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Abstract
The Weisfeiler–Leman algorithm (1-WL) is a well-
studied heuristic for the graph isomorphism prob-
lem. Recently, the algorithm has played a promi-
nent role in understanding the expressive power of
message-passing graph neural networks (MPNNs)
and being effective as a graph kernel. Despite its
success, 1-WL faces challenges in distinguishing
non-isomorphic graphs, leading to the develop-
ment of more expressive MPNN and kernel ar-
chitectures. However, the relationship between
enhanced expressivity and improved generaliza-
tion performance remains unclear. Here, we show
that an architecture’s expressivity offers limited
insights into its generalization performance when
viewed through graph isomorphism. Moreover,
we focus on augmenting 1-WL and MPNNs with
subgraph information and employ classical margin
theory to investigate the conditions under which
an architecture’s increased expressivity aligns with
improved generalization performance. In addition,
we show that gradient flow pushes the MPNN’s
weights toward the maximum margin solution.
Further, we introduce variations of expressive 1-
WL-based kernel and MPNN architectures with
provable generalization properties. Our empiri-
cal study confirms the validity of our theoretical
findings.

1. Introduction
Graph-structured data are prevalent in application domains
ranging from chemo- and bioinformatics (Jumper et al.,
2021; Stokes et al., 2020; Wong et al., 2023), combinatorial
optimization (Cappart et al., 2021), to image (Simonovsky
& Komodakis, 2017) and social-network analysis (Easley
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& Kleinberg, 2010), underlying the importance of machine
learning methods for graphs. Nowadays, there are numerous
approaches for machine learning on graphs, most notably
those based on graph kernels (Borgwardt et al., 2020; Kriege
et al., 2020) or message-passing graph neural networks
(MPNNs) (Gilmer et al., 2017; Scarselli et al., 2009). Here,
graph kernels (Shervashidze et al., 2011) based on the 1-
dimensional Weisfeiler–Leman algorithm (1-WL) (Weisfeiler
& Leman, 1968), a well-studied heuristic for the graph iso-
morphism problem, and corresponding MPNNs (Morris
et al., 2019; Xu et al., 2019), have recently advanced the
state-of-the-art in supervised vertex- and graph-level learn-
ing (Morris et al., 2021).

However, due to 1-WL’s limitations in distinguishing non-
isomorphic graphs (Arvind et al., 2015; Cai et al., 1992),
numerous recent works proposed more expressive extensions
of the 1-WL and corresponding MPNNs (Morris et al., 2021).
For example, Bouritsas et al. (2020) introduced an approach
to enhance the 1-WL and MPNNs by incorporating subgraph
information, achieved by labeling vertices based on their
structural roles regarding a set of predefined (sub)graphs.
Through the careful selection of such graphs, Bouritsas et al.
(2020) demonstrated that these enhanced 1-WL and MPNNs
variants can effectively discriminate between pairs of non-
isomorphic graphs, which the 1-WL and k-WL (Cai et al.,
1992), 1-WL’s more expressive generalization, cannot. Fur-
thermore, empirical results (Bouritsas et al., 2020) indicate
that this added expressive power often results in improved
predictive performance. However, the exact mechanisms
underlying this performance improvement remain unclear.

Although recent work (Morris et al., 2023) has used 1-
WL to establish upper and lower bounds on the Vapnik–
Chervonenkis (VC) dimension of MPNNs, these findings
do not explain the above empirical observations. Specifi-
cally, they do not explain the empirical trend that increased
expressive power corresponds to enhanced generalization
performance while keeping the size of the training set fixed.
Concretely, (Morris et al., 2023) demonstrated a strong corre-
lation between the VC dimension of MPNNs and the number
of non-isomorphic graphs that 1-WL can differentiate. Conse-
quently, increasing 1-WL’s expressive capabilities increases
the VC dimension, worsening generalization performance.
A parallel argument can be made regarding 1-WL-based
kernels.
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Present work Here, we investigate to what extent the 1-WL
and more expressive extensions can be used as a proxy for
an architecture’s predictive performance. First, we show that
data distributions exist such that the 1-WL and corresponding
MPNNs distinguish every pair of non-isomorphic graphs
with different class labels while no (linear) classifier can do
better than random outside of the training set. Hence, we
show that the graph isomorphism perspective is too limited
to understand MPNNs’ generalization properties. Secondly,
based on Alon et al. (2021)’s theory of partial concepts, we
derive tight upper and lower bounds for the VC dimension
of the 1-WL-based kernels and corresponding MPNNs pa-
rameterized by the margin separating the data. In addition,
building on Ji & Telgarsky (2019), we show that gradient
flow pushes the MPNN’s weights toward the maximum mar-
gin solution. Thirdly, we show when 1-WL variants using
subgraph information can make the data linearly separable,
leading to a positive margin. Building on this, we derive
conditions under which more expressive 1-WL variants lead
to better generalization performance and derive 1-WL vari-
ants with favorable generalization properties. Our empirical
study confirms the validity of our theoretical findings.

