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Abstract

Training neural networks that require adversarial optimization, such as generative adversarial
networks (GANs) and unsupervised domain adaptations (UDAs), suffers from instability.
This instability problem comes from the difficulty of the minimax optimization, and there
have been various approaches in GANs and UDAs to overcome this problem. In this
study, we tackle this problem theoretically through a functional analysis. Specifically, we
show the convergence property of the minimax problem by the gradient descent over the
infinite-dimensional spaces of continuous functions and probability measures under certain
conditions. Using this setting, we can discuss GANs and UDAs comprehensively, which
have been studied independently. In addition, we show that the conditions necessary for the
convergence property are interpreted as stabilization techniques of adversarial training such
as the spectral normalization and the gradient penalty.

Keywords: Minimax, Non-convex Optimization, Convergence Analysis, Adversarial Training, Functional
Analysis.

1 Introduction

With the increased computational resources and available data, neural networks (NNs) trained by adversarial
training have emerged prominently in various fields. An example is the application of generative adversarial
networks (GANS) in generative tasks. GANs train the generator to capture the data distribution in an
adversarial manner against the discriminator, which distinguishes between data generated by the generator
and the dataset (Goodfellow et all [2014)). Another example is the utilization of adversarial training in
unsupervised domain adaptations (UDAs) as generalization techniques. UDAs transfer knowledge from
source domains to the target domain by extracting domain-invariant features against the domain critic that
distinguish between data from source and target domains in an adversarial manner (Ganin and Lempitsky),
2015}, 'Tzeng et al.l |2017)). Despite the effectiveness of GANs and UDAs, both pose challenges as nonconvex-
nonconcave minimax problems, leading to inherent instability (Salimans et al., 2016|). This instability, though
insufficiently explored theoretically, complicates the widespread deployment of these models and hinders their
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practical application. To address and pave the way for more robust applications, we analyze the instability
problem from a functional analysis perspective.

As instability is related to the convergence properties of the gradient descent algorithm (Chu et al., 2020)), we
aim to clarify the convergence conditions for adversarial optimization problems. To facilitate the derivation
of these conditions from the functional analysis perspective, we begin by considering the ideal setting. In our
study, the ideal setting is derived from the dual formula of the minimization of a functional over probability
distributions, leading to the minimax problem over infinite-dimensional spaces of continuous functions or
probability measures. By exploring this minimax problem over infinite-dimensional spaces, we can prove the
convergence to a minimax solution for a convex-concave setting (Section and a stationary point for a
nonconvex-concave setting (Section under appropriate assumptions.

Throughout the convergence analyses, we maintain the assumption that the discrepancy measure, appearing
in both GANs and UDAs, is strongly convex and L-smooth for the convergence. Achieving strong convexity
involves confining the discriminator to a suitable subset within Lipschitz continuous function spaces. This
concept aligns with the spectral normalization (Miyato et al., [2018). To ensure L-smoothness, we utilize the
inf-convolution with a regularizer, such as the squared maximum mean discrepancy (MMD) in the reproducing
kernel Hilbert spaces (RKHS) with the Gaussian kernel. This process corresponds to the gradient penalty
(Gulrajani et all [2017). Therefore, we can theoretically interpret widely-used stabilization techniques in
adversarial training as the desired condition for achieving convergence properties.

Contributions

(A) We show the convergence to the minimax solution for a convex-concave setting and the stationary
point for a nonconvex-concave setting over infinite-dimensional spaces of continuous functions or
probability measures. This analysis is motivated by adversarial training in the scheme of the gradient
descent (Section [5]).

(B) We verify the fulfillment of sufficient conditions for the convergence properties in certain GANs and
UDAs settings (Section @, providing a theoretical interpretation of existing techniques such as the
spectral normalization and gradient penalty.

2 Related Work

GAN training often exhibits an unstable trajectory, resulting in poor solutions (Goodfellow et al.l [2014;
Metz et all 2016). To address this instability, various stabilization techniques have been proposed, including
the Wasserstein GAN (Arjovsky et all) [2017), gradient penalty (Gulrajani et al. [2017), and spectral
normalization (Miyato et al., [2018). The effectiveness of these techniques in stabilizing GAN training has been
theoretically demonstrated (Chu et al., [2020). This theoretical result implies that the instability of GANs is
due to adversarial training. Thus, UDAs with adversarial training are expected to encounter similar instability
during training. Although methods to introduce various distances into UDAs to stabilize them have been
investigated (Shen et al.l [2018} |Acuna et al., |2021; [Wu et al., |2022; |Chen and Marchand, 2023)), a theoretical
analysis encompassing UDAs and GANs with respect to instability has not yet been proposed. Notably,
Chu et al.| (2020)) provides theoretical insight into GANSs, interpreting stabilization techniques as conditions
from the perspective of the minimization problem. On the other hand, our work provides similar theoretical
insight from the viewpoint of the minimax problem rather than minimization, as the actual setting in GANs
and UDAs employs the convex duality of the objective function to be minimized (Ganin and Lempitskyl
2015; |Shen et al., [2018; |Acuna et al., 2021). Firstly, we provide insights similar to |Chu et al.| (2020)), which
interpret stability techniques often used in GANSs, such as spectral normalization and gradient penalty, via
the sufficient conditions for minimax convergence, even though |Chu et al.| (2020) discussed the minimization
problem. Secondly, we provide insight for UDAs, emphasizing that joint convexity is an important factor for
stabilization, which could be achieved by strongly convex regularization for the predictor and generator. This
is a new insight for UDAs, which [Chu et al.| (2020) never included, as they only considered minimization
of divergence, not including source risk. It should be noted that while the existence of equilibrium in the
GAN and UDA minimax problems has been discussed (Arora et al.l|2017; |Acuna et al.l 2022), we discuss the
convergence of appropriate algorithms to the equilibrium point.



Published in Transactions on Machine Learning Research (06/2024)

Numerous references delve into the minimax optimization problem over finite-dimensional spaces, often
treated as specific cases of Hilbert spaces. For instance, (Cherukuri et al.| (2017)); |Mokhtari et al.| (2020); [Du
and Hu (2019)) explore the convex-concave setting, while Huang et al.| (2021)); 'Thekumparampil et al.| (2019);
Lin et al.| (2020a) focus on the nonconvex-concave setting. Although the minimax problem over Hilbert
spaces has received extensive attention, with works such as Bauschke et al.| (2017); Bot, et al.| (2022); |[Bot
et al.| (2023)), the exploration of the minimax problem over spaces of probability measures or continuous
functions as opposed to Hilbert spaces remains relatively limited. On the other hand, our work delves into the
minimax optimization problem for infinite-dimensional spaces of probability measures or continuous functions
by generalizing results of Nedi¢ and Ozdaglar| (2009); Lin et al.| (2020a). Moreover, we generalize the analysis
from minimax to miniminimax (minimizing with respect to the predictor and generator and maximizing with
respect to the classifier).

3 Preliminary

This section describes the mathematical tools required in this paper.

Let Ng be the set of natural numbers including zero, X C R? be a compact set, and R = R U {—o0, +00} be
the extended real number. We denote by M(X), M (X), and P(X) the set of all finite signed measures
on X, the set of all non-negative finite measure on X, and the set of Borel probability measures on X,
respectively. Let C(X) be the set of all continuous functions X — R. As shown in |Aliprantis and Border
(2006, Section 5.14), (M(X),C(X)) is a dual pair equipped with the bilinear functional

(1, p) 1= /sodu, ne M(X), ¢ € C(X),
and the topological dual of M(X) with respect to weak topology is C(X) (Aliprantis and Border} |2006,

Theorem 5.93). In the context of machine learning, we restrict M(X) to P(X). As X is a compact subset of
R? P(X) is a compact subset in M(X) (see e.g., Aliprantis and Border| (2006, Theorem 15.11)).

Let ||| pq(x) and [|[[¢(x) be norms induced by inner products in M(X) and C(X), respectively. Then, we
first define the dual norms, convex conjugation, and strong convexity as follows:

Dual Norms We denote dual norms ”'Hj\/l(X) and |H|Z(X) of ||| p(xy and |[-[l¢(x) by, respectively,
el = | [ o] < Mol < 1 e ME0} . p e, )

i = s { | [ wan] : ol <1, v e €O} e M) @)

Convex Conjugation The convex conjugates F'* and G* of each functionals F' : C(X) — R and G :
M(X) — R are defined by, respectively,

F*(u) = sup / i~ F(p), 1e M(X), 3)
peC(X)

G*(p) = sup /@du—G(u), peC(X). (4)
REM(X)

Strong Convexity Let S¢c C C(X) and Sy C M(X). We say that F: C(X) - Rand G: M(X) - R
are (-strongly convex (3 > 0) with respect to [|-[|c ) and |[-[| ;(x), over Sc and Si, respectively, if it holds
that for any « € [0,1]

all —a)p

- 1Y — eligxy, .9 € Se, (5)
a(l—a)p
A2 -

Flay + (1 -a)p) <aF(P) + (1 - a)F(p) -

Glap+ (1 —a)v) < aG(p) + (1 — a)G(v) — Vi) v € Su (6)
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Next, we review Gateaux differentials, Bregman divergences, and L-smoothness in order.

The Gateaux differential is a generalization of the concept of directional derivative in finite-dimensional
differential calculus. Let F': C(X) — R and G : M(X) — R, then Gateaux differentials are defined as
follows.

Definition 3.1. We define Gateauz differentials dF, : C(X) — R and dG,, : M(X) — R of the functionals
F and G at p € C(X) and p € M(X) in the direction A € C(X) and x € M(X) by, respectively,

F(p+eX) — Flp)

dF,(\) = EEIEO . ,
. Gp+ex)—Gu
dGu(X) = EE)IEO ( 6) ( )

We note that if /" and G are proper convex functionals, then for ¢ € C(X) and p € M(X) there exist Gateaux
differentials dF,, : C(X) — R and dG,, : M(X) — R, respectively (Aliprantis and Border, [2006, Lemma 7.14).

Then, we review the Bregman divergences. The Bregman divergences over spaces of measures and continuous
functions measure between two points defined in terms of convex functions.

Definition 3.2. Let F : C(X) — R and G : M(X) — R be proper, lower semi-continuous, and convex
functionals. Then, F-Bregman divergence Dp : M(X) x M(X) — Ry and G-Bregman divergence D¢ :
C(X) x C(X) — Ry are defined by, respectively,

Dp(v|p) == F(v) = F(p) — dFu(v — p), p,v € M(X),
Da(dlp) == G(¥) — Glp) — dGu(¥ — ¢), ¢,¥ € C(X).

Finally, we review the L-smoothness. The L-smoothness over spaces of measures and continuous functions
are defined using the Bregman divergence as follows.

Definition 3.3. Let S¢ C C(X) and Sy C M(X) be subsets, and F : C(X) = R and G : M(X) — R be
proper, lower semi-continuous, and convezx. Then, we say that F and G are L-smooth (L > 0) with respect to
[llecxy and ||| pq(x) over Sc and Saq if it holds that, respectively,

L

L
Do) < 5 I = wlliacxy > 10 € Su

4 Problem Setting

This section describes the problem setup of GAN and UDA training, building upon the reformulation
introduced by |Chu et al.| (2019)) as the foundation for our theoretical framework.

In their work, |Chu et al.| (2019) reformulated GAN training as a minimization problem with an objective
function J,, (i) over the set of probability measures, which represents a discrepancy measure between
a generated distribution g and an unknown true distribution 1y. Moreover, the adversarial loss can be
obtained through the Fenchel-Moreau theorem. Consequently, they showed that various GAN models can
be constructed by identifying particular discrepancy measures on an infinite dimensional space, such as
the ordinal GAN (Goodfellow et al., |2014)), maximal mean discrepancy (MMD) GAN (Li et all [2015)),
f-GAN (Nowozin et al.| [2016), and Wasserstein GAN (Arjovsky et al [2017). Building upon this formulation,
we extend it to unsupervised domain adaptation by adversarial training.

