General-purpose models propose flexible architectures ap-
plicable to various tasks such as optical flow, point clouds,
and reinforcement learning (Jaegle et al., 2021; 2022; Reed
et al., 2023). These approaches train multitask transform-
ers from scratch using a large body of data from different
tasks. Though more versatile than unimodal models, they
still focus on transferring to problems within the considered
pretraining modalities. Nonetheless, the success of trans-
formers for in-modality fine-tuning motivates us to focus on
adapting transformer architectures for cross-modal tasks.

Heterogeneous DA (HDA) considers nonequivalent feature
spaces between the source and target domains. While most
HDA methods tackle same-modality-different-dimension
transfer, e.g., between images of different resolutions, there
are indeed a few works studying cross-modal text-to-image
transfer (Yao et al., 2019; Li et al., 2020b). However, a
crucial assumption that HDA makes is that the target and
source tasks are the same. In contrast, we consider more
flexible knowledge transfer between drastically different
modalities with distinct tasks and label sets, such as
applying Swin Transformers to solving partial differential
equations or RoBERTa to classifying electrocardiograms.

Cross-modal task-specific fine-tuning is a recent line of
research, with most work focusing on transferring language
models to other modalities like vision (Kiela et al., 2019),
referential games (Li et al., 2020c), reinforcement learning
(Reid et al., 2022), and protein sequences (Vinod et al.,
2023). These works provide initial evidence of the cross-
modal transfer capacity of pretrained models. However,
they focus on hand-tailoring to a single modality, e.g., by
adding ad-hoc encoders that transform agent messages (Li
et al., 2020c) or decision trajectories (Reid et al., 2022)
into tokens. Even when not relying on fine-tuning, work
like LIFT (Dinh et al., 2022) that attempts cross-modal
learning via prompting (Liu et al., 2021a) still requires ad-
hoc conversion of tasks to natural text.

Frozen Pretrained Transformers (FPT) (Lu et al., 2022)
is a cross-modal fine-tuning workflow that transforms the
inputs to be compatible with the pretrained models. Al-
though FPT and ORCA are both general-purpose, FPT does
not account for the modality difference (no stage 2 in Fig-
ure 1), but we show this step is necessary to obtain effective
predictive models and outperform existing baselines.

3. ORCA Workflow
In this section, we formalize the problem setup and intro-
duce the our workflow for adapting pretrained transformers.
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Problem Setup. A domain D consists of a feature space X ,
a label space Y , and a joint probability distribution P (X ,Y).
In the cross-modal setting we study, the target (end-task) do-
main Dt and source (pretraining) domain Ds differ not only
in the feature space but also the label space and by exten-
sion have differing probability distributions, i.e., X t ̸= X s,
Yt ̸= Ys, and P t(X t,Yt) ̸= P s(X s,Ys). This is in con-
trast to the transductive transfer learning setting addressed
by domain adaptation, where source and target domains
share the label space and end task (Pan & Yang, 2009).

Given target data {xt
i, y

t
i}n

t

i=1 sampled from a joint distri-
bution P t in domain Dt, our goal is to learn a model mt

that correctly maps each input xt to its label yt. We are
interested in achieving this using pretrained transformers.
Thus, we assume access to a model ms pretrained with data
{xs

i , y
s
i }n

s

i=1 in the source domain Ds. Then, given a loss
function l, we aim to develop mt based on ms such that
E(xt,yt)∼P t [l(mt(xt), yt)] is minimized. This problem for-
mulation does not define modality explicitly and includes
both in-modal and cross-modal transfer. Given the general-
ity of the tasks we wish to explore and the difficulty of differ-
entiating the two settings mathematically, we rely on seman-
tics to do so: intuitively, cross-modal data (e.g., natural im-
ages vs. PDEs) are more distinct to each other than in-modal
data (e.g., photos taken in two geographical locations).

Having defined the learning problem, we now present our
three-stage cross-modal fine-tuning workflow: (1) gener-
ating task-specific embedder and predictor to support di-
verse input-output dimensions, (2) pretraining embedder
to align the source and target feature distributions, and (3)
fine-tuning to minimize the target loss.

3.1. Architecture Design for Dimensionality Alignment

Applying pretrained models to a new problem usually re-
quires addressing the problem of dimensionality mismatch.
To make ORCA work for different input/output dimensions,
we decompose a transformer-based learner m into three
parts (Figure 1 stage 1): an embedder f that transforms
input x into a sequence of features, a model body g that
applies a series of pretrained attention layers to the embed-
ded features, and a predictor h that generates the outputs
with the desired shape. ORCA uses a pretrained architecture
and weights to initialize the model body g but replaces f
and h with layers designed to match the target data with the
pretrained model’s embedding dimension. In the following,
we describe each module in detail.

Custom Embedding Network. Denote the feature space
compatible with the pretrained model as Ẋ . For a trans-
former with maximum sequence length S and embedding di-
mension D, Ẋ = RS×D. The target embedder f t : X → Ẋ
is designed to take in a tensor of arbitrary dimension from
X and transform it to Ẋ . In ORCA, f t is composed of a

convolutional layer with input channel cin, output channel
cout, kernel size k, and stride k, generalizing the patching
operations used in vision transformers to 1D and higher-
dimensional cases. We set cin to the input channel of x
and cout to the embedding dimension D. We can either
treat k as a hyperparameter or set it to the smallest value
for which the product of output shape excluding the channel
dimension ≤ S to take full advantage of the representation
power of the pretrained model. In the latter case, when we
flatten the non-channel dimensions of the output tensors af-
ter the convolution, pad and then transpose it, we can obtain
sequence features with shape S×D. Finally, we add a layer
norm and a positional embedding to obtain ẋ.

Pretrained Transformer Body. The model body g takes the
embedding ẋ ∈ Ẋ as input and outputs features ẏ ∈ Ẏ; the
dot is used to differentiate these intermediate representations
from the raw inputs and labels. For transformer-based g,
both the input and output feature spaces Ẋ , Ẏ are RS×D.

Custom Prediction Head. Finally, the target model’s pre-
diction head ht must take ẏ ∈ Ẏ as input and return a
task-dependent output tensor. Different tasks often specify
different types of outputs, e.g., classification logits in RK ,
where K is the number of classes, or dense maps where
the spatial dimension is the same as the input and per index
logits correspond to K classes. Thus, it is crucial to define
task-specific output modules and fine-tune them for new
problems. In ORCA, we use the simplest instantiation of
the predictors. For classification, we apply average pooling
along the sequence length dimension to obtain 1D tensors
with length D and then use a linear layer that maps D to K.
For dense prediction, we apply a linear layer to the sequence
outputs so the resulting tensor has shape (S, kndim(Y)K),
where kndim(Y) is the downsampling factor of the embedder
convolution kernel with stride k. This upsamples by the
same factor that the embedder downsampled. Then, we can
mold the tensor to the desired output dimension.2

With an architecture based on the pretrained model but
also compatible with the target task, we can now turn our
attention to data alignment for better adaptation.

3.2. Embedder Learning for Distribution Alignment

Intuitively, transferring knowledge across similar modalities
should be easier than across distant ones. Hence, given a tar-
get task in a new modality, we aim to manipulate the target
data so that they become closer to the pretraining modality.

2For example, consider an image with shape (Cin, Hin,Win).
We choose k for the embedder such that Hout × Wout ≈ S so
the output shape is (D,Hout,Wout). Then, we flatten the last two
dimensions and transpose to get shape (S,D) compatible with the
transformer. The transformer output is mapped to (S, k2K) by a
linear layer. We transpose and reshape to get (k2K,Hout,Wout)
and apply pixelshuffle (Shi et al., 2016) to get (K,Hin,Win).
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One way to achieve this is to train the embedder before actu-
ally fine-tuning the model body in a way that makes the em-
bedded target features resemble the source features which
the pretrained model body is known to perform well on.

Formally, let fs : X s → Ẋ denote the pretrained source
embedder (the part of ms that transforms the raw data to
sequence features) and f t the randomly initialized target
embedder discussed in the previous section. We can learn
f t to minimize the distance between the joint distribution
of the target embeddings

(
f t(xt), yt

)
and that of the source

embeddings
(
fs(xs), ys

)
. There are many metrics for mea-

suring this distributional distance. To understand whether
they affect adaptation differently, we perform a preliminary
study in Section 3.4 on three representatives.

3.3. Weight Refining for Downstream Adaptation

After training the embedder, we perform full fine-tuning by
updating all model parameters to minimize the target loss.
This step further aligns the embedder and predictor with
the pretrained model. In Section 4.1, we compare ORCA
with standard fine-tuning without data alignment and show
that our approach improves performance while reducing
variance. There are orthogonal works that study how to best
fine-tune a model (e.g., Liu et al., 2022; He et al., 2022). We
compare with one strategy used in FPT (Lu et al., 2022) in
Section 4.1 but leave further exploration for future work.

3.4. Evaluation of Distribution Alignment Metrics

We evaluate the effectiveness of three distance metrics for
data alignment during embedding learning: (1) the pairwise
Euclidean distance, which aligns the scales and ranges of
the datasets without using any distributional information;
(2) the moment-based maximum mean discrepancy (MMD)
(Gretton et al., 2012), which uses the distribution of f(x)
to align the feature means; and (3) the Optimal Transport
Dataset Distance (OTDD) (Alvarez-Melis & Fusi, 2020),
which uses both the feature and label distributions

(
f(x), y

)
to align the high-level clustering structure of the datasets.