Our theory establishes the first link between increased ex-
pressive power and improved generalization performance.
Moreover, our results provide the first margin-based lower
bounds for MPNNs’ VC dimension. Overall, our results
provide new insights into when more expressive power trans-
lates into better generalization performance, leading to a
more fine-grained understanding of designing expressive
MPNNs.

1.1. Related work

In the following, we discuss relevant related work.

Graph kernels based on the 1-WL Shervashidze et al.
(2011) were the first to utilize the 1-WL as a graph kernel.
Later, Morris et al. (2017; 2020b; 2022) generalized this to
variants of the k-WL. Moreover, Kriege et al. (2016) derived
the Weisfeiler-Leman optimal assignment kernel, using the 1-
WL to compute optimal assignments between vertices of two
given graphs; see Appendix A for an extended discussion.

MPNNs Recently, MPNNs (Gilmer et al., 2017; Scarselli
et al., 2009) emerged as the most prominent graph repre-
sentation learning architecture. Notable instances of this
architecture include, e.g., Duvenaud et al. (2015); Hamil-
ton et al. (2017), and Veličković et al. (2018), which can
be subsumed under the message-passing framework intro-
duced in Gilmer et al. (2017). Recently, connections between
MPNNs and Weisfeiler–Leman-type algorithms have been
shown (Barceló et al., 2020; Geerts et al., 2021; Morris
et al., 2019; Xu et al., 2019). Specifically, Morris et al.
(2019) and Xu et al. (2019) showed that the 1-WL limits

the expressive power of any possible MPNN architecture
in distinguishing non-isomorphic graphs. (Bouritsas et al.,
2020) showed how to make MPNNs more expressive by
incorporating subgraph information; see Appendix A for
an extended discussion on MPNNs and more expressive
MPNNs.

Generalization abilities of graph kernels and MPNNs
Scarselli et al. (2018) used classical techniques from learn-
ing theory (Karpinski & Macintyre, 1997) to show that
MPNNs’ VC dimension (Vapnik, 1995) with piece-wise
polynomial activation functions on a fixed graph, under
various assumptions, is in O(P 2n log n), where P is the
number of parameters and n is the order of the input graph;
see also Hammer (2001). Garg et al. (2020) showed that
the empirical Rademacher complexity (see, e.g., Mohri et al.
(2012)) of a specific, simple MPNN architecture, using sum
aggregation, is bounded in the maximum degree, the number
of layers, Lipschitz constants of activation functions, and pa-
rameter matrices’ norms. Most recently, Morris et al. (2023)
made progress connecting MPNNs’ expressive power and
generalization ability via the Weisfeiler–Leman hierarchy.
They derived that MPNNs’ VC dimension depends tightly
on the number of equivalence classes computed by the 1-WL
over a given set of graphs. Moreover, they showed that
MPNNs’ VC dimension depends logarithmically on the num-
ber of colors computed by the 1-WL and polynomially on
the number of parameters; see Appendix A for an extended
discussion on MPNNs’ generalization properties.

Margin theory and VC dimension Using the margin as a
regularization mechanism dates back to Vapnik & Chervo-
nenkis (1964). Later, the concept of margin was successfully
applied to support vector machines (SVMs) (Cortes & Vap-
nik, 1995; Vapnik, 1998) and connected to VC dimension
theory; see Mohri et al. (2012) for an overview. Grønlund
et al. (2020) derived the so-far tightest generalization bounds
for SVMs. Alon et al. (2021) introduced the theory of VC
dimension of partial concepts, i.e., the hypothesis set allows
partial functions and showed, analogous to the standard case,
that finite VC dimension implies learnability and vice versa.

