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Abstract

A coreset is a tiny weighted subset of an input set,
that closely resembles the loss function, with re-
spect to a certain set of queries. Coresets became
prevalent in machine learning as they have shown
to be advantageous for many applications. While
coreset research is an active research area, unfor-
tunately, coresets are constructed in a problem-
dependent manner, where for each problem, a
new coreset construction algorithm is usually sug-
gested, a process that may take time or may be
hard for new researchers in the field. Even the
generic frameworks require additional (problem-
dependent) computations or proofs to be done
by the user. Besides, many problems do not have
(provable) small coresets, limiting their applicabil-
ity. To this end, we suggest an automatic practical
framework for constructing coresets, which re-
quires (only) the input data and the desired cost
function from the user, without the need for any
other task-related computation to be done by the
user. To do so, we reduce the problem of approx-
imating a loss function to an instance of vector
summation approximation, where the vectors we
aim to sum are loss vectors of a specific subset of
the queries, such that we aim to approximate the
image of the function on this subset. We show that
while this set is limited, the coreset is quite gen-
eral. An extensive experimental study on various
machine learning applications is also conducted.
Finally, we provide a “plug and play” style imple-
mentation, proposing a user-friendly system that
can be easily used to apply coresets for many prob-
lems. We believe that these contributions enable
future research and easier use and applications of
coresets.
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1. Introduction and Motivation
In many machine learning (ML) problems, the input is usu-
ally a set P = {p1, · · · , pn} of n items, a (probably infinite)
set of candidate solutions X called query set, and a loss
function f : P ×X → [0,∞]). The goal is to find a query
(model, classifier) x∗ that minimizes the sum

∑n
i=1 f(pi, x)

over every query x ∈ X . Notably, many of these optimiza-
tion/learning tasks are typically challenging to approximate
when the input is very large. Furthermore, in the era of
big data, we usually aim towards maintaining a solution for
streaming and/or distributed input data, while consuming
small memory. Finally, even well-known problems with a
close optimal solution, such as ridge regression and other
classes of convex optimization involving Cross-validation
methods or hyper-parameter tuning methods, must analyze
under many restrictions several queries for various subsets
of data, leading to a drastic increase in the running time.

Coresets. A common approach to solve such issues is
to use data summarization techniques, namely Coresets,
which got increasing attention over recent years (Bachem
et al., 2018a;b; Bădoiu & Clarkson, 2008; Balcan et al.,
2013; Braverman et al., 2019; Curtain et al., 2019; Feldman
et al., 2010; 2014; Karnin & Liberty, 2019); see surveys
in (Feldman, 2020; Munteanu & Schwiegelshohn, 2018;
Phillips, 2016). A coreset, informally, is a tiny weighted
subset of the input set P , roughly approximating the loss
of P for every possible query x ∈ X , up to a bound of
1 ± ε factor (0 ≤ ε < 1). The size of the coreset is often
independent or close to logarithmic in the amount of the
input points n, but polynomial in 1/ε. Coresets are useful
in ML as they significantly increase the efficiency of ML
solvers. Specifically, employing conventional methods on
the constructed coresets should approximate the optimal
solution on the entire dataset, in orders of magnitude less
expensive time and memory. Furthermore, by repeatedly
running existing heuristics on the coreset in the time it takes
to run them once on the original (large) dataset, heuristics
that are already quick can be more accurate. Additionally,
coresets can be maintained for distributed and streaming
data.

So what’s the problem? Obtaining non-trivial theoretical
guarantees is frequently impossible in many contemporary
machine learning problems due to either the target model
being highly complex or since every input element p ∈ P is
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Figure 1. A flowchart illustrating our automatic coreset construction framework. Note that VSAlg() can be any algorithm from Table 1.

significant in the sense of high sensitivity; see (Tukan et al.,
2020). Hence, generating a coreset becomes a highly chal-
lenging process, and the corresponding theoretical analysis
occasionally falls short of recommending such approxima-
tions. As a result, designing a new coreset and demonstrat-
ing its accuracy for a new ML problem might take years,
even for simple ones.

Another crucial issue with current theoretical frameworks is
their lack of universality. Even the most general frameworks
(e.g., (Feldman & Langberg, 2011; Langberg & Schulman,
2010) replace the problem of generating a coreset for an
input set P of n points with n new optimization problems
(one problem for each of the n input points p ∈ P ) known
as sensitivity bounding. Solving these may be more difficult
than solving the original problem, where for every p ∈ P we
are required to bound its own sensitivity defined as s(p) =
supx∈X

f(p,x)∑
q∈P f(q,x) . As a result, distinct approximation

strategies are often adapted to each task. Hence, the main
disadvantage of such frameworks is that researchers provide
papers solely for bounding the sensitivities with respect to
a certain problem or a family of functions (Tukan et al.,
2020; Maalouf et al., 2020), limiting the spread of coresets,
as non-expert won’t be able to suggest coresets for their
desired task. These problems raise the following questions:

Is it possible to design an automatic and practically ro-
bust coreset construction framework (for any desired
cost function and input dataset) that does not need sensi-
tivity calculation or any other problem-dependent com-
putation by the user? Can we provide some provable
guarantees with respect to this framework?