We substitute each metric into the ORCA workflow (imple-
mentation details in Section 4) and evaluate them on 10 tasks
from diverse modalities (benchmark details in Section 4.1).
The aggregate performance (Figure 2) and per-task rankings
(Appendix A.4.4) show that embedder learning with OTDD
has the best overall results, so we use it in our subsequent
experiments. We conjecture that its good performance is due
to how the label information is considered during alignment.

Indeed, for both the source and target datasets, OTDD repre-
sents each class label as a distribution over the in-class fea-
tures: y 7→ P (Ẋ |Y = y).3 This transforms the source and

3This step requires that the labels be discrete, as in the clas-
sification datasets. For dense prediction tasks with continuous
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Figure 2: Performance profiles (Dolan & Moré, 2002) of
ORCA with different alignment metrics. Larger values (frac-
tions of tasks on which a method is within τ -factor of the
best) are better. The OTDD curve being in the upper left
corner shows it is often the best.

target label sets into the shared space of distributions over
Ẋ . Then, we can define the distance dY(y

t, ys) between
different labels using the p-Wasserstein distance associated
with the l2 distance ∥ẋt − ẋs∥22 in Ẋ , which in turn allows
us to measure the distributional difference in Ẋ × Y:

dẊ×Y
(
(ẋt, yt), (ẋs, ys)

)
=

(
dẊ (ẋt, ẋs)p + dY(y

t, ys)p
)1/p

.

We refer the readers to Alvarez-Melis & Fusi (2020) for the
exact formulation. Yet the implication from our experiments
is that, as we learn f t to minimize OTDD, we are not only
aligning individual data points, but also grouping features
with the same label together in the embedding space, which
could potentially facilitate fine-tuning.

Despite its effectiveness for data alignment, OTDD is gener-
ally expensive to compute. In Section A.1 of the Appendix,
we analyze its computational complexity and propose an
efficient approximation to it using class-wise subsampling.

Before ending this section, we emphasize that our goal is
not to discover the best alignment metric but to provide
a general fine-tuning framework that works regardless of
the metric used. Thus, we leave designing more suitable
distance metrics for future work.

4. Experiments
Having introduced how ORCA tackles cross-modal fine-
tuning, we proceed with showing its empirical efficacy via
three thematic groups of experiments: (1) we evaluate ORCA
across a breadth of modalities and show that it outperforms
hand-designed, AutoML-searched, and general-purpose ar-
chitectures; we study its key components to understand the
mechanism behind cross-modal fine-tuning and exemplify
how it benefits limited-data modalities; (2) we perform in-
depth analyses in two modalities, PDE solving and tabular
classification, to show that ORCA is competitive with expert-

labels, we first perform clustering on the data labels to generate
pseudo-labels.
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Table 2: Prediction errors (↓) on 10 diverse tasks. “NAS-Bench-360” refers to the task-wise best of all AutoML baselines
evaluated in the paper, including DARTS (Liu et al., 2019b), DenseNAS (Fang et al., 2020), and 4 others. “FPT” refers to
fine-tuning the layer norms of RoBERTa/Swin. On 7/10 problems, ORCA ranks the first among all competitors. See
Appendix A.4.2 for the error bars.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA
0-1 error (%) 0-1 error (%) relative ℓ2 MAE8 1-AUROC 0-1 error (%) 1- mAP 1 - F1 score 0-1 error (%) 1- AUROC

Hand-designed 19.39 67.41 8E-3 3.35 0.127 8.73 0.62 0.28 19.80 0.30

NAS-Bench-360 23.39 48.23 2.6E-2 2.94 0.229 7.34 0.60 0.34 12.51 0.32
DASH 24.37 71.28 7.9E-3 3.30 0.19 6.60 0.60 0.32 12.28 0.28
Perceiver IO 70.04 82.57 2.4E-2 8.06 0.485 22.22 0.72 0.66 15.93 0.38
FPT 10.11 76.38 2.1E-2 4.66 0.233 15.69 0.67 0.50 20.83 0.37

ORCA 6.53 29.85 7.28E-3 1.91 0.152 7.54 0.56 0.28 11.59 0.29

designed task-specific models; (3) we compare ORCA with
previous ad-hoc cross-modal learning methods to show that
we strike a balance between generality and effectiveness.

Experiment Protocol. While our workflow accepts a wide
range of pretrained transformers as model bodies, we use
RoBERTa (Liu et al., 2019c) and Swin Transformers (Liu
et al., 2021b), which are representatives of the most stud-
ied language and vision modalities, to exemplify ORCA’s
efficacy. We implement the base models using the Hugging
Face library (Wolf et al., 2019) and choose CoNLL-2003
and CIFAR-10 as the proxy datasets, respectively. For each
task, we first perform hyperparameter tuning in the standard
fine-tuning setting to identify the optimal target sequence
length, batch size, and optimizer configuration. Experiments
are performed on a single NVIDIA V100 GPU and managed
using the Determined AI platform. Results are averaged
over 5 trails. For other details, see Appendix A.2.

4.1. A Breadth Perspective: Can Pretrained Models
Transfer Across Modalities?

In this section, we highlight the most important observation
of this work: cross-modal fine-tuning with data alignment
can solve diverse tasks effectively and efficiently. To show
this, we test ORCA on 10 tasks from NAS-Bench-3604 cover-
ing diverse 1D/2D problems such as protein folding, cardiac
disease prediction, and cosmic-ray detection. Following Ta-
ble 1, we consider 3 classes of baselines: (1) hand-designed,
task-specific models identified by Tu et al. (2022); (2)
general-purpose models represented by Perceiver IO (Jaegle
et al., 2022); (3) AutoML methods, including the leading
algorithm on NAS-Bench-360, DASH (Shen et al., 2022).

We report the prediction error for each method on each
task in Table 2 and visualize the aggregate performance in
Figure 3. ORCA achieves the lowest error rates on 7 of 10
tasks and the best aggregate performance. Specifically,

4NAS-Bench-360 is designed for testing how well ML algo-
rithms generalize and is a core component of the 2022 AutoML
Decathlon competition. See Appendix A.4.1 for the task summary.
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Figure 3: Aggregating Table 2 results using performance
profiles (Dolan & Moré, 2002). Larger values (fractions
of tasks on which a method is within τ -factor of the best)
are better. ORCA being in the top left corner means it is
often the best.

it outperforms hand-designed architectures on all tasks. It
beats all AutoML baselines on all tasks except DeepSEA
and NinaPro, where it ranks second and third, respectively.
The improvements from the embedder learning stage of
ORCA come at a small computational overhead—Table 11 in
the Appendix shows that the time needed for data alignment
is only a small portion (11%) of the fine-tuning time.

Our results validate the finding in prior cross-modal work
that pretrained transformers learn knowledge transferable
to seemingly unrelated tasks. In the following, we dissect
the success of ORCA via multiple ablations and identify 3
factors crucial to exploiting the learned knowledge: data
alignment, full fine-tuning, pretraining modality selection.

KEY 1: ALIGNING FEATURE DISTRIBUTIONS

To understand whether the good performance of ORCA is
indeed attributed to the data alignment process, which is
our key innovation, we compare it with naive fine-tuning
that does not align the data (Table 3, middle rows). We see
that ORCA consistently outperforms naive fine-tuning.
Moreover, we show in Appendix A.4.4 that ORCA with
different alignment metrics all obtain better performance
than fine-tuning. Thus, closing the gap between the target
and pretraining modalities can facilitate model adaptation.
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Table 3: Prediction errors (↓) of ORCA, naive fine-tuning, and training RoBERTa/Swin from scratch. We consider adapting
all parameters (full setting) vs. only the layer norms (FPT setting).ORCA is better in both settings. The fact that full
fine-tuning generally outperforms tuning only the layer norms is also consistent with recent observations (Rothermel et al.,
2021). See Appendix A.4.3 for the error bars.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

Train-from-scratch 50.87 76.67 8.0E-2 5.09 0.50 9.96 0.75 0.42 12.38 0.39

Fine-tuning 7.67 55.26 7.34E-3 1.92 0.17 8.35 0.63 0.44 13.86 0.51
ORCA 6.53 29.85 7.28E-3 1.91 0.152 7.54 0.56 0.28 11.59 0.29
Fine-tuning (layernorm) 10.11 76.38 2.11E-2 4.66 0.233 15.69 0.67 0.50 20.83 0.37
ORCA (layernorm) 7.99 42.45 2.21E-2 4.97 0.227 15.99 0.64 0.47 20.54 0.36

0 10 20 30 400.14

0.15

0.16 NinaPro

0 10 20 30 40
1.1

1.2

1.3

Satellite

0 20 40 60
0.35

0.40

0.45

0.50
DeepSEA

85

86

87

88

91.0

91.5

92.0

92.5

0.64

0.66

0.68

0.70

Embedder Learning EpochsE
m

b.
 O

TD
D

 (1
e2

)

Fi
ne

-tu
ni

ng
 S

co
re

3 4 5
Num Target Data (log10)

25

50

75

A
cc

ur
ac

y 
(%

)

Satellite

ORCA
Fine-tuning

Figure 4: Left: Final accuracy and embedding distribution distance vs. embedder learning epochs on three NAS-Bench-360
tasks. As we learn to map the target data to the source modality better (smaller OTDD), we obtain models with better
downstream performance. This shows an empirical correlation between fine-tuning accuracy and alignment quality. Right:
Accuracy (↑) of ORCA vs. naive fine-tuning with varying dataset size on task Satellite. ORCA has higher performance
gains in low-data regime.

