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Abstract

We introduce a value-based RL agent, which we
call BBF, that achieves super-human performance
in the Atari 100K benchmark. BBF relies on scal-
ing the neural networks used for value estimation,
as well as a number of other design choices that
enable this scaling in a sample-efficient manner.
We conduct extensive analyses of these design
choices and provide insights for future work. We
end with a discussion about updating the goal-
posts for sample-efficient RL research on the ALE.
We make our code and data publicly available.

1. Introduction

Deep reinforcement learning (RL) has been central to a
number of successes including playing complex games at a
human or super-human level, such as OpenAl Five (Berner
et al., 2019), AlphaGo (Silver et al., 2016), and AlphaS-
tar (Vinyals et al., 2019), controlling nuclear fusion plasma
in a tokomak (Degrave et al., 2022), and integrating human
feedback for conversational agents (Ouyang et al., 2022).
The success of these RL methods has relied on large neural
networks and an enormous number of environment sam-
ples to learn from — a human player would require tens of
thousands of years of game play to gather the same amount
of experience as OpenAl Five or AlphaGo. It is plausible
that such large networks are necessary for the agent’s value
estimation and/or policy to be expressive enough for the
environment’s complexity, while large number of samples
might be needed to gather enough experience so as to deter-
mine the long-term effect of different action choices as well
as train such large networks effectively. As such, obtaining
human-level sample efficiency with deep RL remains an
outstanding goal.
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Figure 1: Environment samples to reach human-level
performance, in terms of IQM (Agarwal et al., 2021b) over
26 games. Our proposed model-free agent, BBF, results
in 5x improvement over SR-SPR (D’Oro et al., 2023) and
at least 16x improvement over representative model-free
RL methods, including DQN (Mnih et al., 2015b), Rain-
bow (Hessel et al., 2017) and IQN (Dabney et al., 2018).
To contrast with the sample-efficiency progress in model-
based RL, we also include DreamerV?2 (Hafner et al., 2020),
MuZero Reanalyse (Schrittwieser et al., 2021) and Effi-
cientZero (Ye et al., 2021).

Although advances in modern hardware enable using large
networks, in many environments it may be challenging to
scale up the number of environment samples, especially for
real-world domains such as healthcare or robotics. While
approaches such as offline RL leverage existing datasets to
reduce the need for environment samples (Agarwal et al.,
2020), the learned policies may be unable to handle dis-
tribution shifts when interacting with the real environment
(Levine et al., 2020) or may simply be limited in perfor-
mance without online interactions (Ostrovski et al., 2021).

Thus, as RL continues to be used in increasingly challeng-
ing and sample-scarce scenarios, the need for scalable yet
sample-efficient online RL methods becomes more pressing.
Despite the variability in problem characteristics making
a one-size-fits-all solution unrealistic, there are many in-
sights that may transfer across problem domains. As such,
methods that achieve “state-of-the-art” performance on es-
tablished benchmarks can provide guidance and insights for
others wishing to integrate their techniques.

In this vein, we focus on the Atari 100K benchmark (Kaiser
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Figure 2: Comparing Atari 100K performance and computational cost of our model-free BBF agent to model-free
SR-SPR (D’Oro et al., 2023), SPR (Schwarzer et al., 2021), DrQ (eps) (Kostrikov et al., 2020) and DER (Van Hasselt et al.,
2019) as well as model-based* EfficientZero (Ye et al., 2021) and IRIS (Micheli et al., 2023). (Left) BBF achieves higher
performance than all competitors as measured by interquartile mean human-normalized over 26 games. Error bars show
95% bootstrap Cls. (Right) Computational cost vs. Performance, in terms of human-normalized IQM over 26 games. BBF
results in 2 X improvement in performance over SR-SPR with nearly the same computational-cost, while results in similar
performance to model-based EfficientZero with at least 4 x reduction in runtime. For measuring runtime, we use the total

number of A100 GPU hours spent per environment.

et al., 2020), a well-known benchmark where agents are
constrained to roughly 2 hours of game play, which is the
amount of practice time the professional tester was given
before human score evaluation. While human-level effi-
ciency has been obtained by the model-based EfficientZero
agent (Ye et al., 2021), it has remained elusive for model-
free RL agents. To this end, we introduce BBF, a model-
free RL agent that achieves super-human performance — in-
terquartile mean (Agarwal et al., 2021b) human-normalized
score above 1.0 — while being much more computation-
ally efficient than EfficientZero (Figure 2). Achieving this
level of performance required a larger network than the
decade-old 3-layer CNN architecture (Mnih et al., 2013),
but as we will discuss below, scaling network size is not
sufficient on its own. We discuss and analyze the various
techniques and components that are necessary to train BBF
successfully and provide guidance for future work to build
on our findings. Finally, we propose moving the goalpost
for sample-efficient RL research on the ALE.