The UDA can be regarded as a simultaneous optimization problem for a source risk R : C(X) x P(X) - R
and a discrepancy measure Jy,, (1) : P(X) — R between a source distribution p and a fixed target distribution
vp. Then, the optimization problem for the UDA can be expressed as:

R(Y, ) + Juy (1) (7)

min
(,n) EC(X) X P(X)
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Here, the first variable ¢ in R corresponds to the predictor. A typical example of R is that R(¢,u) =
J () —Yo(x)|2du(z) + V() + W () where vy is the true predictor, and V : C(X) — Rand W : P(X) = R
are certain regularization terms. The particular discrepancy measures lead to the well-known models of domain
adversarial neural networks (DANNSs) (Ganin and Lempitskyl, [2015)), such as DANNs with its extensions with
Wasserstein-1 distance (Shen et all [2018]), f-divergence (Acuna et al.} [2021), and MMD (Wu et al., 2022). As
in the case of GANs (Chu et al., [2019)), the Fenchel-Moreau theorem yields the following formulation equal to
[@:

min max_ R(v, —|—/d—J;‘ . 8
oyelBB o) o B, p) + [ pdp = T (0) (8)

This objective function is convex for ¥ and u, and concave for ¢, where ¢ corresponds to the domain classifier
in the UDA. In Section we delve into the convergence of this objective function in the general setting.

By omitting the source risk R, the formulation reduces to that of GAN :

min  max du — J> (o), 9
i wmax [ gdu 77, (¢) 9)
where ¢ corresponds to the discriminator in the GAN. This allows us to analyze the convergence properties
in GANs and UDAs in a unified manner. In other words, the findings of GANs, which have been extensively
studied for stability, could be used for UDAs. In fact, the assumptions used in this paper are related to the
constraints of the GANs (see Section @

However, the formulation of , which extends the reformulation of |(Chu et al.| (2019), deviates from minimax
optimization in actual GANs and UDAs such as |Goodfellow et al.| (2014); Ganin and Lempitsky| (2015)), as
it does not directly optimize the distribution u. To get more practical situations, we consider the source
distribution p as pushforward measure fy of fixed probability measure & € P(Z) by continuous function
f €C(Z; X), which corresponds to a generator in GANSs, or a feature extractor in UDAs. Then, the problem
is reformulated as

i i R d — T (). 10
Jmn ) min | omax (¥, fufo)+/<p (feéo) =I5, (9) (10)

This objective function is generally nonconvex for ¢) and f. In Section we explore the convergence of this
objective function in the general setting.

5 Minimax Analysis

Our goal in this section is to prove the convergence of the minimax optimization problem in the scheme of the
gradient descent under appropriate assumptions. In Section we will consider the convex-concave problem
over spaces of continuous functions and probability measures, and prove that the sequence obtained by a
certain gradient descent converges to the optimal minimax solution. While, in Section we will consider
the nonconvex-concave problem over spaces of continuous functions, and show that the sequence obtained by
a certain gradient descent converges to a stationary point.

Note that the objective functions in Sections [5.1] and are general forms of (8) and (10)), respectively.

5.1 Convex-concave setting

This section considers the following minimax problem:

min max K S 1, , .
(w,u)elslxswpes{: (¥, 1, ) (1)

where S’ C P(X) and S;,S2 C C(X) are compact convex subsets and K : C(X) x M(X) x C(X) — R is
supposed to be an objective function of GANs or UDAs. The typical example of K is the objective function

in (8), that is,
K (. 11.0) = R, 1) + / i — T2 (9).
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We show that the sequence obtained by the gradient descent converges to the optimal solution of under
appropriate assumptions. To do this, we first consider the joint convexity as follows:

Assumption 5.1. Assume the following:

1) K(-,-, @) is proper, lower semi-continuous, and convex over S1 x S’ for each ¢ € Ss.
¥ 2

(i) K(,u,-) is proper, upper semi-continuous, and concave over So for each ) € S and p € S'.

This assumption means that the problem is a convex-concave problem. Under this assumption, Sion’s
minimax theorem (Sion, |1958|) guarantees that

min max K (1), i, ¢) = max min K, 11, 0).
(¥,n)€S1X 8" €S2 W1 0) PES2 (P,u)€S1 XS (W 1:0)

Moreover, there exists at least one minimax solution (¥4, tix, px) in our minimax problem (L1J),

K (s, phsy 05) = K, pis, 0), 0 € Sa,

12
K(w*’u*7(p*) S K(wvﬂaw*)a (1/)7#) S Sl X Sl- ( )

Note that this assumption is in line with practical settings. Indeed, as shown in Section [6.1.1] the source risk
R of UDASs can be joint convex by adding both reproducing kernel Hilbert space (RKHS) (Alvarez et al.l
2012) and maximal mean discrepancy (MMD) (Gretton et al., 2012)) constraints.

Next, we put the assumptions related to the Gateaux differentials. Let ||-[|¢(x), and [|-[|¢(x) o be norms

induced by inner products in C(X), and let [|-|| y¢(x be a norm induced by an inner product in M(X). Note
that both the first variable ¥ and the third variable ¢ in I are continuous functions, but the inner product
space (C(X), [|"ll¢(x),1) for 4 is different from the inner product space (C(X), [|[l¢(x).) for .
Assumption 5.2. We assume as follows:

(i) For each ¢ € S1, p € S’, and ¢ € Sy, there exist the following arguments of the mazimum:

Nd),,u,«p = argmax {/wdl/ - IC(& My @)*(V)} )

veM(X)

Dy 1, = argmax {/ pdp — K (¢, -, <p)*(</>)} ,

$eC(X)

Ay, = argmax {/ wdA — K¢, p, )*(/\)} .

AEM(X)
(11) Ny jppr P, and Ay . are bounded with respect to dual norms ||-||Z(X),1, H'”j\/t(xy and ||-||2(X),2
, that is, there exists B > 0 such that, for (¢, u,p) € S1 x 8" x Sa,
||Nw,u,<p||2(x),1 < B, ||(I)w7/t7<p||jm(x) < B, ||Aw,;t,<p||z(x),2 < B. (13)

Here, ]C(’ Ky 90)*’ ’C(l/% K 50)*7 and K(w7 Ky ')* are convex conjugates of ]C(’ Ky 90)’ ’C(VJ% K QD)’ and ’CW» Ky ')7
respectively. The above assumption guarantees that the existence of Gateaux differentials of I, and provide
the form of their Gateaux differentials as following lemma. The proof is given by the similar arguments in
Chu et al.| (2019, Theorem 2).

Lemma 5.3. Let Assumption hold. Then, for each ) € S1, p € S’, and v € Ss, there exist Gateaux

dz'jj”erentz'als dlc(aﬂa Sa)dn d’C(?/% ’790)#7 and d]C(Q/ja,u'v ')LP Of K('aﬂa‘P)) ’C(ﬂ% '790)7 and K(w7ﬂa ) at 7/} S Sl;
we S, and o € S, and they are expressed as follows:

dK:(HMv@%b(”) :/nde,u,gm
d’C(i/)w#P)u(X) :/q)w,u,gaan

(W, 1, ) () = / By
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In addition to these assumptions, we assume the L-smoothness of IC for each variable to show the convergence
to a minimax solution.

Assumption 5.4. Let L > 0. Then, we assume as follows:

(i) For each i € S" and ¢ € Sz, K(-, p, ) is L-smooth with respect to ||-[|¢(x), over Si.
(it) For each ¢ € Sy and ¢ € Sz, K(1), -, ) is L-smooth with respect to ||| yq(x) over S”.

(iti) For each ¢ € Sy and p € 8", =K (¢, ) is L-smooth with respect to ||||¢(x) o over Sa.

This assumption also aligns with practical settings, e.g., (iii) corresponds to the case where the f-divergence (Ali
and Silvey, |1966} Csiszar, [1967) or integral probability metric (IPM) (Miiller, [1997)) is utilized as a discrepancy
measure.

Here, we define the gradient descent for solving minimax optimization problem (L1)).

Definition 5.5. Let ©g € Si, uo € S’ g € S be initial guesses. We define the gradient descent
{(¥ns tins o) Ynen, C S1x 8" x Sa by

. 1
'(/)n-i-l = argmin {dlc(auna @n)wn (¢ - '(/}n) + H'(/) - 1#n”?}(x),l} )
PeSy 20[n

. 1 2
fin+1 = argmmin {diC(l/)m S on ), (B — ) + %, [ — unlle} ;

1 2
Pn+1 = argmax {dlc(w'rnﬂ“rw ')gon ((P - @n) - T H(p - L)0774||C(X),2} ’
@ESy Qp,

where oy, > 0 is the step size of the update rule.

If subsets Sy, S/, and Sy are subspaces, then update can be expressed as a sum of a previous step and a
gradient term, a form that is commonly encountered in the gradient descent algorithm (see e.g.,|Chong et al.
(2023)). However, in the general case of subsets S7, S, and Ss, the argmin and argmax in Definition may
not exist. Therefore, in this paper, the following assumption is established to ensure the existence of the
gradient descent of Definition

Assumption 5.6. Assume that there exists a sequence {(V¥n, fin, Pn)tnen, C S1 X S' X Sy defined in
Definition[5.5

Building upon the background established above, we are ready to present our main theorem of this section:

Theorem 5.7. Let Assumptions and hold, and let 0 < cv,, < 1/L.
Let {(¥n, tin, n) tnen, C S1 % S" x Sy be the gradient descent defined in Definition [5.5 Let (1., ., s) be a
minimaz solution for . Then, for any N € N, we have

N—1 -1 1 N—1
< (Z an> (26’3 + 6B? Z ai) , (14)
n=0 n=0

"C(JN’/?N’@N) — KW, s )

where
Cs = sup [[¢ = vollZxy1 + sup [l = polliuxy + sup o — wollZx) - (15)
PES pes’ pES?

Here, &N, iy, and @n are weighted averages given by

N-1 N-1 N-1
-~ T« . T . T
YN = Zn?\ro—l nql)in’ N = an_vo—l n/Ln7 PN = Zn?voq n¥n. (16)

Zn:O Qn Zn:() Qn Zn:O Qn

Proof. See Appendix [A] O
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We note that the the constant C, is finite due to the compactness of S’, S, and S,. We observe that the
upper bounds (14) with different choices of step sizes a,, € (0, 1] are as follows:

o If the step sizes are constant, denoted by «a,, = «, then the right-hand side (RHS) of is expressed

as
Cs 9
RHS of = 5aN + 6B~q,

which does not converges to zero as N — oo. Therefore, in this case, weighted averages provides
an approximate solution to the minimax problem. The first term converges to zero as N — oo with
an order of O(1/N). The second term can be reduced as o — 0, despite the first term diverging.
This is a trade-off relationship with respect to the step size «. A similar observation was made in
Nedi¢ and Ozdaglar| (2009, Proposition 3.1), which studied the minimax problem in finite dimensional
space using subgradient methods.

o If step sizes decay as a,, = /+/n where « is a constant, then the right-hand side of is expressed

as
C, n 6B2%«
20/ N VN

which converges to zero as N — oo with an order of O(log N/v/N). Therefore, in this case, weighted
averages provide an exact solution to the minimax problem.

RHS of =

(1+logN),

5.2 Nonconvex-concave setting

Unlike the previous section, which considered the convex-concave minimax problem expressed in ([11)), this
section considers the nonconvex-concave minimax problem.

Let Z C RY be a compact set, and let C(Z; X) be the set of all continuous functions Z — X, and let
S" CC(Z; X) and Sy, S2 C C(X) be subspaces. Then, we consider the following minimax problem:

. . 17

Jnin min, max G@, f.0), (17)
where S € S”, S1.. C S1, and Sa . C Sy are convex subsets, and G : C(X) x C(Z; X) x C(X) — R is supposed
to be an objective function of GANs or UDAs. The typical example of G is the objective function in ,
that is,

G, f,9) = R, futo) + / od(fio) — T2 (9).

The difference with Section is that does not assume the convexity for G(-, f,¢) and G(¢, -, ¢). Thus,
since there may not exist a Nash equilibrium point for problem in general, it is difficult to prove that the
sequence obtained by some gradient descent converges to the optimal minimax solution.

We show that the sequence obtained by a certain gradient descent converges to a stationary point of
under appropriate assumptions.