To further isolate the impact of data alignment, we com-
pare ORCA with a train-from-scratch baseline (Table 3, first
row) which trains RoBERTa and Swin using only the target
data. We observe training from scratch is worse than
ORCA but better than fine-tuning on ECG, Satellite, and
DeepSea. We conjecture that this is because when the target
modality differs significantly from the pretraining modality,
naive fine-tuning may harm transfer, but aligning the feature
distribution using ORCA can resolve this issue and benefit
transfer. Indeed, recent work has shown that optimizing
directly for the task loss may distort the pretrained weights
and lead to suboptimal solutions (Kumar et al., 2022; Lee
et al., 2022). By manipulating the target distribution to look
like the source distribution, we lower the risk of weight
distortion, thus obtaining better downstream performance.

We also quantify the effect of data alignment by training the
embedder for different number of epochs and see whether
optimizing distribution distance to various levels of conver-
gence affects downstream performance. Figure 4 (left) plots
the fine-tuning accuracy and the final distribution distance
for different embedder learning levels. We see that as the
dataset distance decreases, the fine-tuning accuracy in-
creases. In addition, learning the embedder separately from
fine-tuning stabilizes training, as the performance variance
of ORCA is constantly lower than that of naive fine-tuning.
These results confirm that data alignment is the key to effec-
tive cross-modal fine-tuning.

KEY 2: FINE-TUNING ALL MODEL PARAMETERS

As discussed in Section 2, Frozen Pretrained Transformers
(FPT) (Lu et al., 2022) is a related work that showed pre-
trained language models contain knowledge relevant to out-
of-modality tasks. While FPT presented a general pipeline
for adapting GPT-2 to tasks like CIFAR-10, the resulting
models were not as good as those trained from scratch.
FPT differs from ORCA in that (1) it does not perform data
alignment, and (2) it only fine-tunes the layer norms. We
have verified the importance of (1). Now, we isolate the
impact of (2) by fine-tuning only the layer norms for ORCA.

The bottom rows of Table 3 show that ORCA with fine-
tuning the layer norms outperforms FPT, so pretraining the
embedder can boost the performance of FPT. However, this
performance gain is smaller than that in the full fine-tuning
setting, which implies that full fine-tuning can take better
advantage of the learned embeddings. In terms of run-
time, FPT yields less than a 2× speedup compared with full
fine-tuning (Appendix A.4.6), despite the fact that we are
updating many fewer parameters. This is unsurprising since
gradients are still back-propagated through the entire net-
work. Therefore, when computation allows, we recommend
using ORCA with full fine-tuning for better performance.
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Figure 5: Left: Normalized Root Mean Squared Errors (nRMSEs, ↓) for ORCA vs. baselines on 8 PDEBench tasks with
varying dimensions (1D/2D). We only evaluate datasets that can fit into a single V100 GPU. Overall, ORCA is much better
than U-Net and PINN and on par with FNO. For detailed numerical results, see Table 14 in the Appendix. Right: ORCA
is trained on resolution 256 and directly evaluated on resolution 512. The prediction still matches the ground truth.

KEY 3: ADAPTING FROM THE RIGHT MODALITY

Finally, we study how the pretraining modality affects fine-
tuning. In the results reported so far, we choose pretrained
models for each task based on the input dimension, i.e., we
use RoBERTa for all 1D tasks and Swin for all 2D tasks.
Now, we evaluate the opposite approach, focusing on two
tasks: DeepSEA (1D) and Spherical (2D). This evaluation is
straightforward to perform by switching the model bodies,
since the embedder architecture of ORCA handles all input
transformations needed to obtain the sequence features. The
results are shown in Table 13 in the Appendix. We see
that fine-tuned RoBERTa outperforms Swin on the 1D task,
possibly because the DeepSEA data (genomics sequences)
are structured more like language than images with discrete
units of information and general grammatical rules. More
crucially, for both tasks, models with smaller final OTDDs
have better fine-tuning accuracy. This suggests a way
of selecting pretrained models by comparing the optimized
OTDDs and picking the one with the smallest value.

Apart from these three key insights, recall that one of our
motivations for cross-modal fine-tuning is to help tasks with
limited data, where training models from scratch is difficult.
Indeed, for vanilla fine-tuning, a small amount of data may
not give enough signal to update the pretrained weights,
but it is possible to learn a good embedder first with ORCA,
which can then make fine-tuning easier. In Figure 4 (right),
we vary the dataset size and find that the performance gain
of ORCA increases as the dataset size decreases. Mean-
while, using ORCA allows us to match the performance of
naive fine-tuning on 3× amount of data. Thus, it can benefit
model development in domains where data collection is
costly. Beyond the cross-modal setting, we also verify
ORCA’s efficacy for in-modality transfer in Appendix A.8.1.

4.2. A Depth Perspective: Cross-Modal Fine-Tuning for
PDE and Tabular Tasks

After validating ORCA on a broad set of tasks, we dive into
two specific modalities, PDE solving and tabular classifi-

cation, to show that cross-modal fine-tuning is promising
for model development in highly specialized areas. ORCA
can not only achieve high prediction accuracy in both do-
mains, but also recover an important property of neural
operators (Li et al., 2021)—modeling PDEs with zero-shot
super-resolution.

PDEBENCH FOR SCIENTIFIC ML

ML models for physical systems have gained increasing
interest in recent years. To study how cross-modal fine-
tuning can help in the scientific ML context, we evaluate
ORCA on 8 datasets from PDEBench (Takamoto et al., 2022)
and compare against state-of-the-art task-specific models:
the physics-informed neural network PINN (Raissi et al.,
2019), Fourier neural operator (FNO) (Li et al., 2021), and
the generic image-to-image regression model U-Net (Ron-
neberger et al., 2015). We focus on the forward prediction
problems. See Appendix A.5 for the experiment details.

As shown in Figure 5 (left), ORCA outperforms PINN and
U-Net on all evaluated datasets and beats FNO on half of
them, using a smaller training time budget than U-Net and
FNO. This is an impressive result given that the baselines, in
particular FNO, are carefully designed with domain knowl-
edge. More crucially, as shown in Figure 5 (right), ORCA
achieves zero-shot super-resolution (trained on a lower
resolution and directly evaluated on a higher resolution)
when using the RoBERTa backbone and an embedder with
pointwise convolutions. This generalization ability has only
been observed in FNOs. ORCA also achieves it possibly
because the sequence features generated by pointwise convo-
lutions are resolution-invariant and can capture the intrinsic
flow dynamics. These results demonstrate the potential of
cross-modal fine-tuning in the scientific ML context.

OPENML FOR TABULAR CLASSIFICATION

Despite being one of the most commonly seen data types,
tabular data are still primarily modeled with classical ML
methods like XGBoost (Chen & Guestrin, 2016). More

8



Cross-Modal Fine-Tuning: Align then Refine

recently, deep learning approaches such as AutoGluon (Er-
ickson et al., 2020) and TabPFN (Hollmann et al., 2022)
have applied task-specific transformers to tabular data with
some success. We now show that ORCA can adapt pre-
trained RoBERTa to tabular data, outperforming classical
methods and matching the performance of recent deep learn-
ing approaches.

Similar to Hollmann et al. (2022), we evaluate ORCA on 30
datasets from the OpenML-CC18 benchmark (Vanschoren
et al., 2014), comparing against both classical boosting
algorithms (Ke et al., 2017; Ostroumova et al., 2017) and
advanced transformer-based models (Erickson et al., 2020;
Hollmann et al., 2022). As shown in Table 4 (top), ORCA
ranks first on 12/30 tasks and works as well as AutoGluon,
the state-of-the-art AutoML method on tabular data. It also
outperforms TabPFN (Hollmann et al., 2022), a transformer-
based prior-data fitted network, on 16/30 tasks.

It is worth noting that no single method performs best on all
tasks. For datasets where there are limited data described
by categorical variables (e.g., dresses-sales),5 boosting
algorithms perform poorly, but ORCA does significantly
better. For datasets with balanced labels and consisting of
a few numerical variables (e.g., diabetes), classical methods
are sufficient and less prone to overfitting than large models.
Nonetheless, our results confirm again that cross-modal
fine-tuning can be appealing for tackling real-life problems.

4.3. Comparison with Task-Specific Cross-Modal Work

As stated in the introduction, one motivation of ORCA is
that the handful of existing cross-modal methods are mostly
ad-hoc and tailored to specific modalities. Developing them
thus requires a thorough understanding of the target data. To
show that ORCA performs better while being generally appli-
cable to arbitrary domains, we compare with (1) IGTD (Zhu
et al., 2021), which converts gene-drug features to images
and applies CNNs to predict drug response; and (2) LIFT
(Dinh et al., 2022), which transforms tabular data into text
to prompt a pretrained GPT-3. Table 5 shows the R2 score
for the drug response tasks, and Table 4 (bottom) shows
the classification accuracy for LIFT datasets. Once again,
ORCA beats these carefully curated task-specific meth-
ods, proving itself as both general and highly effective.

4.4. Limitation and Future Work

We identify several future directions based on our experi-
ment results. First, it is worth studying the effect of pretrain-
ing modality further and develop a systematic way of se-
lecting pretrained models. Then, we can incorporate model
selection into ORCA for a more automated pipeline. Second,
while ORCA leverages the simplest fine-tuning paradigm, it

5See Table 18 for per-task scores, Table 19 for task meta-data.