2. Background

The RL problem is generally described as a Markov Deci-
sion Proces (MDP) (Puterman, 2014), defined by the tuple
(S, A, P, R), where S is the set of states, A is the set of
available actions, P : S x A — A(S)! is the transition func-
tion, and R : S x A — Ris the reward function. Agent be-
havior in RL can be formalized by a policy 7 : S — A(A),
which maps states to a distribution of actions. The value of

'A(S) denotes a distribution over the set S.

7 when starting from s € S is defined as the discounted sum
of expected rewards: V7 (s) := Erp [> 2077 (s, ae)ls
where v € [0, 1) is a discount factor that encourages the
agent to accumulate rewards sooner rather than later. The
goal of an RL agent is to find a policy 7* that maximizes
this sum: V™ > V7 for all 7.

While there are a number of valid approaches (Sutton &
Barto, 1998), in this paper we focus on model-free value-
based methods. Common value-based algorithms approxi-
mate the (Q*-values, defined via the Bellman recurrence:
Q*(s,a) := R(s,a) + ’Y]Es'wp(s,a) [maxarea Q*(s",a’)].
The optimal policy 7" can then be obtained from the
optimal state-action value function Q* as 7*(z)
maxgea Q*(s,a). A common approach for learning Q*
is the method of temporal differences, optimizing the Bell-
man temporal difference:

<7" (5¢,a¢) + ’YI(ETEQ (St+1,at+1)) —Q (st at) -

We often refer to (r (s¢, a;) + ymaxa,,, Q (St41,a:+1))
as the Bellman target.

Mnih et al. (2015a) introduced the agent DQN by com-
bining temporal-difference learning with deep networks,
and demonstrated its capabilities in achieving human-level
performance on the Arcade Learning Environment (ALE)
(Bellemare et al., 2013). They used a network consisting of
3 convolutional layers and 2 fully connected layers, param-
eterized by 0, to approximate ) (denoted as Qy). We will
refer to this architecture as the CNN architecture. Most of
the work in value-based agents is built on the original DQN
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Figure 3: Scaling network widths for both ResNet and CNN architectures, for BBF, SR-SPR and SPR at replay ratio
2, with an Impala-based ResNet (left) and the standard 3-layer CNN (Mnih et al., 2015b) (right). We report interquantile
mean performance with error bars indicating 95% confidence intervals. On the x-axis we report the approximate parameter
count of each configuration as well as its width relative to the default (width scale = 1).

agent, and we discuss a few of these advances below which
are relevant to our work.

Hessel et al. (2018) combined six components into a single
agent they called Rainbow: prioritized experience (Schaul
et al., 2016), n-step learning (Sutton, 1988), distributional
RL (Bellemare et al., 2017), double Q-learning (van Hasselt
et al., 2016), dueling architecture (Wang et al., 2016) and
NoisyNets (Fortunato et al., 2018b). Hessel et al. (2018)
and Ceron & Castro (2021) both showed that Multi-step
learning is one of the most crucial components of Rainbow,
in that removing it caused a large drop in performance.

In n-step learning, instead of computing the temporal dif-
ference error using a single-step transition, one can use
n-step targets instead (Sutton, 1988), where for a trajec-
tory (so, ag, ro, S1,a1, - - - ) and update horizon n: Rﬁn) =
ZZ;& v*ris 11, yielding the multi-step temporal differ-
ence: RE") + " maxy Qo(St4n,a’) — Qo(st, ar).

Most modern RL algorithms store past experiences in a
replay buffer that increases sample efficiency by allowing
the agent to use samples multiple times during learning,
and to leverage modern hardware such as GPUs and TPUs
by training on sampled mini-batches. An important design
parameter is the replay ratio, the ratio of learning updates to
online experience collected (Fedus et al., 2020a). It is worth
noting that DQN uses a replay ratio of 0.25 (4 environment
interactions for every learning update), while some sample-
efficient agents based on Rainbow use a value of 1.

