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ABSTRACT

Current speech large language models build upon discrete speech representations,
which can be categorized into semantic tokens and acoustic tokens. However,
existing speech tokens are not specifically designed for speech language mod-
eling. To assess the suitability of speech tokens for building speech language
models, we established the first benchmark, SLMTokBench. Our results indicate
that neither semantic nor acoustic tokens are ideal for this purpose. Therefore, we
propose SpeechTokenizer, a unified speech tokenizer for speech large language
models. SpeechTokenizer adopts the Encoder-Decoder architecture with residual
vector quantization (RVQ). Unifying semantic and acoustic tokens, SpeechTok-
enizer disentangles different aspects of speech information hierarchically across
different RVQ layers. Furthermore, We construct a Unified Speech Language
Model (USLM) leveraging SpeechTokenizer. Experiments show that SpeechTok-
enizer performs comparably to EnCodec in speech reconstruction and demonstrates
strong performance on the SLMTokBench benchmark. Also, USLM outperforms
VALL-E in zero-shot Text-to-Speech tasks. Code and models are available at
https://github.com/ZhangXInFD/SpeechTokenizer/.

1 INTRODUCTION

Large language models (OpenAI, 2023; Touvron et al., 2023) have demonstrated remarkable per-
formance on various natural language processing tasks. This has inspired numerous works to build
speech language models (Borsos et al., 2022), which have achieved significant breakthroughs across
various speech processing tasks (Wang et al., 2023; Zhang et al., 2023; Rubenstein et al., 2023;
Dong et al., 2023). A key commonality among these works is the utilization of discrete speech
representations. Current discrete speech representations can be categorized into two types: semantic
tokens and acoustic tokens (Borsos et al., 2022). Semantic tokens are typically from self-supervised
pre-trained models with masked language modeling as training objective (Hsu et al., 2021; Baevski
et al., 2020; Chung et al., 2021). Derived through k-means clustering on representations from a
specific intermediate layer, semantic tokens are depicted as sequences with one-dimensional structure.
Acoustic tokens can be extracted from neural audio codecs with reconstruction as training objec-
tive (Zeghidour et al., 2021; Défossez et al., 2022). Utilizing residual vector quantization (RVQ) with
hierarchical quantizers for discretization, acoustic tokens are represented as matrices consisting of
two dimensions: timesteps and quantizers.

Building upon two speech tokens, there exist three modeling approaches for speech language models,
as listed in Table 1: i) Semantic language models are constructed using semantic tokens and employ
an external unit vocoder for speech synthesis. (Lakhotia et al., 2021; Zhang et al., 2023; Hassid
et al., 2023). While capturing semantically accurate content, their speech generation results in poor
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Figure 1: Left: Illustration of information composition of different discrete speech representations.
Right: Illustration of unified speech language models. AR refers to autoregressive and NAR refers to
non-autoregressive. Speech tokens are represented as colored circles and different colors represent
different information.

Accurate Content High-quality Speech Single Tokenzier

Semantic LM
√

×
√

Acoustic LM ×
√ √

Hierarchical LM
√ √

×
USLM (ours)

√ √ √

Table 1: Comparision between different speech language models. Semantic LM refers to semantic
language models. Acoustic LM refers to acoustic language models. Hierarchical LM refers to
hierarchical speech language models. USLM refers to our unified speech language model.

quality and a loss of acoustic details. ii) Acoustic language models are built on acoustic tokens.
Taking VALL-E (Wang et al., 2023) as an example, despite achieving impressive zero-shot text-to-
speech (TTS) capabilities, it still suffers from problems like inaccurate content, due to the complex
information within acoustic tokens. iii) Hierarchical speech language models comprise semantic
token language models and acoustic token language models, which capture content information and
acoustic details respectively (Borsos et al., 2022; Rubenstein et al., 2023; Dong et al., 2023). This
structure shows promising results in both content and speech quality, but the multi-stage modeling
approach is more complex, leading to several drawbacks such as error accumulation and slower
processing speed. Additionally, there is significant information redundancy between semantic tokens
and acoustic tokens, which introduces unnecessary modeling complexities. An ideal speech language
model should not only accurately model content, but also generating diverse, high-quality speech,
while maintaining an architecture of elegant simplicity. Correspondingly, ideal speech tokens should
meet the following two key characteristics: i) Strong alignment with text; ii) Effective preservation of
speech information.

However, existing speech tokens are not explicitly designed for speech language modeling, and there
has been no exploration into their suitability for building speech language models. To address this
gap, we build Speech Language Model Token Benchmark, to assess the suitability of speech tokens
for constructing speech language models. Our evaluation reveals that semantic tokens exhibit a
high alignment with text while losing some information in speech, such as timbre. Acoustic tokens
excel in preserving speech information effectively but do not demonstrate a strong alignment with
text. With these observations, we aim to build a specialized speech tokens designed for speech
language models by unifying semantic and acoustic tokens. Specifically, we can conduct information
disentanglement in the RVQ structure of acoustic tokens, enabling the first RVQ quantizer to generate
tokens containing content information, similar to semantic tokens, while the subsequent quantizers
complement the remaining paralinguistic information, as illustrated in Figure 1.

With the above motivation, we propose SpeechTokenizer, a unified speech tokenizer for speech large
language models. SpeechTokenizer adopts the Encoder-Decoder architecture with residual vector
quantization. Unifying semantic and acoustic tokens, SpeechTokenizer disentangles different aspects
of speech information hierarchically across different RVQ layers. By employing a semantic teacher to
guide the first RVQ quantizer, the first layer tokens can effectively capture content information. With
residual structure, the subsequent quantizers complement the remaining paralinguistic information.
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Building upon SpeechTokenizer, we build a Unified Speech Language Model consisting of autore-
gressive and non-autoregressive models. Experimental results show that SpeechTokenizer performs
comparably to EnCodec (Défossez et al., 2022) in speech reconstruction and demonstrates strong
performance on the SLMTokBench benchmark. The USLM notably outperforms VALL-E (Wang
et al., 2023) in zero-shot Text-to-Speech (TTS) tasks.