Table 4: Tabular results with baselines from Hollmann et al.
(2022) and Dinh et al. (2022). “Diff. from XGBoost” is the
across-task average of per-task difference from XGBoost.
ORCA beats classical approaches and advanced trans-
former methods on 19 tasks. For per-task results, see
Appendix A.6.

OpenML-CC18 LightGBM CatBoost XGBoost AutoGluon TabPFN ORCA

# Wins/Ties 1/30 1/30 3/30 12/30 7/30 12/30
Avg. AUROC (↑) 0.884 0.8898 0.8909 0.8947 0.8943 0.8946
Diff. from XGBoost -6.97E-3 -1.18E-3 0 +3.74E-3 +3.38E-3 +3.63E-3

LIFT Tasks LogisticRegression SVM XGBoost LIFT GPT-3 ORCA

# Wins/Ties 2/14 3/14 2/14 2/14 7/14
Avg. Acc. (↑) 79.58 80.63 78.21 79.63 83.80
Diff. from XGBoost +1.37 +2.42 0 +1.42 +5.60

Table 5: Coefficient of determination (R2, ↑) on two drug
response prediction datasets. ORCA outperforms IGTD
(Zhu et al., 2021), which converts raw tabular features to
images to apply vision models.

R2 Dataset 1: CTRP Dataset 2: GDSC

IGTD-CNN 0.856±0.003 0.74±0.006
ORCA 0.86±0.002 0.831±0.002

is possible to combine it with more sophisticated transfer
techniques such as adapters (He et al., 2022). We briefly
study how prompting (Bahng et al., 2022; Jia et al., 2022)
can be applied to diverse tasks in Appendix A.8.2 and find
that it is less effective for out-of-modality problems, but we
might boost its performance using ORCA. Lastly, we cur-
rently evaluate ORCA on 1D/2D tasks. It is also important
to validate it on more settings, such as high-dimensional
problems and reinforcement learning (Reid et al., 2022).

5. Conclusion
In this paper, we study how we can reuse existing models for
new and less-explored areas. We propose a novel and effec-
tive cross-modal fine-tuning framework, ORCA, that aligns
the end-task data from an arbitrary modality with a model’s
pretraining modality to improve fine-tuning performance.
Our work not only signals the potential of large-scale pre-
training for diverse tasks but also lays out a path for a largely
uncharted data-centric paradigm in ML.
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A. Appendix
A.1. Embedding Learning with Optimal Transport Dataset Distance

A.1.1. LITERATURE REVIEW

Due to the limited space, we do not give a full review of the Optimal Transport Dataset Distance (OTDD) (Alvarez-Melis &
Fusi, 2020) in the main text. Here, we briefly recall the optimal transport (OT) distance and explain OTDD in detail.

Consider a complete and separable metric space X and let P(X ) be the set of probability measures on X . For α, β ∈ P(X ),
let Π(α, β) be the set of joint probability distributions on X × X with marginals α and β in the first and second dimensions
respectively. Then given a cost function c(·, ·) : X × X → R+, the classic OT distance with cost c is defined by:

OTc(α, β) := min
π∈Π(α,β)

∫
X×X

c(x, y)dπ(x, y). (1)

When X is equipped with a metric dX , we can use c(x, y) = dX(x, y)p for some p ≥ 1 and obtain the p-Wasserstein
distance, Wp(α, β) := (OTdp

X
(α, β))

1
p .

Now consider the case of finite datasets with features in X and labels in a finite set Y . Each dataset can be considered a
discrete distribution in P(X × Y). To define a distance between datasets, a natural approach is to define an appropriate cost
function on Z := X × Y and consider the optimal transport distance. Indeed, for any metric dY on Y and any p ≥ 1, Z can
be made a complete and separable metric space with metric

dZ((x, y), (x
′, y′)) = (dX (x, x′)p + dY(y, y

′)p)
1
p . (2)

It is usually not clear how to define a natural distance metric in Y , so instead we proceed by representing each class y ∈ Y
by P (X|Y = y), the conditional distribution of features X given Y = y. More specifically, for a dataset D ∈ P(X × Y),
denote this map from classes to conditional distributions by F (D, ·) : Y → P(X ). Then we can transform any dataset over
X × Y into one over X × P(X ) via G(D) := (projX , F (D, projY )).

As discussed above, Wp is a natural notion of distance in P(X ), so by substituting Y 7→ P(X ) and dY 7→ Wp in Equation
2, we can define the (p-)optimal transport dataset distance between datasets DA and DB by

OTDD(DA,DB) := OT
(dp

X×Wp
p )

1
p
(G(DA), G(DB)). (3)

A.1.2. COMPUTATIONAL CONSIDERATIONS

As we aim for a practical fine-tuning workflow, computational cost is a crucial concern. While Alvarez-Melis & Fusi (2020)
proposed two variants of OTDD—the exact one and a Gaussian approximation, we observe from our experiments that
optimizing the exact OTDD leads to better performance. In the following, we will focus on analyzing the computational cost
of the exact OTDD.

Given datasets with D-dimensional feature vectors, estimating vanilla OT distances can be computationally expensive and
has a worst-case complexity of O(D3 logD) (Pele & Werman, 2009). However, adding an entropy regularization term
ϵH(π|α ⊗ β) to Equation 1, where H is the relative entropy and ϵ controls the time-accuracy trade-off, can be solved
efficiently with the Sinkhorn algorithm (Cuturi, 2013). This reduces OT’s empirical complexity to O(D2) and makes the
time cost for computing OTDD manageable for ORCA’s workflow.

During implementation of ORCA, we also observed memory issues for computing OTDD using the entire target and source
datasets on GPUs. To alleviate this, we reduce the dimensionality of the feature vectors by taking the average along the
sequence length dimension. We further propose a class-wise subsampling strategy for approximating OTDD on GPUs
(Algorithm 1). In short, we split the K-class target dataset into K datasets based on the labels and compute the class-wise
OTDD between each single-class target dataset and the entire source dataset. Each class-wise OTDD can be approximated
with the average of batch samples similar to how stochastic gradient descent approximates gradient descent. After that, we
approximate the OTDD between the target and source datasets using the weighted sum of the K class-wise OTDDs. To
verify that the approximation works empirically, we track the approximated OTDD (computed on GPUs) and the actual
OTDD (computed on CPUs) and visualize the loss curves during ORCA’s embedder learning process (Figure 6). We can see
that the estimated value adheres to the actual value.
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Algorithm 1 Efficient approximation of OTDD using class-wise subsampling.

Input: target dataset {xt, yt}, number of target classes Kt, source dataset S = {xs, ys}, subsample size b, subsample
round R
for each class i ∈ [Kt] in the target dataset do

Compute class weight wi =
number of target data in class i

total number of target data
Generate data loader Di consisting of data in class i

end for
for i ∈ [Kt] do

for r ∈ [R] do
Subsample b target data points Dir uniformly at random from Di

Compute class-wise distance dir = OTDD(Dir, S)
end for
Approximate class-wise OTDD by di =

1
R

∑R
i=1 dir

end for
Approximate OTDD by d =

∑Kt

i=1 wi · di

Figure 6: Screenshot of OTDD curves during embedding learning in one task. x-axis is the number of optimization steps,
y-axis represents OTDD (1E2). We use Algorithm 1 to approximate the exact OTDD as the loss function for optimization on
GPU (purple curve). We also track the actual OTDD on CPU (blue curve). We can see that the proposed algorithm works
well, which allows us to perform embedding learning efficiently.

Leveraging both the Sinkhorn algorithm and class-wise approximation, the embedder learning process only takes up a small
fraction of the total fine-tuning time in practice, as shown in Table 11 in the later experiment results section. Hence, we
invest a reasonable time budget but achieve significantly improved cross-domain transfer performance using ORCA.

A.2. ORCA Implementation

A.2.1. PRETRAINED MODELS

We evaluated ORCA with two pretrained models in our experiments. In Table 2, for all 2D tasks including CIFAR-100,
Spherical, Darcy Flow, PSICOV, Cosmic, NinaPro, and FSD50K, we use the following model. As Swin has a pretrained
resolution, we reshape the inputs for our tasks to the resolution before feeding them into the model.

Name Pretrain Resolution Num Params FLOPS FPS

Swin-base (Liu et al., 2021b) ImageNet-22K 224×224 88M 15.4G 278
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For all 1D tasks including ECG, Satellite, and DeepSEA, we use the following model:

Name Pretrain Num Params FLOPS

RoBERTa-base (Liu et al., 2019c) Five English-language corpora 125M 1.64E20

We use the Hugging Face transformers library (Wolf et al., 2019) to implement the pretrained models.

A.2.2. HYPERPARAMETER TUNING

As ORCA is both task-agnostic and model-agnostic, it can be applied to fine-tuning a variety of pretrained transformers on
drastically different end tasks with distinct datasets. Hence, it is hard to define one set of fine-tuning hyperparameters for
all (model, task) pairs. At the same time, optimizing large-scale pretrained transformers can be challenging due to their
large model sizes, as the downstream performance depends largely on the hyperparameters used. For instance, using a
large learning rate can distort pretrained weights and lead to catastrophic forgetting. Therefore, in our experiments, given a
(model, task) pair, we first apply hyperparameter tuning using the Asynchronous Successive Halving Algorithm (ASHA) (Li
et al., 2020a) to the standard fine-tuning setting (i.e., after initializing the embedder and predictor architectures, directly
updating all model weights to minimize the task loss) to identify a proper training configuration. Then, we use the same set
of hyperparameters found for all our experiments for the particular (model, task) combination. Note that even though we did
not explicitly state this in the main text, the hyperparameter tuning stage can be directly integrated into the ORCA workflow
between stage 1 and stage 2. In this sense, ORCA is still an automated cross-modal transfer workflow that works for diverse
tasks and different pretrained models.