2. Background
Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂
N. We use {{. . .}} to denote multisets, i.e., the generaliza-
tion of sets allowing for multiple instances for each of its
elements. For two sets X and Y , let XY denote the set
of functions mapping from Y to X . Let S ⊂ Rd, then
the convex hull conv(S) is the minimal convex set contain-
ing the set S. For p ∈ Rd, d > 0, and ε > 0, the ball
B(p, ε, d) := {s ∈ Rd | ∥p − s∥ ≤ ε}. Here, and
in the remainder of the paper, ∥ · ∥ refers to the 2-norm
∥x∥ :=

√
x2
1 + · · ·+ x2

d, for x ∈ Rd.
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Graphs An (undirected) graph G is a pair (V (G), E(G))
with finite sets of vertices or nodes V (G) and edges E(G) ⊆
{{u, v} ⊆ V (G) | u ̸= v}. For ease of notation, we
denote an edge {u, v} in E(G) by (u, v) or (v, u). The
order of a graph G is its number |V (G)| of vertices. If
not stated otherwise, we set n := |V (G)| and call G an
n-order graph. We denote the set of all n-order graphs by
Gn. For a graph G ∈ Gn, we denote its adjacency matrix
by A(G) ∈ {0, 1}n×n, where A(G)vw = 1 if, and only, if
(v, w) ∈ E(G). For a set of nodes S ⊆ V (G), we denote the
induced subgraph of G as G[S] := (V (G)∩S,E(G)∩S2).
We use standard notation and terminology; see Appendix B
for details.

Kernels A kernel on a non-empty set X is a symmetric,
positive semidefinite function k : X ×X → R. Equivalently,
a function k : X × X → R is a kernel if there is a feature
map ϕ : X → H to a Hilbert space H with inner product
⟨·, ·⟩ such that k(x, y) = ⟨ϕ(x), ϕ(y)⟩ for all x and y ∈ X .
We also call ϕ(x) ∈ H a feature vector. A graph kernel
is a kernel on the set G of all graphs. In the context of
graph kernels, we also refer to a feature vector as a graph
embedding.

VC Dimension of partial concepts Let X be a non-empty
set. As outlined in Alon et al. (2021), we consider partial con-
cepts H ⊆ {0, 1, ⋆}X , where each concept c ∈ H is a partial
function. That is, if x ∈ X such that c(x) = ⋆, then c is
undefined at x. The support of a partial concept h ∈ H is the
set supp(h) := {x ∈ X | h(x) ̸= ⋆}. The VC dimension of
(total) concepts (Vapnik, 1995) straightforwardly generalizes
to partial concepts. That is, the VC dimension of a partial
concept class H, denoted VC(H), is the maximum cardinal-
ity of a shattered set U := {x1, . . . , xm} ⊆ X . Here, the
set U is shattered if for any τττ ∈ {0, 1}m there exists c ∈ H
such that c(xi) = τi, for all i ∈ [m]. In essence, Alon et al.
(2021) showed that the standard definition of PAC learnabil-
ity extends to partial concepts, recovering the equivalence of
finite VC dimension and PAC learnability.

Geometric margin classifiers Classifiers with a geometric
margin, e.g., support vector machines (Cortes & Vapnik,
1995), are a cornerstone of machine learning. A sample
(x1, y1), . . . , (xs, ys) ∈ Rd × {0, 1}, for d > 0, is (r, λ)-
separable if (1) there exists p ∈ Rd and r > 0 and a
ball B(p, r, d) such that x1, . . . ,xs ∈ B(p, r, d) and (2)
the Euclidean distance between conv({xi | yi = 0}) and
conv({xi | yi = 1}) is at least 2λ. Then, the sample is
linearly separable with margin λ. We define the set of
concepts

Hr,λ(Rd) :=
{
h ∈ {0, 1, ⋆}Rd

∣∣∣ ∀x1, . . . ,xs ∈ supp(h) :

(x1, h(x1)), . . . , (xs, h(xs)) is (r, λ)-separable
}
.

Alon et al. (2021) showed that the VC dimension of the
concept class Hr,λ(Rd) is asymptotically lower- and upper-
bounded by r2/λ2. Importantly, the above bounds are inde-
pendent of the dimension d, while standard VC dimension
bounds scale linearly with d (Anthony & Bartlett, 2002).

The 1-dimensional Weisfeiler–Leman algorithm The
1-WL or color refinement is a well-studied heuristic for the
graph isomorphism problem, originally proposed by Weis-
feiler & Leman (1968). Intuitively, the algorithm determines
if two graphs are non-isomorphic by iteratively coloring or
labeling vertices. Formally, let G = (V (G), E(G), ℓ) be a
labeled graph. In each iteration, t > 0, the 1-WL computes a
vertex coloring C1

t : V (G) → N, depending on the coloring
of the neighbors. That is, in iteration t > 0, we set C1

t (v) :=

RELABEL
((
C1

t−1(v), {{C1
t−1(u) | u ∈ N(v)}}

))
,

for all vertices v ∈ V (G), where RELABEL injectively
maps the above pair to a unique natural number, which
has not been used in previous iterations. In iteration 0, the
coloring C1