Our contributions include the following:

• We propose SpeechTokenizer, which is specially designed for speech large language models
and unify the semantic and acoustic tokens through disentangling different aspects of speech
information hierarchically.

• We establish SLMTokBench, the first benckmark to assess the suitability of speech tokens for
constructing speech language models.

• We construct a unified speech language model based on SpeechTokenizer, which outperforms
VALL-E on zero-shot TTS task.

2 SLMTOKBENCH: SPEECH LANGUAGE MODEL TOKEN BENCHMARK

To build powerful speech language models, discrete speech representations should possess the fol-
lowing two key characteristics: i) Strong alignment with text; ii) Effective preservation of speech
information. Building on this premise, we establish speech Language Model Token Benchmark (SLM-
TokBench) to assess the suitability of speech tokens for constructing speech language models.

2.1 TEXT ALIGNMENT EVALUATION

We evaluate the degree of text alignment by estimating the mutual information between speech tokens
and text. For notation, X denotes discrete speech representations; Y denotes text; I(X;Y) denotes
the mutual information; test dataset is denoted as D = {(xi, yi)}Ni=1 and θ denotes the downstream
model. Through the derivation in Appendix A, we can estimate I(X;Y) as:

Î(X;Y) =
1

N2

N∑
i=1

N∑
j=1

[log qθ(yi|xi)− log qθ(yj |xi)]

where qθ(Y|X) is the variational distribution and can be parameterized by the downstream model θ.

The downstream model is a vanilla 2-layer 1024-unit BLSTM optimized by CTC loss on characters
and it takes speech tokens as inputs. Specifically, for each discrete representation, we first establish
an embedding matrix, which can be either randomly initialized or derived from the k-means centroid
matrix or vector quantization codebooks obtained during the discretization process. We use the
embedding matrix to embed the discrete representations and obtain continuous representations, which
are then fed into the downstream models. We train the downstream model on LibriSpeech train-clean-
100 subset and use dev-clean subset for estimating mutual information. We also calculate the word
error rate (WER) on the test set. For downstream model training, we configure the training setup with
a batch size of 32, a learning rate of 1e-4, and a total of 200k global steps.

2.2 INFORMATION PRESERVATION EVALUATION

To evaluate the preservation of speech information in discrete speech representations, we convert
speech tokens back to speech and evaluate resynthesized speech by automatic metrics on content and
timbre. We train a unit-HiFIGAN (Polyak et al., 2021) on LibriSpeech dataset to convert HuBERT
units to waveform. Notably, to avoid interference from additional information, we don’t supply
any speaker information during training. For Encodec tokens, we used the Encodec decoder to
directly produce the waveform. Content preservation is evaluated by computing the WER through
transcribing the resynthesized speech using the Whisper en-medium model (Radford et al., 2023).
Timbre preservation is evaluated by utilizing WavLM-TDNN (Chen et al., 2022) to calculate speaker
similarity between the synthesized and groundtruth speech. We randomly sample 300 speech samples
from LibriSpeech test set for evaluation.
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Figure 2: Illustration of SpeechTokenizer framework.

2.3 COMPARING SEMANTIC & ACOUSTIC TOKENS

We use HuBERT L9 units to represent semantic tokens and EnCodec codes to represent acoustic
tokens. As shown in Table 3, semantic tokens achieve high mutual information with text but their
resynthesized speech has low speaker similarity. Acoustic tokens achieve low WER and high speaker
similarity for resynthesized speech but have low mutual information with text.

3 SPEECHTOKENIZER

3.1 MODEL STRUCTURE

Our model is built on the framework of RVQ-GANs, following the same pattern as Sound-
Stream(Zeghidour et al., 2021) and EnCodec(Défossez et al., 2022). As depicted in Figure2, our
model uses the convolutional-based encoder-decoder network from EnCodec, which performs tem-
poral downscaling with a chosen striding factor. Notably, we have substituted the two-layer LSTM,
originally following the convolution blocks in the EnCodec encoder, with a two-layer BiLSTM
to augment the semantic modeling ability. We conduct ablation studies of model structure in Ap-
pendix B. We quantize the encoder outputs using Residual Vector Quantization (RVQ), a method that
can operate quantizes residuals following an initial quantization steps with distinct codebook. Further
details of model structure can be found in Appendix D. During training, a semantic teacher provides
semantic representation to guide the residual quantization process.

3.2 SEMANTIC DISTILLATION

To achieve a hierarchical modeling of diverse information across different RVQ layers, we employ
semantic guidance for the first quantizer, enabling it to capture content information. Leveraging
a residual structure enables the subsequent quantizers to complement the remaining paralinguistic
information.

We employ HuBERT (Hsu et al., 2021) as our semantic teacher in this study, as HuBERT is demon-
strated to encompass substantial content information (Mohamed et al., 2022). We introduce two types
of distillation: continuous representation distillation and pseudo-label prediction.