The configuration space for ASHA can be customized for each task. In general, the following search space is sufficient:

• Target sequence length: 8, 64, 512 for RoBERTa

• Batch size: 4, 16, 64

• Gradient clipping: -1, 1

• Dropout: 0, 0.05

• Optimizer: SGD, Adam, AdamW

• Learning rate: 1E-2, 1E-3, 1E-4, 1E-5

• Weight decay: 0, 1E-2, 1E-4

A.2.3. MORE DETAILS ON EMBEDDER ARCHITECTURE DESIGN

In the current workflow, we use the following procedure to determine the kernel size k for the embedder’s convolution layer:

• For RoBERTa: we apply hyperparameter search to the vanilla fine-tuning baseline to find the optimal sequence length
s∗ for the second dimension of the embedder output with shape (batch size, seq len, embed dim). The configuration
space is {8, 64, 512}. Then, k is set to largest value such that after applying convolution with cout = embed dim (e.g.,
768 for RoBERTa) and transposing the last two dimensions, the seq len dimension of the output tensor is closest to the
searched value s∗. For example, if the input length is 1024 and the searched s∗ is 256, then k (and the stride) is 4, so
the output of the conv layer has shape (batch size, 768, 256). We then transpose it to get (batch size, 256, 768).

• For Swin: given that Swin Transformers already have the patchify operation, we want to reuse the pretrained patchify
layer, which has k = 4. Thus, given the target task, we first resize the height and width of the target input to those of
the pretraining data, e.g., (224, 224) for models pretrained with ImageNet. Then, the pretrained patchify layer with
k = 4 can be reused by the embedder.
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A.2.4. EMBEDDING LEARNING WITH OTDD

After initializing the embedder architecture for each task, we train it to minimize the OTDD between the embedded target
features and embedded source features.

For source datasets, we use CIFAR-10 for Swin and CONLL-2003 for RoBERTa. We sample 5000 data points to compute
OTDD. In practice, we can pass the source data through the pretrained embedder once and save all the embedded features,
so we don’t have to pay the cost of obtaining the source features each time we fine-tune a new model.

For classification tasks, we directly use the labels provided by the end task to compute OTDD. For dense tasks, we perform
K-Means clustering on the target data to obtain pseudolabels for OTDD computation. The number of clusters is set to the
number of classes of the source dataset, e.g., 10 for 2D tasks that use CIFAR-10 as the source dataset.

To compute the embedding learning objective, we use the OTDD implementation of the original paper provided here:
https://github.com/microsoft/otdd. We use the searched hyperparameters in Section A.2.2. The others are
fixed across different tasks:

• Embedding learning epochs: 60

• Embedding learning stage rate scheduler: decay by 0.2 every 20 epochs

• Fine-tuning stage learning rate scheduler: we use the linear decay with min lr = 0 and 5 warmup epochs

A.3. Baseline Implementation

For the standard fine-tuning baseline, we use the same hyperparameter configuration (number of epochs, batch size, learning
rate, etc) as ORCA, except for setting embedding learning epochs to 0.

For the train-from-scratch baseline, everything is the same as standard fine-tuning, except that the model weights are
reinitialized at the beginning.
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A.4. Experiments on NAS-Bench-360

A.4.1. INFORMATION ABOUT THE BENCHMARK AND EXPERIMENT PROTOCOL

Table 6: Summary about each task and the hand-designed expert models used in NAS-Bench-360 (Tu et al., 2022).

Task name # Data Data dim. Type License Learning objective Expert arch.

CIFAR-100 60K 2D Point CC BY 4.0 Classify natural images into 100 classes DenseNet-BC
(Huang et al., 2017)

Spherical 60K 2D Point CC BY-SA Classify spherically projected images S2CN
into 100 classes (Cohen et al., 2018)

NinaPro 3956 2D Point CC BY-ND Classify sEMG signals into 18 classes Attention Model
corresponding to hand gestures (Josephs et al., 2020)

FSD50K 51K 2D Point CC BY 4.0 Classify sound events in log-mel VGG
(multi-label) spectrograms with 200 labels (Fonseca et al., 2021)

Darcy Flow 1100 2D Dense MIT Predict the final state of a fluid from its FNO
initial conditions (Li et al., 2021)

PSICOV 3606 2D Dense GPL Predict pairwise distances between resi- DEEPCON
duals from 2D protein sequence features (Adhikari, 2019)

Cosmic 5250 2D Dense Open License Predict propablistic maps to identify cos- deepCR-mask
mic rays in telescope images (Zhang & Bloom, 2020)

ECG 330K 1D Point ODC-BY 1.0 Detect atrial cardiac disease from ResNet-1D
a ECG recording (4 classes) (Hong et al., 2020)

Satellite 1M 1D Point GPL 3.0 Classify satellite image pixels’ time ROCKET
series into 24 land cover types (Dempster et al., 2020)

DeepSEA 250K 1D Point CC BY 4.0 Predict chromatin states and binding DeepSEA
(multi-label) states of RNA sequences (36 classes) (Zhou & Troyanskaya, 2015)

For experiments, each dataset is preprocessed and split using the script available on https://github.com/rtu715/
NAS-Bench-360, with the training set being used for hyperparameter tuning, embedding learning, and fine-tuning.

When training/fine-tuning is finished, we evaluate the performance of all models following the NAS-Bench-360 protocol.
We first report results of the target metric for each task by running the model of the last epoch on the test data. Then,
we report aggregate results via performance profiles (Dolan & Moré, 2002), a technique that considers both outliers and
small performance differences to compare methods across multiple tasks robustly. In such plots, each curve represents one
method. The τ on the x-axis denotes the fraction of tasks on which a method is no worse than a τ -factor from the best. The
performance profile for our experiments is shown in Figure 3.

The code and configuration file for reproducing each experiment can be found in our official GitHub repository.
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A.4.2. COMPLETE RESULTS FOR TABLE 2 WITH ERROR BARS

Table 7: Prediction errors (↓) for 10 diverse tasks. “NAS-Bench-360” refers to the task-wise best of all AutoML baselines
evaluated in the paper, including DARTS (Liu et al., 2019b), DenseNAS (Fang et al., 2020), AMBER (Zhang et al., 2020),
Auto-DL (Liu et al., 2019a), WRN-ASHA (Li et al., 2020a), and XGBoost (Chen & Guestrin, 2016). “FPT” refers to
fine-tuning the layer norms of RoBERTa/Swin. On 7/10 problems, ORCA ranks the first among all competitors.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA
0-1 error (%) 0-1 error (%) relative ℓ2 MAE8 1-AUROC 0-1 error (%) 1- mAP 1 - F1 score 0-1 error (%) 1- AUROC

Hand-designed 19.39±0.20 67.41±0.76 8E-3±1E-3 3.35±0.14 0.127±0.01 8.73±0.90 0.62±0.004 0.28±0.00 19.80±0.00 0.30±0.024

NAS-Bench-360 23.39±0.01 48.23±2.87 2.6E-2±1E-3 2.94±0.13 0.229±0.04 7.34±0.76 0.60±0.001 0.34±0.01 12.51±0.24 0.32±0.010
DASH 24.37±0.81 71.28±0.68 7.9E-3±2E-3 3.30±0.16 0.19±0.02 6.60±0.33 0.60±0.008 0.32±0.007 12.28±0.5 0.28±0.013
Perceiver IO 70.04±0.44 82.57±0.19 2.4E-2±1E-2 8.06±0.06 0.485±0.01 22.22±1.80 0.72±0.002 0.66±0.01 15.93±0.08 0.38±0.004
FPT 10.11±1.18 76.38±4.89 2.1E-2±1.3E-3 4.66±0.054 0.23±0.002 15.69±2.33 0.67±0.0068 0.50±0.0098 20.83±0.24 0.37±0.0002

ORCA 6.53±0.079 29.85±0.72 7.3E-3±6.8E-5 1.91±0.038 0.152±0.005 7.54±0.39 0.56±0.013 0.28±0.0059 11.59±0.18 0.29±0.006

A.4.3. COMPLETE RESULTS FOR TABLE 3 WITH ERROR BARS

Table 8: Prediction errors (↓) of ORCA, vanilla fine-tuning, and training RoBERTa/Swin from scratch. We consider
fine-tuning all parameters (full setting) vs. only the layer norms (FPT setting). ORCA is better in both settings.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

Train-from-scratch 50.87±0.32 76.67±0.21 8.0E-2±1.3E-2 5.09±0.014 0.50±0.00 9.96±1.67 0.75±0.017 0.42±0.011 12.38±0.14 0.39±0.01

Fine-tuning 7.67±0.55 55.26±1.63 7.34E-3±1.1E-4 1.92±0.039 0.17±0.011 8.35±0.75 0.63±0.014 0.44±0.0056 13.86±1.47 0.51±0.0001
ORCA 6.53±0.079 29.85±0.72 7.28E-3±6.8E-5 1.91±0.038 0.152±0.005 7.54±0.39 0.56±0.013 0.28±0.0059 11.59±0.18 0.29±0.006
Fine-tuning (layernorm) 10.11±1.18 76.38±4.89 2.1E-2±1.3E-3 4.66±0.054 0.233±0.002 15.69±2.33 0.67±0.0068 0.50±0.0098 20.83±0.24 0.37±0.0002
ORCA (layernorm) 7.99±0.098 42.45±0.21 2.1E-2±7.4E-4 4.97±0.14 0.227±0.003 15.99±1.92 0.64±0.0093 0.47±0.007 20.54±0.49 0.36±0.0070

A.4.4. ABLATION STUDY ON EMBEDDING LEARNING METRICS

As motivated in Section 4.1, we present here an ablation study on the embedding learning metrics that we have considered
for minimizing distribution dissimilarity. The results show that (1) performing feature alignment generally helps downstream
adaptation, regardless of which metric we minimize; (2) OTDD leads to the best overall performance, so we chose it for
our workflow. Our findings confirm that it is the general idea of data alignment, rather than a specific metric, that makes
cross-modal transfer work.