Throughout this section, let (-,-)s,, (-, )s~, and {-,-)s, be inner products in Sy, S”, and Ss, respectively. We
denote || - |lsy, || - |ls7, and || - ||s, by norms induced by thier inner products.
First, we put the following assumption for S, S”, and Ss.

Assumption 5.8. Assume that Sy, S”, and So are closed subspace with respect to norms || - ||s,, || - lls», and
I 1ls, in C(X), C(Z; X), and C(X), respectively.

Under Assumption Sy, S, and Sy are Hilbert spaces equipped with inner products (-, -)s,, (-, )s~, and
(-,*)s,, respectively. This assumption implies that convex subsets SV, 51, and Sa . in continuous function

spaces (where gradient descent updates are actually performed) must be contained in Hilbert spaces S”, Sy,
and Ss.

Next, we put the assumption about the S-strongly concavity.
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Assumption 5.9. Let 8 > 0. Assume that for each ¢ € S1. and f € SV, G(¢, f,-) is B-strongly concave
with respect to || - ||s, over Sa..

Note that this assumption is related to the gradient penalties (Gulrajani et al.,|2017)), widely-used as the
stabilization techniques in adversarial training, as detailed in Section [6.2.1]

Under this assumption, we can define for ¢ € S1 . and f € S/,

D(1), f) := argmax G(¢, f, @),

€S2 ¢

G, 1) = max G(v. 1.¢) = G(v, £, 9(/.0)). (18)

Hereby, the minimax problem is equivalent to minimization of under Assumption

Then, we put the following assumption related to the Gateaux differentials, which is associated with the
spectral normalization (Miyato et all 2018)) widely-used as stabilization techniques for GANs.

Assumption 5.10. Assume that, for each ¢ € S1.c, f € S, and ¢ € Sy, there exist Gateaux differentials

dg('afa C)O)?/M dg(d),,@)f, and dg(/lz[}a fa')(p Of g('vf? @)7 (1/’7 7@)7 and g(?/),f,) at 77[} S Sl,C; f € Sg; and
¢ € Sy, respectively.

Under Assumptions and |5.10) - Gateaux differentials dG(-, f, )y : S1 — R, dG(1,,9); + S" — R,
and dG (v, f,*), + S2 — R are identified with some elements in Hllbert spaces Si, S”, and S, referred
as VG(-, f,o)y € S1, VG(,-,0); € S”, and VG(¢, f,-), € S, respectively. Furthermore, by Riesz
representation theorem, we have the following:

dG (-, f0)w = (VG(, £, 0)u: )50 1dG (-, [, e)ulls, = IVGE fr@)wlls
dg(wv ) @)f = <vg('l/}a ) SD)f7 '>S”7 ||dg(’l/}7 ) ‘P)f”fw = ||Vg(w7 ) SO)fHS”a
dg(¢7 fa ')Lp = <Vg(1/}, fa ')Lpa '>523 ||dg(77ba f’ )@||§2 = ||vg(7/}a fa ')LP”ST

In addition to these assumptions, we assume the L-smoothness of G for each variable 9, f, and ¢ to show
the convergence to a stationary point.

Assumption 5.11. Let L > 0. Then, we assume the following: for ,¥1,%s € S1, f, f1,f2 € S”, and
©, P1, P2 € 527

(@) : IVG(s fo0)p = VG(, F@)ws sy < Ll — 2llsy,

(0) = [IVG(, f1 )y — VG, f2,0)plls, < Llf1 = falls,

(c): [IVG(: ,f,wl)w = VG(, f,e1)ulls: < Lller — ¢2ss,

(d): IVGW, o) p = VG, 0) plls < Lilfi = fallss

(e): VG, 790)]‘ = VG (Y2, 9)sllsr < LYy — ¥2llsy, (19)
(f): IVG(, - 01) 5 = VG, @2)flls7 < Lllor — p2llss,

(@) 2 IVGW, £ )pr = VG, £, )gslls, < Lllor — @25,

(h) : IVG(W1, [ ) = VG (W2, f,)ellsy < Ll — 2lls,,

(@) : IVG(@W, f1,)p — VG, f2,)olls, < Ll f1 — falls-

Here, we define the projected gradient descent for solving minimax optimization problem .
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Definition 5.12. Let ¢g € S1., fo € SV @o € Sa,c be initial guesses. Then, we define the projected gradient
descent {(Yn, fns Pn)tnen, C S1,e X Si X Sa.c by

~ 1
Fuss = avgnin {d0C. fopu)i (0 = ) + 5o 0=l }.
Y,n

PEST
Ynt1 = Ps, . (Ynt1),

_ , 1
Jny1 = argmin {dg(z/}m o) (f = fn) + 5— 1 — uniw} ;
fes 2000,

fn,+1 - PSé’ (.}?;L—&-l)a
1

s = argnx { a0 fu o (0~ ) — 5

PES>

2
Hw—¢M&}7

XD

Ont1 = Ps, (Pnr1)

where Ps, ., Psy, and Ps, . are projection operators on Sy ., S, and S, and vy, > 0, af, > 0, and
g n > 0 are step sizes.

Remark that, using Riesz representation theorem under Assumption the above update rule is equivalent
to the following:

7JJnJrl = ,PS’LC (wn - aw,nvg('a f'm @n)wn) y
fn+1 = ,PSQ (fn - O‘f,nvg(wna *y Qon)fn) ’
Pn+1 = PSz,c (‘Pn + a@,nvg(¢na frs )cpn) .

We also assume small step sizes to show the convergence of the gradient descent algorithm as follows:

Assumption 5.13. Assume that there exists Cp,C > 0 and Cy,Cy,v € (0,1) such that for all n € Ny,

(i) Co < v, < min (%, %),

L?(1+Lg)a2
( +2/3)af‘n <0,

(ii) L+ L?Lpad,, + L*(1+ L)(1 + Lg)af, , + L?Lgaj,, +
2
(iii) (1= %02 ,_) + 25 (1+ 75 ) (@3,my +02,0) €7,

(iv) Cy <1— 252 — L1+ D)1+ Lg)ay,n — Lpan — 22525 (14 54)
P = 2 B)Xp,n BXY,n BZ(1—) BCo )’

Loajfn  L(4Lg)ayn 2L2Cay,, 1
(v) Cp S1—Lope — L0l _ pq,, - 2oCata (14 L),

where we denote by Lg := L (% + 1).

These assumptions imposes small step sizes ay pn,0f.n, 0y rn, depending on constants L and 5. Roughly
speaking, Assumption [5.13| requires that step sizes be chosen small enough depending on S and L. The
followings are the details : First, we need to choose small o, , satisfying (i). However, o, ,, should not
converge to zero as n — co. Therefore, its lower bound is set to Cy > 0. Next, we need to choose small ay
and oy, satisfying (ii)—(v). Note that the smallness of a, ,, and ay,, depends on lower bound Cy > 0 (see
(iii)~(v)). In other words, ay,, and oy, should be chosen to be smaller than ¢, ,,. Similar assumptions are
often made in the context of nonconvex-concave minimax problems, as observed in works such as |[Huang et al.
(2021)); |Lin et al.| (2020a).

Building upon the background established above, we are ready to present our main theorem of this section:

10
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Theorem 5.14. Let Assumptions [5.10,15.11, and|5.18 hold. Let {(¢n, frn,Pn)tnen, C S1,eXS) xSac
be the projected gradient descent defined in Definition[5.13 Then, for N € N, we have

N-1 —1/2
[Feun|, <C (z w) , 0
n=0

N-1 —1/2
< 21
p2t(Ton) e

Q)

[¥Gen

where
1/2

~ : Cll2(%o, fo) — woll?,
C= (G(¢O,f0)_(w,f)égfcxsffG(w7f)+ 1_,y >

Here, @%N and @f,gv are weighted averages given by

e >nco VG, o)y, TGy S s nVG(Wn, )s,

N-1 N—-1
Zn:O Qepn Zn:O Qfn

Proof. See Appendix O

The idea of the proof is to generalize [Lin et al.| (2020al Theorem 4.4), which studied the convergence of the
nonconvex-concave minimax problem in the finite dimensional setting, to the infinite dimensional function
spaces, and to generalize two variables to three variables. Note that if step sizes are chosen as constants
satisfying Assumption then the right-hand sides of and are expressed as

RHS of (20) and = O(1/V'N)

which converges to zero as N — oo. In other words, we have proved that the gradient decent defined by
Definition converges to a stationary point. Finally, we note that the order O(1/v/N) agrees with the
result obtain by |[Lin et al.| (2020a, Theorem 4.4), though we have adopted the infinite dimensional setting.

6 Examples of Relationship Between Objective Functions for GANs and UDAs and
Assumptions for Convergence

In this section, we confirm that certain objective functions of GANs and UDAs fulfill the conditions for

guaranteed convergence described in Section [5] In Section we will verify Assumptions [5.1] (i) and [5.4] (i)
& (iii) for the problem (g), and in Section we will verify Assumptions and for the problem (|10}

because we can immediately confirm that the remaining assumptions hold for our objective function.

6.1 Convex-concave setting

In this section, we will verify Assumptions [5.1] (i) and [5.4] (i) and (iii) for the convex-concave setting ().

6.1.1 Assumption (i) (Joint convexity of (1, i) — R(v, 11))

Assumption requires the joint convexity of a source risk R(¢, u) = [ (v, ¢o)dp with respect to (¢, p) €
C(X) x P(X) for the existence of a minimax solution. Here, u is a marginal distribution of a source domain,
1 is a predictor to be optimized for a task (which may be implemented as a neural network), and v is the
true predictor for a task. Also, £(1), 1) denotes a loss function for a task in the source domain. In general, it
is obvious that the source risk does not possess the joint convexity. Therefore, we need to introduce some
regularization terms to the source risk such as

R(s, 1) = / 0 abo)dp+ V() + W (), (23)

11
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where V' : C(X) — Rand W : P(X) — R are regularization terms. The next proposition gives the sufficient
conditions of the joint convexity for the source risk:

Proposition 6.1. Let ||~HC(X)’1 and ||-HC(X),2 be norms in C(X). Let p,v > 0 with v > p. Let be a loss
function £ : C(X) x C(X) — R. Assume that

(i) ¥ — L(1p, 1) is convex for each 1y € C(X).

(it) ¥ = (¢, 2ho) is p-Lipschitz with respect to ||-[lc(x) 1 and ||-llc(x) o for any o € C(X), that is,

[€(¢h1, tho) — £(¥2, Yo)lle(x) S Pl = P2lleix) s ¥1,¢2 € CX).

1) V and W are v-strongly convex with respect to ||- and ||| , respectively.
v C(X),2 C(X),1

Then, the source risk R(ip, p) is joint convex with respect to (v, u).
Proof. See Appendix [C.d] for the proof. O

Assumption (i) and (ii) are the convexity and Lipschitz continuity for the loss function. For example, the
squared error loss satisfies these assumptions. The example for (iii) is that V = § ||||§_LZ and W = 3 H||f*H21
where (i, [|-||5,,) is a reproducing kernel Hilbert space (RKHS) with a positive definite kernel K; : X x X — R.
Note that the dual norm |[|-||3, of the RKHS norm ||-||,,, corresponds to a maximal mean discrepancy (MMD).
As both [|||,,, and ||-[|5,, are norms induced by inner products, V and W are 1-strongly convex with respect
to [|-[l5, and [|[[5,, respectively.