1.1. Vision

Goal. Our goal is to provide a single algorithm that only
receives the loss function we wish to compute a coreset for

and the input dataset, then, it practically outputs a good core-
set for the input dataset with respect to the given loss. This
algorithm should be generic, efficient, and work practically
well for many problems.

motivation. The main motivation behind this goal is (1) to
increase the spread and use of coreset to a larger community
that is not limited to coreset researchers or pioneers. (2)
Additionally, to ease the use of coresets for many other appli-
cations that may be out of the scope of the coreset literature,
and finally, to (3) easily apply coresets for new problems
that do not have provable coresets. Theoretically speaking,
it is indeed very hard to provide a “theoretical strong coreset”
to any problem – for example, there exist lower bounds on
the coreset sizes for different problems (Munteanu et al.,
2018; Tukan et al., 2021). Thus we aimed at a practical
result while providing weaker theoretical guarantees, with
an extensive experimental study.

1.2. Our contribution

In this paper, we provide a coreset construction mechanism
that answers both questions. Specifically:

(i) The first automatic practical coreset construction sys-
tem that only needs to receive the loss function asso-
ciated with the problem. Our coreset does not require
any computation to be done by the user, not mathemat-
ical nor technical (without the need for sensitivities or
any other task-related computation by the user). To the
best of our knowledge, this is the first paper to suggest
a plug-and-play style framework/compiler for coreset
construction. We also provide a theoretical justification
for using our framework.

(ii) An extensive empirical study on real-world datasets for
various ML solvers of Scikit-Learn (Pedregosa et al.,
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Figure 2. Illustration of a vector summarization coreset for an input
matrix of 7 rows and 3 columns which represent the loss function
concerning a set P of 7 input points, and set of queries x1, x2, x3.

2011), including k-means, logistic regression, linear
regression, and support vector machines (SVM), show-
ing the effectiveness of our proposed system.

(iii) AutoCoreset: An open-source code implementation
of our algorithm for reproducing our results and future
research. For simplicity and ease of access, to obtain a
coreset, the user only needs to plug in his desired loss
function and the data into our system. We believe this
system will popularize and expose the use of coresets
to other scientific fields.

2. Setup Details
Given a set P = {p1 · · · , pn} ⊆ Rd of n points1 and a
loss function f : P × X → [0,∞) where X is a (pos-
sibly infinite) set of queries. In this paper, we develop
an automatic coreset construction framework for any prob-
lem involving cost functions of the form

∑
p∈P f(p, x),

here x ∈ X . Formally, we wish to find a small subset
I ⊆ [n] and a weight function v : I → [0,∞) such that

maxx∈X

∑
j∈I

v(j)f(pj ,x)

n∑
i=1

f(pi,x)
∈ 1 +O(ε), for some small ε ≥ 0.

2.1. Preliminaries

We now give our notations and used Definition.

Notations. For a pair of integers n,m > 0, we denote
by [n] the set {1, · · · , n}, and by Rn×m the set of every

1if P is a set of labeled items, then P ={
pi = (p′i, yi)

∣∣p′i ∈ Rd−1, yi ∈ R
}n

i=1

possible n×m real matrix. For a matrix M ∈ Rn×m and a
pair of integers i ∈ [n], j ∈ [m], we use Mi,∗ to denote its
ith row (vector), M∗,j to denote its jth column, and Mi,j to
denote the entry in the ith row and jth columns.

In what follows, we define a crucial component on which
our system relies, namely, vector summarization coreset.

Definition 2.1 (Vector summarization coreset). Let M ∈
Rn×m, I ⊆ [n], v : I → [0,∞) be a weight function,
and let ε > 0. The tuple (I, v) is an vector summarization

ε-coreset for M if
∥∥∥∑i∈[n] Mi,∗ −

∑
j∈I v(j)Mj,∗

∥∥∥2
2
≤ ε.

Many papers suggested different algorithms for computing
such coresets; in Table 1 summarizes some of these results,
as we can use them all of them in our method.

3. AutoCoreset

A coreset aims to approximate the probability distribution
induced upon the input data by the cost function. Hence, in
order to approximate a given cost function, the coreset must
contain points that can result in an approximated distribution
to that of the full data.

Key idea. Loosely speaking, assume that for a given cost
function f and a set P = {p1, · · · , pn} ⊂ Rd, we access
an infinite matrixM∗(P, f) where the rows correspond to
the n points of P , and each column corresponds to a query
point from the infinite set of queries X . Specifically, each
row i ∈ [n] is of infinite length representing the loss of
each point pi ∈ P with respect to the infinite set of queries
X . A coreset in this context means finding a subset of the
rows I ⊆ [n], and a weight function v : I → [0,∞], that
satisfies the vector summarization coreset guarantee (see
Definition 2.1), i.e.,∥∥∥∥∥∥

∑
i∈[n]

M∗(P, f)i,∗ −
∑
j∈I

v(j)M∗(P, f)j,∗

∥∥∥∥∥∥
2

2

≤ ε. (1)

From such a coreset I ⊆ [n], the cost function can be
approximated, since for every query x ∈ X (column in
the matrixM∗(P, f)), the weighted sum of losses over the
coreset I approximate the original sum of losses of the
whole data. While such a concept is admirable, having an
access to such immense data is rather imaginative.