Specifically, we experiment with OTDD, maximum mean discrepancy (MMD) (Gretton et al., 2012), and pairwise Euclidean
distance. We learn the embedders to minimize these metrics and then fine-tune the pretrained models. The test errors are as
follows, which are used to plot the performance profiles in Figure 3 (right).

Table 9: Prediction errors (↓) of different distance metrics. OTDD achieves the best overall performance. “Naive fine-tuning”
represents fine-tuning without embedder learning.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

OTDD 6.53±0.079 29.85±0.72 7.28E-3±6.8E-5 1.91±0.038 0.152±0.005 7.54±0.39 0.56±0.013 0.28±0.0059 11.59±0.18 0.29±0.006
MMD 6.62±0.092 33.64±2.57 7.4E-3±3.4E-4 1.9±0.016 0.156±0.002 7.48±0.23 0.58±0.004 0.40±0.018 11.29±0.087 0.38±0.077
Euclidean 7.09±0.48 32.33±2.03 7.3E-3±1.9E-4 1.91±0.019 0.157±0.002 7.51±0.11 0.59±0.02 0.41±0.009 11.4±0.078 0.34±0.002

Naive fine-tuning 7.67±0.55 55.26±1.63 7.3E-3±1.1E-4 1.92±0.039 0.174±0.011 8.35±0.75 0.63±0.014 0.44±0.0056 13.86±1.47 0.51±0.0001
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A.4.5. ABLATION STUDY ON LAYERNORM INITIALIZATION

As discussed in Section 3.1, our embedder architecture contains a layernorm layer. For ORCA, we warm initialize the
parameters of layernorm with those of the pretrained model. To see how this initialization strategy affects the performance,
we additionally evaluate standard fine-tuning with warm initializing the layernorms. As shown in the table below, the effect
of warm initialization is task-dependent, i.e, it helps adaptation for tasks like Spherical and Cosmic but slightly hurts the
performance for tasks like Darcy Flow.

Table 10: Prediction errors (↓) of ORCA, vanilla fine-tuning, and fine-tuning with warm initializing the layernorm.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

ORCA 6.53±0.079 29.85±0.72 7.28E-3±6.8E-5 1.91±0.038 0.152±0.005 7.54±0.39 0.56±0.013 0.28±0.0059 11.59±0.18 0.29±0.006
Fine-tuning 7.67±0.55 55.26±1.63 7.34E-3±1.1E-4 1.92±0.039 0.17±0.011 8.35±0.75 0.63±0.014 0.44±0.0056 13.86±1.47 0.51±0.0001
Fine-tuning (warm init) 6.87±0.038 32.51±1.48 7.98E-3±7.18E-5 2.04±0.0077 0.163±0.003 9.56±0.26 0.62±0.006 0.30±0.011 12.49±0.04 0.33±0.006

A.4.6. RUNTIME OF ORCA VS. FPT

We record the time for each stage of ORCA in Table 11. We can see that the embedder learning process only takes up a small
fraction of the total fine-tuning time in practice

Table 11: We record the runtime (in hours) of ORCA’s embedding learning stage and the fine-tuning stage for each task.
Then, we compute the ratio between the two. Averaged across tasks, embedding learning with OTDD only takes about 11%
of the time needed for fine-tuning. All experiments are performed on NVIDIA V100 GPUs.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

Embedding 1.6 1.8 0.18 0.28 0.25 0.3 0.21 0.69 0.26 0.2

Fine-tuning 9.2 9.3 0.86 3.47 2.95 1.1 12.5 10.1 37.5 7.6
Embedding
Fine-tuning 17% 19% 20% 8% 8% 27% 2% 7% 1% 3%

In Table 3, we also compare with the FPT setting, which only fine-tunes the layer norms of the pretrained transformer
models. As we have shown already, the downstream performance of fine-tuning only a subset of the parameters is less
competitive than fine-tuning all parameters. Below, we show that the time saved for updating only layer norms is also not
that significant. Therefore, we suggest performing full fine-tuning when time and computational resources allow.

Table 12: We record the total runtime (in hours) for four settings: ORCA with full fine-tuning, ORCA with tuning layer
norms, full fine-tuning (without embedding learning), and fine-tuning layer norms (FPT). We can see that tuning the layer
norms does not bring significant benefit in terms of reducing the model development time, but it sacrifices the downstream
performance of the resulting models.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

ORCA 10.8 11.1 1.04 3.75 3.2 1.4 12.71 10.79 37.76 7.8
ORCA (layernorm) 8.7 8.9 0.76 3.35 3.1 1.0 8.96 9.05 25.56 5.7

Fine-tuning 9.2 9.3 0.86 3.4 2.7 1.1 12.5 10.2 37.5 7.4
Fine-tuning (layernorm) 7.1 7.1 0.58 3.1 2.5 0.7 8.75 8.5 25.3 5.5

20



Cross-Modal Fine-Tuning: Align then Refine

A.4.7. RESULTS FOR APPLYING DIFFERENT MODEL BODIES TO DEEPSEA AND SPHERICAL

Table 13: Prediction errors and post-alignment OTDDs for different pretrained model bodies. Smaller OTDD leads to
smaller errors.

Error (OTDD) DeepSEA (1D) Spherical (2D)

RoBERTa (1D) 0.295±0.006 (37.40) 68.28±0.017 (19.54)

Swin (2D) 0.361±0.001 (64.83) 29.85±0.072(11.78)

A.5. Experiments on PDEBench

We test ORCA on all datasets in PDEBench except for 2D and 3D Navier-Stokes, which could not fit into the memory of a
single V100 GPU. For each data, we select one set of parameters and initial conditions, as described in Table 14. We follow
the official GitHub repo of PDEBench to download, preprcoess, and load the data. We use the normalized RMSE, which is
scale-independent, as the loss function and evaluation metric.

A.5.1. RESULTS FOR ORCA (FIGURE 5, LEFT)

Unlike the baseline methods which are trained autoregressively, ORCA is trained with single-step prediction, i.e., we feed
the data at the first time step to the network to predict that of the last time step (output of the solver). This significantly
improves computational efficiency but also increases the learning difficulty. Yet ORCA is still able to achieve smaller nMSEs
relative to the baselines on most datasets. We also report ORCA’s training time (stage 1, 2, and 3 combined) in Table 15,
which shows that cross-modal transfer is often both faster and more effective than domain-specific models.

Table 14: Normalized RMSEs (↓) on 8 PDEBench datasets, with baseline results taken from Takamoto et al. (2022). Note
that we only evaluated datasets that can fit into a single NVIDIA V100 GPU, and the U-Net results for Naiver-Stokes and
Darcy Flow are missing becuase the benchmark paper does not evaluate them also dueto memory issues. On 4 of 8 datasets,
ORCA achieves the lowest nRMSEs. This aggregate result is the best even when compared with highly specialized neural
operators such as FNO.

Dimension Dataset Resolution Parameters PINN FNO U-Net ORCA

1D

Advection 1024 β = 0.4 6.7E-1 1.1E-2 1.1 9.8E-3
Burgers 1024 ν = 1.0 3.6E-1 3.1E-3 9.9E-1 1.2E-2
Diffusion-Reaction 1024 ν = 0.5, ρ = 1.0 6.0E-3 1.4E-3 8.0E-2 3.0E-3
Diffusion-Sorption 1024 - 1.5E-1 1.7E-3 2.2E-1 1.6E-3
Navier-Stokes 1024 η = ζ = 0.1, rand periodic 7.2E-1 6.8E-2 - 6.2E-2

2D
Darcy Flow 128×128 β = 0.1 1.8E-1 2.2E-1 - 8.1E-2
Shallow-Water 128×128 - 8.3E-2 4.4E-3 1.7E-2 6.0E-3
Diffusion-Reaction 128×128 - 8.4E-1 1.2E-1 1.6 8.2E-1

Table 15: Per epoch and total training time for each method evaluated in Table 14. Baseline numbers are taken from
(Takamoto et al., 2022). On 1D tasks, though it takes longer time for ORCA-RoBERTa to iterate over the entire dataset, our
method converges faster, so overall ORCA is still more efficient than FNO and U-Net.

FNO U-Net PINN ORCA
Task Resolution Per epoch (s) Epoch Total (hrs) Per epoch (s) Epoch Total (hrs) Per epoch (s) Epoch Total (hrs) Per epoch (s) Epoch Total (hrs)

Diffusion-Sorption 10241 97.52 500 13.5 96.75 500 13.4 0.011 15000 0.046 149.57 200 8.43
Shallow-Water 1282 105.16 500 14.6 83.32 500 11.6 0.041 15000 0.17 35.5 200 2.2

A.5.2. RESULTS FOR ZERO-SHOT SUPER-RESOLUTION (FIGURE 5, RIGHT)

In addition to the above experiments, we also study whether under certain conditions, ORCA can achieve zero-shot super-
resolution as described in Li et al. (2021). We see that when using convolution with kernel size 1 and the RoBERTa
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backbone, ORCA can indeed generalize to higher-resolution inputs. The detailed results are as follows.