0 := ℓ is used. To test whether two graphs G
and H are non-isomorphic, we run the above algorithm in
“parallel” on both graphs. If the two graphs have a different
number of vertices colored c ∈ N at some iteration, the 1-WL
distinguishes the graphs as non-isomorphic. Moreover, if
the number of colors between two iterations, t and (t+ 1),
does not change, i.e., the cardinalities of the images of C1

t

and C1
i+t are equal, the algorithm terminates. For such t,

we define the stable coloring C1
∞(v) = C1

t (v), for v ∈
V (G ∪̇H).

Graph kernels based on the 1-WL Let G be a graph, fol-
lowing Shervashidze et al. (2009), the idea for a kernel based
on the 1-WL is to run the 1-WL for T ≥ 0 iterations, resulting
in a coloring function C1

t : V (G) → N for each iteration
t ≤ T . Let Σt denote the range of C1

t , i.e., Σt := {c |
∃ v ∈ V (G) : C1

t (v) = c}. We assume Σt to be ordered by
the natural order of N, i.e., we assume that Σt consists of
c1 < · · · < c|Σt|. After each iteration, we compute a feature
vector ϕt(G) ∈ R|Σt| for each graph G. Each component
ϕt(G)i counts the number of occurrences of vertices of G
labeled by ci ∈ Σt. The overall feature vector ϕWL(G) is
defined as the concatenation of the feature vectors of all T it-
erations, i.e., ϕ(T )

WL (G) :=
[
ϕ0(G), . . . , ϕT (G)

]
, where [. . . ]

denote column-wise vector concatenation. This results in
the kernel k(T )

WL (G,H) := ⟨ϕ(T )
WL (G), ϕ

(T )
WL (H)⟩, where ⟨·, ·⟩

denotes the standard inner product. We further define the nor-

malized 1-WL feature vector
Ě

ϕ
(T )
WL (G) := ϕ

(T )
WL (G)/∥ϕ(T )

WL (G)∥

obtained by normalizing the 1-WL feature vector to unit
length.

Weisfeiler–Leman optimal assignment kernel Based on
the 1-WL, Kriege et al. (2016) defined the Weisfeiler–Leman
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optimal assignment kernel (1-WLOA), which computes an
optimal assignment between the colors computed by the
1-WL for all iterations; see Kriege et al. (2016) for details.
Given two graphs G and H and let T ≥ 0, the 1-WLOA
computes

kWLOA(G,H) :=
∑

t∈[T ]∪{0}

∑
c∈Σt

min(ϕt(G)c, ϕt(H)c).

Observe that for a fixed but arbitrary n, we can compute
a corresponding finite-dimensional feature map ϕ

(T )
WLOA

for the set of n-order graphs. From the theory developed
in Kriege et al. (2016), it follows that the 1-WLOA kernel
has the same expressive power as the 1-WL in distinguishing
non-isomorphic graphs.

More expressive variants of the 1-WL It is easy to see
that the 1-WL cannot distinguish all pairs of non-isomorphic
graphs (Arvind et al., 2015; Cai et al., 1992). However, there
exists a large set of more expressive extensions of the 1-WL,
which have been successfully leveraged as kernel or neu-
ral architectures (Morris et al., 2021). Moreover, empirical
results suggest that such added expressive power often trans-
lates into increased predictive performance. Nonetheless,
the precise mechanisms underlying this performance boost
remain unclear.

In the following, we define a simple, more expressive modi-
fication of the 1-WL, the 1-WLF . It is a simplified variant
of the algorithms defined in Bouritsas et al. (2020), which
does not account for orbit information. Let G be a graph
and F be a finite set of graphs. For F ∈ F , we define a
vertex labeling ℓF : V (G) → N such that ℓF (v) = ℓF (w)
if, and only, if there exists Xv ⊆ V (G) with v ∈ Xv

and Xw ⊆ V (G) with w ∈ Xw such that G[Xv] ≃ F and
G[Xw] ≃ F . In other words, ℓF encodes the presence of sub-
graphs G[Xv] in G, isomorphic to F and containing vertex v.
Furthermore, we define the vertex labeling ℓF : V (G) → N,
where ℓF (v) = ℓF (w) if, and only, if, for all F ∈ F ,
ℓF (v) = ℓF (w). Finally, for t ≥ 0, we define the vertex
coloring C1,F

t : V (G) → N, where C1,F
0 (v) := ℓF (v) and

C1,F
t (v) :=

RELABEL
((
C1,F

t−1(v), {{C1,F
t−1(u) | u ∈ N(v)}}

))
,

for v ∈ V (G). Hence, the 1-WLF only differs from the 1-
WL at the initialization step. In Proposition 24, we show that
the 1-WLF is more expressive than the 1-WL. We can also
define a 1-WLOA variant of the 1-WLF , which we denote by
1-WLOAF . See Appendix D for how to derive kernels based
on the 1-WLF .