Recently (Maalouf et al., 2022) showed that for an input set
of points P , and query space X that is defined as a family
of sine wave functions, a coreset can be constructed. Specif-
ically, it was shown that if the coreset approximates the loss
of every query in a smaller set of queries on the input data,
then it will also approximate the losses of the whole set of
queries (sine waves). Thus, indeed, the sine wave that fits
best the coreset approximates the sine wave that best fits
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Algorithm 1 AUTOCORESET (P, f, τ,m, ζ)

input set of n points P , a loss function f , a coreset size τ ,
number of initial models m, and an stopping criterion ζ

output A coreset (I, v) such that

1: M̃(P, f)←
→
0 n×m

2: for each i ∈ [m] do
3: xi ← a randomized approximated solution involving

P and f
4: for every j ∈ [n] do
5: M̃(P, f)j,i ← f (pj , xi)
6: end for
7: end for
8: repeat
9: (I, v) ← coreset of m indices for vector summa-

rization problem involving M̃(P, f) {See Defini-
tion 2.1}

10: x∗ ← argminx∈X
∑
i∈I

v (i) f (pi, x)

11: M̃(P, f)←
[
M̃(P, f)

∣∣∣→0 n

]
12: for every i ∈ [n] do
13: M̃(P, f)i,m+1 ← f (pi, xC)
14: end for
15: m← m+ 1
16: until ζ is satisfied
return (I, v)

the entire data. Inspired by such a result, we aim towards
constructing a sub-matrix M̃(P, f) ofM∗(P, f) (M̃(P, f)
contain a subset of the columns of M∗(P, f); see Fig-
ure 2 for illustration) such that constructing the coreset on
M̃(P, f) (a weighted subset of the rows of M̃(P, f)) will
also yield a similar coreset to that of (1) on theM∗(P, f).
But, how to build the sub-matrix M̃(P, f)? how to choose
the query set corresponding to the columns of M̃(P, f)?

Table 1. Summary of known vector summarization coresets and
their properties.

Method Probability
of failure

Approximation
error Coreset size |I| Construction time

Caratheodory
(Maalouf et al., 2019)
(Carathéodory, 1907)

0 0 m+ 1 O(min{nm+ log4(m),m2n2, nm3})

Frank-Wolfe
(Feldman et al., 2017)

(Clarkson, 2010)
0 ε O(1/ε) O(min{nd/ε})

Median of means
tournament

(Minsker, 2015)
δ ε O(1/ε) O(m log2(1/δ) +m log(1/δ)/ε)

Sensitivity sampling
(Feldman & Langberg, 2011) δ ε O( 1

ε
(m+ log 1

δ
)) O(nm)

Uniform sampling δ ε O( 1
εδ
) O(1)

3.1. A deeper look into AutoCoreset

We now give and explain our algorithm AUTOCORESET
(see Algorithm 1), which aims to provide a parasitical core-
set with similar guarantees.

Into the forging of our coresets. Let m > 1 be an integer.
First, a matrix M̃(P, f) is generated to contain n×m zero

entries, followed by generating a set X ′ = {x1, . . . , xm} of

m approximated solutions with respect to min
x∈X

n∑
i=1

f(pi, x)

as depicted at Lines 1–7. If no such approximated solution
exists, then the initialization may be also completely random.
The (sub)matrix M̃(P, f) is now initialized, where for every
i ∈ [n], and j ∈ [m], the entry M̃(P, f)i,j in the ith row
and jth column is equal to f (pi, xj). While the properties
associated with generated solutions at Line 3 hold with some
probability, our framework is always guaranteed practically
to generate a good coreset. This is due to the fact that these
solutions are merely used as an initialization mechanism.

From this point on, a loop is invoked. First, using the
current state of M̃(P, f), a vector summarization coreset
(I, v) (see Definition 2.1) is generated with respect to the
rows of M̃(P, f).

A coherent claim of our system is that any vector summariza-
tion coreset I for the rows of M̃(P, f), is directly mapped
to coreset for P (using the same set of indexes and the same
weight function) with respect to the query set X ′ ⊂ X
and the function f , where X ′ is the set of all queries that
brought about the columns of M̃(P, f). More preciously,

maxx∈X ′

∑
j∈I

v(j)f(pj ,x)

n∑
i=1

f(pi,x)
∈ 1 +O(ε); see Lemma 3.1.

Since the computed vector summarization coreset I is also
a coreset with respect to f, P , and X ′, we can optimize f
over the small coreset I to obtain a new query x∗ ∈ X
that gives an approximated solution to the full data (see
Line 10). We then apply the loss f function and the new
solution x∗ on p1, · · · , pn to obtain the vector of losses
l = (f(p1, x

∗), · · · , f(pn, x∗))T , and concatenate such
vector of loss values to M̃(P, f) as its last column. This
aids in expanding the exposure of generated coreset to a
wider spectrum of queries, leading towards a strong coreset.
Observe that in the next iteration, when we compute a new
coreset for the given set of queries, the coreset will approx-
imate all of the previous ones (set of queries) and the new
computed query/solution x∗.

This procedure is repeated until some stopping criterion ζ is
invoked – we provide more details on the used ζ in Section 5.
We refer the reader to Lines 10–15. Note that if we were
able to run the above procedure infinitely while ensuring
that at each iteration a new solution is computed,M∗(P, f)
would have been generated, resulting in the “strong coreset”
this system is leaning towards. To better grasp the idea of the
framework, we provide a flowchart illustration at Figure 1.