Table 16: We study zero-shot super-resolution (trained on lower resolution and tested on higher resolution) on the 1D
Advection problem. ORCA-RoBERTa achieves this since the nRMSEs are similar across rows for different train-test
resolution pairs. Note that the metrics differ slightly from the one reported in Table 14 because the kernel size of the
convolution layer in the embedder is searched via ASHA for experiments in Table 14, whereas pointwise convolution with
kernel size 1 is used to achieve super-resolution for experiments in this table.

Train Resolution (Spatial) Test Resolution (Spatial) nRMSE

1D Advection 256 256 1.13E-2±2.71E-4
1D Advection 256 512 1.27E-2±9.54E-5
1D Advection 512 512 1.02E-2±2.37E-4

A.5.3. RESULTS FOR FINE-TUNING AND TRAIN-FROM-SCRATCH BASELINES

Similar to the NAS-Bench-360 experiments, we also want to study how much data alignment and knowledge transfer from
pretrained models benefit downstream adaptation for PDE tasks. Therefore, we compare ORCA with the vanilla fine-tuning
baseline (without data alignment) and the train-from-scratch baseline. As shown in the table below, these two baselines
underperform ORCA, which shows the importance of distribution alignment. Besides, fine-tuning outperforms train-from-
scratch on 5/8 tasks. This shows that whether transferring pretrained knowledge can benefit downstream adaptation is
task-dependent. In some cases, naive fine-tuning without data alignment can even harm transfer.

Table 17: Normalized RMSEs (↓) with error bars of ORCA, vanilla fine-tuning, and training RoBERTa/Swin from scratch on
PDEBench datasets.

Advection Burgers Diffusion-Reaction Diffusion-Sorption Navier-Stokes Darcy Flow Shallow-Water Diffusion-Reaction

Train-from-scratch 1.7E-2±7.0E-4 1.3E-2±4.6E-4 1.7E-2±2.2E-4 3.2E-3±1.0E-6 9.9E-1±3.6E-6 9.0E-2±3.6E-3 6.0E-3±3.5E-6 8.4E-1±1.8E-3
Fine-tuning 1.4E-2±1.7E-3 1.4E-2±3.6E-4 9.3E-3±5.7E-3 3.1E-3±6.5E-5 9.9E-1±2.0E-5 8.1E-2±2.5E-3 6.1E-3±7.3E-6 8.3E-1±9.3E-5
ORCA 9.8E-3±1.4E-4 1.2E-2±3.6E-4 3.0E-3±1.5E-4 1.6E-3±1.7E-4 6.2E-2±1.9E-3 8.1E-2±8.1E-4 6.0E-3±4.5E-6 8.2E-1±4.6E-5

A.6. Experiments on OpenML Tabular Datasets

We obtain the datasets using the built-in get dataset function of the openml library. For preprocessing, we follow the
procedure in Dinh et al. (2022). Specifically, we first remove all the rows whose labels are NaN and drop the columns with
missing entries. Then, we normalize the columns as follows:

• Numerical features: we use the StandardScaler class in sklearn to scale the data to have zero mean and unit variance
and then concatenate all numerical features as one feature

• Categorical features: one-hot encoding is used

For training, we use the cross-entropy loss as the loss function, with the class weights set to 1/(num class samples).

A.6.1. COMPLETE RESULTS FOR TABLE 4 (TOP)

To compare with TabPFN (Hollmann et al., 2022) and use the baselines reported in their paper, we follow the same evaluation
protocol and use the OVO (one-vs-one) AUROC (Area Under the ROC curve) as the score metric. The train-test split ratio is
0.5:0.5 to account for the limited context length of TabPFN. The detailed results for each method on each task is shown
in Table 18, with the task meta-data shown in Table 19. We can see that there is not a single classification method that
performs best on all datasets. However, ORCA obtains good aggregate results in general, and its good performance on many
challenging datasets where other baselines do no perform well makes it quite useful in real-life scenarios.

We also report the training time for each method in Table 19, which shows that ORCA does not take significantly longer
time than non-deep-learning-based methods. We emphasize that our method needs to be trained on a per-task basis. This
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is in contrast with TabPFN, which first fits a general prior network offline and then for every new task, inference can be
performed online within seconds.

Besides, it is worth noting that one concern with using pretrained language models to solve tabular tasks is that these models
might have seen the tabular data during pretraining. This may affect the test metrics, but we currently do not have a method
to verify the degree of the effect.

Table 18: One-vs-one AUROC (↑) on 30 OpenML-CC18 datasets. Baseline numbers are taken from (Hollmann et al., 2022).
ORCA achieves the best overall performance.

LightGBM CatBoost XGBoost AutoGluon TabPFN ORCA-RoBERTa

balance-scale 0.9938 0.9245 0.9939 0.9919 0.9973 0.9949
mfeat-fourier 0.9786 0.9816 0.9803 0.9843 0.9811 0.9729
breast-w 0.991 0.9931 0.9896 0.9933 0.9934 0.9939
mfeat-karhunen 0.9979 0.9986 0.9983 0.9987 0.9978 0.9968
mfeat-morphologica.. 0.9601 0.9629 0.9612 0.9698 0.9669 0.9647
mfeat-zernike 0.9716 0.9759 0.9735 0.9908 0.9823 0.9829
cmc 0.7288 0.7256 0.7299 0.7331 0.7276 0.7237
credit-approval 0.9415 0.9389 0.9422 0.9415 0.9322 0.934
credit-g 0.7684 0.7852 0.7853 0.7941 0.7894 0.7748
diabetes 0.8247 0.8383 0.8378 0.8391 0.841 0.8239
tic-tac-toe 0.9988 0.9992 1 1 0.9759 0.9973
vehicle 0.9232 0.9302 0.9282 0.9416 0.9589 0.9591
eucalyptus 0.8931 0.8979 0.9004 0.9204 0.9245 0.9084
analcatdata author.. 0.9999 0.9999 0.9997 0.9993 1 0.9996
analcatdata dmft 0.5461 0.5589 0.5743 0.5657 0.579 0.5627
pc4 0.9301 0.9413 0.9291 0.9428 0.9383 0.9226
pc3 0.8178 0.8247 0.8288 0.8282 0.8373 0.8411
kc2 0.8141 0.8323 0.8227 0.8242 0.8346 0.8431
pc1 0.8321 0.86 0.8489 0.8578 0.8761 0.8767
banknote-authentic.. 1 1 1 1 1 1
blood-transfusion-.. 0.7144 0.7403 0.7312 0.7364 0.7549 0.7565
ilpd 0.6917 0.7279 0.7171 0.723 0.7379 0.7419
qsar-biodeg 0.9126 0.9217 0.9191 0.9276 0.9336 0.9349
wdbc 0.9904 0.9931 0.9904 0.9956 0.9964 0.9929
cylinder-bands 0.8556 0.8757 0.8782 0.8878 0.8336 0.844
dresses-sales 0.5593 0.5696 0.5823 0.5507 0.5376 0.6025
MiceProtein 0.9997 0.9999 0.9998 1 0.9999 0.9969
car 0.9925 0.9955 0.9948 0.998 0.995 0.9983
steel-plates-fault.. 0.9626 0.9655 0.9656 0.9666 0.9655 0.9543
climate-model-simu.. 0.9286 0.9344 0.9255 0.9391 0.9415 0.9416

# Wins 1 1 3 12 7 12

Avg. AUROC 0.884±0.1301 0.8898±0.1232 0.8909±0.1224 0.8947±0.1266 0.8943±0.1249 0.8946±0.1206

Avg. Diff. from XGBoost -6.97E-3±9.1E-3 -1.18E-3±1.42E-2 0 3.74E-3±9.18E-3 3.38E-3±1.72E-2 3.63E-3±1.47E-2
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Table 19: Meta-data for the OpenML-CC18 datasets taken from Hollmann et al. (2022). ORCA’s training time depends
on the size of the dataset as well as the sequence length of the generated features (note that the latter is determined by the
kernel size in the embedder layer, which is searched via hyperparameter tuning). Average training time for ORCA is 4 min
per dataset.

OpenML ID Name #Feat. #Cat. #Inst. #Class. Minor. Class Size ORCA train time (min)

11 balance-scale 5 1 625 3 49 8.7
14 mfeat-fourier 77 1 2000 10 200 10.49
15 breast-w 10 1 699 2 241 1.29
16 mfeat-karhunen 65 1 2000 10 200 3.84
18 mfeat-morphological 7 1 2000 10 200 21.46
22 mfeat-zernike 48 1 2000 10 200 4.55
23 cmc 10 8 1473 3 333 2.27
29 credit-approval 16 10 690 2 307 1.34
31 credit-g 21 14 1000 2 300 1.82
37 diabetes 9 1 768 2 268 1.43
50 tic-tac-toe 10 10 958 2 332 1.50
54 vehicle 19 1 846 4 199 2.10
188 eucalyptus 20 6 736 5 105 2.06
458 analcatdata auth... 71 1 841 4 55 2.08
469 analcatdata dmft 5 5 797 6 123 2.17

1049 pc4 38 1 1458 2 178 2.28
1050 pc3 38 1 1563 2 160 1.96
1063 kc2 22 1 522 2 107 1.10
1068 pc1 22 1 1109 2 77 1.68
1462 banknote-authenti... 5 1 1372 2 610 2.32
1464 blood-transfusion-... 5 1 748 2 178 1.46
1480 ilpd 11 2 583 2 167 1.17
1494 qsar-biodeg 42 1 1055 2 356 11.06
1510 wdbc 31 1 569 2 212 1.23
6332 cylinder-bands 40 22 540 2 228 1.07

23381 dresses-sales 13 12 500 2 210 1.47
40966 MiceProtein 82 5 1080 8 105 2.51
40975 car 7 7 1728 4 65 17.19
40982 steel-plates-fault 28 1 1941 7 55 5.83
40994 climate-model-simu... 21 1 540 2 46 1.00
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A.6.2. RESULTS FOR TRAIN-FROM-SCRATCH AND FINE-TUNING BASELINES ON OPENML-CC18

We run the fine-tuning and train-from-scratch baselines using the train-test split scheme in Hollmann et al. (2022) and
compare their performance with ORCA. Unlike on NAS-Bench-360 and PDEBench, train-from-scratch performs better than
fine-tuning on tabular tasks. This shows that initializing the network with out-of-modality pretrained weights may lead to
suboptimal performance, which is also observed in several recent work (Kumar et al., 2022; Lee et al., 2022).