For continuous representation distillation, we employ the 9th layer HuBERT representation or the
average representation across all HuBERT layers as semantic teachers. The training objective is to
maximize the cosine similarity at the dimension level across all timesteps between the outputs of
RVQ first layer and semantic teacher representations. Formally, the continuous distillation loss is
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defined as:

Ldistill = − 1

D

D∑
d=1

log σ(cos(AQ
(:,d)
1 ,S(:,d))),

where Q1 and S denote the quantized output of RVQ first layer and semantic teacher representation
respectively. A denotes the projection matrix and D is the dimension of semantic teacher representa-
tion. The superscript (:, d) signifies a vector comprising values from all timesteps at dimension d.
cos(·) represents cosine similarity and σ(·) denotes sigmoid activation. This continuous distillation
loss function deviates from the commonly employed approach, which calculates the loss based on
the representations output by the student and teacher models at the same timestep. A comparative
analysis of these two methodologies is provided in Appendix C.

For pseudo-label prediction, we adopt HuBERT units as the target label. The training objective is
constructed as:

Ldistll = − 1

T

T∑
t=1

ut log(Softmax(Aqt
1)),

where qt
1 and ut respectively denote the quantized output of the first VQ layer and the HuBERT unit

at timestep t. T denotes the number of time steps and A is the projection matrix.

3.3 TRAINING OBJECTIVE

Our training approach includes both a reconstruction task and a semantic distillation task. In the
reconstruction task, we employ a GAN objective, optimizing a combination of a reconstruction term,
a discriminative loss term, and RVQ commitment loss. In the semantic distillation task, the training
objective involves a semantic distillation loss term. In the following, x represents an speech signal
and x̂ denotes the reconstructed signal by the network.

Reconstruction Loss The reconstruction loss comprises a time and a frequency domain loss. For
time domain, we minimize the L1 distance between x and x̂, i.e. Lt = ∥x − x̂∥1. For frequency
domain, we linearly combine the L1 and L2 losses over the mel-spectrogram using several time scales.
Formally, Lf =

∑
i∈e∥Si(x)−Si(x̂)∥1+∥Si(x)−Si(x̂)∥2, where Si is a 64-bins mel-spectrogram

using a normalized STFT with window size of 2i and hop length of 2i/4, e = 5, · · · , 11 is the set of
scales.

Discriminative Loss We use the same dicriminators as HiFi-Codec Yang et al. (2023) that consist of
three discriminators: A multi-scale STFT-based (MS-STFT) discriminator; a multi-period discrimina-
tor (MPD) and a multi-scale discriminator (MSD). Further details of discriminators can be found in
Appendix D. The adversarial loss is used to promote perceptual quality and it is defined as a hinge
loss over the logits of the discriminator, averaged over multiple discriminators and over time. Let
K denote the number of discriminators, the adversarial loss for the generator LD is constructed as
follows, Lg = 1

K

∑K
k=1 max(1−Dk(x̂), 0). For the discriminators Lg is defined as:

LD =
1

K

K∑
k=1

max(1−Dk(x), 0) +max(1 +Dk(x̂), 0),

Additionally, a feature matching loss for the generator is computed as follow:

Lfeat =
1

KL

K∑
k=1

L∑
l=1

∥Dl
k(x)−Dl

k(x̂)∥1
mean(∥Dl

k(x)∥1)
,

where the mean is computed over all dimensions and L is the number of layers in discriminators.

RVQ Commitment Loss We add a commitment loss Lw between the pre-quantized value, and
its quantized value, without gradient computed for the quantized value. RVQ commitment loss is
defined as: Lw =

∑Nq

i=1∥zi − zqi∥22., where zi and zqi denote current residual and nearest entry in
the corresponding codebook respectively.

Generally, the generator is trained to optimize the following loss:
LG = λtLt + λfLf + λgLg + λfeatLfeat + λwLw + λdistillLdistill,

where λt, λf , λg, λfeat, λw and λdistill are hyper-parameters used to balance each loss term.
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3.4 UNIFIED SPEECH LANGUAGE MODEL

As shown in Figure 1, we can build a unified speech language model upon SpeechTokenizer. Con-
sisting of autoregressive and non-autoregressive models, it can hierarchically model information in
speech. The autoregressive (AR) model captures the content information by modeling tokens from the
first RVQ quantizer. The non-autoregressive (NAR) model complements paralinguistic information
for the AR model by generating tokens from the subsequent quantizers conditioned on the first-layer
tokens. We validate the effectiveness of unified speech language model on zero-shot TTS task.

The AR model is built upon the first-layer tokens c1. Utilizing a transformer decoder-only architecture
θAR, we approach this conversion as a casual language modeling task with the phoneme sequence u
serving as the prompt for the AR model. The training objective can be formulated as

LAR = − log

T∏
t=0

p(ct1|c<t
1 ,u; θAR).

The NAR model produces tokens c2:8 from the subsequent quantizers. Its architecture resembles that
of the AR model, comprising eight distinct acoustic embedding layers and output prediction layers.
To control the characteristics of the speaker’s voice, n acoustic prompt Ĉ is employed for timbre
guidance. The model is conditioned on phoneme sequence u, acoustic prompts Ĉ and tokens from
previous quantizers, leading to the formulation of the training objective as follows

LNAR = − log

8∏
i=2

p(ci|c<i, Ĉ,u; θNAR).

During inference, we convert text input to phoneme sequence and speech prompt to speech tokens.
They are concatenated to form the prompts for AR and NAR models. Conditioned on that, the AR
model generates first-level tokens, while the NAR model iteratively produces tokens of subsequent
levels. The tokens generated by the AR and NAR models are then concatenated to construct the speech
token matrix. Finally, we use the SpeechTokenizer decoder to generate the waveform conditioned on
the complete token matrix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets For SpeechTokenizer training, we use LibriSpeech (Panayotov et al., 2015) dataset. We
randomly crop a 3-second segment from the speech samples at each training iteration. For zero-shot
TTS, we train AR and NAR models on the English subset of Multilingual LibriSpeech (Pratap
et al., 2020) dataset, which contains 44K hours of transcribed speech data derived from LibriVox
audiobooks. We select speech samples with durations ranging from 3 to 14 seconds for training data.
The sampling rate is 16KHz for all speech data.