The parameters τ,m, ζ. Our Algorithm initializes its ma-
trix M̃(P, f) with respect to the losses of m > 1 different
queries, and outputs a coreset of size τ > 1, hence, the
larger the m and τ the better the approximation, but the
slower the time; See section 5 for more details. Regarding
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ζ, it is the used stopping criterion, we provide full details
regarding the used ζ in Section 5.

3.2. Weaker coresets are fine too

Our AutoCoreset system, while ambitiously aims towards
holding a grasp overM∗(P, f), it finds a weaker version
of the “strong coresets”. Specifically speaking, it finds a
coreset that attains approximation guarantees with respect
to a subset of the query set X . Theoretically speaking, the
following lemma summarizes one aspect of the theoretical
properties guaranteed by AutoCoreset.

Lemma 3.1 (Vector summarization coreset→ “a weak core-
set for any loss”). Let P = {p1, · · · , pn} ⊆ Rd be a set
of n points as defined in Section 3.1, X ′ ⊂ X be a set of
queries, f : P × X → [0,∞) be a loss function, and let
M̃(P, f) ∈ Rn×|X ′| be the loss matrix defined with respect
to P, f,X ′ as in Algorithm 1. Let τ ≥ 1 be an integer, and
let (I, v) be a ε-vector summarization coreset concerning
M̃(P, f) of size |I| = τ . Then, for every x ∈ X ′,

∣∣∣∣∣∣
∑
i∈[n]

f (pi, x)−
∑
j∈I

v(j)f (pj , x)

∣∣∣∣∣∣
2

≤ ε.

Implications of Lemma 3.1. AutoCoreset guarantees theo-
retically that for a finite set of queries X ′, a coreset can be
constructed supporting X ′. A key advantage here would be
the ability to represent any query x such that its loss vector
(f(p1, x), · · · , f(pn, x)) lies inside the “convex hull” of the
loss vectors of the query set X ′. Luckily, such a trait is sup-
ported by our system. Specifically speaking, for any query
such that its corresponding loss vector ℓ with respect to f
and P can be formulated as a convex combination of the
columns of M̃(P, f), then a vector summarization coreset
for the rows of M̃(P, f) is also a vector summarization to
the rows of concatenating M̃(P, f) and the column vector
ℓ. In what follows, we give the theoretical justification for
the above claim.

Claim 3.2 (Weak Coreset with hidden abilities). Let P =
{p1, · · · , pn} ⊆ Rd be a set of n points as in Section 3.1, f
be a loss function supported by AutoCoreset, and let m, τ, ζ
be the defined number of initial solutions, sample size, and
stopping criterion, respectively. Let z ≥ m, (I, v) be the
output of a call to AUTOCORESET (P, f, τ,m, ζ), and let
M̃(P, f) ∈ Rd×z be the matrix of losses that was con-
structed throughout the running time of AUTOCORESET;
see Lines 1, 5, 11 13 at Algorithm 1. Then for any weight

function α : [z] → [0, 1] where
z∑

i=1

α (i) = 1, and any

x ∈ X satisfying that for every i ∈ [n], f (pi, x) =

z∑
k=1

α (k)M̃(P, f)i,k , we have

∣∣∣∣∣∣
n∑

i=1

f (pi, x)−
∑
j∈I

v(j)f (pj , x)

∣∣∣∣∣∣
2

≤ ε,

where ε ≥ 0 is the approximation factor associated with
generating a vector summarization coreset of m points.

The best of both worlds. Claim 3.2 states that even if it
seems that our generated coreset only supports a handful of
queries from X , our coreset basically supports many more
queries. The highlight of such a claim is that if the optimal
solution for the objective function involves f and P , then
our coreset becomes stronger in the sense of ensuring better
quality even during the training/optimization process which
involves both f and P . Such a claim is usually targeted
via “Strong coresets” and mainly by “Weak coresets”. Au-
toCoreset ensures a coreset that resides on the spectrum
involving these coresets at its ends, i.e., generating a core-
set from the best of both worlds – a coreset supporting the
optimal solution that the user is aiming to solve using accel-
erated training via coresets while maintaining the provable
approximation guarantees of strong coresets to some extent.

4. Size, Space, and Time Analysis
Time complexity. Let VAlg be the vector summarization
algorithm used at Line 9 of Algorithm 1 (pick one from Ta-
ble 1). Let ε, δ ∈ (0, 1) be the desired vector summarization
approximation error, and probability of failure, respectively.
Now denote by

• T (n, i, ε, δ): the running time of VAlg on a matrix of
n rows and i columns with respect to ε and δ.

• S(n, i, ε, δ): the size of the coreset computed by VAlg
on a matrix of n rows and i columns with respect to ε
and δ.

• Tsol(n, d): the time required to compute a solution
vector x∗ for n points in the d dimensional space with
respect to the problem at hand (e.g., the time required
to compute the solution of linear regression is O(nd2)).

• Tcost(n, d): the time required to calculate the cost for
n points in the d dimensional space on a single query
with respect to the problem at hand (e.g., the time
required to compute the cost of linear regression for
n points in the d dimensional space given a solution
vector x is O(nd). “t”: be the number of iterations of
the algorithm.