6.1.2 Assumption (i) (Smoothness of ¢ — [ (1), vg)dp)

Assumption i) demands that the source risk R(t, ) = [ £(1,%o)dp is L-smooth for ¢ € C(X). Let us
consider the following general functional I, ,, : C(X) — R for the later convenience:

() = [ W(¥(@)du(o), ¥ € C(X),

where h: R — R and p € P(X). Then, the next lemma guarantees L-smoothness of I, ,(¥).
Lemma 6.2. Let be a,b € [—00,00] and h € C'(a,b). Then, we denote

Scap ={eC(X) : a<iy(z)<b, xze€ X}

Assume that h : (a,b) = R is L-smooth, that s,

Dy (slt) < Z|s —t%, s,t € (a,b),

L
2
where Dy (s|t) = h(s) — h(t) — h'(t)(s —t). Then, I, is L-smooth with respect to || - ||L2(x,.) over Se.ap-

Proof. See Appendix [C.2] for the proof. O

If loss function £(-, 1) is L-smooth (e.g., squared error loss), then by Lemma Y R, p) = [ L, o)dp
is L-smooth with respect to || - ||£2(x,.)-

12
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6.1.3 Assumption (iii) (Smoothness of ¢ — J} (¢))

Assumption (iii) imposes the L-smoothness condition on the convex conjugate J; () of the discrepancy
measure J,, (@) to ensure convergence for both GAN and UDA. The representative discrepancy measures
are f-divergence (Ali and Silvey, (1966} |Csiszar] |[1967) and integral probability metric (IPM) (Miiller, (1997)),
which respectively unify different divergences between probability measures with various applications such as
GAN and UDA. The f-divergence includes Kullback-Liebler divergence, Jensen-Shannon divergence, and
Pearson x? divergence, while the IPM includes Wasserstein-1 distance, Dudley metric, and maximum mean
discrepancy.

In the subsequent, we provide several examples of Jj; that satisfy the L-smoothness for (A) f-divergence and
(B) IPM.

(A) f-divergence Let f:doms C Ry — R be a proper, lower semi-continuous and convex function. Then,
the f-divergence D(u|v) between p € P(X) and v € P(X) is defined as

Dy(plv) = {ii((;iL) dv i p<y o

7

otherwise
where p < v denotes that p is absolutely continuous with respect to v.

The f-divergence is joint convex with respect to (u,v) (as the mapping (p,q) — ¢f(p/q) is joint convex)
and non-negative for all p and v but not symmetric with respect to p and v in general. In our case, we
set Jru, (1) = Dy(p|vo) with a fixed measure vy which implies a true distribution for GAN and a target
distribution for UDA. The convergence theorem demands the L-smoothness for the convex conjugate It 0o (»)
of Tt (1)-

The following lemma provide the representation of the convex conjugate J5 , (¢) of Jyu, (1)

Lemma 6.3. Assume that f € C'(domy), and there exists the inverse (f')~* of f’. Then, the convex
conjugate J§ - of Jy., is given by J7, (p) = [ f*opdwy for o € Sep:={p e C(X) : ¢(x) € dom(s)-1},

where
F(s) = sup{st — f(t)} =5 (f)7Hs) = Fo(f)7H(s), s € dom(py-r.
Proof. See Appendix for the proof. O

In the context of f-divergence, it is sufficient to confirm the smoothness of the convex conjugate f* in the
sense of the real function. We can take Jensen-Shannon divergence and Pearson x? divergence as examples
and confirm that J7 , (u) satisfies the L-smoothness.

Example 6.4 (Jensen—Shannon divergence). The Jensen-Shannon divergence |Lin| (1991)) is defined as

Djs(plv) == %DKL(MP) + %DKL(V|P)7 (25)

where p = (u+v)/2, and Dxr,(u|v) is the Kullback-Leibler divergence between p and v defined by
_ [dp dp
Dy (plv) = /Elog 5 -

Here, f(t) is represented as

1 14+t 1
fis(t) := _§(t +1)log (;) + itlogt, t € (0,00). (26)
The convex conjugate fi5(s) is
fis(s) = —110 (1- 1625) - 110 2, se(—x 1lo 2) (27)
JS - 2 g 2 2 g 4, 9 g4).

The convex conjugate [}y is L-smooth over (a,b) with some L >0, and a,b € (—o0, 3log2). Therefore, by
using Lemma JF gy 18 L-smooth with respect to || - [|2(x,u)-

13
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Example 6.5 (Pearson x? divergence). The Pearson x* divergence is defined as

D, (plv) == /(% —1)%dv.

f(t) is represented as
fe(t):=(t—1) teR.

The convex conjugate f5(s) is
1
fols) = 132 +s, seR.

The convex conjugate f3 is L-smooth over (a,b) with some L > 0, and a,b € R. Therefore, by using
Lemma Jto v 18 L-smooth with respect to || - ||L2(x ,.)-
(B) Integral Probability Metric (IPM) Let F be a class of real-valued bounded measurable functions
on X. The IPM associated with F is defined as

} (28)

dr(p,v) == sup {‘/gdﬂ— /gdv
geEF

for all pairs of measures (u, ) € P(X) x P(X) such that all functions in F are absolutely - and v-integrable.
The typical examples are Wasserstein-1 distance for 7 = {g € Lip(X) : [|g[|r;, < 1} where Lip(X) is
the class of the real-valued Lipschitz functions on X and |||, is the Lipschitz norm, and the MMD for
F={geHt:|glly <1} where (K, ||-||;,) is an RKHS with a positive definite kernel K : X x X — R. In our
case, we set Jipw,y, (1) = dr (1, vo) with a fixed measure vy. Then, we can obtain the following Lemma.

Lemma 6.6. Assume that F include the zero function. Then, the convex conjugate Jipys . of Jipm,u, S
given by

Tionton () = / pdvy + x{p € F).

where the indicator function is give by

_]0 if A is true
A} = { 0 if A is false (29)

Proof. See Appendix [C.4] for the proof. O

From Lemma the differential d(Jfpyr ) Of Jipa,, at @ € F is given by
d(JI*PM,yO)VJ(/\) = JI*PM,VO (A), Aecl(X),
which implies that, by Definition [3.2
Do @10) =0, 4,0 € F.

Therefore, we obtain the following proposition.

Proposition 6.7. For any L >0, and any norm | - |lc(x) induced by inner products, Jip\y ,, is L-smooth
with respect to || - [|c(x) over F.

6.1.4 Examples of (v, i, p) simultaneously satisfying all assumptions in Section

In this section, we provide an example of our objective function that simultaneously satisfies all the
assumptions (Assumptions and [5.4]) for the convex-concave structure and smoothness.

Let ¢ € C(X) be a true predictor, and let vy € P(X) be a true distribution. We consider an objective
function K1 : S1 x 8’ x So — R defined as

1 *
Kawong) =5 [0 = voldu+ J Il o+ Sl + [ odu— [ ko),

14
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which corresponds to the problem (8) with R(v, ) = 3 [ (v — tho)?dp + 1 ||1/1H3{2\/§G +3 ||,uH;{20 and J,, is
either IPMs or f-divergences. Here, v > 0 is a regularization parameter, and k : (a,b) — R is a convex and
C'-function with some a,b € R, introduced to encompass more general situations including both IPMs and
f-divergences. If the function k takes the form k(s) = s, then the discrepancy measure J,, corresponds
to IPMs. If the function k takes the form k(s) = f*(s), then the discrepancy measure J,, corresponds to

-divergences. Also o || is a wit aussian kernel K, (x — (2r02) = 2e12=y* /207 ith
fd g Al 7(H a” ”7—[(,) RKHS hG k IK ( ay) (2 2) d/2 l y\

variance o2,

We choose convex subsets S1, S’, and S5 as

S1 = {1 € C°(X) : 1029 o (ay < Ci for all a € Ng},
S i={ueP(X) : u(A) < pu,(A) for all measurable sets A in X},
Sy ={peF : a<p(x)<b, xe X},

where C§°(X) is the space of C* functions with compact support in X, F is a subset in C(X), and u,, € M (X)
is a non-negative measure. Then, Proposition is obtained if the following assumption is satisfied.

Assumption 6.8. We assume the following:

e 0 <

N[

o v >4C2CE where C, = > jem, (402)7.

e Yp €St and vy € 5.
o k:(a,b) = R is Ly-smooth in the sense of the real function.

Proposition 6.9. Let Assumption [6.8 hold. Then, the following statements hold:

(1) [Assumption[5.1] (i)] (¢, 1) = K1 (¥, 1, @) is convew.
(2) [Assumption[5.1] (ii)] ¢ — Ki(¥, 1, ) is concave.

(3) [Assumption (i)] ¥ — K1(, i, ) is 1-smooth with respect to
(50 + 3 ||-||im)l/2-
(4) [Assumption (ii)] p— K1(, p, ) is 1-smooth with respect to (%)1/2 -5, -
(5) [Assumption (iii)] o+ —K1(, p, @) is Ly-smooth with respect to || - |12 (x ) -
Proof. See Appendix [C.5] O

Note that we can immediately confirm that the remaining assumptions hold for our objective function. That
is, Theorem is satisfied by the setting of this section.

6.2 Nonconvex-concave setting

In this section, we will verify Assumptions [5.9]and for the nonconvex-concave setting ([10)).
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6.2.1 Assumption (Strong convexity of ¢ — J}; (¢))

Assumption requires the strong concavity for the problem (10) with respect to . This requirement is
equivalent to the strong convexity of discrepancy measure J,,,. We realize this by adding some regularization
to the discrepancy measure.

Assume that the discrepancy measure .J,, is proper, lower semi-continuous, and convex. We define inf-

convolution J,, ® Z(u) as

T ©T(n) = __inf (€ + (1~ )

where Z : M(X) — R is a regularizer function, which is proper, lower semi-continuous, and convex. Then,
the following Lemma holds.

Lemma 6.10. Let 3 > 0 and || - ||pm(x) be a norm induced by an inner product in M(X). Then, if
T : M(X) — R is (1/8)-smooth with respect to || - || pm(x), then (J,, @ Z)* : C(X) — R is B-strongly convex
with respect to || - Hj\/t(x)'

Proof. See Appendix for the proof. O

Thanks to this Lemma, we can attain the strong convexity by introducing the regularizer, such as the squared
MMD in the RKHS with the Gaussian kernel, which corresponds to the gradient penalty (Gulrajani et al.,
2017).

6.2.2 Assumption 5.10] (Gateaux differentiability with respect to f)

Here, we consider the case when the source risk has the form R(v, 1) = [ £(1, 1)dp where the loss function
£(1), 1) is convex with respect to 1. Then, the minimax problem is translated into

win win e [ 6o foine o+ [ e fduo — (o). (30)

YeC(X) fEC(Z;X) peC(X)
It is obvious that the above objective function is Gateaux differentiable with respect to 1 and ¢ because the

above objective function is convex and concave for 1) and , respectively. As functions ¢ and ¢ are composed
with f, some regularity for 1) and ¢ is required to hold Gateaux differentiable with respect to f.

Let us consider the following general functional Jp ¢ : C(Z; X) = R :

Tue($)i= [ ho i, fec(zix)
where h € C(X) and £ € P(Z) are fixed. Then, the following lemma guarantees the Gateaux differentiability

of jh,f-

Lemma 6.11. Assume that h € Lip(X), f € C(Z; X), and u < m where m is the Lebesque measure. Then,
Th¢ is Gateauz differentiable at f. Furthermore, its Gateaux differential is given by d(Jh¢) ¢

Aherlo) = [(Tho 1) gde.
Proof. See Appendix [D.2]for the proof. O

Thanks to this Lemma, we can attain the Lipschitzness interpreted as applying the spectral normaliza-
tion (Miyato et al., [2018)), a widely-used stabilization technique for GANs.
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6.2.3 Examples of G(v, f,p) simultaneously satisfying all assumptions in Section @

In this section, we provide an example of our objective function to simultaneously satisfy all the
assumptions (Assumptions and [5.11)).

Let 4o € C(X) be a true predictor, vy € P(X) be a true distribution, and 8 > 0. We then consider an
objective function Gy : S1 x S” x S5 — R defined as

G0 f9)i= 5 [(Wos v fPto+ [ofdsa— [ ke~ Jlelke.

which corresponds to the problem with R(¢, ) = [ (¢ — o)%du, and discrepancy measure J,, is replaced
with inf-convolution J,,, & (ﬁ |- [[222) where J,,, is either IPMs or f-divergences. Here, (H,, |||, ) is a RKHS

with Gaussian kernel K, (z,y) = (2m02)~4/2e~|7=41/20" with variance 2. In the same way of Section
we introduce k : (a,b) — R, which is a convex and C'-function with some a,b € R, to encompass more
general situations including both IPMs and f-divergences.