Nikishin et al. (2022) showed that the networks used by
deep RL agents have a tendency to overfit to early experi-
ence, which can result in sub-optimal performance. They
proposed a simple strategy consisting of periodically reset-
ting the parameters of the final layers of DQN-based agents
to counteract this. Building on this promising work, D’Oro
et al. (2023) added a shrink-and-perturb technique for the
parameters of the convolutional layers, and showed that this
allowed them to scale the replay ratio to values as high as
16, with no performance degradation.

3. Related Work

Sample-Efficient RL on ALE: Sample efficiency has al-
ways been an import aspect of evaluation in RL, as it can
often be expensive to interact with an environment. Kaiser
et al. (2020) introduced the Atari 100K benchmark, which
has proven to be useful for evaluating sample-efficiency, and
has led to a number of recent advances.

Kostrikov et al. (2020) use data augmentation to design
a sample-efficient RL method, DrQ, which outperformed
prior methods on Atari 100K. Data-Efficient Rainbow
(DER) (Van Hasselt et al., 2019) and DrQ(e) (Agarwal et al.,
2021b) simply modified the hyperparameters of existing
model-free algorithms to exceed the performance of exist-
ing methods without any algorithmic innovation.

Schwarzer et al. (2021) introduced SPR, which builds on
Rainbow (Hessel et al., 2017) and uses a self-supervised tem-
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Figure 4: (Left). Optimality Gap (lower is better) for BBF at replay ratio 8 and competing methods on Atari 100K. Error
bars show 95% ClIs. BBF, has a lower optimality gap than any competing algorithm, indicating that it comes closer on
average to achieving human-level performance across all tasks. (Right) Performance profiles showing the distribution of
scores across all runs and 26 games at the end of training (higher is better). Area under an algorithm’s profile is its mean
performance while 7 value where it intersects y = 0.75 shows its 25th percentile performance. BBF has better performance
on challenging tasks that may not otherwise contribute to IQM or median performance.

poral consistency loss based on BYOL (Grill et al., 2020)
combined with data augmentation. SR-SPR (Schwarzer
et al., 2021) combines SPR with periodic network resets
to achieve state-of-the-art performance on the 100K bench-
mark. Ye et al. (2021) used a self-supervised consistency
loss similar to SPR (Chen & He, 2021).

EfficientZero (Ye et al., 2021), an efficient variant of
MuZero (Schrittwieser et al., 2020), learns a discrete-action
latent dynamics model from environment interactions, and
selects actions via lookahead MCTS in the latent space of
the model. Micheli et al. (2023) introduce IRIS, a data-
efficient agent that learns in a world model composed of an
autoencoder and an auto-regressive Transformer.

Scaling in Deep RL: Deep neural networks are useful for
extracting features from data relevant for various down-
stream tasks. Recently, there has been interest in the scaling
properties of neural network architectures, as scaling model
size has led to commensurate performance gains in applica-
tions ranging from language modelling to computer vision.

Based on those promising gains, the deep RL community
has begun to investigate the effect of increasing the model
size of the function approximator. Sinha et al. (2020) and
Ota et al. (2021) explore the interplay between the size,
structure, and performance of deep RL agents to provide
intuition and guidelines for using larger networks. Kumar
et al. (2022) find that with ResNets (up to 80 million param-
eter networks) combined with distributional RL and feature
normalization, offline RL can exhibit strong performance
that scales with model capacity. Taiga et al. (2023) show
that generalization capabilities on the ALE benefit from
higher capacity networks, such as ResNets. Cobbe et al.

(2020) and Farebrother et al. (2023) demonstrate benefits
when scaling the number of features in each layer of the
ResNet architecture used by Impala (Espeholt et al., 2018),
which motivated the choice of feature width scaling in this
work. Different from these works, our work focus on im-
proving sample-efficiency in RL as opposed to offline RL
or improving generalization in RL.

In the context of online RL, Hafner et al. (2023) demonstrate
that increased dynamics model size, trained via supervised
learning objectives, leads to monotonic improvements in
the agent’s final performance. Recently, AdA (Team et al.,
2023) scales transformer encoder for a Muesli agent up to
265M parameters. Interestingly, AdA required distillation
from smaller models to bigger models to achieve this scaling,
in the spirit of reincarnating RL (Agarwal et al., 2022).
However, it is unclear whether findings from above papers
generalize to scaling typical value-based deep RL methods
in sample-constraint settings, which we study in this work.

4. Method

The question driving this work is: How does one scale net-
works for deep RL when samples are scarce? To investigate
this, we focus on the well-known Atari 100K benchmark
(Kaiser et al., 2020), which includes 26 Atari 2600 games of
diverse characteristics, where the agent may perform only
100K environment steps, roughly equivalent to two hours of
human gameplay®. As we will see, niively scaling networks
can rarely maintain performance, let alone improve it.