Model For SpeechTokenizer, we introduce the details about model structure in section 3.1 and Ap-
pendix D. For zero-shot TTS experiments, AR model and NAR model are both 12-layer Transformer
decoders with 16 attention heads, an attention dimension of 1024 and the FFN dimension of 4096.

Training For SpeechTokenizer, the model are trained on 2 A800 GPUS for 20 epochs with maximum
learning rate of 4e-4 and batch size of 20 per GPU. For Unified Speech Language Model, both AR
and NAR models are trained on 8 A800 GPUS for 500k steps with maximum learning rate of 5e-4.
The AR model is trained with batch size of 7500 tokens per GPU, and the NAR model is trained with
batch size of 5000 tokens per GPU.

Baselines We adopt EnCodec_24khz_6kpbs (hereinafter referred to as EnCodec) (Défossez et al.,
2022) as the baseline for SpeechTokenizer and VALL-E (Wang et al., 2023) as the baseline system
for zero-shot TTS. We train VALL-E under the same dataset and experimental setups as EnCodec.

6



Published as a conference paper at ICLR 2024

Objective Subjective
Tokenizer WER↓ VISQOL↑ MUSHRA↑
Groundtruth 4.58 - 91.46

EnCodec 5.11 4.37 79.86
SpeechTokenizer 5.04 4.30 90.55

Table 2: Results of speech reconstruction

4.2 SPEECH RECONSTRUCTION EVALUATION

We randomly sample 300 speech samples from LibriSpeech test set for speech reconstruction
evaluation. We take into account both subjective and objective evaluation metrics.

Objective Metrics We use ViSQOL metrics (Hines et al., 2012) to measure the speech quality.
Additionally, we evaluate content accuracy through Word Error Rate (WER) by transcribing the
speech utilizing the Whisper en-medium model (Radford et al., 2023).

Subjective Metrics We adopt a crowd-sourced methodology inpspired by MUSHRA protocol (Series,
2014), with a hidden reference but no lowerpass-filtered anchor, for subjective evaluation. We instruct
evaluators to rate the perceptual quality of the given samples on a scale of 1 to 100.

4.3 UNIFIED SPEECH LANGUAGE MODEL EVALUATION

We conduct zero-shot TTS evaluation on the VCTK dataset, which comprises 108 speakers. There
is no speaker overlap between the training data and VCTK dataset. For each speaker, we randomly
selected a 3s utterance as the prompts while the textual content of a different utterance is used as the
input text.

Objective Metrics We evaluate the TTS systems with speaker similarity and WER. We evaluate the
speaker similarity between the generated speech and the prompt speech. We calculate the similarity
with the following steps: 1) we utilize WavLM-TDNN to calculate the speaker embedding for the
generated speech and the prompt speech. 2) we calculate the cosine similarity between the normalized
embeddings. We employ Whisper medium model to transcribe the generated speech and calculate
the WER.

Subjective Metrics We determine the Mean Opinion Score (MOS) and Similarity Mean Opinion
Score (SMOS) through human evaluations. MOS reflects the naturalness of speech, while SMOS
assesses the degree of similarity to the original speaker’s voice. We engaged 12 and 6 native speakers
as contributors for MOS and SMOS evaluations, respectively. MOS and SMOS both span from 1 to
5, with higher values signifying greater speech quality and voice similarity respectively.

4.4 MAIN RESULTS

Speech Reconstruction Table 2 summarizes the results of speech reconstruction experiments. The
SpeechTokenizer achienves lower WER than Encodec, demonstrating its superior ability to preserve
content. Additionally, SpeechTokenizer attains a comparable VISQOL score but a higher MUSHRA
score than EnCodec, which indicates its stronger capability in generating high-quality speech.

Performance on SLMTokBench Table 3 displays the performance of SpeechTokenizer on SLM-
TokBench. Compared with EnCodec-RVQ-1, SpeechTokenizer-RVQ-1 achieves higher mutual
information between text and lower WER of downstream model. This suggests that SpeechTokenizer
exhibits a stronger alignment with textual content. Meanwhile, the of resynthesized speech of Speech-
Tokenizer RVQ-1 tokens achieves lower WER and speaker similarity, indicating its capability to retain
more content-related information while disregarding timbre characteristics, similar to semantic tokens.
The resynthesized speech of SpeechTokenizer RVQ-1:8 tokens demonstrates low WER and high
speaker similarity, illustrating SpeechTokenizer’s competence in preserving comprehensive speech
information, similar to acoustic tokens. Furthermore, the speaker similarity of resynthesized speech
of SpeechTokenizer RVQ-1 tokens is notably low, whereas that of SpeechTokenizer RVQ-1:8 tokens
is considerably high. This observation implies that the tokens from subsequent layers compensate for
the timbre information that is discarded by the first layer tokens.
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Text Alignment Information Preservation
Tokenizer Teacher MI↑ WER† ↓ WER∗ ↓ SIM↑
Groundtruth - - 4.58 1.0
HuBERT KM500 - 31.2 9.88 16.26 0.77
EnCodec RVQ-1 - 16.5 61.52 38.34 0.92
EnCodec RVQ-1:8 - 23.6 30.91 5.11 0.98

Ablations
SpeechTokenizer RVQ-1 HuBERT avg 30.9 15.58 9.57 0.74
SpeechTokenizer RVQ-1:8 HuBERT avg 29.7 16.03 5.04 0.97
SpeechTokenizer RVQ-1 HuBERT L9 32.9 12.68 14.17 0.73
SpeechTokenizer RVQ-1:8 HuBERT L9 31.6 13.12 5.31 0.97
SpeechTokenizer RVQ-1 HuBERT units 24.2 34.13 20.02 0.72
SpeechTokenizer RVQ-1:8 HuBERT units 25.1 30.71 5.84 0.95

Table 3: Results on SLMTokBench. MI and WER† refer to mutual information and word error
rate of the downstream model. WER∗ and SIM refer to word error rate and speaker similarity of
resynthesized speech respectively. RVQ-n denotes the tokens of the nth RVQ layer. RVQ-n:m
denotes the tokens from the nth layer to the mth layer.