We choose norms || - ||s,, || - [|s7, and || - || s, as
- llsy =1, - llse =1 lle2@zxey, I ls =1 I, 31)

and subset S1, S1.c, S”, S/, S, and Sy . as

ll-lls,

Sy :={¢ € H(X) : ¢ and V¢ are Lipschitz continuous} ,

St i= {w € S+ Lip(1), Lip(Veh) < Cy,  sup [1:(a)], sup [Ve(a)| < 02} ,
reX zeX

, A(J:6o) ll-lser
S§" = f € C(ZvX) : ||fHL2(Z;X,§0) < o0, fﬁEO <'m, sup T < 0o )
Iy

d
d
‘ (fﬁfo) S 03} ,
z dm
Sy :={p € C°(X)NHsNF : ¢ and Vo are Lipschitz continuous} ,

Saci={p € Sy:Lip(Vy) <C4, a<p(x)<b z€ X},

)

S = {f € S" :sup

with some constants Cq,Co, C3,Cy > 0, where Lip(1)) is the Lipschitz constant for function 1, and F is a
subset in C(X). Then, Proposition is obtained if the following assumption is satisfied.

Assumption 6.12. We assume the following:

* 1/]0 S Sl,c'
o The derivative k' of k is Ly-Lipschitz continuous.

o v m, and Sup,cx |%(x)| < 0.
Proposition 6.13. Let Assumption[6.13 hold. Then, the following statements hold:

(1) [Assumption[5.9] o — Gi (¥, f, ) is B-strongly concave with respect to || - ||s, .
(2) [Assumption G1(¢, f, ) is Gateauz differentiable for each variable.

(3) [Assumption[5.11] G (¢, f, ) satisfies the condition (19).
Proof. See Appendix for the proof. O

As well as Section the remaining assumptions hold for our objective function. Therefore, Theorem
is satisfied by the setting of this section.
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6.3 Interpretations of our analysis

Throughout Sections and we have verified that certain objective functions for ideal settings of GANs
and UDAs satisfy the sufficient conditions for the convergences discussed in Section[f] Both objective functions
for GANs and UDAs involve the discrepancy measure, and its convex conjugate need to be strongly convex
and L-smooth.

An example for achieving strong convexity is through the inf-convolution with a discrepancy measure J,,
and a regularizer such as the squared MMD || - [[37. in the RKHS #, with Gaussian kernel K,(z,y) =

(2mo?) =4/ 2¢=la—yl?/20° having variance o2 (Lemma . The convex conjugate of this inf-convolution can
be expressed as

(oo @ 11 132,)"(0) = T3, () + lleoll3, -
Also, the RKHS norm ||¢||%, in this equation is represented as (Chu et al.| (2020, Proposition 14))

oo
2 1 , 1 2
el =S Go* S0 — Nzl
k=0 lal=k

and minimizing this RKHS norm involves constraining the gradient of discriminator to be small. This can
be interpreted as applying gradient penalties (Gulrajani et al., 2017)), common stabilization techniques in
adversarial training, to penalize gradients with large norm values. Note that the gradient penalty (Gulrajani
et al., 2017) is a regularization technique to add the gradient norm E,p[|V¢(z) — 1]?] to the discriminator’s
loss function.

On the other hand, when considering the discrepancy measure as IPMs, the convex conjugate of IPMs is
given by

Tiontn () = / pdvo + x{p € F),

which is L-smoothness for ¢ € F (Lemma . The function class F should be the subset of Lipschitz
continuous function spaces Lip(X) due to the Gateaux differentiability of objective functions in the nonconvex-
concave problem (Lemma . The restriction of F C Lip(X) can be interpreted as applying the
spectral normalization (Miyato et al., |2018]), widely-used stabilization technique, to enforce the discriminator
to be Lipschitz continuous. The spectral normalization (Miyato et al.l 2018) is a normalization technique for
weights of neural networks so that the Lipschitz norm ||¢]|rip of the discriminator is bounded above by 1.

In addition, our sufficient conditions involve the joint convexity of the objective functions for UDAs. An
example of achieving joint convexity is adding the strongly convex regularization to source risk, that is,
considering R as

1 1 %
R(.) = [ €+ 5 [l + 5 el

which is joint convex with respect to (1, ) (Proposition [6.1). Here, (H,, ||-||;,,) is a RKHS with a positive
definite kernel K; : X x X — R. The RKHS norm is used as regularization for NNs, such as in [Bietti et al.
(2019).

7 Conclusion and future work

We provided the rigorous framework for the convergence analysis of the minimax problem in the infinite-
dimensional spaces of continuous functions and probability measures. We discussed GANs and UDAs
comprehensively and interpreted the assumptions for the convergences as stabilization techniques.

The following is the list of future work:

e It would be interesting to verify whether the H-divergence satisfies the assumption. In our current
formulation, we utilized the convex conjugates of the divergence, implying that the classifier p : X — R
belongs to continuous function space C(X). However, the formulation of the H-divergence (e.g.,
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Ben-David et al.| (2010; [2006)) employs the hypothesis spaces, where the corresponding classifier
v : X — {0,1} is a labeling function. Therefore, integrating the H-divergence would need a different
formulation.

o We employed gradient descent (GD), the simplest algorithm that suffices to achieve our aim. However,
formulating the stochastic gradient descent (SGD) within the framework of our work would be an
interesting future direction. Notably, [Lin et al.| (2020a)) studied the convergence in finite-dimensional
minimax problems using both GD and SGD. Our work in Section [5.2| extended the results from
GD presented in [Lin et al.| (2020a) to infinite dimensional spaces. Similarly, we could generalize the
results for SGD as well. In addition, sophisticated minimax algorithms to obtain better convergence
rates have been proposed (see, e.g., Lin et al|(2020b))). It would be also interesting to formulate
such algorithms in our framework.

e We optimized the distribution p or the transport map f as variables and fixed vy as the true
distribution, which deviates from the actual setting of UDAs. In a more realistic scenario for UDAs,
i and vy would be formulated as p = fy¢s and vy = gy&;, where f and g are, for instance, neural
networks optimizing their weight parameters, and & and & are fixed source and target distributions.
However, this scenario is highly nonconvex-nonconcave, and this setting is more challenging to show
convergence.

e It would be highly interesting to experimentally confirm how convergence properties in this study
relate to the stability of GANs and UDAs. However, due to the fact that the optimization steps
outlined in Definitions [5.5] and [5.12) entail proximal steps over infinite-dimensional spaces, practical
implementations pose significant challenges.
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Appendix

Notation | Meaning

Ny the set of natural numbers including zero
R extended real number

X compact set in R?

Z compact set in RY

M(X) the set of all finite signed measures on X
MT(X) | the set of all non-negative finite measure on X
P(X) the set of Borel probability measures on X
C(X) the set of all continuous functions X — R
C(Z;X) | the set of all continuous functions Z — X
[lp(x) | norms induced by inner products in M(X)

Illecx) norms induced by inner products in C(X)

H'”j\/t(x) dual norm of ||-[[ v (x)

H'”Z(x) dual norm of ||-[|¢(x)

dF, Gateaux differentials of F': C(X) — R at ¢ € C(X)

Dr Bregman divergence associated with F: C(X) — R

R source risk

7 fixed target distribution

Yo true predictor

Jue discrepancy measure

I convex conjugate of J,,

K convex-concave objective function in Section

S’ subset in P(X) (for source distribution y in Section
S1 subset in C(X) (for predictor ¢ in Section |5.1)

Sa subset in C(X) (for classifier ¢ in Section

Qnp, step size in Definition

g nonconvex-concave objective function in Section

SV convex subset in C(Z; X) (for generator f in Section
S1,c convex subset in C(X) (for predictor ¢ in Section

Sa.¢ convex subset in C(X) (for classifier ¢ in Section

Qafn step size (for generator f in Section [5.2) in Definition
Qyon step size (for predictor ¢ in Section |5.2)) in Definition
Qpon step size (for classifier ¢ in Section ) in Definition
Dy f-divergence

F the class of real-valued bounded measurable functions on X
dr integral probability metric associated with F

Lip(X) the class of the real-valued Lipschitz functions on X
(H,]|-l,) | reproducing kernel Hilbert space

Table 1: Table of Notations

A Proof of Theorem 5.7
Before the proof of Theorem we review the three-point inequality.

Three-point inequality The three-point inequality is a key ingredient for the proof of Theorem which
was first introduced by |(Chen and Teboulle| (1993)). We introduce the three-point inequality in the space of
measures and in continuous function spaces without the proof. See |Aubin-Frankowski et al.| (2022)) for the
proof.
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Lemma A.1 (Three-point inequality for the space of measures). Let Sy C M(X), and let G : M(X) — R
be a proper, lower semi-continuous, and convexr function. Let apg > 0. For a given p € M(X), let

U= argmin< G(v) + v — pl? },
vgin { GO+ 5 = ey
where || - [|m(x) s a norm induced by inner products in M(X). Then,
_ 1 _
GO) + o = i) 2 60) + 517 = By + 5 v = Plucxy Jor all v € S

Lemma A.2 (Three-point inequality for continuous function space). Let S¢ C C(X), and let F : C(X) — R
be a proper, lower semi-continuous, and convex function. Let aec > 0. For a given f € C(X), let

1
G :=argmin < F(g) + —|lg — f||? }
7= axgmin { (o) + 52-llg 1

where || - |[c(x) is a norm induced by inner products in C(X). Then,

1 , I 1 o
F(g) + EHQ = fllecxy = F(9) + EHQ = fllecxy + EHQ —3dllexy forallge Sc.

The proof of Theorem is essentially based on the L-smoothness of K(v, i, ) for each variables and the

three-point inequality in Lemma and associated with the update rules of the gradient descent in
Definition (.5l

Proof of Theorem[5.7 First, we evaluate the lower bound of K(¢n, fin, ¢n+1). The following holds for any
"2 S SQZ

’C(wnv Hns @n-‘rl)

L
> K(¢naﬂna 9071) + diC(Q/)n,Mn, ')Lpn (‘pn-&-l - @n) - 5”9071-&-1 - %On”g(x),z

1
2 K:(wny,u/ny Qon) + dlc(¢n7ﬂna ')Lpn ((anrl - @n) - gH(anrl - SDTLH(QT(X),Q
n

1
> K(Wns fn, on) + A Pns fin, ) o, (0 — on) — ﬂ(”@ —onllZx)2 = 1o — entillzx)2)

1
> K(Wn, fin, ) — G (e = enllZxy2 = llp = Pnrillex)2)s
n

where the first inequality follows from the L-smoothness of ¢ — (¢, u, ) , and the second inequality
follows from 0 < «, < 1/L, and the last inequality results from the concavity of ¢ — K(¢, u,p) for
each ¥ and p. Also, the third inequality follows from the three-point inequality in Lemma with
F(SO) = _dK:(Q/J’m//’TH ')son(@ - @n) and f = pp:

d’C(%/Jn»Mm ')4Pn (@n‘f’l - Son) - 20(

len+1 — <Pn||%(x),2

1
< dK(n, fins ), (0 — on) — ﬂ(”‘ﬁ - @n”g(x)g —lle - <Pn+1||g(x),2)7 P € Ss.