The culmination of our investigation is the Bigger, Better,

2100k steps (400k frames) at 60 FPS is 111 minutes.
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Figure 5: Evaluating the impact of removing the various components that make up BBF with RR=2 and RR=8.
Reporting interquantile mean averaged over the 26 Atari 100k games, with 95% CIs over 15 independent runs.

Faster agent, or BBF in short, which achieves super-human
performance on Atari 100K with about 6 hours on single
GPU. Figure 2 demonstrates the strong performance of BBF
relative to some of the best-performing Atari 100K agents:
EfficientZero (Ye et al., 2021), SR-SPR (D’Oro et al., 2023),
and IRIS (Micheli et al., 2023). BBF consists of a number
of components, which we discuss in detail below.

Our implementation is based on the Dopamine framework
(Castro et al., 2018) and uses mostly already previously-
released components. For evaluation, we use rliable (Agar-
wal et al., 2021b) and in particular, the interquartile
mean (IQM) metric, which is the average score of the middle
50% runs combined across all games and seeds.

Base agent. BBF uses a modified version of the recently
introduced SR-SPR agent (D’Oro et al., 2023). Through the
use of periodic network resets, SR-SPR is able to scale up its
replay ratio (RR) to values as high as 16, yielding better sam-
ple efficiency. For BBF, we use RR=8 in order to balance the
increased computation arising from our large network. Note
that this is still very high relative to existing Atari agents
— Rainbow and its data-efficient variant DER (Van Hasselt
et al., 2019) use RR=0.25 and 1, respectively.

As we expect that many users will not wish to pay the com-
putational costs of running at replay ratio 8, we also present
results for BBF and ablations at replay ratio 2 (matching
SPR). For all experiments we state which replay ratio is
being used in the captions.

Harder resets. The original SR-SPR agent (D’Oro et al.,
2023) used a shrink-and-perturb method for the convolu-
tional layers where parameters were only perturbed 20% of
the way towards a random target, while later layers were
fully reset to a random initialization. An interesting result

of our investigation is that using harder resets of the convo-
lutional layers yields better performance. In our work, we
move them 50% towards the random target, resulting in a
stronger perturbation and improving results (see Figure 5).
This may be because larger networks need more regulariza-
tion, as we find that they reduce loss faster (Figure A.1).

Larger network. Scaling network capacity is one of the
motivating factors for our work. As such, we adopt the
Impala-CNN (Espeholt et al., 2018) network, a 15-layer
ResNet, which has previously led to substantial performance
gains over the standard 3-layer CNN architecture in Atari
tasks where large amounts of data are available (Agarwal
et al., 2022; Schmidt & Schmied, 2021). Additionally, BBF
scales the width of each layer in Impala-CNN by 4x. In
Figure 3, we examine how the performance of SPR, SR-SPR
and BBF varies with different choices of scaling width, for
both the ResNet and original CNN architectures. Interest-
ingly, although the CNN has roughly 50% more parameters
than the ResNet at each scale level, the ResNet yields better
performance at all scaling levels for both SR-SPR and BBE.

What stands out from Figure 3 is that BBF’s performance
continues to grow as width is increased, whereas SR-SPR
seems to peak at 1-2x (for both architectures). Given that
ResNet BBF performs comparably at 4x and 8 x, we chose
4x to reduce the computational burden. While reducing
widths beyond this could further reduce computational costs,
this comes at the cost of increasingly sharp reductions in
performance for all methods tested.

Receding update horizon. One of the surprising compo-
nents of BBF is the use of an update horizon (n-step) that
decreases exponentially from 10 to 3 over the first 10K gra-
dient steps following each network reset. Given that we
follow the schedule of D’Oro et al. (2023) and reset every
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Figure 6: Comparison of BBF and SR-SPR across dif-
ferent replay ratios. We report IQM with 95% ClIs for
each point. BBF achieves an almost-constant 0.45 IQM
improvement over SR-SPR at each replay ratio.

40k gradient steps, the annealing phase is always 25% of
training, regardless of the replay ratio. As can be seen in
Figure 5, this yields a much stronger agent than using a fixed
value of n = 3, which is default for Rainbow, or n = 10,
which is typically used by Atari 100K agents like SR-SPR.