At each iteration “i”, Algorithm 1
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1. applies VAlg on a matrix of n rows and i columns to
obtain a coreset of size S(n, i, ε, δ). This step requires
T (n, i, ε, δ) time.

2. Solves the problem on the coreset to obtain a new
solution x∗. Requiring Tsol(S(n, i, ε, δ), d) time.

3. Calculates the cost of the n points with respect to x∗.
Requiring Tcost(n, d) time

Thus, for a single step i the running time is T (n, i, ε, δ) +
Tsol(S(n, i, ε, δ), d) + Tcost(n, d). Summing for t itera-
tions:

t∑
i=1

(T (n, i, ε, δ) + Tsol(S(n, i, ε, δ), d)) + tTcost(n, d).

For example, in Linear regression and using the Sensitivity
sampling as VAlg, an immediate bound for the running time
is O(t(nt+ (t/ε+ log(1/δ)/ε)d2 + nd)).

Space complexity. First, note that the input data and the
matrix of losses take O(n(d + t)) where t here denotes
the number of iterations our coreset generation has taken.
Recall the definitions of VAlg, ε, δ and S(n, i, ε, δ). We now
denote by

• Mem(VAlg, ε, δ, i) the amount of space needed by
Valg to generate an ε-coreset with a success probability
of at least 1− δ.

• Memsol(n, d) the space required to compute a solu-
tion vector x∗ for n points in the d dimensional space
with respect to the problem at hand (e.g., the space re-
quired to compute the solution of SVM is O(n2 + d).

The total space complexity is thus bounded by O(n(d+ t)+
maxi∈[t](Mem(VAlg, ε, δ, i) +Memsol(S(n, i, ε, δ)), d).

For example for SVM and using the Sensitivity sampling
vector summarization, an immediate bound for the space
complexity is O(n(d+ t) + (1/ε(t+ log(1/δ)))2).

Coreset size. The size of the constructed coreset is equal
to the used vector summarization coreset size (See Table 1),
and it depends on the approximation error ε, the probabil-
ity of failure δ we wish to have, and the final number of
approximated queries – columns of the query matrix.

In short – let ε be the desired approximation error and let
δ be the probability of failure. Let t be the number of
iterations required Algorithm 1. Denote by S(n, i, ε, δ) the
size of the set computed by the used vector summarization
algorithm on a matrix of n rows and i columns with respect
to ε and δ (see Table 1 for examples). Then, the size of the
coreset is S(n, t, ε, δ).

For example, using the Sensitivity sampling method (as the
used vector summarization coreset), to approximate the cur-
rently given t queries after t iterations, with ε approximation
error, and δ probability of failure, we get a coreset of size
O(t/ε+ log(1/δ)/ε).

From additive to multiplicative approximation error. Al-
gorithm 1 can immediately be modified to compute a coreset
that yields a multiplicative approximation as follows. Given
the set P , the current set of queriesX ′, and the loss f , define
a new function g(p, x) := f(p,x)√∑

p∈P f(p,x)
for every pair of a

query x ∈ X ′ and input data p ∈ P .

Now build the corresponding matrix M̃(P, g) (as done
in Algorithm 1 for f(p, x)) instead of M̃(P, f), and
run the exact same vector summarization coreset algo-
rithm on it. Then, by Lemma 3.1, for every x ∈ X ′,∣∣∣∑i∈[n] g (pi, x)−

∑
j∈I v(j)g (pj , x)

∣∣∣2 ≤ ε, and by the
definition of g we get that the result is a multiplicative core-
set for the given set of queries as for every x ∈ X ′

∣∣∣∣∣∣
∑
i∈[n]

f (pi, x)−
∑
j∈I

v(j)f (pj , x)

∣∣∣∣∣∣
2

≤ ε
∑
p∈P

f(p, x).

5. Experimental Study
In what follows, we first discuss the choices of differ-
ent vector summarization coresets, and the used parame-
ters in our experiments, followed by evaluating our core-
set on real-world datasets, against other famous com-
peting methods: Near Convex Coreset (Tukan et al.,
2020), Lewis weights (Munteanu et al., 2018) and lever-
age scores (Munteanu et al., 2018) for logistic regression,
Near Convex Coreset (Tukan et al., 2020) and optimization
based coreset (Tukan et al., 2021) for support vector ma-
chines (SVM), SVD-based coreset (Maalouf et al., 2020)
for linear regression, Bi criteria coreset (Braverman et al.,
2021) for k-means, and uniform sampling in all of the ex-
periments. We note that each experiment was conducted
for 16 trials, we report both the mean and std for all of the
presented metrics.

Software/Hardware. Our algorithms were imple-
mented in Python 3.9 (Van Rossum & Drake, 2009) using
“Numpy” (Oliphant, 2006), “Scipy” (Virtanen et al., 2020)
and “Scikit-learn” (Pedregosa et al., 2011). Tests were per-
formed on 2.59GHz i7-6500U (2 cores total) machine with
16GB RAM.