Furthermore, by using the the concavity of ¢ — K(¢n, tin, @) for K(tn, tin, pnt1) at the first line, we have
- CVn’C(d)m o, @n) + OénIC(Q/}n, 1) SD)

1
< 5(“90 - @n”g(X)Q —lle— Qpn+1”%(x),2) + andK(¥n, fin; ), (Pnt1 — n)- (32)
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By taking the summation of from n =0 to N — 1, we obtain

1
- Zan wnvﬂnvcpn (Z an) "/}Nmqua ) < §||30_§00H%(X),2+Cl]g (33)

n=0 n=0

Here, we used Z 0 (U o, ) Z 0 a, K (1ZN, N, @) by Jensen’s inequality , where the weighted
sums (1/JN, N, Pn) are defined by (L . Here, we introduced C¥ defined as

N-1

CR = andK(Wn, fin, ), (Pni1 — on) > 0. (34)
n=0

The non-negativity follows from the update rule defined by Definition When ¢ = gy in , we have

N-1
— Y KW, fin, ) + (Z an) (ns fin, Bv) < *||90N voll¢(x).2 + Ok - (35)

When ¢ = ¢, in , we have

N-1
- Z anK(wnnuwu ®n) (Z an) ’(/}*a Mo 5 (P*> > 7”90* (PO”(%(X),Q + CI]%[; (36)

n=0 n=0
where (Y., s, ©4) is a saddle point defined at satisfying KC(1x, tx, i) < K(@N,ﬁN, ©Ox)-
Second, we evaluate the upper bound of KC(1y,, tnt1, ¢n). The following holds for any (¢, ) € Sxaq x Se:

K(¢n7 Hn+1, SOTL)

L
< KWns by on) + dK(Un, -, n ), (Bngr — pin) + §||.Un+1 - :URH%/I(X)

1
< K(Yn, piny ©n) + dK(0n, -, 0n) py (g1 — pin) + g”ﬂnﬂ - Mn”fw(x)
_dlc('a/‘na@n)wn(zbrwrl ()
+d’C(',Mm90n>wn(1/Jn+1 n) + ||¢n+l wnllg(x)’l

< K(¢n7ﬂn7§0n) +d’C( Nna@n)wn(w wn) +dlc(¢n7 7%071);4”(/1* ;U’n)
- dIC(, M Sﬁn)wn (¢n+1 - n)

1
+ Y. (||¢ - wn”%(X),l — = 2/JnJrIH(zz(X),l + = /‘nH%\/l(X) — - Mn+1||3\4(x)>
n

< ’C(wv H, Son) - d’C(, Hns @n)wn (¢n+1 - 1%)
1
* e (||1/J —Uallgoon = 1Y = Ynrilld s + e — pnlliae) = In— Mn+1||3\4(x)> ;
where the first inequality follows from the L-smoothness of p — K(t, u, ) for each ¢ and ¢, the second
inequality follows from 0 < «, < 1/L, and the last inequality is the result of the joint convexity of
(0, 1) = K, 1, ) for any ¢. Also, the third inequality results from the three-point inequality in Lemma

With G(v) = dK(thn; -, on)u, (v — pn) and p = pin,

1
K(n, s on)pn (Bnt1 — pn) + 2 llttns1 — Nn”g\/l(X)
7%

< dK(Yn, 5 on)p, (10— pin) + (Il — Hn”?\/l(X) —lw— Mn+1\|3v1(x))7 pes,

1
200,
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and Lemma with F(¢) = dK(-, tn, on)p, (¥ —¢pn) and f =1,
1
AR (-, pins o)y, (Yns1 — ¥n) + g”¢n+l — Yallzx)1

1
< At 9 (8 = ) + 5 (10 = Yallx 0 = 10 = Ynralid. ) € St

Furthermore, by using the the convexity of u — K(¢n, t, pn) for K(¥n, int+1, ¢n) at the first line, we have
K(n: pns on) = anK (), 11, n)
< 2 (= 0l — 10— YnsalBons + = mallace) — = nnlBy) — B7)
— andK (s pins O ) (nr — ) = andK (P, n ), (i1 — fin)-

We perform the summation of over the interval n =0 to N — 1:

N—-1
> 0K, i, n) — <Z an> (Y11, on) < (||w Yollzxya + Il — molliy X)) +CY,  (38)

n=0

where we used E 0 an (), p, on) < (22:01 an) K, u, pn) following from the Jensen’s inequality and
we introduced C,JCV defined as

N-1

élj(jv = Z Qp (dlC(',Mn, @n)wn (wn+1 - '@[Jn) + d’C<wn7 ) (pn)un (/ffnJrl - Mn)) 2 0. (39)

n=0

The non-negativity follows from the update rule defined by Definition By substituting ¢ = zZN and
1= iy into , we have

N-1

Z oK wnvﬂn790n+1 (Z Oén) wN,/iN,SON)

n=0 (40)
2 -~ 2 ~N
<3 (WN —Yollecx) + v — Mo”M(X)) +Ck -

Also, by taking (1, i) = (s, pts) in which is a saddle point for the minimax solution for minimax problem
K, p, ) on (S1 x 8") x Sy such that (., s, vs) satisfies the K (., s, On) < K(Ws, s, P« ), we have

N-1

Z an wn;,ulnv(anrl (Z an) ¢*7M*7<P*)

< & (e = ol + e — pollaacey ) + GF
Third, let combine all the results we have obtained. Summing up and yields
<Z an) ZZJ*’N*:SO*)—]C(U/NaﬁN’@N))

< 5 (19~ woll3or + In — pollducx) + e — wollin.2) + O +GF.

Also, summing up and gives
(Z an> (n, fins D) = K(Was 1, 04))

< 5 (e = ol 1 + llise — poll ey + 18x = w0l )2) + R + CF.

l\D\»—l
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Therefore, we obtain

K, ins @) — K (s s )

N-1 -1
1 ~
<(Xo) (erorea). ()
n=0

where Cs > 0 is a finite constant defined in (I5). This means that the value of the object function at
(YN, N, Pn) approximately converges to a saddle point under the gradient descent update rule, if the sums
C,]CV + C’,ZCV of the Gateaux differentials in and are finite.

Finally, we prove that the term C ,]CV + CN',]%[ defined in and are bounded from above by the norms

[Ent+1 = tnllpaexys 10n+1 = ¥nlle(x)n and [9nt1 — @nlle(x) 2 under Assumptions Actually, each Gateaux
differential is bounded from above as follows:

_dIC(H,UJm(Pn)wn (¢n+1 - 1/’%) = _/(d)n+1 - 1/}n)dN¢mHm<Pn

. 43
< Wnst = Unlleers 1N sl (43)
<B
and
_d’C(wna '7§0n)un (//fnJrl - Mn) = _/(bwn,un,wnd(,u’n+1 - /ffn)
. 44
<19 oo op iy 51 = il ng (44)
<B
and
A (¢n, pin, ')san(@n-i-l —n) = /‘Pn-ﬁ-l - ‘PndAwn,umsan
(45)

< lon+1 — @n||C(X),2 [BLSTR, Z(x),g .

<B

Moreover, by taking into account that the gradient decent scheme in Definition with ¥ = 1, implies
ArC(-, tns ©n)pn, (Vnt1 — ¥n) + ﬁ”?ﬂn_l,_l - 1/)”||g(x),1 < 0, we can obtain that

1
Y ||wn+1 - 7/}n||g(x) < _dlc('nuna‘/’n)wn (¢n+1 - wn)

< Bl[Ynt1 — Yallexy s

which is equivalent to
[¥n41 = Vullexy < 2Bam. (46)

By the similar argument, we obtain
lpn41 — F‘n”M(x) <2Bay, |lont1— Wn||c(x),2 < 2Bay,. (47)

By combining with - , we conclude :

-1

N-1 1 N-1
< (Z an> (205 +682Y ai> :
n=0

n=0

‘K(&N, ﬁN7 @N) - K:(w*7u*7 SD*)
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B Proof of Theorem ©.14

Before the proof of the main result, we will show two lemmas used in the proof of Theorem [5.14]

Lemma B.1. Let Assumptions[5.8, and hold. Then, we have the following:
(l) ||(I)(1/)1; f) - (I)(wQa f)HS2 S %le - ¢2||S'1 fO’I" whd)Z S 51,67 f € Sél
(i) [|9(¢, f1) = @(, f2)lls, < 5 fr = fallsw for & € Sie, fr, f2 € SU.

(iii) v — G, f) is L (% + 1) -smooth with respect to || - ||s, over Si. for each f € SI.

(iv) f—= GW,f)is L (% + 1) -smooth with respect to || - || s over SY for each ¢ € Sy ..

Proof. The proof is a generalization of [Lin et al. (2020a, Lemma 4.3) to infinite dimensional function spaces
with two variable.

By the optimality, we have

dG (1, fr ), ) (P2, f) — (Y1, f)) <0,
dG (2, [ )@y, ) ((P1, f) — @(2, f)) <0,
which implies that
[AG (W1, [ ) o, 1) — AG (W2, [ ) a0, )] (R(Y2, f) — (1, f)) < 0. (48)

With Assumption and , we estimate that

B, ) — 2(2, s,

< [dG (1, £ Do, p) — AG (W1, [ )@ (e, (Y2, ) — @(31, f))

< dG (2, fo ), f) — AG (W1, 5 ) @ (o, )] (R(2, f) — (31, f))
SNVG@o2, fr ) o (s, ) — Vg(wl,f, Vo (o, )52 | P01, f) — (Y2, s,
< L|[Y1 — Yolls, |91, f) — @2, f)ls.

where last inequality results from Assumption Hence, we obtain (i). (ii) is given by the same arguments
of (i).

By the envelop theorem (Milgrom and Segal, [2002), the Gateaux differential dG(-, f)y of G(-, f) at ¢ € Sy is
represented as dG(-, f)y = dG(-, f, (¢, f))y. Using this, we estimate that

VG, [y, = VG .|l

=[IVG(.. f (wu Nwer = VG f (2, )y |

< VG £ W1, )y — VG £, (P2, )y |l
+ ||Vg(w ; (1/)2,f))w1 = VG, [, 22, )y |l

< L(|®(1, f) — (b2, f)lls, + 191 — ¥2lls,)

<L (; + 1) 161 — alls,
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where last inequality follows from (i). Using the above estimate, we further estimate that
G, f) = G2, ) = dG (-, [y (Y1 — 12)
1
d
< [5G+ ein = ). )~ G T (1 — b
0

1
< /0 dG('7 f)¢2+6(¢1*¢2)(¢1 - '¢2) - dG('7 f)wz (1/}1 - ¢2)d€ (49)

1 L
/ L(ﬁﬂ) elpr — [, de
0

1 L
< §L (5 + 1> 91 — a3, -

Hence, we obtain (iii). (iv) is given by the same arguments. O

Lemma B.2. Let Assumptions[5.8, and hold. Let n >0 and ¢ € Sz, and we denote by
P+ = PS2,C (90 + Wvgw» f, )49)

Then, it holds that for ¢ € S1., f € S/, and ¢ € Sa,

IN

1 L 1
_g(d}a f’ (er) + g(wmﬂ ¢) < 5<SD+ - (P,¢ - Q0>5’2 + (2 - 77) ||SD+ - @H%g - g”@ - ¢||%2

Proof. The proof is generalized from the finite dimensional case (Bubeck et al., 2015, Lemma 3.6).

By a property of the projection Pg, . (see (2003, Lemma 3.1.4)), we have
(o4 = (@ + VG, f,)p) s o+ — B)s, <0 (50)

By Assumption and same argument in , we can show that

L
_g(¢7 f7 30-"-) < —g(¢, f7 ()0) + dg(wa fa ')ip(@-i- - 90) + 5”90-1‘ - @"2527
which implies that with Assumption and

_g(w7f7<p+)+g(wvf7¢)
S*g(¢afa¢+)+g(1/’afa<ﬁ)*g(ﬁ’afa‘P)Jrg(l/f,f,‘f’)

L
< A0, £, Volips — ) + s — ol + G0, T )ol0 ~ )~ Sllo — ol

IA

L
_<vg(’l/)7f7 ')L/N(p-i- - ¢>S2 + EHSOJF - SDHAQSVQ - g”@ - ¢||%27

1 L 3
< —5<<P+ — @, 04 — )5, + §W+ —ol%, - §||<P - 9lI3,,

L 1 I}
< oy —p, ¢ —@)s, + (2 - 77) o4 —<P||g‘2 - §H<P—¢>||232'

I =

O

Proof of Theorem[5.1] The proof is a generalization of (2020a, Theorem 4.4) to infinite dimensional

function spaces with three variables.