Our n-step schedule is motivated by the theoretical results
of Kearns & Singh (2000) — larger values of n-step leads
to faster convergence but to higher asymptotic errors with
respect to the optimal value function. Thus, selecting a
fixed value of n corresponds to a choice between having
either rapid convergence to a worse asymptote, or slower
convergence to a better asymptote. As such, our exponential
annealing schedule closely resembles the optimal decreasing
schedule for n-step derived by Kearns & Singh (2000).

Increasing discount factor. Motivated by findings that
increasing the discount factor v during learning improves
performance (Frangois-Lavet et al., 2015), we increase -y
from 7; to 72, following the same exponential schedule
as for the update horizon. Note that increasing v has the
effect of progressively giving more weights to delayed re-
wards. We choose y; = 0.97, slightly lower than the typical
discount used for Atari, and v = 0.997 as it is used by
MuZero (Schrittwieser et al., 2021) and EfficientZero (Ye
et al., 2021). As with the update horizon, Figure 5 demon-
strates that this strategy outperforms using a fixed value.

Weight decay. We incorporate weight decay in our agent
to curb statistical overfitting, as BBF is likely to overfit
with its high replay ratio. To do so, we use the AdamW
optimizer (Loshchilov & Hutter, 2019) with a weight decay
value of 0.1. Figure 5 suggests the gains from adding weight
decay are significant and increase with replay ratio, indicat-
ing that the regularizing effects of weight decay enhance
replay ratio scaling with large networks.

1.0 mmm + Target Network
— Target Network
0.8
s 0.6
o
0.4
0.2

RR=2 RR=8 RR=2 RR=8

SR-SPR SR-SPR BBF BBF

Figure 7: Comparison of BBF and SR-SPR at replay
ratios 2 and 8 with and without EMA target networks.
Human-normalized IQM on the 26 Atari 100k games.

Removing noisy nets. Finally, we found that NoisyNets
(Fortunato et al., 2018a), used in the original SPR
(Schwarzer et al., 2021) and SR-SPR, did not improve per-
formance. This could be due to NoisyNets causing over-
exploration due to increased policy churn (Schaul et al.,
2022) from added noise during training, or due to added
variance in optimization, and we leave investigation to future
work. Removing NoisyNets results in large computational
and memory savings, as NoisyNets creates duplicate copies
of the weight matrices for the final two linear layers in the
network, which contain the vast majority of all parameters:
turning on NoisyNets increases the FLOPs per forward pass
and the memory footprint by a factor of 2.5x and 1.6x,
respectively, which both increases runtime and reduces the
number of training runs that can be run in parallel on a single
GPU. Removing NoisyNets is thus critical to allowing BBF
to achieve reasonable compute efficiency despite its larger
networks. We found that this decision had no significant
impact on task performance (see Figure A.2 in appendix).

5. Analysis

In light of the importance of BBF’s components, we discuss
possible consequences of our findings for other algorithms.

The importance of self-supervision. One unifying as-
pect of the methods compared in Figure 2 is that they all
use some form of self-supervised objective. In sample-
constrained scenarios, like the one considered here, relying
on more than the temporal-difference backups is likely to
improve learning speed, provided the self-supervised losses
are consistent with the task at hand. We test this by re-
moving the SPR objective (inherited from SR-SPR) from
BBEF, and observe a substantial performance degredation
(see Figure 5). It is worth noting that EfficientZero uses a
self-supervised objective that is extremely similar to SPR, a
striking commonality between BBF and EfficientZero.
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Figure 8: Validating BBF design choices at RR=2 on 29
unseen games. While Atari 100K training set consists of
26 games, we evaluate the performance of various compo-
nents in BBF on 29 validation games in ALE that are not
in Atari 100K. Interestingly, all BBF components lead to a
large performance improvement on unseen games. Specif-
ically, we measure the % decrease in human-normalized
IQM performance relative to the full BBF agent at RR=2.

Sample efficiency via more gradient steps. The origi-
nal DQN agent (Mnih et al., 2015b) has a replay ratio of
0.25, which means a gradient update is performed only af-
ter every 4 environment steps. In low-data regimes, it is
more beneficial to perform more gradient steps, although
many algorithms cannot benefit from this without additional
regularization (D’Oro et al., 2023). As Figure 6 confirms,
performance of BBF grows with increasing replay ratio
in the same manner as its base algorithm, SR-SPR. More
strikingly, we observe a linear relationship between the per-
formance of BBF and SR-SPR across all replay ratios, with
BBF performing roughly 0.45 IQM above SR-SPR. While
the direction of this relationship is intuitive given the net-
work scaling introduced by BBF, its linearity is unexpected,
and further investigation is needed to understand the nature
of the interaction between replay ratio and network scaling.