5.1. AutoCoreset parameters

Vector summarization coresets. There are many methods
for computing such coresets, some of them are deterministic,
i.e., with no probability of failure, and others work with
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Figure 3. Evaluation of our coresets against other competing methods on the Dataset (i).
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(b) SVMs

Figure 4. Evaluation of our coresets against other competing methods on the Dataset (ii).
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Figure 5. Evaluation of our coresets against other competing methods on the Dataset (iii).

some probability 1−δ. On the other hand, some are accurate,
i.e., ε = 0, and others yield an approximation error ε > 0.
In Table 1 we summarize some of the common methods
for computing such coresets, and their properties, such as
size, running time, approximation error, and probability of
failure. In our system, we implemented all of the given
methods and compared them via extensive experiments.

Setting the number of initial solutions m. Throughout our
experiments, we have set the number of initial solutions to
10. The idea behind this is to expose AUTOCORESET to a
number of solutions that is not too high nor too low. Hence,
we ensure that the coreset is not too weak nor too dependent
on the initial solutions.

Choosing a stopping criterion ζ. Inspired by the early-
stopping mechanism of (Prechelt, 1998), we adopt a similar
idea. We make use of a parameter, namely “patience”, which

was set to 7, to attempt an indication of the occurrence of sat-
uration with respect to the exposure of our coreset paradigm
to new queries; see more details at Section A. To correctly
use this parameter, we use additional two parameters, one
of which is a counter, while the other holds the optimal
coreset that resulted in the smallest sum of the entries of the
concatenated columns (see Line 13 at Algorithm 1). The
counter will be reset to 0 once a new column is added such
that its sum is lower than the smallest sum so far, and the
optimal coreset will be updated. Otherwise, the counter
will be increased. AUTOCORESET will keep running until
the above counter reaches the “patience” parameter. In our
experiments, we returned the optimal coreset since it led
to better results. For completeness, we refer the reader to
the appendix where we conduct an ablation study and check
our results without taking the optimal coreset, i.e., in those
results, we take the last coreset. Note that, in both sets of
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Figure 6. SVM confusion matrices with respect to our coresets against Uniform sampling and the entire data of Dataset (ii).
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Figure 7. Logistic regression confusion matrices with respect to our coresets against Uniform sampling and the entire data of Dataset (ii).

experiments, we outperform the competing methods.

Datasets. The following datasets were used throughout our
experimentation. These datasets were taken from (Dua &
Graff, 2017) and (Chang & Lin, 2011): (i) Credit card
dataset (Yeh & Lien, 2009) composed of 30000 points
with 24 features representing customers’ default payments
in Taiwan, (ii) Cod-RNA dataset (Uzilov et al., 2006):
dataset containing 59535 points with 8 features, (iii) HTRU
dataset (Lyon et al., 2016): Pulsar candidates collected dur-
ing the HTRU survey containing 17898 each with 9 features,
(iv) 3D Road Network (Guo et al., 2012): 3D road network

with highly accurate elevation information from Denmark
containing 434874 points each with 4 features, (v) Ac-
celerometer dataset (Sampaio et al., 2019): an accelerome-
ter data from vibrations of a cooler fan with weights on its
blades containing 153000 points consisting each of 5 fea-
tures, and (vi) Energy efficiency Data Set (Tsanas & Xifara,
2012): a dataset containing 768 points each of 8 features.

ML models. Throughout our entire set of experiments, we
have relied on “Scikit-Learn” ML models.

Reported results. First, for each coreset (I, v) of an input
data P and a loss function f , we compute the optimal so-
lution on the coreset x∗

I ∈ argminX∈X
∑

i∈I v(i)f(pi, x),
and on the real data x∗

P ∈ argminx∈X
∑

i∈[n] f(pi, x),
and we report the optimal solution approximation error
ε =

∣∣∣∑i∈[n] f(pi, x
∗
I)−

∑
i∈[n] f(pi, x

∗
P )

∣∣∣. Secondly, we
show for classification problems the test accuracy obtained
when training on the coreset, while on regression problems
we show an estimate of the coefficient of determination of

the prediction R2 (Ozer, 1985). Additional measures are
reported for some problems; we discuss them in the follow-
ing sections. The bars in our graphs reflect the standard
deviation.

5.2. Traditional ML classification problems

In what follows, we show our results when setting f to be
the loss function of either the Logistic regression problem
or the SVMs problem. In both experiments, since, some of
the datasets were unbalanced, each sample coreset size has
been split – small classes get a slightly larger portion of
the sample size than simply taking η× sample size where η
represents the class size percentage with respect to the total
number of points, while larger classes get a portion of the
sample size smaller than η× sample size.

Logistic regression. We have set the maximal number
of iterations to 1000 (for the Scikit-Learn solver) while
setting the regularization parameter to 1. Our system’s ap-
proximation error was smaller by orders of magnitude, and
the accuracy associated with the models trained using our
coreset was better than the model trained on the competing
methods; see Figure 3(a) and Figure 5(a). On the other hand,
Figure 4(a) depicts a multiplicative gap of 30 with respect
to the approximation error in comparison to the competing
methods while simultaneously acceding by 5% accuracy
gap over them. In addition, we present the confusion matrix
for each of our coresets using AutoCoreset, and compare
it to the confusion matrices with respect to the entire data
and the uniform sampling coreset; See Figure 7. The con-
fusion matrices aim towards explaining our advantage as
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Figure 8. Evaluation of our coresets against other competitors concerning the linear regression problem.
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Figure 9. Evaluation of our coresets against other competitors con-
cerning the k-means problem.

our system outputs coresets that approximately maintain the
structural properties of the confusion matrix of the entire
data better than simply using uniform sampling, as our re-
call and accuracy are closer to their corresponding values
when using the entire dataset.