Objective Subjective
Model Tokenizer WER↓ SIM↑ MOS↑ SMOS↑
Groundtruth 1.9 0.93 4.5 3.96
VALL-E EnCodec 7.9 0.75 3.08 3.31
USLM SpeechTokenizer 6.5 0.84 3.63 3.45

Table 4: Results of zero-shot TTS

Zero-shot TTS As shown in Table 4, our USLM demonstrates lower WER than VALL-E. This
result highlights that SpeechTokenizer can contribute to a more precise modeling of content informa-
tion. Additionally, the USLM demonstrates superior speaker similarity, implying that a decoupled
information structure is more conducive to modeling speaker-related information.

5 ANALYSIS

5.1 CHOICES OF SEMANTIC TEACHERS

As shown in Table 3, as semantic teachers, HuBERT L9 representations perform better than HuBERT
units in both Text Alignment and Information Preservation, regardless of whether it’s RVQ-1 or
RVQ-1:8. The reason may be that discrete HuBERT units lose some content information compared
to the continuous representations, thereby providing weaker semantic guidance to SpeechTokenizer.

When comparing HuBERT L9 representations with HuBERT average representations, we find that in
terms of Text Alignment, the mutual information is higher when HuBERT L9 representations serve
as the teacher. This is because HuBERT average representations contain some timbre information,
while HuBERT L9 offers purer content information. On the other hand, HuBERT average shows
better performance in Information Preservation, reflected in a lower WER. We speculate that this
is due to a certain level of task conflict between semantic distillation and reconstruction, where the
former aims to retain only content information while the later aims to preserve various aspects of
speech. The presence of some timbre information in HuBERT average representations could to some
extent alleviate this task conflict.

5.2 EFFECTIVENESS OF INFORMATION DISENTANGLEMENT

To demonstrate that different speech information can be hierarchically modeled in SpeechTokenizer,
we conduct one-shot voice conversion (VC) experiment. This experiment aims to convert speech
from any source speaker to an arbitrary target speaker using only a few seconds of reference speech
from the target speaker. To use SpeechTokenizer for one-shot VC, the first step is to transform
the source speech and reference speech into token matrices. By concatenating the RVQ-1 tokens
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Source Reference WER↓ SIM↑
Groundtruth 0.4 0.93

RVQ-1 RVQ-2 2.6 0.72
RVQ-1 RVQ-2:4 11.7 0.80
RVQ-1 RVQ-2:8 35.4 0.82

Table 5: Results of one-shot voice conversion. Source and Reference refers to source token matrix
and reference token matrix respectively.

(a) RVQ-1 (b) RVQ-2:8

Figure 3: Visualization of quantized output of different RVQ layers of SpeechTokenizer.The first layer
is denoted as RVQ-1, while the sum of the second layer to the eighth layer is denoted as RVQ-2:8.

of source token matrix with RVQ-2:8 tokens of the reference token matrix, and then passing this
combined token matrix to the decoder, we can achieve voice conversion. The lengths of the reference
and source tokens may not align perfectly. To address this, we use truncation or circular padding
to ensure they share the same temporal length, thereby facilitating the concatenation process. We
conduct experiments on VCTK dataset. We randomly selected one speech sample from a speaker to
serve as the source speech. From the remaining 107 speakers, we individually selected one speech
sample of different content to act as the reference speech. We employed two metrics for evaluation:
WER and speaker similarity.

Table 5 reports the results of one-shot VC experiments. From the table, we can see that as the
number of layers for reference tokens increases, speaker similarity also gradually increases. This
suggests that more information from the reference speaker is being transferred over, proving that
speaker information is embedded in tokens from the second to the last layers. When the reference
tokens are selected from the second to the fourth layers, we achieve low WER and high speaker
similarity, resulting in a satisfactory one-shot VC performance. This indicates that the information
disentanglement is successful.

We also visualize quantized outputs from different layers in Figure 3. Specifically, We randomly
select five speakers from the VCTK dataset and pick 10 random speech samples per speaker. We
extract quantized output of different RVQ layers of SpeechTokenizer. The first layer output is denoted
as RVQ-1 representations, while the sum of the outputs from the second layer to the eighth layer is
denoted as RVQ-2:8 representations. By performing mean pooling along the temporal dimension,
each representation is converted into a single vector. These vectors are then visualized in a 2D space
using t-SNE, with speech samples from the same speaker represented in the same color. From the
plot, it can be observed that the RVQ-1 representations for different speakers are scattered randomly
without discernible pattern. In contrast, the RVQ-2:8 representations for the same speaker tend to
cluster together, while being distinct from those of other speakers. This suggests that speaker-specific
information is contained from the second layer up to the eighth layer.

6 RELATED WORK

Oure related work is put in Appendix E.
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7 CONCLUSION

In this study, we present SLMTokBench, which assess the effects of various speech token kinds.
Meanwhile, we propose SpeechTokenizer, to unify the discretization of both types of speech tokens
to overcome the issue of employing several models to extract semantic and acoustic discrete tokens
separately. Furthermore, We developed a unified speech language model (USLM) based on Speech-
Tokenizer, with better results regarding the generated speech’s content accuracy and quality. The
study of a unified speech tokenizer is an essential part of the further development of speech language
model in terms of efficiency and quality.
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Tudor, A., Velimirović, M., Vincent, D., Yu, J., Wang, Y., Zayats, V., Zeghidour, N., Zhang, Y.,
Zhang, Z., Zilka, L., and Frank, C. Audiopalm: A large language model that can speak and listen,
2023.