One interesting comparison to note is that, although Effi-
cientZero uses a replay ratio of 1.2, they train with a batch
size that is 8 times larger than ours. Thus, their effective
replay ratio is comparable to ours.

The surprising importance of target networks Many
prior works on Atari 100k, such as DrQ and SPR (Kostrikov
et al., 2020; Schwarzer et al., 2021) chose not to use target
networks, seeing them unnecessary or an impediment to
sample efficiency. Later, D’Oro et al. (2023) re-introduced
an exponential moving average target network, used both for
training and action selection, and found that it improved per-
formance somewhat, especially at high replay ratios. With
network scaling, however, using a target network becomes
a critical, but easy-to-overlook, component of the algorithm
at all replay ratios (see Figure 7).
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Figure 9: Evaluating BBF on ALE with and w/o sticky
actions. We report IQM human-normalized performance at
replay ratio 8 on 26 games in Atari 100K as well the full
set of 55 games in ALE. While performance on the full set
of 55 games is lower, neither setting has its performance
significantly affected by sticky actions.

Reset Strength Increasing the replay ratio is in general
challenging, as explored by Fedus et al. (2020b) and Kumar
et al. (2020). Periodic resetting, as suggested by Nikishin
et al. (2022) and D’Oro et al. (2023), has proven effective
to enable scaling to larger replay ratios, quite possibly a
result of reduced overfitting. This is confirmed in Figure 5,
where the importance of resets is clear. Further, Figure 5 and
Figure 8 demonstrate the added benefit of more aggressive
perturbations, relative to SR-SPR.

Scale is not enough on its own. The naive approach of
simply scaling the capacity of the CNN used by SR-SPR
turns out to be insufficient to improve performance. Instead,
as Figure 3 shows, the performance of SR-SPR collapses
as network size increases. As discussed in section 4, it is
interesting to observe that the smaller Impala-CNN ResNet
(as measured by number of parameters and FLOPs) yields
stronger performance at all width scales.

Computational efficiency. As machine learning methods
become more sophisticated, an often overlooked metric
is their computational efficiency. Although EfficientZero
trains in around 8.5 hours, it requires about 512 CPU cores
and 4 distributed GPUs. IRIS uses half of an A100 GPU for
a week per run. SR-SPR, at its highest replay ratio of 16,
uses 25% of an A100 GPU and a single CPU for roughly
24 hours. Our BBF agent at replay ratio 8 takes only 10
hours with a single CPU and half of an A100 GPU. Thus,
measured by GPU-hours, BBF provides the best trade-off
between performance and compute (see Figure 2).

6. Revisiting the Atari 100k benchmark

A natural question is whether there is any value in continu-
ing to use the Atari 100K benchmark, given that both Effi-
cientZero and BBF are able to achieve human-level perfor-
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Figure 10: Sample efficiency progress on ALE, measured
via human-normalized IQM over 55 Atari games with sticky
actions, as a function of amount of human game play hours,
with BBF at RR=8. Shaded regions show 95% ClIs.

mance (IQM > 1.0) in just 100K steps. When considering
this, it is important to remember that IQM is an aggregate
measure. Indeed, in the left panel of Figure 4 we can see
there is still room for improvement with regards to the op-
timality gap, which measures the amount by which each
algorithm fails to meet a minimum score of 1.0 (Agarwal
et al., 2021b). Specifically, despite monotonic progress over
the years, no agent is yet able to achieve human-level per-
formance on all 26 games, which would yield an optimality
gap of zero, without using dramatically more than two hours
of data (Kapturowski et al., 2022).

Overfitting on Atari 100K. Another important considera-
tion is that the Atari 100K benchmark uses only 26 of the
55 games from the full ALE suite, and it does not include
sticky actions® (Machado et al., 2018), which may make
tasks significantly harder. Since we extensively benchmark
BBF on Atari 100K, this raises the question of whether BBF
works well on unseen Atari games and with sticky actions.

Fortunately, it does. In Figure 9, we compare the perfor-
mance of BBF on all 55 games with sticky actions, and show
that sticky action do not significantly harm performance. We
do observe that the held-out games not included in the Atari
100k set are significantly more challenging than the 26 Atari
100k games (see Figure 11) — but this is even more true for
baselines such as DQN (Nature) that did not use Atari 100k.
Furthermore, as shown in Figure 8, we find that BBF’s de-
sign choices generally provide even more benefit on these
held-out games, possibly due to their increased difficulty.

