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ABSTRACT

Personalized federated learning (PFL) has gained great success in tackling the sce-
narios where target datasets are heterogeneous across the local clients. However,
the application of the existing PFL methods to real-world setting is hindered by
the common assumption that the test data on each client is in-distribution (IND)
with respect to its training data. Due to the bias of training dataset, the modern
machine learning model prefers to rely on shortcut which can perform well on the
training data but fail to generalize to the unseen test data that is out-of-distribution
(OOD). This pervasive phenomenon is called shortcut learning and has attracted
plentiful efforts in centralized situations. In PFL, the limited data diversity on fed-
erated clients makes mitigating shortcut and meanwhile preserving personaliza-
tion knowledge rather difficult. In this paper, we analyse this challenging problem
by formulating the structural causal models (SCMs) for heterogeneous federated
clients. From the proposed SCMs, we derive two significant causal signatures
which inspire a provable shortcut discovery and removal method under feder-
ated learning, namely FedSDR. Specifically, FedSDR is divided into two steps: 1)
utilizing the available training data distributed among local clients to discover all
the shortcut features in a collaborative manner. 2) developing the optimal person-
alized causally invariant predictor for each client by eliminating the discovered
shortcut features. We provide theoretical analysis to prove that our method can
draw complete shortcut features and produce the optimal personalized invariant
predictor that can generalize to unseen OOD data on each client. The experi-
mental results on diverse datasets validate the superiority of FedSDR over the
state-of-the-art PFL methods on OOD generalization performance.

1 INTRODUCTION

Federated learning (FL) allows the participation of a massive number of data holders (i.e., clients)
that possess limited data to collaboratively train learning models in a privacy-preserving man-
ner (McMahan et al., 2017). From the view of the heterogeneity of target datasets across local
clients, we can divide the literature on FL into two branches. 1) Federated learning aims at training
a global model to fit the local data distributions and perform well when the local target datasets
are subject to independent and identically distribution (IID). In particular, some works (Deng et al.,
2020; Liu et al., 2021c; Nguyen et al., 2022) (including robust federated learning and federated do-
main generalization) focus on training a global model that can tackle the distribution/domain shift
across local training datasets. Unfortunately, the shared global model can diverge from the optimal
local solutions when the target datasets are heterogeneous or not IID (i.e., Non-IID) across local
clients (Hsieh et al., 2020), since the useful information about personalization is dropped. 2) Per-
sonalized federated learning develops a personalized model for each client to handle the discrepancy
among the local optima when the target datasets across local clients are Non-IID. Despite succeeding
in handling Non-IID target datasets, all the existing PFL methods neglect the shortcut trap problem
which is attracting more and more interest in centralized machine learning.
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Shortcut trap is found pervasive in modern machine learning (Geirhos et al., 2020) where models
prefer to rely on the shortcut to solve problems due to the bias of training dataset. The utilized
shortcut can perform well on training data but fails to generalize to unseen test data that is out-of-
distribution (OOD) with respect to the training data. For example, there is a binary image classifica-
tion task where the model needs to recognize the pictures of cows and camels (Beery et al., 2018).
Deep learning model can classify the picture of a cow in a desert background as “camel” at test
time, if most of cows appear in grass backgrounds and most of camels stand in desert backgrounds
in training environments (environments are data subsets that have different data distributions). This
dataset bias makes the obtained model choose the background rather than the shape of animals in the
pictures as the discriminative feature. The similar shortcut trap exists in diverse real-world scenar-
ios (Geirhos et al., 2020). Although many efforts have been attracted to the shortcut trap problem in
centralized situations, they focus on mitigating shortcut by extracting environment-invariant (a.k.a.
invariant) features. When applying these schemes into PFL, the invariance constraint will eliminate
all heterogeneous features, including shortcut and personalized features. Therefore, the existing
invariant learning schemes can hardly tackle the shortcut trap problem in PFL.
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Figure 1: The coverage of ours and the re-
lated works. a) FL: Federated Learning; b)
PFL: Personalized Federated Learning; c)
RFL: Robust Federated Learning; d) Fed
DG: Federated Domain Generalization.
Besides, IND denotes in-distribution.

What’s worse, we find the trivial combination of the ex-
isting PFL and centralized invariant learning schemes, in-
stead of solving the shortcut trap problem in PFL, can even
induce worse performance than the better one of them-
selves (discussed in the evaluation part). To handle the
challenging shortcut trap problem in PFL, we firstly for-
mulate the structural causal models (SCMs) to simulate the
heterogeneous data generating processes on local clients.
From the SCMs, we derive a causal signature which re-
veals that the shortcut is statistical independent with the
client/user indicator conditional on label and environment
indicator. Inspired by this finding, we design a collabora-
tive shortcut discovery method which can work well even
if there is only one available training environment on each
client. Then, the personalized causally invariant represen-
tations are extracted by utilizing another causal signature
that describes the conditional independence between the
personalized invariant features and the shortcut features.
Finally, the optimal personalized invariant predictors can be elicited from the extracted personalized
causally invariant features. The comparison between the coverage of our approach and the related
works is illustrated in Figure 1. The main contributions of this paper are summarized as follows:

• To the best of our knowledge, we are the first to consider the shortcut trap problem in per-
sonalized federated learning and analyse it by formulating the structural causal models for
heterogeneous clients. Based on the proposed SCMs, we design a provable shortcut dis-
covery and removal method to develop the optimal personalized invariant predictor which
can generalize to unseen local test distribution for each client.

• Theoretically, we demonstrate that the designed shortcut discovery method can draw all the
latent shortcut components, then the shortcut removal method can eliminate the discovered
shortcut features and produce the optimal personalized invariant predictor for each client.

• Empirically, we conduct experiments on several commonly used out-of-distribution
datasets and the results validate the superiority of our method on out-of-distribution gener-
alization performance, compared with the state-of-the-art competitors.

2 RELATED WORK

Federated learning. The classic FedAvg (McMahan et al., 2017) performs well if local training
datasets are IID. Some methods (Karimireddy et al. (2020); Dieuleveut et al. (2021); Zhang et al.
(2022)) mitigate the negative impact of training data heterogeneity on convergence rate, while an-
other branch ( Deng et al. (2020); Sharma et al. (2022); Sun & Wei (2022)) targets at reducing the
performance bias of global model on local clients. Besides, few works ( Liu et al. (2021c); Nguyen
et al. (2022); Guo et al. (2023c)) investigate the scenarios where the training data heterogeneity ap-
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pears to be domain shift. All the above methods produce a shared global model which can diverge
from the local optimal solutions when local target datasets are Non-IID.

Personalized federated learning. Many PFLs ( T Dinh et al. (2020); Hanzely et al. (2020); Fallah
et al. (2020); Li et al. (2021); Tang et al. (2022); Cheng et al. (2023)) train the personalized models
with the guidance of a global model which embeds in the shared knowledge, DFL (Luo et al.,
2022) disentangles the shared features from the client-specific ones to achieve accurate aggregation
on shared knowledge. Similarly, pFedPara (Hyeon-Woo et al., 2022) and Factorized-FL (Jeong &
Hwang, 2022) factorize the model parameters into the shared and personalized parts. Another branch
( Collins et al. (2021); Chen & Chao (2022); Xu et al. (2023)) employs the shared/aligned feature
extractor to capture global knowledge and personalized classifiers to encode the personalization
information. All of them don’t cover the situations where shortcut exists in local training datasets.

Shortcut and Invariant learning (IL). Causally invariant predictor is proposed in (Peters et al.,
2016), and then applied into deep learning in IRM (Arjovsky et al., 2019) to mitigate shortcut.
Subsequently, Rosenfeld et al. (2021) prove that IRM and its variants can be still trapped by shortcut
when training environments are insufficient. IFM (Chen et al., 2022b) lowers the requirement and
demands only logarithmic training environments. Some works focus on settling IL problem when
the environment label is unavailable, e.g., EIIL (Creager et al., 2021), HRM (Liu et al., 2021a;b),
EDNIL (Huang et al., 2022) and ZIN (Lin et al., 2022). Another branch (Ahuja et al. (2021); Chen
et al. (2022a); Huh & Baidya (2022)) completes the constraints that IRM misses to improve the
performance. The iCaRL (Lu et al., 2022) extends IL to non-linear causal representations while
ACTIR (Jiang & Veitch, 2022) extends IL to anti-causal scenarios. All these methods are devised
for centralized scenarios where all training data is accessed and training environments are sufficient.

3 PROBLEM FORMULATION

Notations. Let X , Y and E denote the input, target and environment space respectively. Data
instance is (X, y, e) ∈ (X ,Y, E). Suppose there are N clients and the local dataset Du on client u
contains Mu samples, u ∈ [N ]. The sets of training and test environments on client u are denoted
by Eutr and Eute respectively. We use Euall as the set of all possible environments in the task that
client u concentrates on, i.e., Eutr, Eute ⊂ Euall, ∀u ∈ [N ]. In federated learning system, the overall
environment sets are denoted by Etr :=

⋃
u Eutr and Eall :=

⋃
u Euall. For convenience, we separate

the learning model or parameterized mapping from X to Y into two consecutive parts: 1) the feature
extractor (Φ and Ψ denote the invariant and spurious feature extractors respectively) maps from
input space X to latent feature space Z , i.e., Φ(X) ∈ Z and Ψ(X) ∈ Z; 2) the classifier ω
outputs a prediction ŷ from a latent feature z ∈ Z . For example, the overall model based on
the invariant feature extractor is denoted by fθ(·) = ω(Φ(·)) where fθ indicates the function f
parameterized by θ. We define the expected empirical loss for model fθ on dataset D asR(fθ;D) :=
E(X,y)∈D[ℓ(fθ(X), y)] where ℓ is the loss function.