Salimans, T. and Kingma, D. P. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

11

https://doi.org/10.1109%2Fjstsp.2022.3207050
https://doi.org/10.1109%2Fjstsp.2022.3207050
https://doi.org/10.21437%2Finterspeech.2020-2826


Published as a conference paper at ICLR 2024

Series, B. Method for the subjective assessment of intermediate quality level of audio systems.
International Telecommunication Union Radiocommunication Assembly, 2014.

Shi, Y., Bu, H., Xu, X., Zhang, S., and Li, M. Aishell-3: A multi-speaker mandarin tts corpus and the
baselines, 2021.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,
N., Hambro, E., Azhar, F., et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

Wang, C., Chen, S., Wu, Y., Zhang, Z., Zhou, L., Liu, S., Chen, Z., Liu, Y., Wang, H., Li, J., He, L.,
Zhao, S., and Wei, F. Neural codec language models are zero-shot text to speech synthesizers,
2023.

Wu, D.-Y. and Lee, H.-y. One-shot voice conversion by vector quantization. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
7734–7738. IEEE, 2020.

Yang, D., Liu, S., Huang, R., Tian, J., Weng, C., and Zou, Y. Hifi-codec: Group-residual vector
quantization for high fidelity audio codec, 2023.

Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., and Tagliasacchi, M. Soundstream: An end-to-end
neural audio codec, 2021.

Zhang, D., Li, S., Zhang, X., Zhan, J., Wang, P., Zhou, Y., and Qiu, X. Speechgpt: Empowering large
language models with intrinsic cross-modal conversational abilities, 2023.

12



Published as a conference paper at ICLR 2024

A MUTUAL INFORMATION ESTIMATION

For notation, X denotes discrete speech representations; Y denotes text; I(X;Y ) denotes the
mutual information; test dataset is denoted as D = {(xi, yi)}Ni=1 and θ denotes the downstream
model. A measure of mutual information between variable X and Y can be formulated as:

I(X;Y ) =

∫
X

∫
Y

log
P (X,Y )

P (X)P (Y )

where P (X) and P (Y ) are the marginal distributions of X and Y respectively, and P (X,Y ) denotes
the joint distribution of X and Y.

The variational contrastive log-ratio upper bound (vCLUB) (Cheng et al., 2020) of mutual information
is defined by:

I(X;Y ) = Ep(X,Y )[log qθ(Y |X)]− Ep(X)p(Y )[log qθ(Y |X)]

where qθ(Y |X) is the variational distribution to approximate the ground-truth probability P (Y |X)
and can be parameterized by the downstream model θ.

With test dataset D, I(X;Y ) has an unbiased estimation as:

Î(X;Y ) =
1

N2

N∑
i=1

N∑
j=1

[log qθ(yi|xi)− log qθ(yj |xi)]
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B MODEL STRUCTURE ABLATIONS

We conducted an ablation study on whether to use LSTM or BiLSTM. In the table 6, it can be
seen that the performance of BiLSTM on text alignment is better than that of LSTM, indicating that
BiLSTM is better at capturing semantic information.

Text Alignment Information Preservation
Model Structure MI↑ WER† ↓ WER∗ ↓ SIM↑
CNN+LSTM RVQ-1 27.60 20.71 9.06 0.74

RVQ-1:8 28.61 20.38 5.44 0.97
CNN+BiLSTM RVQ-1 30.9 15.58 9.57 0.74

RVQ-1:8 29.7 16.03 5.04 0.97

Table 6: Results of BiLSTM ablation experiment on SLMTokBench. We employ the average
representation across all HuBERT layers as semantic teachers in this experiment.
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C CONTINUOUS DISTILLATION LOSS ANALYSIS

In extant literature, the commonly employed loss functions for continuous sequence distillation are
typically computed along the temporal axis, with the objective of minimizing the difference between
the student and teacher model outputs at each timestep. For instance, the loss function proposed in
(Chang et al., 2022) aims to maximize the cosine similarity between the student and teacher model
representations at the same timestep while minimizing their L1 distance, thereby facilitating the
transfer of knowledge from the teacher to the student model. To adapt this formula for our specific
task, we can modify the the loss function as follows:

Ldistll = Ll1 + λLcos

=

T∑
t=1

[
1

D
∥st −Aqt

1∥1−λ log σ(cos (st,Aqt
1))],

where qt
1 and st respectively denote the quantized output of RVQ first layer and the D dimensional

semantic teacher representation at timestep t. cos(·) is cosine similarity. T denotes the number
of timesteps and A is the projection matrix. σ(·) denotes sigmoid activation. λ > 0 controls the
contribution of the cosine layers. We refer to this loss function as "T-axis" to distinguish it from
the "D-axis" loss function that we propose in Section 3.2. The latter term is used to denote the loss
function introduced in the aforementioned section. These designations are employed to differentiate
between these two types of loss functions in this paper.

We investigated the impact of two distinct continuous distillation loss functions on the performance of
SpeechTokenizer on SLMTokBench. The results of this experiment are summarized in Table 7. When
compared to the performance of EnCodec on SLMTokBench, as presented in Table 3, employing the
"T-axis" continuous distillation loss function significantly enhances SpeechTokenizer’s capability in
text alignment. However, this improvement is somewhat inferior to that achieved by SpeechTokenizer
utilizing the "D-axis" loss function. In terms of Information Preservation, SpeechTokenizer with the
"D-axis" loss function also outperforms its "T-axis" counterpart. The experimental results demonstrate
that the "D-axis" continuous distillation loss function yields superior distillation effects compared to
the traditional "T-axis" loss function. We attribute this improvement to the "D-axis" loss function’s
strategy of calculating cosine similarity across each dimension, ensuring that the student model
closely aligns with the teacher model on each feature dimension. This approach provides a richer
supervision signal, promoting the learning process of the student model by focusing not only on the
overall output similarity but also on the similarity within each dimension.