New Frontiers In fact, BBF works so well on the stan-
dard Atari setting that it is able to roughly match DQN’s
performance at 256 hours with only two hours of gameplay

3With 25% probability, the environment will execute the previ-
ous action again, instead of the agent’s executed action.
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Figure 11: Comparing performance on the 29 unseen
games to the 26 Atari 100k games. BBF trained with
sticky actions at RR=8 for 100k steps approximately
matches DQN (Nature) with 500 times more training data
on each set. While we find that the 29 games not included
in the Atari 100k setting are significantly harder than the
26 Atari 100k games, we see no evidence that BBF has
overfitted to Atari 100k compared to DQN.

time (Figure 10). This suggests a clear new milestone for
the community: can we match Rainbow’s final performance
with just two hours of gameplay? To facilitate future re-
search toward this, we release scores on the set of 55 games
with sticky actions, at various scales and replay ratios.

Data Scaling Prior works have indicated that many
sample-efficient RL algorithms plateau in performance
when trained for longer than they were originally designed
for (e.g., Agarwal et al., 2022). To examine this phe-
nomenon, we train BBF, SPR and SR-SPR at replay ratio
2 out to one million environment steps (Figure 12), keep-
ing all parameters unchanged (including conducting resets
as normal past 100k steps). We observe that SPR and SR-
SPR experience stagnating performance, with SR-SPR’s
advantage over SPR fading by 1M steps. BBF, however,
remains consistently ahead of both, matching DQN’s final
performance before 200k environment steps and matching
Rainbow’s performance at 20M environment steps by 1M
steps. We note that this experiment costs only 2.5 times
more than training at replay ratio 8 to 100k steps, so we
encourage other researchers to run similar experiments.

Additionally, we note in Figure 13 that it is possible to
compare algorithms even with extremely small amounts of
data, such as 20k or 50k steps, by which point BBF at replay
ratio 2 (even with sticky actions enabled) outperforms most
recently proposed algorithms (Robine et al., 2023; Micheli
et al., 2023; Hafner et al., 2023), which did not use sticky
actions. We thus suggest that compute-constrained groups
consider this setting, as training BBF at replay ratio 2 for
40k environment steps takes only half of an A100 for 1 hour.
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7. Discussion and Future Work

We introduced BBF, an algorithm that is able to achieve
super-human level performance on the ALE with only 2-
hours of gameplay. Although BBF is not the first to achieve
this milestone, it is able to do so in a computationally ef-
ficient manner. Furthermore, BBF is able to better handle
the scaling of networks and replay ratios, which are cru-
cial for network expressivity and learning efficiency. In-
deed, Figure 3 suggests that BFF is better-able to use over-
parameterized networks than prior agents.

The techniques necessary to achieve this result invite a num-
ber of research questions for future work. Large replay ratios
are a key element of BFF’s performance, and the ability to
scale them is due to the periodic resets incorporated into
the algorithm. These resets are likely striking a favourable
balance between catastrophic forgetting and network plas-
ticity. An interesting avenue for future research is whether
there are other mechanisms for striking this balance that per-
haps are more targeted (e.g. not requiring resetting the full
network, as was recently explored by Sokar et al. (2023)).
We remarked on the fact that all the methods compared in
Figure 2 use a form of self-supervision. Would other self-
supervised losses (e.g. (Mazoure et al., 2020; Castro et al.,
2021; Agarwal et al., 2021a)) produce similar results? Sur-
prisingly, Li et al. (2022) argue that self-supervision from
pixels does not improve performance; our results seem to
contradict this finding.

Recent attention has shifted towards more realistic bench-
marks (Fan et al., 2022) but such benchmarks exclude the
majority of researchers outside certain resource-rich labs,
and may require an alternative paradigm (Agarwal et al.,
2022). One advantage of the Atari 100k benchmark is that,

while still a challenging benchmark, it is relatively cheap
compared to other benchmarks of similar complexity. How-
ever, despite its apparent saturation, scientific progress can
still be made on this benchmark if we expand its scope. We
hope our work provides a solid starting point for this.