3.1 INVARIANT LEARNING

Succeeding in mitigating shortcut and solving the OOD generalization problem, invariant learning
assumes that there exists some invariant feature Φ(X) satisfying the invariance constraint:

P(Y |Φ(X) = z, e) = P(Y |Φ(X) = z, e′), ∀z ∈ Z, ∀e, e′ ∈ Eall. (1)

Rosenfeld et al. (2021) proved that IRM (Arjovsky et al., 2019) and its variants need at least dS + 1
(dS is the dimension of shortcut features) training environments to eliminate all shortcut features
and elicit the optimal invariant predictor, under linear scenarios.

Definition 1 (Optimal Invariant Predictor) The optimal invariant predictor is elicited based on
the complete invariant features which are informative for the target label in the task concerned, i.e.,
Φ⋆ = argmaxΦ I(Y ; Φ(X)), where I(·; ·) denotes the Shannon mutual information between two
random variables and Φ satisfies the above invariance constraint.

3.2 CAUSAL SETUP

In invariant learning (IL), researchers usually formulate a structural causal model to simulate the data
generating process in the target task. A valid SCM is depicted by a directed acyclic graph where each
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node represents a random variable and each edge describe a directed functional relationship between
the corresponding variables (Pearl, 2009). When we study the invariant learning in federated setting,
the latent heterogeneity of data generating mechanisms among local clients need to be considered.

Y

𝑍𝑆

X

E

𝑍𝐶

(a) Causal IL

Y

𝑍𝑆

X

E

𝑍𝐶

(b) Anti-causal IL

Y

𝑍𝑆

X

EU

Z𝐶
𝑈 Z𝐶

𝑔

(c) Causal FedSDR

Y

𝑍𝑆

X

EU

Z𝐶
𝑈 Z𝐶

𝑔

(d) Anti-causal FedSDR

Figure 2: (a) (Arjovsky et al., 2019; Huang et al., 2022) and (b) (Rosenfeld et al., 2021; Huh & Baidya, 2022)
give the structural causal models (SCMs) commonly adopted in invariant learning, while (c) and (d) show the
SCMs proposed in this paper. ZC and ZS denote the invariant and shortcut features respectively. E is the
indicator of shortcut while U is the indicator of user/client. Dotted arrows indicate unstable causal relations
that can vary in different environments.

Therefore, we propose the SCMs in federated learning by adding the user/client indicator U and
deconstructing the invariant features into two separate parts: the personalized invariance ZU

C and
the shared/global invariance Zg

C . The detailed SCMs are shown in Figure 2. As discussed in the
literature on invariant learning, ZS is the latent shortcut feature. The functional relation between ZS

and label Y can vary across different environments. That is, ∀ZS there always exists some e, e′ ∈
Eall that make P(Y |ZS , e) ̸= P(Y |ZS , e

′) hold. By analogy with the optimal invariant predictor in
invariant learning, we provide the definition of the optimal personalized invariant predictor in PFL.

Definition 2 (Optimal Personalized Invariant Predictor) The optimal personalized invariant
predictor for client u is elicited based on the complete invariant features which are informative
for target label in the task that client u concentrates on. That is, Φ⋆

u = argmaxΦu
I(Y ; Φu(X)),

where Φu satisfies that P(Y |Φu(X) = z, e) = P(Y |Φu(X) = z, e′),∀z ∈ Z,∀e, e′ ∈ Euall.

4 METHOD: FEDSDR

When the training environments on each client are insufficient, locally invariant learning can fail
as discussed before. How about a collaborative manner? Unfortunately, personalized invariant
features can cause deviation of the invariance constraint as shortcut features do if training environ-
ments are collected from different clients. As a result, the collaborative invariant learning can elim-
inate/preserve both personalized invariant and shortcut features with the same probability. Nonethe-
less, how about combining collaborative invariant learning with PFL methods? Even though we can
get the global invariant features via collaborative IL and conduct local adaptation as in many PFL
schemes (e.g., fine-tuning (Cheng et al., 2023) and L2-regularization (T Dinh et al., 2020; Hanzely
et al., 2020; Li et al., 2021)), the local adaptation can pick up both personalized invariant and shortcut
features again since local training environments are insufficient. It turns out the trivial combination
can hardly outperform the superior individual one on OOD generalization performance.

FedSDR. In view of the above failure, we turn to the complementary perspective: discovering the
shortcut features and removing them instead of straightly constraining invariance. The feasibility of
this tack is guaranteed by the causal signatures that we derive from the SCMs in Figure 2(c) and 2(d).

Lemma 1 If the data generating mechanism of each federated client obeys the causal graph in
Figure 2(c) or the anti-causal graph in Figure 2(d), we can have:

• ZS ⊥⊥ U | Y,E which means that the shortcut features ZS are conditionally independent
of the personalization indicator U given Y and E.

• Zg
C ⊥⊥ ZS | Y and ZU

C ⊥⊥ ZS | Y , which means that both the global (Zg
C) and personalized

(ZU
C ) invariant features are conditionally independent of the shortcut features ZS given Y .

Remark 1. The first causal signature in Lemma 1 indicates that we can discover the shortcut fea-
tures using training environments across local clients even if the data generating mechanisms are
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heterogeneous among them. The second causal signature makes it possible to develop the optimal
personalized invariant predictors with the discovered shortcut features even though there is just one
training environment on each client, since the relationships between Zg

C , ZU
C and ZS are independent

of environment E. The detailed proof of Lemma 1 can be found in the appendix.

In the following sections, we will introduce the two-stage implementation of our method in detail.

4.1 THE PROVABLE SHORTCUT DISCOVERY

At the first stage, we need to capture the complete shortcut features in a collaborative manner.
Recalling the difference between the definitions of shortcut features and invariant features, we design
the following objective to extract the complete shortcut features in a collaborative manner:

ω⋆
Ψ,Ψ

⋆ = argmin
Ψ:X→H
ω:H→Y

1

N

N∑
u=1

{ℓuSD(Ψ;Du) := R(ω(Ψ);Du)− λ ℓdis(Ψ;Du)}, (2)

where the first term R(ω(Ψ);Du) is adopted to exclude the uninformative features (e.g., noise). λ
is the balancing weight and the second term ℓdis(Ψ;Du) is designed for extracting the complete
shortcut features. Specifically, we define that

ℓdis(Ψ, Du) := EX∈Du

[ ∑
ei∈Etr

∑
ej∈Etr

KL
(
Pω⋆

i
(Y | Ψ(X), ei)

∥∥Pω⋆
j
(Y | Ψ(X), ej)

)]
, (3)

where KL(P∥Q) denotes the Kullback–Leibler divergence between two probability distributions.
Pω⋆

i
(Y | Ψ, ei) means that P(Y | Ψ, ei) is parameterized by the classifier ω⋆

i which is trained by:

ω⋆
i = argmin

ωi:H→Y

N∑
u=1

ρiuR(ωi(Ψ); ei), ∀ei ∈ Etr, (4)

where ρiu = 1 when client u has data samples from environment ei and ρiu = 0 otherwise.

Since Pω⋆
i
(Y | Ψ, ei) is parameterized by the classifier ω⋆

i to be a distribution around ω⋆
i (Ψ) for any

given Ψ and ei, we adopt a simple and effective measure to compute the divergence KL(Pω⋆
i
(Y |

Ψ, ei)∥Pω⋆
j
(Y | Ψ, ej)). That is KL(Pω⋆

i
(Y | Ψ, ei)∥Pω⋆

j
(Y | Ψ, ej)) = 1

2∥ω
⋆
i (Ψ)− ω⋆

j (Ψ)∥2,
∀ei, ej ∈ Eall. In this way, we can rewrite the overall objective 2 for shortcut discovery as the
following bi-level optimization:

ω⋆
Ψ,Ψ

⋆ = argmin
Ψ,ω

1

N

N∑
u=1

{ℓuSD(Ψ;Du) := R(ω(Ψ);Du)− λ ℓdis(Ψ;Du)} (5)

s.t. ω⋆
i = argmin

ωi:H→Y

N∑
u=1

ρiuR(ωi(Ψ); ei), ∀ei ∈ Etr, (6)

where ℓdis(Ψ;Du) = EX∈Du
[ 12

∑
ei∈Etr

∑
ej∈Etr

∥ω⋆
i (Ψ(X))− ω⋆

j (Ψ(X))∥2]. This bi-level opti-
mization can be solved by alternatively updating the solutions of the outer and inner objective. Under
federated learning, both the outer and inner objective can be divided into N sub-problems that can
be settled on N local clients respectively. The sever can aggregate the update from local clients to
gain the solution Ψ⋆. To avoid the outer objective being dominated by maximizing ℓdis(Ψ;Du), we
replace ℓdis with min(α, λ ℓdis(Ψ;Du)) in the practical version, where α is a positive threshold.

Theoretical Analysis. Before continuing to introduce the shortcut removal method, we formally
analyse the optimal solution of the Eq. 5. In this theoretical analysis part, we consider the linear data
model that Rosenfeld et al. (2021) adopted. Specifically, we focus on the logistic regression problem
where label y ∈ {±1}. As in (Rosenfeld et al., 2021), we suppose both the invariant features
ZC = [Zg

C , Z
U
C ] and shortcut features ZS of sample y are drawn from the following Gaussian:

ZC ∼ N (y · µc, σ
2
cI), ZS ∼ N (y · µs, σ

2
sI),

where µc ∈ Rdc and µs ∈ Rds . The sample of observation X is generated by X = g(ZC , ZS)
where g(·) is a non-parameterized function. The parameters µc, σc and function g are independent
of environment, while µs and σs varies in different environments.