SVMs. As for SVMs, we mainly focused on the linear
kernel, while setting the regularization parameter to 1. Sim-
ilarly to logistic regression, we outperform the competing
methods both in accuracy and approximation error; see Fig-
ure 3(b) and Figure 5(b).

Discussion These results show that general frameworks that
aim to handle a large family of functions without embed-
ding some crucial information concerning the properties of
the problem, usually tend to lose through the race towards
smaller coresets sizes with small approximation errors. We
thus show that while AutoCoreset is general in the reach of
its applications, it also embeds the functional properties of
the problem into higher consideration than that of (Tukan
et al., 2020), and practically achieves robust results (smaller
std).

5.3. Linear regression and k-means clustering.

In our experiments for linear regression, we observe a clear
gap between each of our vector summarization coresets and
the competing methods, leading towards outperforming the
competing coreset for the task of fitting linear regression. In

addition, we observe that the determination coefficient R2

for our method is much closer to the determination coeffi-
cient R2 when using the entire data. This indicates that our
coresets lead to better learning and correlation between the
input data and the corresponding outputs of the regression
problem; see Figure 8. In addition, for k-means, our core-
sets outperform the competitors (see Figure 9), justifying
their robustness across a wide range of applications.

6. Conclusions and Future Work
In this work, we proposed an automatic practical coreset
construction framework that requires only two parameters:
the input data and the loss function. Our system, namely
AutoCoreset, results in small coresets with multiplicative
approximation errors significantly smaller than traditional
coreset constructions for various machine learning problems,
as well as showing that the model learned on our coresets
gained more information than the other coresets. While
AutoCoreset is practical, we also show some desirable the-
oretical guarantees. We believe that AutoCoreset can be
further enhanced and tuned to work in the context of Deep
learning, e.g., subset selection for boosting training of deep
neural networks. We leave this as future work.

Finally, we hope AutoCoreset will lay the foundation of
practical frameworks for coresets, and hope it reaches the
vast scientific community, aiding to achieve faster training
with provable guarantees due to training on our coresets.

7. Acknowledgements
This research was supported in part by the AI2050 program
at Schmidt Futures (Grant G-96422-63172), the United
States Air Force Research Laboratory, and the United States
Air Force Artificial Intelligence Accelerator and was accom-
plished under Cooperative Agreement Number FA8750-19-
2-1000.

9



AutoCoreset: An Automatic Practical Coreset Construction Framework

References
Arthur, D. and Vassilvitskii, S. K-means++ the advantages

of careful seeding. In Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms,
pp. 1027–1035, 2007.

Bachem, O., Lucic, M., and Krause, A. Scalable k-means
clustering via lightweight coresets. In KDD’18 Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 1119–1127.
ACM, 2018a.

Bachem, O., Lucic, M., and Lattanzi, S. One-shot coresets:
The case of k-clustering. In Storkey, A. and Perez-Cruz, F.
(eds.), Proceedings of the Twenty-First International Con-
ference on Artificial Intelligence and Statistics, volume 84
of Proceedings of Machine Learning Research, pp. 784–
792, Playa Blanca, Lanzarote, Canary Islands, 09–11 Apr
2018b. PMLR. URL http://proceedings.mlr.
press/v84/bachem18a.html.
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A. More details
More on the initialization technique. Initialization using different approximated solutions is a technique commonly used
in optimization algorithms, including kmeans (Arthur & Vassilvitskii, 2007). The idea behind this technique is to start
the optimization process from different starting points, or initializations, and to use the resulting approximate solutions to
improve the overall optimization performance. This is because different initializations may result in different local optima,
and by considering multiple initializations, the optimization algorithm may be able to find a better overall solution. In our
method, we do not optimize the given approximate solution, but approximating several approximated solutions using our
coreset practically moves the coresets towards approximating “good” various regions of the query set, where each of these
regions contains a good solution on the dataset. While there is a possibility that the solutions found may be very similar, in
practice, the technique tends to provide benefits in terms of improved optimization performance. Practically, we saw that
uniform sampling is also sufficient to achieve very good coresets which approximate the optimal solution very well.

More on the stopping criteria. First of all, the intuition behind setting stopping criteria is derived from the theory of
training models in deep learning. Specifically speaking, the early stopping technique in deep learning. While we could have
set the number of iterations to a hard-coded scalar (e.g., 400), we would have either made a very weak coreset that has been
exposed to not enough queries, or we would have extended the running time of the algorithm beyond the limits of being
practical. The idea that we have used in the paper is to put a threshold on the number of times the minimal cost so far has
not changed thus implying some sort of convergence. Notably and most importantly, the usage of such criteria is intensively
justified practically in many experimental papers (see for example, (Prechelt, 2002; Zhou et al., 2020; Gu et al., 2018)) in
deep/machine learning.

We also note that the user can use any stopping criterion and of course, the results will change depending on such a choice.