Overall, we hope that our work inspires other researchers to
continue pushing the frontier of sample efficiency in deep
RL forward, to ultimately reach human-level performance
across all tasks with human-level or superhuman efficiency.
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Figure 13: IQM Human-normalized learning curve for
BBF at RR=2 with sticky actions on the 26 Atari 100k
games, with final performances of many recent algorithms
after they have trained for 100k steps. Even a weakened
BBF outperforms all by 50k steps.
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A. Additional Results

Random Human DER DrQ(e) SPR IRIS SR-SPR EfficientZero BBF
Alien 227.8 7127.7 802.3 865.2 841.9 420.0 1107.8 808.5 1173.2
Amidar 5.8 1719.5 125.9 137.8 179.7 143.0 203.4 148.6 244.6
Assault 222.4 742.0 561.5 579.6 565.6 1524.4 1088.9 1263.1 2098.5
Asterix 210.0 8503.3 535.4 763.6 962.5 853.6 903.1 25557.8 3946.1
BankHeist 14.2 753.1 185.5 232.9 3454 53.1 531.7 351.0 732.9
BattleZone 2360.0 37187.5 8977.0 10165.3 14834.1 13074.0 17671.0 13871.2 24459.8
Boxing 0.1 12.1 -0.3 9.0 35.7 70.1 45.8 52.7 85.8
Breakout 1.7 30.5 9.2 19.8 19.6 83.7 25.5 414.1 370.6
ChopperCommand  811.0 7387.8 925.9 844.6 946.3 1565.0 2362.1 1117.3 7549.3
CrazyClimber 10780.5 35829.4 34508.6 21539.0 36700.5 593242 45544.1 83940.2 58431.8
DemonAttack 152.1 1971.0 627.6 1321.5 517.6 2034.4 2814.4 13003.9 133414
Freeway 0.0 29.6 20.9 20.3 19.3 311 254 21.8 25.5
Frostbite 65.2 4334.7 871.0 1014.2 1170.7 259.1 2584.8 296.3 2384.8
Gopher 257.6 2412.5 467.0 621.6 660.6 2236.1 712.4 3260.3 1331.2
Hero 1027.0 30826.4  6226.0 4167.9 5858.6 7037.4 8524.0 9315.9 7818.6
Jamesbond 29.0 302.8 275.7 349.1 366.5 462.7 389.1 517.0 1129.6
Kangaroo 52.0 3035.0 581.7 1088.4 3617.4 838.2 3631.7 724.1 6614.7
Krull 1598.0 2665.5 3256.9 4402.1 3681.6 6616.4 5911.8 5663.3 82234
KungFuMaster 258.5 22736.3  6580.1 11467.4 14783.2 21759.8 18649.4 30944.8 18991.7
MsPacman 307.3 6951.6 1187.4 1218.1 1318.4 999.1 1574.1 1281.2 2008.3
Pong -20.7 14.6 -9.7 9.1 -5.4 14.6 2.9 20.1 16.7
PrivateEye 24.9 69571.3 72.8 3.5 86.0 100.0 97.9 96.7 40.5
Qbert 163.9 13455.0 1773.5 1810.7 866.3 745.7 4044.1 14448.5 4447.1
Roadrunner 11.5 7845.0 118434 112114 12213.1 9614.6 13463.4 17751.3 33426.8
Seaquest 68.4 42054.7 304.6 352.3 558.1 661.3 819.0 1100.2 1232.5
UpNDown 533.4 11693.2 3075.0 4324.5 10859.2  3546.2 112450.3 17264.2 12101.7
Games > Human 0 0 2 3 6 9 9 14 12
IQM (1) 0.000 1.000 0.183 0.280 0.337 0.501 0.631 1.020 1.045
Optimality Gap ()  1.000 0.000 0.698 0.631 0.577 0.512 0.433 0.371 0.344
Median (1) 0.000 1.000 0.189 0.313 0.396 0.289 0.685 1.116 0.917
Mean (1) 0.000 1.000 0.350 0.465 0.616 1.046 1.272 1.945 2.247

Table A.1: Scores and aggregate metrics for BBF and competing methods across the 26 Atari 100k games. Scores are
averaged across 50 seeds per game for BBF, 30 for SR-SPR, 5 for IRIS, 3 for EfficientZero, and 100 for others.
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Figure A.1: Learning curves for BBF and SR-SPR at RR=2 with a ResNet encoder at various width scales, on the 26
Atari 100k games. Larger networks consistently have lower TD errors and higher gradient norms, and higher parameter
norms, but only BBF translates this to higher environment returns. The large, systematic difference in TD error between
BBF and SR-SPR is due to BBF’s use of a shorter update horizon, which makes each step of the TD backup easier to predict.
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Figure A.2: BBF at RR=2 on the 26 Atari 100k tasks, with and without Noisy Nets.