Assumption 1 The distribution of label Y satisfies the following two conditions: 1) P(Y | u) =
P(Y ),∀u ∈ U ; 2) P(y | e) = P(y′ | e),∀y, y′ ∈ Y and ∀e ∈ Etr.
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Theorem 1 If the Assumption 1 holds, the function g is linear and the total number of training
environments in the federated learning system satisfies |Etr| > ds, then the following two statements
are equivalent:

• Ψ⋆(X) depends and only depends on the complete shortcut features ZS . That is, Ψ⋆(X)
is a function of ZS alone;

• Ψ⋆ is the optima of the Eq. 5 with an appropriately chosen hyper-parameter λ.

Remark 2. Theorem 1 guarantees the elaborated Eq. 5 can yield the feature extractor that extracts
complete shortcut features and excludes all invariant features. Note that Assumption 1 is about the
label distributions in training datasets. Since the shortcut extractor works as an auxiliary model and
is never part of the optimal personalized invariant predictors, we can sample some data subsets from
local training datasets to train the shortcut extractor Ψ⋆. In this way, the sampled data subsets can
easily satisfy Assumption 1. Besides, the causal signatures in Lemma 1 play critical parts in the
proof of Theorem 1 and the complete proof is provided in the appendix.

4.2 PERSONALIZED INVARIANT LEARNING WITH SHORTCUT REMOVAL

With the shortcut extractor that depends and only depends on the complete shortcut features ZS ,
we can extract the most informative invariant features to elicit the optimal personalized invariant
predictor for each client. Based on the second causal signature in Lemma 1, we design the following
objective for each client to develop the optimal personalized invariant predictor:

ω⋆
u(Φ

⋆
u) = argmin

Φu , ωu

ℓuSR(ωu(Φu);Du) := {R(ωu(Φu);Du) + γ · I(Φu; Ψ
⋆ | Y )},∀u ∈ [N ], (7)

where I(·; · | ·) denotes the conditional mutual information and γ is the balancing weight. The
optimal personalized invariant predictor is given by f⋆

θu
:= ω⋆

u(Φ
⋆
u).

Theorem 2 Suppose Ψ⋆(X) in the Eq. 7 depends and only depends on the complete shortcut fea-
tures ZS . If f⋆

θu
(∀u ∈ [N ]) is the optima of the Eq. 7 with the hyper-parameter γ chosen appropri-

ately, then the f⋆
θu

is the optimal personalized invariant predictor for the client u, ∀u ∈ [N ].

Remark 3. Theorem 2 guarantees that our method can produce the optimal personalized invariant
predictor for every client. Note that I(Φu; Ψ

⋆ | Y ) = 0 is the necessary and sufficient condition
for Φu ⊥⊥ Ψ⋆ | Y . Since Φu ⊥⊥ Ψ⋆ | Y is independent of environment, our method can develop
the optimal personalized invariant predictor for every client even though there is only one training
environment on each client. The complete proof of Theorem 2 is provided in the appendix.

In the practical implementation, it can be infeasible to compute the exact value of I(Φu; Ψ
⋆ | Y ).

Considering the limited computation resources on local clients, we adopt a simple approximating
scheme used in (Jiang & Veitch, 2022) to measure I(Φu; Ψ

⋆ | Y ). Specifically, we estimate it by
I(Φu; Ψ

⋆ | Y ) ≈ E[Φu(X) ·(Ψ⋆(X)−E[Ψ⋆(X) | Y ])] because I(Φu; Ψ
⋆ | Y ) = 0 is the sufficient

(but not necessary) condition for E[Φu(X) · (Ψ⋆(X)−E[Ψ⋆(X) | Y ])] = 0. With the data samples
on local clients, we estimate the conditional mutual information by

I(Φu; Ψ
⋆ | Y ) ≈

∥∥∥∥ 1

Mu

Mu∑
m=1

Φu(Xm)
(
Ψ⋆(Xm)−

Mu∑
n=1

qmn∑
n∈[Mu] q

m
n

Ψ⋆(Xn)
)∥∥∥∥

1

where (Xm, ym),m ∈ [Mu] is drawn from dataset Du, qmn = 1 if yn = ym and qmn = 0 otherwise.

Note that our method can easily cooperate with most of the existing PFL methods to improve their
OOD generalization performance by adding I(Φu; Ψ

⋆ | Y ) into their objectives as a regularization
term, since I(Φu; Ψ

⋆ | Y ) = 0 can constrain the personalized models to eliminate all shortcut
features even though each client has only one training environment.

4.3 ALGORITHM DESIGN

In the following contents, we will discuss what the server and local clients need to conduct to develop
the optimal personalized invariant predictor f⋆

θu
for each client, ∀u ∈ [N ].

Server Update. Before the algorithm starts, the server initializes the models with random param-
eters. At each communication round t, the server firstly selects a fraction of local clients (u ∈ St)
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and broadcast the current Ψt and {ωt
i | i = 1, 2, ..., |Etr|} to them. After the selected local

clients finish conducting the client update process, the server can receive the local update Ψt+1
u

and {ωt+1
i,u | i = 1, 2, ..., |Eutr|} from the selected clients. Then it can update the global solutions by

Ψt+1 = 1
|St|

∑
u∈St Ψt+1

u and ωt+1
i =

∑
u∈St

ρi
u∑

u∈St ρi
u
ωt+1
i,u , i = 1, 2, ..., |Etr|.

Client Update. Before the algorithm starts, the client u initializes the personalized invariant model
with random parameters f0

θu
. After receiving the global model Ψt and {ωt

i | i = 1, 2, ..., |Etr|} from
the server, the local client u (∀u ∈ St) needs to carry on the following two steps: 1) update the
personalized invariant model by

f t,k+1
θu

= f t,k
θu

− η∇ℓuSR(f
t,k
θu

;Du)

for K steps and finally get f t+1
θu

= f t,K
θu

, where η is the personalized learning rate. 2) The client can
conduct R local iterations to update the local shortcut extractor. Before it starts, the client initializes
the related models as Ψt,r=0

u = Ψt and ωt,r=0
i,u = ωt

i , i = 1, 2, ..., |Eutr|. During each local iteration
r, the client firstly updates the local shortcut extractor by

Ψt,r+1
u = Ψt,r

u − β∇ℓuSD(Ψt,r
u ;Du)

for one epoch where β denotes the learning rate, and then get the near-optimal environment classi-
fiers ωt,r+1

i,u , i = 1, 2, ..., |Eutr| by stochastic gradient descent (on ∇R(ωt,r
i,u(Ψ

t,r
u ); ei)) for L steps.

When completing R local iterations, the client upload the local parameters Ψt+1
u = Ψt,R

u and
{ωt+1

i,u = ωt,R
i,u | i = 1, 2, ..., |Eutr|} to the server for server update.

Due to the space limitation, we place the pseudo-code of the above algorithm and more discussions
on the combinations of our method with the prevalent PFL schemes in the appendix.

5 EXPERIMENTS (MORE DETAILS AND RESULTS IN THE APPENDIX)

5.1 EXPERIMENTAL SETUP

Colored-MNIST (CMNIST) (Arjovsky et al., 2019) is constructed based on MNIST (LeCun et al.,
1998) via rearranging the images of digit 0-4 into a single class labeled 0 and the images of digit 5-9
into another class labeled 1. Each digit having label 0 is colored green/red with probability pe/1−pe

and each digit having label 1 is colored red/green with probability pe/1 − pe, respectively. Thus
“color” feature is shortcut in the dataset and the data distribution varies as pe changes. We provide
two training environments (petr = 0.90 and 0.80) as Etr and every local client only has one training
environment which is randomly sampled from Etr. To assess the model performance on different test
distributions, the test environment on each client varies from pete = 0.00 to 1.00. Considering the
heterogeneous data generating process across local clients, the data instances used for constructing
the training/test environments on each client are randomly sampled from only two digit sub-classes
labeled 0 (e.g., digit 1, 2) and two digit sub-classes labeled 1 (e.g., digit 6, 7) without replacement.

Colored Fashion-MNIST (CFMNIST) (Ahuja et al., 2020) is constructed using the same strategy
as Colored-MNIST, but the original images come from Fashion-MNIST (Xiao et al., 2017). Hence,
CFMNIST dataset carries more complex feature space than colored-MNIST does.

WaterBird (Sagawa et al., 2019) considers a real-world scenario where the photographs of water-
birds usually have water backgrounds while the photographs of landbirds usually have land back-
grounds because of the distinct habitats. It makes learning models easily trapped by “background”
shortcut when classify “waterbird” and “landbird”. In WaterBird, a waterbird is placed onto a wa-
ter/land background with probability pe/1−pe and a landbird is placed onto a land/water background
with probability pe/1− pe respectively. We setup two training environments (petr = 0.95 and 0.85)
as Etr and each client has only one training environment which is randomly sampled from Etr. The
test environment varies from pete = 0.00 to 1.00. We notice that the diverse geographic distributions
of different bird species naturally accord with the heterogeneity of local data generating process if
the federated clients are located in different geographic areas. Considering WaterBird includes 46
waterbird species and 154 landbird species, we distribute 15 (10 separated and 5 overlapped) water-
bird species and 51 (34 separated and 17 overlapped) landbird species to each client. The training
and test datasets on each client contain bird pictures that belong to the same bird species.
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PACS (Li et al., 2017) is a larger real-world dataset commonly-used in evaluating out-of-distribution
(OOD) generalization. It consists of 7 classes distributed across 4 environments (or domains). We
adopt the “leave-one-domain-out” strategy to evaluate the OOD generalization performance. Tak-
ing personalization into consideration, we split each training domain into two subsets according to
classes (i.e., one subset consists of dog, elephant and giraffe and another subset consists of guitar,
horse, house, and person), and then distribute these two subsets onto two clients respectively. The
training and test datasets on each client come from different domains but consist of the same classes.