Text Alignment Information Preservation
Ldistill MI↑ WER† ↓ WER∗ ↓ SIM↑
T-Axis RVQ-1 26.65 21.10 10.75 0.76

RVQ-1:8 25.97 21.54 5.29 0.96
D-Axis RVQ-1 30.9 15.58 9.57 0.74

RVQ-1:8 29.7 16.03 5.04 0.97

Table 7: Results of continuous distillation loss ablation experiment on SLMTokBench. We employ
the average representation across all HuBERT layers as semantic teachers in this experiment.
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D DETAILS OF MODEL STRUCTURE AND DISCRIMINATORS

Encoder & Decoder Architecture The encoder is constructed as a sequential series of components:
starting with a 1D convolutional layer featuring C channels and a kernel size of 7, followed by a set
of B residual conventional blocks. Each block is composed of two dilated convolutions with dilation
rate of (1, 1) and kernel size of (3, 1) and a skip-connection, followed by a strided convolutional
down-sampling layer, with a kernel size K of the twice the stride R. Whenever down-sampling,
the number of channels is doubled. Unlike in EnCodec that the convolution blocks are followed
by a two-layer LSTM, we use BiLSTM to augment the semantic modeling ability. A final 1D
convolution layer with a kernel size of 7 is used to set the dimensionality of embeddings to D. We
use C = 32, B = 4 and (2, 4, 5, 8) as strides. We use ELU (Clevert et al., 2016) as a non-linear
activation either layer normalization (Ba et al., 2016) or weight normalization (Salimans & Kingma,
2016).The decoder mirrors the encoder and uses transposed convolutions and LSTM instead of stride
convolutions and BiLSTM, with the strides in reverse order as in the encoder. The decoder outputs
the final audio signal.

Residual Vector Quantizer We use Residual Vector Quantizer (RVQ) to quantize the encoder output
and follow the same training procedure as EnCodec. During training, the code selected for each input
is updated using an exponential moving average with a decay of 0.99, and codes which have not
been assigned any input vector for several batches are replaced with input vectors randomly sampled
within current batch. Straight-through-estimator (Bengio et al., 2013) is used to compute the gradient
of encoder, e.g. as if the quantization step was the identity function during the backward phase.
Finally, a commitment loss, consisting of the MSE between the input of the quantizer and its output,
with gradient only computed with respect to its input, is added to the overall training loss.

Discriminator The MS-STFT discriminator utilizes networks with identical structures that operate
on multi-scaled complex-valued STFT, where the real and imaginary parts are concatenated. For each
sub-network, it is composed of a 2D convolutional layer (using kernel size 3× 8 with 32 channels),
followed by 2D convolutions with increasing dilation rates in the time dimension (1, 2 and 4), and a
stride of 2 over the frequency axis. A final 2D convolution with kernel size 3× 3 and stride (1, 1)
provide the final prediction. For MSD and MPD, we follow the same settings as in HiFiGAN (Kong
et al., 2020) but adjust the channel number to align the discriminator’s parameters more closely with
that of MS-STFT.
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E RELATED WORK

Discrete Speech Representations There are two popular speech discrete representations: semantic
tokens and acoustic tokens. Semantic tokens can be extracted from self-supervised learning of speech
representations (Hsu et al., 2021; Chung et al., 2021) and encode high-level representations that
correlate with coarse, symbolic features while paralinguistic information such as speaker identity and
acoustic details are removed. Acoustic tokens can be extracted from neural audio codec (Zeghidour
et al., 2021; Défossez et al., 2022; Yang et al., 2023) and provide high-fidelity reconstruction of
the acoustic details. But they can not decouple different information of speech. SpeechTokenizer
unifies the two types of tokens, enabling both high-quality audio reconstruction and decomposition
of different information of speech.

Spoken Generative Language Models Speech discrete representation based spoken generative lan-
guage models have demonstrated remarkable performance on various speech processing tasks (Borsos
et al., 2022; Wang et al., 2023; Kharitonov et al., 2023; Zhang et al., 2023). AudioLM (Borsos
et al., 2022) proposes to model speech based on audio codecs together with semantic codes, which
can synthesize speech in a textlesss setting. VALL-E (Wang et al., 2023) leverages neural codec
models to represent speech in discrete tokens from eight quantizers. VALL-E comprises of an
autoregressive language model that converts phoenmes to acoustic tokens from the first quantizer
and an non-autoregressive language model to generate codes of the other seven quantizers. However,
VALL-E suffers from problems that some words may be unclear, missed, or duplicated in speech
synthesis due to the information gap between acoustic tokens and phoneme. To bridge the gap,
SPEAR-TTS (Kharitonov et al., 2023) uses semantic tokens as a bridge between text and acoustic
tokens. It first generates semantic tokens from text and then produces acoustic tokens from semantic
tokens. However, this multi-stage modeling approach is more complex and can lead to problems
like error accumulation and slow inference speed. The first quantizer of SpeechTokenizer generates
semantic tokens, while the remaining seven quantizers produce acoustic tokens by modeling the
paralinguistic information lost in the semantic tokens. SpeechTokenizer-based VALL-E combines
the advantages of VALL-E and SPEAR-TTS, where the autoregressive model can perform text-to-
semantic tokens conversion, and the non-autoregressive model can achieve semantic-to-acoustic
tokens conversion.