We denote by Lg = L (% + 1). First, we estimate the upper bound of G(¢n41, fnt1). By Lemma we

have

G(Vnt1, fat1) < G(Wnt1, fn) +dG(Ynt1, ) 5, (fne1 — fn) + %”fnﬂ — fall%n- (51)

28



Published in Transactions on Machine Learning Research (06/2024)

By a property of the projection Pg. (see (2003, Lemma 3.1.5) and Young’s inequality, we have

[ a1 = Fullén

< &G lIVG (W, on) 1, 15

<203, VG (W, @(Wns fn) £ = VG (s o) 1 130 + 203, IV G (W, -, @ (s f) 1[5
< 20205 | ®(n, fo) — @nllg, + 207,IVG (W, )5, 150

We estimate that

(52)

dG('(/)n-i-l’ ')fn (fn+1 - fn)
= <vg(¢n+17 ) (I)(wnJrly fn))fn7fn+1 - fn>$’2
= _<Vg('l/}n+1a " (I)(TZ}nJrl, fn))fnvaf>nvg(7/]na % (I)(wm fn))fn>Sz
+ <vg(7/’n+17 * @(¢n+17 fn))fm frn+1 — fn + O‘f,nvg(wna ) (I)(ﬂ}na fn))fn>Sza (53)

and by Lemma [BI] and Assumption [5.11]

VG (ntts s @(Wns1, o)) p s
< ||Vg(¢n+17 ) ‘I’(%H, fn))fn - ngm K (b(wnJrla fn))fn ”S”
+ va(wnv ) ‘1>(¢n+1, fn))fn - Vg(d’m ) (I)(wna fn))fn HS”
+ ||Vg(wn, “ (I)(wnv fn))fn ||S”a
< L+ Lg)[¢nt1 = Unlls + [IVG@n,-) 1, 57, (54)

and by a property of the projection Psg, , (see (2003, Lemma 3.1.5))

||fn+1 - fn + Oéf,nvg('l/)na Bl (I)(ilfm fn))]‘n HS”
< af,n||vg(1//na * Qon)fn - vg(¢n, * ‘I)(i/fn, fn))fn ||S”
< Laf,n”@n - ‘I’(wn, fn)Hsz (55)

Combining with and , we futhre estimate that

dG(Ynt1, ) fo (frr — f)

<L+ Lg)agn[ns1 — ©alls, IVG(n, ) 1, |57
— apnlVG (W, )5, 150
+ L2(1+ Lg)afalltnsr — Ynlls, on — @(@n, fo)llsy
+ LagnlIVG(n, ) s l9n — (W, fo) s,

L1+ 1L L(1+ Lﬂ)az,n

— sl VG, )5, 15
L*(1+ Lg)
2

L2(1 + L[j)a%n

* 2

[+t = vall§, + lon = @(Wn, f)lI3,,

La? L
+ =3IV W, ) 30 + 5 lon = (W, )3,
where we have employed Young’s inequality for last inequality. By the same way with , we have

[ns1 = ¥nl3,

<A WlIVG (s frr n ) I3,
<203 VGG, fs ®(Wns fa))w = VG frs ) w12, + 203w IVGC, fry @ (s f)) 12,
< 20707, 1@, fn) = onllE, + 203 L IVG, fn)y,

(57)

2
S1'
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With , , , and , we obtain that

G(7/fn+1, fn+1)
S G(¢n+17 fn)

L(1+Lg)ay, Loy,
bag {14 LI 200y gy 4961
L1+L)(1+L
p HEDA B)yy e,
L L2(1—|—L5)a?n 9 9 9
+{2+2+L Ly, ¢ 19(n;s fn) — enlls, (58)
< G(wn—i-h fn)
L1+ Lg)as, Lasy,
+af,n{—1+ Qt Zolosn | Lo, +Lﬁaf,n}||VG(wn,->fn||%~

+ L1+ L)1+ Lp)ad, o IVG (-, fu)w, I3,

L L*(1+Lg)a?,
+{+(B)f’

5 5 +L2Lﬁafﬁn+L3(1+L)(1+Lﬁ)ai;,n} 1@ (Wn, fn) = onll, -

Second, we estimate the upper bound of G(%,41, f»). By Lemma we have

L
G(¢n+1a fn) S G(¢n7 .fn) + dG(7 fn)l/)n (¢n+1 - wn) + ?B”wn—i-l - wn”%’I . (59)
By the same way with , we estimate that

dG('7 fn)wn (¢n+1 - ql)n)
= <Vg(', fna @(wm fn))d)n y Z/’n+l - ¢n>51
= =0y n | VG(, fus @ (s fn))w I3,
+ <vg('7 fm (I)("/)nu fn))wrmwnJrl - % + O‘w’nvg(W fm (I)('(/Jm fn))ibn>32

: (60)
< —aynl[VG(, fa)v., lIs,
+ L| VG(’ fn)¢n ”5'1 H‘Pn - ¢(¢n> fn)||5'2
Loy L
< {14 222 Y IVGC a3, + £ lon = 20 Sl
Thus, by combining , , , and , we get
G(wn+17 fn+l> S G(wna fn)
La
{1+ R L0 D+ Lo + Loagn | 0 TG F)u
Loy, L1+ Lg)ayy,
+ {—1 y Lot | LU Lol Laam} A sl VG, ) 1, 30
(61)

) L*(1+ Lg)a3
T {L +L2Lga? , + L3 (1 + L)1+ Lg)a?, , + L*Lga?, + L+ L)y,

2

Assumption (i) <c
X [|®(Yn, fn) — ‘Pn”?%'
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Third, we estimate ||®(¢n, fn) — ¢nll%, =: 6n. Using Lemma and Assumption (i), we evaluate that

lon = @(fr-1,¥n-1)%,

< len—1=®(fr-1,Yn-1)l1%, + 2(tn-1 — ®(fae1,¥Yn-1),n — Pn-1)s, + on — On-1ll%,
<(1- »Bo‘go,n—l)”@n - é(fn—hwn—l)ﬂ?‘?g +(=1+ La@,ﬂ—l)”@ﬂ - <Pn—1||?5'2

< (1= Bagn-1)0n-1,

which implies that by using Young’s inequality, Lemma , and , we have

O = |2 (Wn, fn) — @ull%,
< (14 Bagn1)|®Wn_1, fa1) — @nll?,

1
+ 2 <1 + 6041) (H‘I)(d)n—la fn) - @(1/)m fn)”%z + ||‘I>(1/Jn—1, fn) - ‘1’(%—1, fn—l)H?S‘z)
on—
2 2 2L2 1 2 2
S (17 Ol%n_l)(sn_l‘i’T 1+ — (”djn—l*wnHSQ +”fn—l 7fn||S”)
B BCo (62)
2 2 2L2 1 2 2
<q@ =57 1)+ K 1+ 3Co (@ -1+ @Fn1) p In
2 e LY (@2 VG fae)n B+ 02t [V Gt g [)
32 BC Pn—1 rJn=1)¢n 1 lls) T Xfn_1 n=1")fn-1lls
2L2 1 2 2 2 2
< Y0n-1+ F L+ m (O‘w,nﬂHVG(‘a fnfl)dinfl ||Sl + af,nflllvcg(d]n*h -)fnfl ”S”) ’

where we have employed Assumption [5.13] (iii) for last inequality. Then, we have

n 2L2 1 - n—i n—i
w000+ 2 (14 55 ) X (@30 IVGE Rl + da™ IV G 1),

?

By this and , we have

Loy n
{1 - Tw — L1+ L)1+ Lg)oyn — Lﬁ%,n} ay VG, fa)u I3,

Loy, L(1+Lg)ogy
w{ao By BRI s o VG e
< G fr) = G(Wny1, far1) + CY"do
2L%C I\ i -
g (1 i m) > (@ A" TIVGE f)ullE, + 0" T IVG @ ) lE)
i=0
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and taking the summation over the interval n =0 to N — 1,

Loy,
{152 - L0+ D+ Lo)ag — Lot panal VG fo)o. I

N-1
Lar, L(l1+Lsa
+Z{1_ fn L1+ Lg)ay,

5 5 = - Lﬁafm} pnl|VG(Wons ), 1%

N-1
< G(¥o, fo) = G(bn, fn) +Co > 7"

n=0

2L C g n—1 n—1
+ T (1 + M) Z Z aw,ﬂ HVG(', fz)w 251 + a?f,ﬂ ||VG(1/)1', )f %/') »

n=0 ¢=0

G(vo, fo) — Inf G(y, f) + Co Z o

2L2C = s )
+? 1+7 ZV Z aq/;,nHVG('afn)wn||sl+04f,n||VG(¢m')ans~)v

which is equivalent to

N-1

Layn 212C 0y, ( 1 )}
1— 2% 14 D)1+ L)y n — Lacrg n — (14
S {1 T 0 0 B — Lo = s (14 g

Assumption (iv) >Cy>0
x oyl VG, fa)u, 13,

N-1
Lafn L(l—i—Lﬁ)O{fn 2L20afn( 1 )}
+ 1-— — — — — Lgas, — : 14+
Z{ 2 2 =)\ BG

Assumption m (v) >C¢>0

X @t VG, ) o |30

Céo
1—7

G(w()a fo) - ’}bnﬁ G(wa f) +

Finally, we estimate that

Hzn o 4nVG(fny )

N-1
En:O Qy,n S
1/2
_ N—-1 2
N e VG s, (050 00 196U D)
- Ynco Yy - No1 Y '
- ’ Zn:O Qy,n

By the same way, we estimate that

(Zg:_()l Qfn ||VG(¢M .)fn Hg//)l/Q
T (o)™

[¥Gen

Therefore, we conclude Theorem
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C Proofs in Section

C.1 Proof of Proposition [6.1]

Proof. For a € [0,1], ¢1,v2 € C(X), and 1, p2 € M(X),
Rlanp + (1 — a)ha, apg + (1 — a)pz)

<a® [ b vo)din + (- ) [ s, vo)dun
+a(l - a) ( [ torsiydna + [ etn %)dm)

FaV ) + (- V) - L

FatW () + (1= W () — 0 sl

= ([ ol + V(2 + W) ) 0= ) ([ G oz + V() + W)
=R(¥1,u1) =R(v2,u2)

+a(l —a) <— /(5(1/11»1/10) — £(h2,%0))d(p1 — p2) — % 191 — 1/)2”2()(),2 - % |11 — M2|2%X),1>,

=(*)

and (x) is non-positive because we have
(%) < (1, %0) = (W2, %0)llexyn i1 — B2llex

<pllY1 —7/’2”c(x),2§7‘|¢1_w2 Hc(x),z

Y 2 vy *2
-3 11 = Y2lle(x)2 — 5 1 = p2lleix)

Y x 2
<=2 (I = Yelleya — Il — w2lléx) <0

C.2 Proof of Lemma[6.2]

Proof. For ¢, ¢ € S¢ q.p,
Dy,  (0l@) = Inw () = Inpw(0) = d(Tn ) o (0 — )

_ /(h(w) — h{ep) = W (@) (¥ = ) dps

L 2
<5 [ 16— 0P du= v = el

C.3 Proof of Lemma[6.3]

Proof. By the definition of f-divergence (24)), we have

. d
Ji(p) = sup /wdu—Jf(u) = sup /wdu—/f (du> duy.
p<ro o

HEM(X)
We solve a concave maximization problem for u— [@du— [ f (;—l’/’o) dvy. We consider

d d €
d€</sﬂd(u+€x)/f( Mdjox)dw))| . =0,

0
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which is equivalent to

Joo= [ (i) o= [ (o= (@) =0

for all x. Then, the optimal u satisfies
dp
_ [ GF
p=1f ( dy) :

By the assumption, f’ is invertible, and ¢ € S¢ ;. Substituting J d" = (f")"(yp) into
du du
TH(p) = Oy — 2 g
() Sgp/wdyo 2 /f(dyo) Vo,

- / o (F)7H@) = o (f) M)} dup.

then, we obtain that

O

C.4 Proof of Lemma

Proof. By the definition of IPM , we have

JIPM, v (1) = sup /Sﬂdﬂ /SDdVo -x{yp € F}.
peC(X)
By the Fenchel-Moreau theorem, we obtain that
Tiowun() = [ i+ xli € 7).

O

C.5 Proof of Proposition [6.9]

Proof. (2) holds due to the convexity of k(-). (4) follows from the linearity of u — K1(¢, i, ) and the norm
2|13, induced by inner products.