Model Selection and Competitors. For CMNIST and CFMNIST, we adopt the deep neural net-
work with one hidden layer as feature extractor and an subsequent fully-connected layer as classi-
fier. As regard to Waterbird and PACS, ResNet-18 He et al. (2016) is used as the learning model
where the part before the last fully-connected layer works as feature extractor and the last fully-
connected layer works as classifier. We compare our method (FedSDR) with 10 state-of-the-art
algorithms: 4 federated learning methods (FedAvg (McMahan et al., 2017), DRFA (Deng et al.,
2020), FedSR (Nguyen et al., 2022) and FedIIR (Guo et al., 2023c)), and 6 personalized federated
learning methods (pFedMe (T Dinh et al., 2020), Ditto (Li et al., 2021), FTFA (Cheng et al., 2023),
FedRep (Collins et al., 2021), FedRoD (Chen & Chao, 2022) and FedPAC (Xu et al., 2023)).

Table 1: The overall comparison between the performance of our method and the baselines on four datasets.

Dataset CMNIST CFMNIST WaterBird PACS

Test accuracy (%) worst-case average worst-case average worst-case average worst-case average

FedAvg 3.39 51.03 0.16 50.02 54.13 67.95 41.71 47.66
DRFA 21.15 52.81 19.84 53.88 59.75 68.39 42.48 48.95
FedSR 46.93 48.62 47.61 48.90 61.75 71.68 46.76 51.25
FedIIR 47.25 48.39 48.06 49.16 61.24 70.87 47.03 51.58

FTFA 15.42 54.96 11.35 53.52 54.38 69.68 40.89 48.79
pFedMe 21.30 48.53 4.22 51.26 55.63 68.24 45.24 51.33
Ditto 3.02 50.97 0.37 50.12 53.13 68.73 44.95 51.28
FedRep 2.76 50.83 0.11 50.01 52.88 70.23 49.27 53.75
FedRoD 9.09 50.84 1.23 51.57 52.36 70.86 48.16 52.92
FedPAC 1.01 50.05 0.16 50.13 45.08 65.57 49.93 54.20

FedSDR 53.88 55.59 56.92 61.88 65.25 73.20 52.14 56.18

5.2 EXPERIMENTAL RESULTS

Performance Comparison. We summarize the test accuracy of all competitors on different unseen
test distributions (11 test distributions in CMNIST, CFMNIST and WaterBird; 4 test distributions
in PACS) and figure out the worst-case and average accuracy of each method in Table 1. We can
find that our method FedSDR consistently outperform the baselines on both worst-case and average
test accuracy. In particular, FedSDR achieves around 6.5%, 9%, 3.5% and 2% higher worst-case
accuracy than the second best algorithm and in the meanwhile reaches the highest average accuracy
on CMNIST, CFMNIST, WaterBird and PACS, respectively.

(a) CMNIST (b) CFMNIST (c) WaterBird

Figure 3: The relationship between the test accuracy and the test distribution.

Mitigation of Shortcut Features. Since there exists definite correlation between shortcut features
and label in CMNIST, CFMNIST and WaterBird, we can use these three datasets to evaluate how
well a method can mitigate the shortcut features. The more highly a method relies on shortcut, the
more approximate its test accuracy is to the corresponding pete. In contrast, a method that eliminates
the shortcut can produce consistent test accuracy across different pete. We evaluate the competitors
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under diverse test environment (i.e., pete) and show the relationships between test accuracy and pete
in Figure 3. In particular, “Oracle” represents the scheme where we manually remove the shortcut
features (color in CMNIST and CFMNIST; background in WaterBird) from the whole dataset and
then train the personalized models using the pre-processed dataset. Hence “Oracle” provides an
ideal performance for comparison. We can see that FedSDR can effectively mitigate the shortcut
and achieve a more consistent test accuracy than most of the FL and PFL methods. Because FedSDR
exploits the personalized invariant features, it consistently achieves a higher test accuracy than the
federated domain generalization methods which drop the personalization information.

Table 2: Performance comparison between FedSDR and the trivial combination of IL with PFL schemes.

Dataset CMNIST CFMNIST WaterBird PACS

Test accuracy (%) worst-case average worst-case average worst-case average worst-case average

IRM† 46.38 49.14 47.76 49.41 60.38 68.63 46.35 50.83

IRM†-FT 14.32 54.27 11.09 53.48 60.25 69.46 43.18 50.04

IRM†-L2 45.68 49.04 47.92 49.46 61.25 68.93 48.57 51.98

FedSDR 53.88 55.59 56.92 61.88 65.25 73.20 52.14 56.18

Necessity of Shortcut Discovery and Removal. At the beginning of Section 4, we analyse that
trivial combination of invariant learning scheme with local adaptation (commonly used in PFL)
can fail to generate the optimal personalized invariant predictors for local clients. To validate the
superiority of our method on developing the personalized invariant predictors when local training
environments are insufficient, we implement two typical personalization skills with the global model
being trained by the distributional version of IRM (i.e., IRM† in Table 2). One is L2-norm regularizer
used in PFL (T Dinh et al., 2020; Hanzely & Richtárik, 2020; Hanzely et al., 2020; Li et al., 2021),
and we call this implementation IRM†-L2. Another one is local Fine-Tuning which is proved simple
and effective for personalization ( Cheng et al. (2023)) and we name it IRM†-FT.

From the results in Table 2, we can find the combinations can hardly improve the OOD general-
ization performance. In particular, the local fine-tuning skill can even degrade the performance,
compared with baseline IRM†. The underlying reason is that local adaptation can readily make the
personalized model pick up the shortcut features when local training environments are insufficient.
By contrast, our shortcut removal method is independent of environment and can effectively mitigate
the shortcut features even though there is only one training environment on each client.

Table 3: Performance of FedSDR on WaterBird
with different values of hyper-parameters λ and γ.

λ 0.00 0.10 0.50 1.00 10.0

worst-case (%) 61.88 62.51 65.25 61.68 61.74
average (%) 71.34 72.39 73.20 70.61 70.18

γ 0.00 0.10 1.00 1.40 10.0

worst-case (%) 43.75 44.16 57.64 65.25 48.29
average (%) 66.30 65.73 70.18 73.20 64.86

Effect of Hyper-parameter λ and γ. We evaluate
the effects of two significant hyper-parameters in
the proposed objective (i.e., λ and γ) on model per-
formance here. Since the results on other datasets
present the similar tendency as on WaterBird, we
herein focus on WaterBird. The results on other
datasets are placed in the appendix. When evaluat-
ing the effect of λ, we fix γ = 1.4 . When evaluat-
ing the effect of γ, we fix λ = 0.5. The results are
shown in Table 3. When λ = 0.0, shortcut feature
extractor is trained by empirical risk minimization (i.e., ERM). When γ = 0.0, the personalized
models are trained by local ERM. Because models trained by ERM tend to rely on shortcut, the
performance of FedSDR is more sensitive to the selection of γ than the selection of λ.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the challenging shortcut trap problem in PFL. We formulate the SCMs to
interpret the heterogeneous data generating mechanisms on federated clients and derive two signif-
icant causal signatures which inspire our provable shortcut discovery and removal method. Theo-
retical analysis proves the proposed FedSDR can draw all shortcut features and elicit the optimal
personalized invariant predictor that can generalize to unseen target data for each client. FedSDR
can cooperate with most of the existing PFL methods to improve their OOD generalization perfor-
mance, which can facilitate the real-world application of PFL. Since the theoretical guarantee is
derived under linear cases in this paper, we will extend it to more complex cases in the future work.
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A RELATED WORK

Due to the space limitation, a more complete literature review is placed in this section.

Federated learning. The classic FedAvg (McMahan et al., 2017) performs well if local training
datasets are IID. Some methods (Karimireddy et al. (2020); Dieuleveut et al. (2021); Zhang et al.
(2022); Guo et al. (2023b)) mitigate the negative impact of training data heterogeneity on conver-
gence rate, while another branch ( Deng et al. (2020); Sharma et al. (2022); Sun & Wei (2022))
targets at reducing the performance bias of global model on local clients. Besides, few works ( Liu
et al. (2021c); Nguyen et al. (2022); Guo et al. (2023c)) investigate the scenarios where the training
data heterogeneity appears to be domain shift. All the above methods produce a shared global model
which can diverge from the local optimal solutions when local target datasets are Non-IID.

Personalized federated learning. Many PFLs ( T Dinh et al. (2020); Hanzely et al. (2020); Fal-
lah et al. (2020); Li et al. (2021); Tang et al. (2022); Cheng et al. (2023); Guo et al. (2023a)) train
the personalized models with the guidance of a global model which embeds in the shared knowl-
edge. Some researchers study the parameterized knowledge transfer between similar clients, e.g.,
MOCHA (Smith et al., 2017), FedAMP (Huang et al., 2021) and KT-pFL (Zhang et al., 2021).
DFL (Luo et al., 2022) disentangles the shared features from the client-specific ones to achieve
accurate aggregation on shared knowledge. Similarly, pFedPara (Hyeon-Woo et al., 2022) and
Factorized-FL (Jeong & Hwang, 2022) factorizes the model parameters into the shared and per-
sonalized parts. Another branch ( Collins et al. (2021); Chen & Chao (2022); Xu et al. (2023))
employs the shared/aligned feature extractor to capture global knowledge and personalized classi-
fiers to encode the personalization information. All of them don’t cover the situations where there
exists shortcut in local training datasets.