The construction of the query set. We aimed to obtain a coreset that supports a query set that can span a meaningful
part of the entire query space. Intuitively speaking, we aim to have a coreset that approximates the loss of a query set
containing (i) the optimal solution of the entire data or some fine approximation to it (see next paragraph for an intuitive
explanation of how this should intuitively hold) and (ii) the optimal solution on this computed coreset, given a desired
problem (e.g., logistic regression). With this in mind, solving the desired problem on our generated coreset will yield a
coreset approximating the solution of the entire data up to O(ε).

Hence, in the ith iteration of our algorithm, we add the solution optimizing the current coreset to the supported set of queries
(e.g., optimal logistic regression solution for the current coreset).

Since the coreset is biased towards this solution, we have evaluated the quality of such a solution on the entire data and
concatenated such a vector of losses to our matrix of losses (denoted by the matrix M̃).

This, in turn, means that each time a new query is added to the supported set of queries, the coreset in the next iteration
will be adapted to approximate every query in the query set and it will become more generalized, or in a sense a “stronger
coreset”.

With this in mind, we can initialize our support query set with approximated solutions to the problem (e.g. ε-approximations),
so as to ensure a good initial coreset.

B. Proof of Our Theoretical Results
B.1. Proof of Lemma 3.1

Proof. First, observe that by construction of M̃(P, f), it holds that for every x ∈ X ′, and j ∈ [n], there exists an integer
i ∈ [|X ′|] such that

M̃(P, f)j,i = f (pj , x) . (2)

By Definition 2.1, the pair (I, v) satisfies that∥∥∥∥∥∥
n∑

j=1

M̃(P, f)j,∗ −
∑
ℓ∈I

v (ℓ)M̃(P, f)ℓ,∗

∥∥∥∥∥∥
2

2

≤ ε. (3)
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Note that (3) dictates that for every k ∈ [|X ′|], it holds that∣∣∣∣∣∣
∑
j∈[n]

M̃(P, f)j,k −
∑
ℓ∈I

v (ℓ)M̃(P, f)ℓ,k

∣∣∣∣∣∣
2

≤ ε. (4)

Finally, combining (2) and (4) yields Lemma 3.1.

B.2. Proof of Claim 3.2

Proof. For every k ∈ [z], denote by xk the query which corresponds to the kth column of M̃(P, f). The claim holds by the
following derivations: ∣∣∣∣∣∣

n∑
i=1

f (pi, x)−
∑
j∈I

v(j)f (pj , x)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
n∑

i=1

z∑
k=1

α (k) f(pi, xk)−
∑
j∈I

v(j)

z∑
k=1

α (k) f(pi, xk)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
z∑

k=1

α (k)

n∑
i=1

f(pi, xk)−
z∑

k=1

α (k)
∑
j∈I

v(j)f(pi, xk)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
z∑

k=1

α (k) (

n∑
i=1

f(pi, xk)−
∑
j∈I

v(j)f(pi, xk))

∣∣∣∣∣∣
2

≤

∣∣∣∣∣
z∑

k=1

α (k)
√
ε

∣∣∣∣∣
2

=
∣∣√ε∣∣2 ≤ ε,

where the first equality hold by the definition of x, the second and thirds are simple rearrangements, the first inequality holds
by Claim 3.2.

C. Experimental Results
In this section, we dive into exploring the effect of the actions/parameters used in AutoCore.

C.1. Taking the last coreset

In what follows, we show the results of using the last coresets AutoCore has devised, i.e., as Algorithm 1 suggests.
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(b) SVMs

Figure 10. Evaluation of our coresets against Uniform sampling on the Dataset (i).

As depicted throughout Figures C.2–12, we observe that AutoCore output coresets that outperform the competing methods
almost in all of our experiments. In some, we observe that the desired behavior of our coreset gets delayed (takes 2 to 3
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(b) SVMs

Figure 11. Evaluation of our coresets against Uniform sampling on the Dataset (ii).
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Figure 12. Evaluation of our coresets against Uniform sampling on the Dataset (iii).

samples to outperform the rest of the competitors). This is due to the fact that taking such coresets means that the coreset
is becoming more general, thus requiring a larger sample size to guarantee better approximation, one needs to sample
more. Such behavior does not appear in our “optimal coresets” where we have taken the coreset with the optimal cost; see
Figures 3– 5. The reason for this is that the optimal coreset has been exposed to fewer models/queries than the coreset that
would be output by the plain AutoCore, and thus the need for a larger sample size for smaller approximation error becomes
less demanding.

C.2. Exploration of different algorithms for choosing queries

In what follows, we show the effect of different methods for choosing the next query for our practical coreset paradigm with
respect to the logistic regression problem.

C.3. Experimenting with Cifar10 and TinyImageNet

In what follows, we run our coreset paradigm on Cifar10 and TinyImageNet. For TinyImageNet data, we had to use the
JL-lemma to reduce the dimensionality of the data. As seen from Figure C.3, our coreset construction technique yields better
coresets than uniform sampling even for large-scale datasets, where our coreset can be better than uniform sampling by at
max ≈ 1.5 times in terms of relative approximation error.
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(a) Results when using Carathéodory as our coreset inner construction
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(c) Results when using Sensitivity for 1-means as our coreset inner construction

Figure 13. Evaluation of our coresets with different algorithms for choosing the next query.
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(a) Cifar-10
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(b) TinyImageNet

Figure 14. Evaluation of our coreset on large-scale datasets.
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