Speech Representation Disentanglement Human speech can be roughly decomposed into three
components: content, timbre, and prosody (Liu et al., 2023). Content represents the main information
in the speech, which can be expressed using text or phonemes. Timbre represents the speaker’s
characteristics, while prosody encompasses intonation, stress, and rhythm of speech, reflecting how
the speaker conveys the content information. Current Speech Representation Disentanglement (SRD)
methods mostly separate speaker information from content information for voice conversion (Qian
et al., 2019; Casanova et al., 2022). These approaches adopt a parallel disentanglement strategy, where
the speech is fed into parallel content and speaker encoders to obtain different representations (Qian
et al., 2020). However, this strategy heavily relies on prior knowledge and introduces strong inductive
biases, making the modeling process more complex and potentially overlooking certain speech
information like prosody. Differently, VQVC (Wu & Lee, 2020) models the content embedding as a
series of discrete codes and take the difference between quantize-before and quantize-after vector as
the speaker embedding. Similarly, SpeechTokenizer utilizes a residual structure to perform serial
decomposition of speech information and models different information as discrete tokens.
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F CODEBOOK ANALYSIS

We investigate whether the tokens learned by the first RVQ quantizer relate to phonetic information.
Utilizing SpeechTokenizer or EnCodec, we derive speech tokens from the TIMIT training set and
extract the RVQ-1 tokens, denoted as q1. We then compute the conditional probability p(phoneme|q1)
based on the co-occurrence between phonemes and the codes. The alignments are constructed by
selecting the phoneme that occurs most frequently in the receptive field for each q1.

Figure 4 visualizes the conditional probability p(phoneme|q1) for both SpeechTokenizer and EnCodec.
A darker color block indicates a higher p(phoneme|q1). A more distinct contrast between the diagonal
color band and its surrounding area signifies greater phoneme purity, which in turn suggests a more
accurate mapping between the code and its corresponding phoneme. For SpeechTokenizer, it’s
evident that in the codebook of RVQ-1 quantizer, many discrete codes seem to specialize in capturing
specific phonetic sounds, indicating RVQ-1 quantizer can obtain a good alignment between codes
and labeled phonemes. However, for EnCodec, this phenomenon is not as obvious.

Additionally, Figure 4 also reveals that over 600 codes from the EnCodec RVQ-1 codebook have
never been utilized, suggesting a suboptimal utilization rate of the codebook when EnCodec encodes
speech. A lower utilization rate of the codebook implies that more RVQ layers are required to ensure
the quality of synthesized speech, consequently necessitating the generation of more codes during the
construction of a spoken generative language model, resulting in greater space, time and computation
power consumption.

We further evaluate the models using Phone-Normalized Mutual Information (PNMI) (Hsu et al.,
2021). As shown in Table 8, RVQ-1 tokens of SpeechTokenizer achieve a superior PNMI score to that
of HuBERT units and significantly outperforms EnCodec-RVQ-1. This suggests that the semantic
distillation process in SpeechTokenizer is effective, thereby explaining its enhanced text alignment
performance.

Figure 4: Visualization of the conditional probability P (phoneme|code) on TIMIT train set. The
y-axis is the phoneme set and the x-axis is the codewords of the first RVQ layer sorted by the most
correlated phoneme.

Tokenizer PNMI↑
HuBERT KM500 0.43
EnCodec RVQ-1 0.28
SpeechTokenizer RVQ-1 0.71

Table 8: PNMI of different discrete speech representation.
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G EXTENSION TO UNSEEN LANGUAGE

Since the paralinguistic information is considered to be language-agnostic, we attempted to apply
SpeechTokenizer directly to unseen languages. We choose German and Chinese. For German, we
select samples from the German subset of Multilingual LibriSpeech dataset for testing. For Chinese,
we select samples from the Aishell-3 dataset (Shi et al., 2021) for testing. We resynthesize speech
from RVQ-1 and RVQ-1:8 tokens. Resynthesized speech are displayed in our demo website 1. We
also analysis the melspectrogram of German speech and English speech in Appendix H.

Results show that for languages either closely or distantly related to English, resynthesized speech
from RVQ-1 tokens tend to lose timbre and prosody information while maintaining clear content. The
resynthesized speech generated from RVQ-1:8 tokens is very close to the grountruth. That suggests
SpeechTokenizer can achieve hierarchical information disentanglement on unseen language, even
though SpeechTokenizer is trained solely on English data. We believe that SpeechTokenizer may
possess the ability to extract content from speech while disregarding language-dependent features.
This ability holds promise for the development of a multilingual SpeechTokenizer.

1https://0nutation.github.io/SpeechTokenizer.github.io/
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H MELSPECTORGRAM ANALYSIS

We plot the melspectrogram of raw speech, resynthesized speech of EnCodec RVQ-1 tokens, and
resynthesized speech of SpeechTokenizer RVQ-1 tokens. From the figure 5, it’s evident that the
melspectrogram corresponding to EnCodec RVQ-1 largely retains the stripes and shapes in the raw
melspectrogram. In contrast, the speech resynthesized from SpeechTokenizer RVQ-1 essentially
loses all of the horizontal stripes, which indicates that timbre and prosody information has been
diminished.

Figure 5: Melspectorgram of raw speech, resynthesized speech of SpeechTokenizer and EnCodec
RVQ-1 tokens.
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We alse plot melspectrogram of raw German speech and resynthesized German speech of SpeechTok-
enizer RVQ-1 tokens. As shown in the Figure 6, the same patterns observed in English speech are
also present in German speech.

Figure 6: Melspectorgram of German speech and resynthesized speech of SpeechTokenizer RVQ-1
tokens.
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