Shortcut and Invariant learning (IL) Causally invariant predictor is proposed in (Peters et al.,
2016), and then applied into deep learning in IRM (Arjovsky et al., 2019) to mitigate shortcut.
Subsequently, Rosenfeld et al. (2021) prove that IRM and its variants can be still trapped by shortcut
when training environments are insufficient. IFM (Chen et al., 2022b) lowers the requirement and
demands only logarithmic training environments. Some works focus on settling IL problem when
the environment label is unavailable, e.g., EIIL (Creager et al., 2021), HRM (Liu et al., 2021a;b),
EDNIL (Huang et al., 2022) and ZIN (Lin et al., 2022). Another branch (Ahuja et al. (2021); Chen
et al. (2022a); Huh & Baidya (2022)) completes the constraints that IRM misses to improve the
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performance. The iCaRL (Lu et al., 2022) extends IL to non-linear causal representations while
ACTIR (Jiang & Veitch, 2022) extends IL to anti-causal scenarios. All these methods are devised
for centralized scenarios where all training data is accessed and training environments are sufficient.

B COMPLETE THEORETICAL PROOFS

In this section, we will provide the complete proofs of the theorems stated in the main text.

B.1 PROOF OF LEMMA 1

Y

𝑍𝑆

X

EU
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𝑈 Z𝐶

𝑔

(a) Causal FedSDR
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𝑔

(b) Anti-causal FedSDR

Figure 4: The structural causal models (SCMs) considered in this paper.

From the above structural causal models, we derive the following two useful causal properties.

Lemma 1 If the data generating mechanism of each federated client obeys the causal graph in
Figure 4(a) or the anti-causal graph in Figure 4(b), we can have:

• ZS ⊥⊥ U | Y,E which means that the shortcut features ZS are conditionally independent
of the personalization indicator U given Y and E.

• Zg
C ⊥⊥ ZS | Y and ZU

C ⊥⊥ ZS | Y , which means that both the global (Zg
C) and personalized

(ZU
C ) invariant features are conditionally independent of the shortcut features ZS given Y .

Proof. According to the causal Markov condition (Theorem 1.4.1) proved in (Pearl, 2009), we
know that the variable ZS is independent of all its nondescendants, given its parents in the (Markov)
causal graph. Since Y and E are the parent variables of ZS and U is a nondescendant of ZS , the first
causal signature in Lemma 1 is guaranteed. Besides, based on the d-separation criterion in (Pearl,
2009) we can find the variable Y d-separates Zg

C from ZS and d-separates ZU
C from ZS in the SCMs.

Therefore, we get the second causal signature in Lemma 1.

B.2 PROOF OF THEOREM 1

Theorem 1 If the Assumption 1 holds, the function g is linear and the total number of training
environments in the federated learning system satisfies |Etr| > ds, then the following two statements
are equivalent:

• Ψ⋆(X) depends and only depends on the complete shortcut features ZS;

• Ψ⋆ is the optima of the Eq.5 with an appropriately chosen hyper-parameter λ.

Proof. We write the linear feature extractors Ψ that can recover the latent features ([ZC , ZS ])
from the observation X as Ψ(X) = Ψ(g(ZC , ZS)) = AZC + BZS , where A and B are fixed
transformation matrices. This formulation is also adopted in the theoretical analysis in (Rosenfeld
et al., 2021) and (Wang et al., 2022). For the concerned logistic regression, we can get a closed form
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for the distribution P(Y | Ψ, e) as:

P(Y | Ψ, e) := Pe(Y | AZC +BZS)

=
Pe(AZC +BZS | Y )Pe(Y )

Pe(AZC +BZS)

=
Pe(AZC +BZS | Y )Pe(Y )∑

y Pe(Y = y)Pe(AZC +BZS | Y = y)

Since Assumption 1 holds, we have Pe(Y = y) = Pe(Y = y′),∀y ∈ Y . We can derive that

Pe(y | AZC +BZS) =
Pe(AZC +BZS | y)∑

y Pe(AZC +BZS | Y = y)

=
Pe(AZC +BZS | y)

Pe(AZC +BZS | Y = y) + Pe(AZC +BZS | Y = −y)

=
1

1 + Pe(AZC+BZS |Y=−y)
Pe(AZC+BZS |Y=y)

, ∀y ∈ {±1}.

Because we have ZC ⊥⊥ ZS | Y from Theorem 1, we can get the probability density of AZC +BZS

as follows:
AZC +BZS | y ∼ N (y · µz,Σz), (8)

where µz = Aµc +Bµs and Σz = AATσ2
c +BBTσ2

s . Thus, we can get the P(Y | Ψ, e) as:

Pe(y | Ψ) =
1

1 + Pe(AZC+BZS |Y=−y)
Pe(AZC+BZS |Y=y)

=
1

1 + exp(−y · 2ΨTΣ−1
z µz)

, ∀y ∈ {±1},

where Σ−1
z represents the generalized inverse of Σz , i.e., Σ−1

z Σz = I .

According to Lemma F.2. proved in the appendix of (Rosenfeld et al., 2021), the optimal clas-
sifier based on the feature extractor Ψ(X) = AZC + BZS is sufficiently and necessarily given
by 2(AATσ2

c +BBTσ2
s)

−1
(Aµc + Bµs). That is, we have Pω⋆

i
(y | Ψ) = 1

1+exp(−y·2ΨTΣ−1
z µz)

,

∀y ∈ {±1}, if and only if ω⋆
i ∈ argminωi:H→Y

∑N
u=1 ρ

i
uR(ωi(Ψ); ei),∀ei ∈ Etr.

Therefore, we can calculate the KL-divergence between Pω⋆
i
(Y | Ψ, ei) and Pω⋆

j
(Y | Ψ, ej) by

KL
(
Pω⋆

i
(Y | Ψ, ei)

∥∥Pω⋆
j
(Y | Ψ, ej)

)
=

∑
y∈{±1}

Pω⋆
i
(y | Ψ, ei) log

Pω⋆
i
(y | Ψ, ei)

Pω⋆
j
(y | Ψ, ej)

=
∑

y∈{±1}

1

1 + exp(−y · 2ΨTΣ−1
zi µi

z)
log

1 + exp(−y · 2ΨTΣ−1
zj µj

z)

1 + exp(−y · 2ΨTΣ−1
zi µi

z)

=
1

1 + exp(−2ΨTΣ−1
zi µi

z)
log

1 + exp(−2ΨTΣ−1
zj µj

z)

1 + exp(−2ΨTΣ−1
zi µi

z)

+
1

1 + exp(2ΨTΣ−1
zi µi

z)
log

1 + exp(2ΨTΣ−1
zj µj

z)

1 + exp(2ΨTΣ−1
zi µi

z)

=
1

1 + exp(−2ΨTΣ−1
zi µi

z)

{
log

1 + exp(2ΨTΣ−1
zj µj

z)

1 + exp(2ΨTΣ−1
zi µi

z)
+ log

exp(2ΨTΣ−1
zi µi

z)

exp(2ΨTΣ−1
zj µj

z)

}
+

1

1 + exp(2ΨTΣ−1
zi µi

z)
log

1 + exp(2ΨTΣ−1
zj µj

z)

1 + exp(2ΨTΣ−1
zi µi

z)

= log
1 + exp(2ΨTΣ−1

zj µj
z)

1 + exp(2ΨTΣ−1
zi µi

z)
+

2ΨT (Σ−1
zi µi

z − Σ−1
zj µj

z)

1 + exp(−2ΨTΣ−1
zi µi

z)
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Similarly, we can get that

KL
(
Pω⋆

j
(Y | Ψ, ej)

∥∥Pω⋆
i
(Y | Ψ, ei)

)
=

∑
y∈{±1}

Pω⋆
j
(y | Ψ, ej) log

Pω⋆
j
(y | Ψ, ej)

Pω⋆
i
(y | Ψ, ei)

= log
1 + exp(2ΨTΣ−1

zi µi
z)

1 + exp(2ΨTΣ−1
zj µj

z)
+

2ΨT (Σ−1
zj µj

z − Σ−1
zi µi

z)

1 + exp(−2ΨTΣ−1
zj µj

z)

Combining the above results, we can get that

KL
(
Pω⋆

i
(Y | Ψ, ei)

∥∥Pω⋆
j
(Y | Ψ, ej)

)
+KL

(
Pω⋆

j
(Y | Ψ, ej)

∥∥Pω⋆
i
(Y | Ψ, ei)

)
=

{
1

1 + exp(−2ΨTΣ−1
zi µi

z)
− 1

1 + exp(−2ΨTΣ−1
zj µj

z)

}
︸ ︷︷ ︸

T1

·
{
2ΨT (Σ−1

zi µi
z − Σ−1

zj µj
z)
}︸ ︷︷ ︸

T2

≥ 0,∀ei, ej ∈ Eall,∀Ψ ∈ H.
Since the absolute value of term T1 (i.e., |T1|) monotonically increases with term |T2| increasing, the
objective maxΨKL

(
Pω⋆

i
(Y | Ψ, ei)

∥∥Pω⋆
j
(Y | Ψ, ej)

)
+ KL

(
Pω⋆

j
(Y | Ψ, ej)

∥∥Pω⋆
i
(Y | Ψ, ei)