Table 20: ORCA vs. train-from-scratch and fine-tuning on tabular tasks evaluated in Hollmann et al. (2022). “Diff. from
XGBoost” is the across-task average of per-task difference from XGBoost.

OpenML-CC18 Train-from-scratch Fine-tuning ORCA

# Wins/Ties 11/30 1/30 20/30
Avg. AUROC (↑) 0.8673 0.8661 0.8946
Diff. from XGBoost -2.4E-2 -2.5E-2 +3.63E-3

A.6.3. COMPLETE RESULTS FOR TABLE 4 (BOTTOM)

To compare with LIFT (Dinh et al., 2022) and use the baselines reported in their paper, we follow the same evaluation
protocol and use the classification accuracy as the score metric. The detailed results for each method on each task is shown
in Table 21, with the task meta-data shown in Table 22.

Table 21: Accuracies (↑) on the classification tasks evaluated in (Dinh et al., 2022). Baselines include LIFT, the prompting
method which that uses large-scale pretrained language models, and standard ML methods such as XGBoost. ORCA
achieves competitive performances with existing methods and ranks first on 7 out of 14 datasets, significantly outperforming
the domain-specific cross-modal learning approach, LIFT.

Dataset (ID) Logistic Regression Decision Tree SVM XGBoost LIFT w. GPT-3 ORCA

Customers (1511) 87.12±0.54 85.98±0.53 86.36±0.00 85.23±0.00 84.85±1.42 86.93±1.13
Pollution (882) 58.33±11.79 77.78±3.93 58.33±6.81 63.89±7.86 63.89±7.86 75.00±9.62
Spambase (44) 93.27±0.00 90.7±0.14 93.70±0.00 95.87±0.00 94.90±0.36 94.36±0.17
Hill-Valley (1479) 77.78±0.00 56.38±0.89 68.72±0.00 59.26±0.00 99.73±0.19 74.86±2.06
IRIS (61) 96.67±0.00 97.77±3.85 100.00±0.00 100.00±0.00 97.0±0.00 100.00±0.00
TAE (48) 45.16±4.56 65.59±5.49 53.76±6.63 66.67±8.05 65.59±6.63 70.31±5.98
CMC (23) 49.49±0.83 56.72±0.32 56.50±0.97 52.43±0.42 57.74±0.89 58.11 ± 1.78
Wine (187) 100.00±0.00 93.52±2.62 100.00±0.00 97.22±0.00 92.59±1.31 98.61±2.77
Vehicle (54) 80.39±1.00 63.92±2.37 81.18±0.48 73.14±0.28 70.20±2.73 82.35±0.96
LED (40496) 68.67±0.94 66.33±2.87 68.00±0.82 66.00±0.82 69.33±2.05 71.50±2.51
OPT (28) 96.53±0.22 89.8±1.09 97.95±0.00 97.48±0.17 98.99±0.30 98.09±0.39
Mfeat (12) 97.67±0.12 87.67±1.05 98.83±0.24 96.75±0.00 93.08±0.24 96.88±1.03
Margin (1491) 81.35±0.15 43.86±1.21 81.98±0.30 70.21±0.29 59.37±0.92 82.65±0.59
Texture (1493) 81.67±0.97 46.88±1.93 83.44±0.89 70.73±1.41 67.50±1.42 83.59±2.35

# Wins/Ties 2 1 3 2 2 7

Avg. Acc 79.58±18.06 73.06±18.17 80.63±16.87 78.21±16.57 79.63±16.09 83.80±12.81

Avg. Diff. from XGBoost 1.37±9.42 -5.14±10.33 2.42±6.84 0 1.42±11.88 5.60±5.66
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Table 22: Meta-data for the OpenML classification datasets evaluted in Table 21. Taken from Dinh et al. (2022).

ID Abbreviation No. Features No. Classes No. Instances Note

1511 Customers 8 2 440 Imbalance
882 Pollution 15 2 60 1 symbolic feature
44 Spambase 57 2 4601 1 symbolic feature
1479 Hill-Valley 100 2 1212 1 symbolic feature
48 TAE 5 3 151 Categorical data
23 CMC 9 3 1473 Meaningful feature Names
187 Wine 13 3 178 Integral features
54 Vehicle 18 4 846 Meaningful feature Names
40496 LED 7 10 500 1 symbolic feature
28 OPT 64 10 5620 1 symbolic feature
12 Mfeat 216 10 2000 1 symbolic feature
871 Pollen 5 2 3848 -
1467 Climate 20 2 540 -
1491 Margin 64 100 1600 1 symbolic feature
1492 Shape 64 100 1600 1 symbolic feature
1493 Texture 64 100 1599 1 symbolic feature

A.7. Experiments on Drug Response Prediction

We adapt the code from the official GitHub repo of IGTD and download, preprocess, and load the CTRP & GDSC data
following the procedures described in the paper’s supplementary material. Notably, both the gene expression data and the
drug descriptors are normalized using min-max normalization so that each gene/drug feature has a maximum value of 1 and
a minimum value of 0. We then concatenate the features for each gene-drug (treatment) pair. The number of features (cols)
for each treatment sample (row) is 3901 for CTRP and 3739 for GDSC. The processed data are stored locally for the ease
of data loading. During training, we use the MSE as the loss function since we are in a regression setting. The prediction
performance is measured by the coefficient of determination (R2).

Table 5, we show the results for ORCA and the baselines, which include the domain-specific IGTD algorithm that transforms
gene expression profiles and drug molecular descriptors into their respective images. We can see that even compared
with such highly specialized algorithms, the domain-agnostic ORCA still performs quite well, showing the capacity of
cross-modal transfer learning with large-scale pretrained models.

A.8. Additional Experiments

A.8.1. COMPATIBILITY WITH IN-MODALITY TRANSFER

Table 23: We use the dataset splits in Tan et al. (2020), which
removed some mislabeled outliers, and report the prediction errors
(↓) for ORCA and fine-tuning (using Swin-base).

Real Painting Sketch Clipart

ORCA 96.71±0.02 94.71±0.13 94.93±0.24 93.61±0.54
Fine-tuning 93.33±1.33 75.79±0.86 83.00±0.13 86.01±2.62

A natural question to ask is whether ORCA can also tackle
in-modality tasks. While we design ORCA to enable cross-
modal transfer, we hypothesize that it should facilitate
same-modality transfer if two domains have large dataset
distance. To validate this, we test ORCA on DomainNet
datasets, which are commonly used to evaluate homoge-
neous DA methods (Peng et al., 2019). From Table 23,
we can see that ORCA achieves significantly better per-
formance than the fine-tuning baseline, which shows that
the feature matching of ORCA can also help in-domain
generalization.

A.8.2. PROMPTING

Apart from fine-tuning, a new paradigm of working with large-scale pretrained models is prompting, i.e., we do not update
the pretrained weights but only modify the input and query the model for the desired output. Existing language prompting
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methods (e.g., Liu et al., 2022) are generally not suitable for cross-modal learning due to the difficulty of designing natural
prompts for diverse data types. For the 1D tasks we study, there is even no notion of “discrete tokens.” Another line of
work studies visual prompting by modifying 2D inputs for querying vision transformers. We test two such algorithms, VP
(Bahng et al., 2022) and VPT (Jia et al., 2022), on three classification tasks in our task suite. They are not applicable to the
remaining tasks because either the inputs cannot be reshaped to look like images or the outputs are not classification logits.

Table 24: Prediction errors (↓) of ORCA vs. visual prompting methods.

Spherical NinaPro ECG

ORCA 29.85±0.72 7.54±0.39 0.28±0.0059
VP 98.05±0.13 33.18±0.23 0.57±0.0044
VPT 49.53±1.45 31.46±0.83 0.40±0.016

We test VPT with the pretrained Swin-Base Trans-
former (the same model we used for ORCA) and VP
with the pretrained ResNet-50 (as the official imple-
mentation does not support vision transformers). The
results are shown in Table 24. In general, prompt tun-
ing is less effective than fine-tuning, and the two base-
lines perform significantly worse than ORCA. This is
not surprising given that prompting methods are more
intuitively suited to in-modality transfer, where the
target and the source data have similar structure or semantic meaning. However, when the target data (e.g., electromyography
signals, as in the NinaPro dataset) is drastically different from image data, it is difficult to design prompts or expect good
performance by only modifying the inputs without fine-tuning the pretrained models.
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