For (3), it holds that

1
Dicsten(albe) = 5 [or = vl i = vl
and by p € S, we have
1 ) 1 ) 1 )
5 [ W —v2) dp < o [ (r —v2) dpu = 5 191 = ¥2lLaix ) -
For (5), we estimate by using the Lj-smoothness of k : (a,b) = R and vy € S’
D_ic, (g, (01]2) Df Savo (P1l#2)
= [ k(o) ~ ko) = K (2a)li1 — oa)} oo
Ly
< 7/|<P1 — pal*dp,
Ly, 9
= 7“@1 - 902HL2(X,uu)‘
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Finally, we will prove (1). To apply Propositionas L, 0) = (- — )%, V() = 2 ||1/JH§{2\/§ , W) =
7 Hp”ﬁd , we verify assumptions (i), (ii), and (iii) in Proposition (i) holds due to the convexity of
t s (t — s)2. (iii) holds because norms H”H2\/§ and H”;-t(, are induced by inner products. We prove (ii) as

followings:

By (Chu et al (2020, Proposition 14), the RKSH norm || f||,,  is represented as

=1 1
Hfllia = 2(502)’“ Z o ||8$f\liz<Rd>7 (63)

k=0 la|=k

for f € H,. Here, we employ the multi-index notation with d-dimensional multi-index o = (o, ..., ag) € Nd
where the sum of its components denotes the |a| = a1 + -+ - + ay4. Additionally, we define the factorial of the
multi-index as a! = a;!---ag4!, and the partial derivative as 95 = 0! - - - 959,

We estimate that

102 (Y1 + b2 — 2100) (Y1 — ¢2))Hiz(Rd)

2

152 (5) w4 v~ 2000201 - )

pa L2(R4)

IN

Z (g) ]]8§_B(¢1 + 1o — 21/J0)HLoo(Rd) ||6£(¢1 - wQ)HLz(Rd)
f<a ~ (64)
2

ac? [ (5) ] * [ o2 - voil e

<
B<a <o
=(2k)2 <2k ZBSQ||35(¢1*¢2)||2L2<W1>
2
< 1638 > [|07 (1 — v2)l[ 2 gy

Ba

where the first equality employs the Leibniz formula, the second inequality utilizes the Cauchy—Schwarz
inequality and the result of ¥1,%s,%y € S1, and the third inequality makes use of the Cauchy—Schwarz
inequality and multi-binomial theorem.
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By using and , we further estimate that

2

H;('(/)l —1p)? — %(1#2 — )3

Ho

= 1l + s — 20) (W — ),

o0

=47 Z Z Z Haﬂ wQ)Hi?(]Rd)

k=0 o=k & p<a

CEY 3 | et h | 1050 — )l

k=0 |a|=k |B>a

oo

< 4C? 2:(402)’c Z % 2(402)|m_k 105 (¥ —¢2)||i2(n@d)
k=0 lal=k | B>«
I GevE 3 LS S et 4ty | 05— ) e
k=0 la|=k Ba>aa  Pr>an
[ tonr ] ot
< 4czcz§<;<ma>z>k S 108 W — )l aqey
-0 | =k

=4CCq || (41 — %)Himﬁ

where Cp = 3~ o, (402)7 < oo, which implies that ¥ — (¢ — t)? is 4C2CY-Lipschitz with respect to
[lll5, and ||H7_L2\/§ . Thus, by the assumption of v > 4CZ2C% and applying Proposition [6.1] to our setting, we
conclude that (v, u) — K1 (2, 1, ) is convex.

D Proofs in Section

D.1 Proof of Lemma [6.10)

Proof. Since Z: M(X) — R is (1//)-smooth with respect to || - || r((x), the convex conjugate Z* : C(X) — R
is -strongly convex with respect to || - Hj\/l(X)' By this and

(Joy ®I)" = J}, + 17,

then (J,,, ®Z)* is S-strongly convex with respect to || ||’y due to the fact that strong convexity is preserved
by adding convex functions. O

D.2 Proof of Lemma [6.11]

Proof. As h is Lipschitz continuous, h is absolutely continuous. Thus, the derivative Vh of h is defined a.e.
in X with respect to the Lebesgue measure m. By the assumption p << m, the derivative Vh is also defined
a.e. in X with respect to probability measure &, which implies that

jh g( / Vh ) (dz)
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D.3 Proof of Proposition [6.13]

Proof. (1) is given by Lemma (2) holds from Lemma and Gateaux differentials are given by

4G1 (-, 0)u(n) = 2/<wo f— oo o fdéo,
4G, (1, 0) 1 (g) = 2/<w o f — oo ){(Vi— Vo) o [} - gde + /{Wo 1} - gdéo,
4G, (. £, (8) = / b o fdg - / K (0) - ddvo — Bl @),

We will confirm Assumption [5.11] as follows:

(a): for 1,12 € Sic, f € Sic, 9 € Sa.c, and n € Sy with ||n[| g (x) < 1,

dG1(-s fs@)pr () — dG1(s fr )y, (n) = 2 /(% of =10 flno fdéo

- / (1 — d2)nd(fio)

< 20|91 — a2 (x| 2 (x)
< 20|91 — Yol 1 (x),

= [1dG1 (-, [, 0)w — dG1 (s fr@)wllin (x) < 20311 — ol (x).-

(b): for ¢ € Si,e, fi.fa € S, o€ S, and n € S with ||77||H1(X) <1,

dgl(mfla(p)w(n) - dgl(mf?a(p)w(n)
:2/(?/10f1 *¢00f1)77°f1d§0*2/(1/10f2*1/J00f2)770f2d§0

< 2/|wof1 — oo fillno fi — o faldéo
+2/Iw0f1 —¢°f2|\770f2|d§o+2/|¢00f1—1/100f2|\770f2|d§o
< 4CyLip(n) / 1 — faldéo + 4C, / i = Fallno foldo

< A0Vl oo (x) |1 Z1V2 11 1 = foll 2 (zix,e0) +4C103 2 Inll 20 I — Fallzaczixco)
< (4025d,X|Z|1/2 + 4C1C§/2) If1 = fallL2(z:x 20)

= [|dG1(, f1, )y — dG1(s f2.0)w i (x) < (4026d,X|Z|1/2 + 4C1C§/2) If1 = follz2(z:x .20

where the last inequality results from Lemma where 5d, x > 0 is some constant depending on d and X.
(C)t for ¢ € 51707 fe Sl,c; ©Y1,P2 € 5270, and n € S7 with ||77HH1(X) <1,

dgl(',f, <P1)w(77) - dgl('a fv @2)1#(77) =0

= 1dG1 (-, £, 1)y — dG1 (-, £, 02)y 17 (x) < eller — w2,

for any ¢ > 0.
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(d) for w S Sl,m f17f2 c 5217 (RS 52’07 and g < S"" with HgHL2(Z;X,§o) < 1,

dGi(, - @) (9) —dGL (W, @) r,(9)
- 2/(wof1 oo (Vi — Vi) o i} - gdéo + /{Wofl}-gdgo

—2/(wofz—woof2>{<w—wo>ofz}-gdfo —/{waz}-gdéo
<10, / (V4 — Vo) o fo — (Vi — Vo) o fol lgldéo
+4C2/{|1/)0f1*¢Of2|+|1l)00f1*¢00f2|}|9|d§0+/|V80°f1*V<P0f2||g|d§0,

< (16C1Co + Cy) / |f1 = fal lgldéo
< (16C1C2 + Cy)llf1 — foll2(zix )

= ||dg1(wv *y <p)f1 - dg1(¢7 ) Qp)f2||22(Z;X7fo) < (160102 + C4)||f1 - f2||L2(Z§X’§O)'

(e): for 41, 1hy € S1c, f €SI, ¢ € Sae, and g € " with [|gllL2(z,x,60) < 1

dG1 (Y1, 9) £ (g9) — dGi (2, -, #) ¢ (9)
22/(1/)10f—¢00f){(v¢1 — Vho) o f} - gd&o

=2 [(wao = oo (V42 - Vo) o £} - g

<2 [ 1o~ oo fl[Vore f— Vuzofllgldsy

+2 [ o f = oo fl|Vuzo = Voo fllgldéy

< 4G [ [Vn o f = Vo fllglda +4Ca [ oro f = vzo f]lolde

< 4CC3 "1 — ol (x),s

= [[dG1(¥1, )£ (9) — dG1(V2, - 0) (912 (2:x,60) < 4C,Cy" % |lpy — Vol (x)-

(f): for ¢ € S1c, f € SY, p1,92 € Sa, and g € S” with ||g]|L2(z;x,60) < 1,

dg1(¢7 ) (Pl)f(g) - dgl(z/}> B @2)]‘(9)
z/(VsD1Of)'g—(V<P20f)'gd§0

< C?1Ver1 = Veall iz l9ll 22 (z:x.60)
< C3*Co o1 — palln,
= dG1 (%, 1) — dGr (%, 02) 52 zex.60) < C3'*Callgr — @2, ,

where the last inequality follows from where C,, > 0 is some constant depending on o.
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(g): for o € Sy, f € Sic, 01,02 € Sa.¢, and ¢ € Sy with @[5, <1,
dgl ?/17 f7 ) (QZS) dgl (dja fa ) (¢)
/{k ©2) ©1)} - ddvg + B{(, 02 — P1)#,

1/2
lor — @allL2(x) + Bller — w2lla,

1/2
+ 5) o1 — o2,

dVO
<L —_—
= Tk 5’22 ‘ dm (@)

zeX

d
< (Lk sup ‘ng(x)

d
= G, £ )1 = dG1 (. . )32, < (Lk sup ‘d”O
zeX | AM

1/2
+ 5) ller — 2|2, -

( ) for 1[)1,’1/)2 c Sl Cs f c Sl o P E Sg C and ¢ S S2 with ||(15||'H‘7 < ].

dgy (7/11’ fs )tp((b) —dGy (¢27 /s )¢(¢) =0,

= [|dG1 (¥, [, ) — dG1 (2, [, )ollin xy < cllr — Y2llm(x),
for any ¢ > 0.
(1) fOI' 1/} S Sl,cv f13f2 S Sl,(:a 2 S SQ,Ca a‘nd (b S 52 Wlth ||¢HH(7 S 17

4G (1, f1,)0(6) — dG1 (W, for ) / b0 fi—do fadée
< Lip(¢)/|f1 — fa]d&o

< éa,d,Xf()(Z)l/2||f1 — fallL2(z;x,0)

= [1dG1 (¥, f1,)p — dG1 (¥, f2, Vell3, < CoaxCo(2)2f1 = follL2(z:x.60)s

where the last inequality results from Lemma where 5’0@) x > 0 is some constant depending on o, d, and
X. O

We have employed the following fundamental Lemma in the proof of Proposition [6.13

Lemma D.1. Let Q C R? be a compact set, and let f : Q — R be Lipschitz continuous. Then, we have

(d+ 1)QV/? d+ 1)d2Q2\TT
|f||Lm<mSmax{'llf| : )zd L 1A lz20) ¢

Proof. Assume that f: Q — R be L-Lipschitz with L > 1. We denote by

a = argmax,cq f (2),

and
M = |fll=@) = I;lgg;f(m)-

Without loss of generality, we can assume that M > 0.

As f: Q — R is L-Lipschitz, that is,

|f(z) = fla)| < L]z —a], z € Q,
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we estimate that

M/L M
L/ 1{\zfa|<v}dv < L ( — |.Z‘ — a|)
0 - L

< —Lll‘—&‘—f—MSf(Jf),
which implies that

M/L
/ |f(z)|dx = L// 1{|z—a|<vydvdz
Q QJ0
M/L
= L/ / Lja—a|<vydrdv
0 Q
M/L 4 R+-a;
= L/O H/ o —ai <oy vay rdv

i=1Y —Rta;

M/L
) /0 Qr.a(v)dv

where

Qr.a(v) ==

/[\?/—\
S
=9
ISH
<o
A
=

Here, R > 1 is chosen large enough such that

d

Q C H[—R+ CLZ',R + ai].
i=1

By direct computation, we can show that

[ 1@

dpd

>{ 2111 (M~ RLVi )

> \y
24 RV Ri+1

> VdR
<VdR

NS TRk
S

d
N { il i

ey HDSTA

=
IN V

Therefore, we conclude that

o
d+1 d+ 1)di2\ T .
< max{ o () T i,

d+1)|0]1/?2 d+1)dv2Q[/2\ T
gmax{(;l'||f||mm,(( ) I

9d L2(Q)
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