)
is

equivalent to maxΨ
∥∥2ΨT (Σ−1

zi µi
z − Σ−1

zj µj
z)
∥∥2. Therefore, the second term 1

N

∑N
u=1 ℓdis(Ψ;Du)

in Eq.5 can be written as

1

N

N∑
u=1

ℓdis(Ψ;Du) = EΨ

[ ∑
ei∈Etr

∑
ej∈Etr

∥∥2ΨT (Σ−1
zi µi

z − Σ−1
zj µj

z)
∥∥2]

=
∑

ei∈Etr

∑
ej∈Etr

4∥(Aµi
c +Bµi

s)− (Aµj
c +Bµj

s)∥2

(AATσ2
c +BBTσ2

s)
2

· EΨ∥Ψ∥2

=
∑

ei∈Etr

∑
ej∈Etr

4∥B(µi
s − µj

s)∥2

(AATσ2
c +BBTσ2

s)
2
· EΨ∥Ψ∥2

According to the mentioned AZC +BZS | y ∼ N (y · µz,Σz), we can get the density

P(Ψ) =
∑
y∈Y

P(Y = y)P(Ψ | Y = y)

With the Assumption 1 holding, we can get the mean E[Ψ] = 0 and the variance D[Ψ] = AATσ2
c +

BBTσ2
s . Therefore, we have

1

N

N∑
u=1

ℓdis(Ψ;Du) = EΨ

[ ∑
ei∈Etr

∑
ej∈Etr

∥∥2ΨT (Σ−1
zi µi

z − Σ−1
zj µj

z)
∥∥2]

=
∑

ei∈Etr

∑
ej∈Etr

4∥B(µi
s − µj

s)∥2

(AATσ2
c +BBTσ2

s)
2
· {D[Ψ] + (E[Ψ])2}

=
∑

ei∈Etr

∑
ej∈Etr

4∥B(µi
s − µj

s)∥2

AATσ2
c +BBTσ2

s

=
4

AAT

BBT σ2
c + σ2

s

∑
ei∈Etr

∑
ej∈Etr

∥µi
s − µj

s∥2

We can find that maximizing the above objective will make A = 0 and BBT ̸= 0. Moreover, when
|Etr| > ds, maximizing

∑
ei∈Etr

∑
ej∈Etr

∥µi
s − µj

s∥2 will make rank(B) = ds. In the meanwhile,

satisfying A = 0 and rank(B) = ds will in turn maximize the objective 1
N

∑N
u=1 ℓdis(Ψ;Du).

In Eq.5, we utilize a Lagrangian multiplier to solve the constrained optimization and the balancing
weight is λ. Therefore, Theorem 2 gets proved.
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B.3 PROOF OF THEOREM 2

Theorem 2 Suppose Ψ⋆(X) in the Eq.7 depends and only depends on the complete shortcut fea-
tures ZS . If f⋆

θu
(∀u ∈ [N ]) is the optima of the Eq.7 with the hyper-parameter γ chosen appropri-

ately, then the f⋆
θu

is the optimal personalized invariant predictor for the client u, ∀u ∈ [N ].

Proof. We know that minimizing R(ωu(Φu);Du) is the sufficient condition of maximizing
I(Y ; Φu(X)), and I(Φu; Ψ

⋆ | Y ) = 0 is equivalent to Φu ⊥⊥ Ψ⋆ | Y . According to the prop-
erty of Lagrangian multiplier, the objective in Eq.7 is equivalent to the constrained optimization
where the constrain is I(Φu; Ψ

⋆ | Y ) = 0, with the appropriately chosen γ. Combining with the
second causal signature in Theorem 1, Theorem 3 gets proved.

C MORE DETAILS OF EXPERIMENTS

In this section, we will include more detailed setups and discussions on the evaluation part. Code is
available at https://github.com/Tangx-yy/FedSDR.

C.1 NON-IID DATA PARTITION

For CMNIST and CFMNIST datasets, we provide two training environments (petrain = 0.90 and
0.80) as Etrain and every local client only has one training environment which is randomly sam-
pled from the training environment set Etrain. To assess the model performance on different test
distributions, the test environment on each client varies across petest = 0.00, 0.10, ..., 0.90, 1.00.
Considering the heterogeneous data generating process across local clients, the data instances used
for constructing the training/test environments on each client are randomly sampled from only two
digit sub-classes (1 separated and 1 overlapped) labeled 0 and two digit sub-classes (1 separated and
1 overlapped) labeled 1 without replacement. Specifically, we totally simulate eight local clients and
one server in the federated learning system. For example, the data instances on client 1 are randomly
sampled from digit 0, 1, 5, 6; the data instances on client 2 are randomly sampled from digit 1, 2, 6,
7; the data instances on client 3 are randomly sampled from digit 2, 3, 7, 8; and the data instances
on client 8 are randomly sampled from digit 3, 4, 8, 9.

As regard to WaterBird, we distribute 15 (10 separated and 5 overlapped) waterbird species and 51
(34 separated and 17 overlapped) landbird species to each local client. Both the training and test
data instances are constructed using bird photographs randomly sampled from the corresponding
bird species in the bird dataset and background photographs randomly selected from the background
dataset without replacement. Similarly, we totally simulate eight local clients and one server in the
federated learning system.

PACS consists of 7 classes (i.e., dog, elephant, giraffe, guitar, horse, house, and person) distributed
across 4 domains/environments (i.e., Art Painting, Cartoon, Photo and Sketch). We adopt the ”leave-
one-domain-out” strategy to evaluate the out-of-distribution (OOD) generalization performance. For
example, when we evaluate the performance on Art Painting domain, we use the remaining three
domains (i.e., Cartoon, Photo and Sketch) as training environments. Taking personalization into
consideration, we split each training domain into two subsets according to classes (i.e., one subset
consists of dog, elephant and giraffe and another subset consists of guitar, horse, house, and person),
and then distribute these two subsets onto two clients respectively. The training and test datasets on
each client come from different domains but consist of the same classes.

C.2 HYPER-PARAMETERS

The hyper-parameters of the competitors and our algorithm are tuned to make the accuracy on the
validation environment (i.e., peval = 0.10) as high as possible. Specifically, the mainly used hyper-
parameters in the evaluation part are listed as follows: Global communication round: T = 600,
Local iterations: R = 10, Personalized epochs to update the personalized invariant predictors:
K = 10, Local batch size: B = 50, Global learning rate: β = 0.0001, Personalized learning
rate: η = 0.0001, Discrepancy threshold: α = 1.0, Balancing weight: λ = 0.5, Balancing weight:
γ = 1.4, Optimizer: Adam.
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C.3 IMPLEMENTATION

Besides, the experiments are implemented in PyTorch. We simulate a set of clients and a centralized
server on one deep learning workstation (Intel(R) Core(TM) i9-12900K CPU @ 3.20GHz with one
NVIDIA GeForce RTX 3090 GPU).

C.4 ALGORITHMS

Algorithm 1 FedSDR: Federated Learning with Shortcut Discovery and Removal
Input: T,R,K, β, η, α, λ, γ.

1: Initialize the models Ψ0, {ω0
i |i ∈ [|Etr|]}, {f0

θu
|u ∈ [N ]}.

2: for t = 0 to T − 1 do
3: Server sends the global models (Ψt, {ωt

i |i ∈ [|Etr|]}) to the participating local clients.
4: for local device u = 1 to N in parallel do
5: Initialization: Ψt,0

u ← Ψt, {ωt
i,u ← ωt

i |i ∈ [|Eutr|]}.
6: for k = 0 to K − 1 do
7: Update the personalized invariant model: f t,k+1

θu
= f t,k

θu
− η∇ℓuSR(f

t,k
θu

;Du).
8: f t+1,0

θu
← f t,K

θu
.

9: for r = 0 to R− 1 do
10: Update the shortcut extractor: Ψt,r+1

u = Ψt,r
u − β∇ℓuSD(Ψt,r

u ;Du).
11: Update the environment classifiers for K epochs with∇R(ωt,r

i,u(Ψ
t,r
u ); ei).

12: Randomly select a subset (St) of the users to upload the local approximation:
13: Ψt+1

u ← Ψt,R
u and {ωt+1

i,u ← ωt,R
i,u | i = 1, 2, ..., |Eutr|}.

14: Global aggregation: shortcut extractor Ψt+1 = 1
|St|

∑
u∈St Ψt+1

u and environment classi-

fiers ωt+1
i =

∑
u∈St

ρi
u∑

u∈St ρi
u
ωt+1
i,u , i = 1, 2, ..., |Etr|.

15: return the personalized invariant models {fT,0
θu
|u ∈ [N ]}.

In the evaluation part, the data distributions among the local clients only overlap slightly. Therefore,
the personalized invariant models are trained and updated locally and do not participate in the global
aggregation. The corresponding algorithm is shown in Algorithm 1.

Algorithm 2 FedSDR (+FedAvg): Federated Learning with Shortcut Discovery and Removal
Input: T,R,K, β, η, α, λ, γ.

1: Initialize the models Ψ0, f0
θ and {ω0

i |i ∈ [|Etr|]}.
2: for t = 0 to T − 1 do
3: Server sends the global models (Ψt, f t

θ and {ωt
i |i ∈ [|Etr|]}) to the participating local clients.

4: for local device u = 1 to N in parallel do
5: Initialization: Ψt,0

u ← Ψt, f t,0
θu
← f t

θ and {ωt
i,u ← ωt

i |i ∈ |Eutr|}.
6: for r = 0 to R− 1 do
7: Update the personalized invariant model: f t,r+1

θu
= f t,r

θu
− η∇ℓuSR(f

t,r
θu

;Du).
8: Update the shortcut extractor: Ψt,r+1

u = Ψt,r
u − β∇ℓuSD(Ψt,r

u ;Du).
9: Update the environment classifiers for K epochs with∇R(ωt,r

i,u(Ψ
t,r
u ); ei).

10: Randomly select a subset (St) of the users to upload the local approximation:
11: Ψt+1

u ← Ψt,R
u , f t+1

θu
← f t,R

θu
and {ωt+1

i,u ← ωt,R
i,u | i = 1, 2, ..., |Eutr|}.

12: Global aggregation: the shortcut extractor Ψt+1 = 1
|St|

∑
u∈St Ψt+1

u , the environment

classifiers ωt+1
i =

∑
u∈St

ρi
u∑

u∈St ρi
u
ωt+1
i,u , i = 1, 2, ..., |Etr|, and the global invariant model

f t+1
θ = 1

|St|
∑

u∈St f
t+1
θu

.

13: return the global and personalized invariant models fT
θ , {fT,R

θu
|u ∈ [N ]}.

As mentioned in the main text, the proposed shortcut discovery and removal method can easily
cooperate with most of the existing federated and personalized federated learning method to improve
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the out-of-distribution generalization performance via adding shortcut discovery and removal as a
regularization term. We provide an example combination of FedSDR with FedAvg (McMahan et al.,
2017) and pFedMe (T Dinh et al., 2020) in Algorithm 2 and Algorithm 3, respectively. Of course,
the combinations with more other federated and personalized federated learning methods can be
explored in the future.

Algorithm 3 FedSDR (+pFedMe): Federated Learning with Shortcut Discovery and Removal
Input: T,R,K, β, η, α, λ, γ.

1: Initialize the models Ψ0, f0
θ and {ω0

i |i ∈ [|Etr|]}.
2: for t = 0 to T − 1 do
3: Server sends the global models (Ψt, f t

θ and {ωt
i |i ∈ [|Etr|]}) to the participating local clients.

4: for local device u = 1 to N in parallel do
5: Initialization: Ψt,0

u ← Ψt, f t,0
θ ← f t

θ and {ωt
i,u ← ωt

i |i ∈ |Eutr|}.
6: for r = 0 to R− 1 do
7: for k = 0 to K − 1 do
8: Update the personalized invariant model:
9: fr,k+1

θu
= fr,k

θu
− η(∇ℓuSR(f

r,k
θu

;Du) + γ(fr,k
θu
− f t,r

θ )).
10: Update the global invariant model: f t,r+1

θ = f t,r
θ − βγ(f t,r

θ − fr,K
θu

)

11: Update the shortcut extractor: Ψt,r+1
u = Ψt,r

u − β∇ℓuSD(Ψt,r
u ;Du).

12: Update the environment classifiers for K epochs with∇R(ωt,r
i,u(Ψ

t,r
u ); ei).

13: Randomly select a subset (St) of the users to upload the local approximation:
14: Ψt+1

u ← Ψt,R
u , f t+1

θu
← f t,R

θu
and {ωt+1

i,u ← ωt,R
i,u | i = 1, 2, ..., |Eutr|}.

15: Global aggregation: the shortcut extractor Ψt+1 = 1
|St|

∑
u∈St Ψt+1

u , the environment

classifiers ωt+1
i =

∑
u∈St

ρi
u∑

u∈St ρi
u
ωt+1
i,u , i = 1, 2, ..., |Etr|, and the global invariant model

f t+1
θ = 1

|St|
∑

u∈St f
t+1
θu

.

16: return the global and personalized invariant models fT
θ , {fR,K

θu
|u ∈ [N ]}.

C.5 MORE EXPERIMENTAL RESULTS

Experiment on synthetic dataset To verify the provided theoretical guarantees under linear cases,
we generate a synthetic dataset using the same strategy as in (Rosenfeld et al., 2021). Specifically,
it is a logistic regression task and the data instance X is generated by X = g(Zg

C , Z
U
C , ZS), where

the dimensionalities of Zg
C , ZU

C and ZS are dgC = 3, dUC = 3 and dS = 6 respectively. The linear
function g is implemented by one fully-connected layer which has 12 neurons. The latent variables
Zg
C , ZU

C and ZS are subject toN (y ·µc,g, σ
2
c,gI),N (y ·µc,u, σ

2
c,uI) andN (y ·µs, σ

2
sI) respectively.

Target variable y is taken from the distribution P(y = −1) = P(y = 1) = 0.5. Both µc,g and
µc,u are randomly sampled from N (0, 1.5I) while µs is randomly sampled from N (0, 0.75I . To
make the shortcut representation ZS easier to learn, we choose σc,g = σc,u = 2 and σs = 1
as in (Rosenfeld et al., 2021). Each fixed value of µs indicates one specified environment. We
generate 10 training environments and 5000 test environments to evaluate the out-of-distribution
generalization performance. Each (training/test) environment contains 10000 data samples (X, y)
and the training data samples are distributed onto totally 100 clients. The training and test data
samples on each client are generated with an identical value of µc,u. Besides, we choose the client
sampling rate as 0.1. The experimental results on this synthetic dataset are shown in Table 4: In

Table 4: The performance of FedSDR and the competitors on the synthetic dataset.

Algorithm FedAvg DRFA FedSR FedIIR FTFA pFedMe Ditto FedRep FedRoD FedPAC FedSDR

worst-case(%) 3.06 62.41 63.09 67.39 1.32 10.58 7.76 2.57 21.53 8.98 92.49
average(%) 85.56 69.64 70.53 70.75 96.26 95.72 96.50 97.80 97.24 98.77 96.07

particular, when we manually select the causal features [Zg
C , Z

U
C ] as the discriminating features,

we find the optimal personalized classifiers achieve an stable accuracy around 97.5 in different test
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environments. Therefore, the results shown in Table 4 can demonstrate the effectiveness of our
FedSDR on developing the optimal personalized invariant predictors, compared with the state-of-
the-art FL and PFL methods.

Scalability of FedSDR In the evaluation part of the main text, we simulate 8 clients in the ex-
periments on CMNIST, CFMNIST and WaterBird. The experiments on PACS are conducted on 6
clients. To further evaluate the scalability of FedSDR, we firstly partition CMNIST dateset into 8
subsets using the same strategy adopted to simulate 8 clients. And then, we randomly distribute each
subset onto 10 clients. In this way, we totally construct 80 clients for CMNIST dataset. Similarly, we
construct 80, 80, 60 clients for CFMNIST, WaterBird and PACS respectively. When evaluating the
model performance on these four datasets, we adopt a client sampling rate of 0.1. The experimental
results are shown in Table:

Table 5: The overall comparison between the performance of our method FedSDR and the baselines with a
large number of clients.

Dataset CMNIST CFMNIST WaterBird PACS

Test accuracy (%) worst-case average worst-case average worst-case average worst-case average

FedAvg 1.74 46.82 0.77 45.62 48.65 61.57 33.75 40.18
DRFA 14.94 47.24 15.51 47.14 52.34 60.43 36.17 41.75
FedSR 40.29 43.64 41.16 43.27 55.63 64.32 39.03 43.40
FedIIR 41.18 42.93 41.80 43.58 54.31 64.60 40.15 44.37

FTFA 11.51 49.28 7.20 47.57 50.25 63.39 34.65 42.19
pFedMe 17.28 44.13 2.42 47.95 50.01 61.97 41.06 45.84
Ditto 1.98 45.84 1.80 45.71 49.08 63.38 40.18 46.30
FedRep 1.56 46.20 0.83 46.14 48.12 64.52 42.16 47.58
FedRoD 6.53 46.86 1.60 47.43 49.56 65.49 42.68 46.61
FedPAC 0.38 45.64 0.23 44.88 42.61 63.81 44.19 49.71

FedSDR 50.41 51.85 52.81 57.14 59.96 68.09 48.07 51.55

The results show that FedSDR can still outperform the competitors when there are a large number of
clients in the federated learning system, which can validate the scalability of the proposed FedSDR.

More invariant learning methods We consider combinations of the personalized federated learn-
ing schemes with more state-of-the-art invariant learning methods, including IRM-IB (Ahuja et al.,
2021) and MRI (Huh & Baidya, 2022). The experimental results are shown in Table 6. We can find
that our algorithm FedSDR can outperform these combinations on both worst-case and average-case
performances.

Table 6: The comparison between the performance of FedSDR and the centralized invariant learning.

Dataset CMNIST CFMNIST WaterBird

Test case worst-case (%) average (%) worst-case (%) average (%) worst-case (%) average (%)

IRM† 46.38(±0.61) 49.14(±0.89) 47.76(±0.68) 49.41(±81) 60.38(±1.54) 68.63(±1.91)
IRM-IB† 48.15(±0.34) 49.78(±0.72) 49.04(±0.52) 50.54(±66) 60.75(±1.43) 69.82(±1.64)
MRI† 46.81(±0.49) 48.92(±0.84) 48.84(±0.61) 49.33(±93) 61.64(±1.02) 69.47(±1.35)

IRM†-FT 14.32(±0.44) 54.27(±0.74) 11.09(±0.81) 53.48(±0.74) 60.25(±0.78) 69.46(±1.25)
IRM†-L2 45.68(±0.58) 49.04(±0.83) 47.92(±0.42) 49.46(±0.92) 61.25(±0.86) 68.93(±1.46)
IRM-IB†-FT 17.21(±0.23) 54.35(±0.56) 13.47(±0.38) 53.14(±0.52) 60.84(±0.64) 70.31(±1.06)
IRM-IB†-L2 47.79(±0.45) 50.13(±0.67) 49.73(±0.51) 51.65(±0.75) 61.38(±0.86) 69.08(±1.13)
MRI†-FT 15.52(±0.61) 53.98(±0.92) 12.13(±0.79) 54.21(±0.88) 61.14(±0.93) 70.84(±1.64)
MRI†-L2 47.21(±0.73) 52.37(±0.87) 48.73(±0.85) 50.67(±0.87) 62.18(±0.96) 69.16(±1.71)

FedSDR 53.88 (±0.24) 55.59 (±0.65) 56.92 (±0.73) 61.88 (±1.02) 65.25 (±0.97) 73.20 (±1.28)
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Compatibility of FedSDR with typical PFL schemes We implement Algorithm 2 and Algo-
rithm 3 mentioned above on three datasets (i.e., Colored-MNIST, Colored-FMNIST and WaterBird).
The values of the generic hyper- parameters are set same as FedSDR. In particular, we choose
λ = 0.5 and γ = 1.0 ∗ 104 for Colored-MNIST and Colored-FMNIST. As to WaterBird dataset, we
choose λ = 0.5 and γ = 1.4. The experimental results are shown in the following Table 7. Note that
the performances of FedSDR+FedAvg and FedSDR+pFedMe are evaluated with the personalized
invariant models output by Algorithm 2 and Algorithm 3, respectively. The results show that the
model performance can be further improved when we combine the proposed shortcut discovery and
removal method with the prevalent federated learning algorithms.

Table 7: The combinations of our method with other federated learning schemes.

Dataset CMNIST CFMNIST WaterBird

Test case worst-case (%) average (%) worst-case (%) average (%) worst-case (%) average (%)

FedSDR 53.88(±0.24) 55.59(±0.65) 56.92(±0.73) 61.88(±1.02) 65.25(±0.97) 73.20(±1.28)
FedSDR+FedAvg 51.76(±0.28) 56.01(±0.33) 57.14(±0.85) 61.56(±0.92) 66.73(±1.13) 74.27(±1.45)
FedSDR+pFedMe 53.54(±0.19) 55.93(±0.26) 56.69(±0.68) 63.22(±0.76) 67.32(±0.81) 74.38(±1.05)

The effect of hyper-parameters As discussed in the main text, there are two significant hyper-
parameters in the proposed objective 5 and 6, i.e., λ and γ. We will evaluate the effects of these
two hyper-parameters on the performance of our method FedSDR. When we evaluate the effect of
the hyper-parameter λ, we fix γ = 1.0 ∗ 104 for CMNIST and CFMNIST datasets, and γ = 1.4
for WaterBird dataset. When we evaluate the effect of the hyper-parameter γ, we fix λ = 0.5 for
CMNIST and CFMNIST datasets, and λ = 0.5 for WaterBird dataset. The results on CMNIST.
CFMNIST and WaterBird are given in Table 8, Table 9 and Table 10, respectively.

Table 8: The performance of FedSDR on CMNIST dataset with different hyper-parameters λ and γ.

λ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 10.0

worst-case (%) 53.73 53.62 53.18 53.93 53.88 53.51 53.83 53.66 53.79 53.82 52.35
average (%) 55.08 55.37 55.72 55.68 55.59 54.97 55.21 55.83 55.52 55.19 54.20

γ(×104) 0.01 0.10 0.50 0.60 0.80 1.00 1.50 2.00 5.00 10.0 100.0

worst-case (%) 1.21 1.79 43.85 49.73 53.69 53.88 52.87 52.91 51.64 50.72 49.86
average (%) 50.61 50.78 52.21 52.83 53.49 55.59 54.17 54.93 53.31 51.35 50.17

Table 9: The performance of FedSDR on CFMNIST dataset with different hyper-parameters λ and γ.

λ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 10.0

worst-case (%) 56.31 56.17 56.89 56.57 56.92 56.18 56.36 57.15 56.57 55.36 54.62
average (%) 61.62 62.07 61.78 61.57 61.88 61.83 61.75 61.53 61.25 61.03 60.77

γ(×104) 0.01 0.10 0.50 0.60 0.80 1.00 1.50 2.00 5.00 10.0 100.0

worst-case (%) 0.19 0.27 52.68 55.57 56.28 56.92 54.79 53.15 53.05 51.68 49.59
average (%) 50.19 50.73 57.63 60.54 61.72 61.88 61.06 59.53 58.74 55.24 51.38

C.6 COMPLETE EXPERIMENTAL RESULTS

The test accuracy shown in the main text are calculated based on 3 trials with different random
seeds. Due to space limitation, we only give the average value in the evaluation part of the main
text. Here, the complete results on CMNIST, CFMNIST and WaterBird are provided in Table 11
and the detailed results on PACS are shown in Table 12. Besides the detailed results for evaluating
the effect of hyper-parameter λ and γ on WaterBird dataset is given in Table 10.
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Table 10: The performance of FedSDR on WaterBird dataset with different hyper-parameters λ and γ.

λ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 10.0

worst-case (%) 62.51 64.13 63.87 64.91 65.25 64.16 63.24 63.67 62.15 61.68 61.74
average (%) 72.39 71.87 71.56 72.78 73.20 72.15 71.76 72.09 71.14 70.61 70.18

γ 0.10 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.80 2.00 10.0

worst-case (%) 44.16 57.64 60.33 61.58 63.75 65.25 64.52 63.26 63.58 60.95 48.29
average (%) 65.73 70.18 71.78 71.13 72.73 73.20 72.14 70.54 71.19 68.73 64.86

Table 11: The complete results on CMNIST, CFMNIST and WaterBird datasets.

Dataset CMNIST CFMNIST WaterBird

Test case worst-case (%) average (%) worst-case (%) average (%) worst-case (%) average (%)

FedAvg 3.39(±0.29) 51.03(±0.67) 0.16(±0.36) 50.02(±0.42) 54.13(±0.75) 67.95(±1.03)
DRFA 21.15(±0.21) 52.81(±0.45) 19.84(±1.21) 53.88(±1.80) 59.75(±1.41) 68.39(±1.50)
FedSR 46.93(±0.12) 48.62(±0.53) 47.61(±0.39) 48.90(±0.53) 61.75(±0.81) 71.68(±1.17)
FedIIR 47.25(±0.26) 48.39(±0.42) 48.06(±0.50) 49.16(±0.51) 61.24(±0.76) 70.87(±0.94)

FTFA 15.42(±0.28) 54.96(±0.71) 11.35(±0.81) 53.52(±0.65) 54.38(±1.04) 69.68(±1.36)
pFedMe 21.30(±0.10) 48.53(±0.24) 4.22(±0.44) 51.26(±0.51) 55.63(±0.64) 68.24(±0.83)
Ditto 3.02(±0.32) 50.97(±0.59) 0.37(±0.42) 50.12(±0.63) 53.13(±0.53) 68.73(±0.72)
FedRep 2.76(±0.34) 50.83(±0.68) 0.11(±0.37) 50.01(±0.49) 52.88(±0.56) 70.23(±0.92)
FedRoD 9.09(±0.32) 50.84(±0.21) 1.23(±0.15) 51.57(±0.28) 52.36(±0.78) 70.86(±0.83)
FedPAC 1.01(±0.39) 50.05(±0.54) 0.16(±0.11) 50.13(±0.41) 45.08(±0.84) 65.57(±1.12)

FedSDR 53.88 (±0.24) 55.59 (±0.65) 56.92 (±0.73) 61.88 (±1.02) 65.25 (±0.97) 73.20 (±1.28)

Table 12: The detailed results on PACS dataset.

Algorithm Art Painting (%) Cartoon (%) Photo (%) Sketch (%) average (%)

FedAvg 41.71(±0.62) 51.21(±0.16) 44.79(±0.27) 52.92(±0.44) 47.66
DRFA 42.48(±0.48) 52.84(±0.33) 47.12(±0.52) 53.37(±0.64) 48.95
FedSR 46.76(±0.34) 54.15(±0.24) 48.67(±0.43) 55.43(±0.71) 51.25
FedIIR 47.03(±0.40) 54.66(±0.34) 49.51(±0.49) 55.12(±0.85) 51.58

FTFA 40.89(±0.51) 52.56(±0.28) 47.38(±0.76) 54.31(±0.37) 48.79
pFedMe 45.24(±0.43) 54.57(±0.52) 49.19(±0.56) 56.33(±0.76) 51.33
Ditto 44.95(±0.57) 53.48(±0.21) 50.71(±0.65) 55.98(±0.57) 51.28
FedRep 49.27(±0.26) 56.08(±0.35) 51.48(±0.73) 58.15(±0.82) 53.75
FedRoD 48.16(±0.48) 55.13(±0.41) 51.02(±0.81) 57.38(±0.69) 52.92
FedPAC 49.93(±0.31) 55.86(±0.53) 52.35(±0.58) 58.67(±0.58) 54.20

IRM† 46.35(±0.81) 53.71(±0.79) 48.52(±0.86) 54.73(±0.97) 50.83
IRM†-FT 43.18(±0.56) 53.23(±0.45) 48.27(±0.66) 55.48(±0.73) 50.04
IRM†-L2 48.57(±0.36) 54.08(±0.27) 49.35(±0.51) 55.91(±0.42) 51.98

FedSDR 52.14(±0.75) 58.23(±0.84) 55.49(±0.67) 58.84(±0.91) 56.18
FedSDR+FedAvg 53.26(±0.63) 58.91(±0.76) 56.37(±0.52) 59.37(±0.75) 56.98
FedSDR+pFedMe 52.58(±0.52) 58.63(±0.57) 55.85(±0.49) 58.72(±0.60) 56.45
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