Message-passing graph neural networks Intuitively,
MPNNs learn a vectorial representation, i.e., a d-dimensional

real-valued vector, representing each vertex in a graph by ag-
gregating information from neighboring vertices. Formally,
let G = (V (G), E(G), ℓ) be a labeled graph with initial
vertex features h(0)

v ∈ Rd that are consistent with ℓ. That
is, each vertex v is annotated with a feature h(0)

v ∈ Rd such
that h(0)

v = h
(0)
u if, and only, if ℓ(v) = ℓ(u). An example is

a one-hot encoding of the labels ℓ(u) and ℓ(v). An MPNN
architecture consists of a stack of neural network layers,
i.e., a composition of permutation-equivariant parameterized
functions. Following, Scarselli et al. (2009) and Gilmer et al.
(2017), in each layer, t > 0, we compute vertex features
h
(t)
v :=

UPD(t)
(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

u | u ∈ N(v)}}
))

∈ Rd,

for each v ∈ V (G), where UPD(t) and AGG(t) may be
differentiable parameterized functions, e.g., neural networks.
In the case of graph-level tasks, e.g., graph classification,
one uses

hG := READOUT
(
{{h(L)

v | v ∈ V (G)}}
)
∈ Rd, (1)

to compute a single vectorial representation based on learned
vertex features after iteration L. Again, READOUT may
be a differentiable parameterized function. To adapt the
parameters of the above three functions, they are optimized
end-to-end, usually through a variant of stochastic gradi-
ent descent, e.g., Kingma & Ba (2015), together with the
parameters of a neural network used for classification or
regression.

More expressive MPNNs Since the expressive power of
MPNNs is strictly limited by the 1-WL in distinguishing
non-isomorphic graphs (Morris et al., 2019; Xu et al., 2019),
a large set of more expressive extensions of MPNNs (Morris
et al., 2021) exists. Here, we introduce the MPNNF archi-
tecture, an MPNN variant of the 1-WLF ; see Section 2. In
essence, an MPNNF is a standard MPNN, where we set the
initial features consistent with the initial vertex-labeling of
the 1-WLF , e.g., one-hot encodings of ℓF . Following Morris
et al. (2019), it is straightforward to derive an MPNNF ar-
chitecture that has the same expressive power as the 1-WLF
in distinguishing non-isomorphic graphs.

Notation In the subsequent sections, we use the following
notation for MPNNs. We denote the class of all (labeled)
graphs by G. For d, l > 0, we denote the class of MPNNs
using summation for aggregation, and such that update and
readout functions are multilayer perceptrons (MLPs), all of a
width of at most d, by MPNNmlp(d, L). We refer to elements
in MPNNmlp(d, L) as simple MPNNs; see Appendix C for
details. We stress that simple MPNNs are already expres-
sive enough to be equivalent to the 1-WL in distinguishing
non-isomorphic graphs (Morris et al., 2019). The class
MPNNmlp,F (d, L) is defined similarly, based on MPNNF s.
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3. When more expressivity matters
We start by investigating under which conditions using more
expressive power leads to better generalization performance
and, when not, using the data’s margin. To this aim, we
first prove lower and upper bounds on the VC dimension
of 1-WL-based kernels, MPNNs, and their more expressive
generalizations.

Margin-based bounds on the VC dimension We first
derive a general condition to prove margin-based lower and
upper bounds. For a subset S ⊆ Rd, d > 0, we consider the
following set of partial concepts from S to {0, 1, ⋆},

Hr,λ(S) :=
{
h ∈ {0, 1, ⋆}S

∣∣∣ ∀x1, . . . ,xs ∈ supp(h) :

(x1, h(x1)), . . . , (xs, h(xs)) is (r, λ)-separable
}
.

For the upper bound, since S ⊆ Rd, the VC dimension of
Hr,λ(S) is upper-bounded by the VC dimension of Hr,λ(Rd).
As already mentioned, the latter is known to be bounded
by r2/λ2 (Bartlett & Shawe-Taylor, 1999; Alon et al., 2021).
For the lower bound, the following lemma, implicit in Alon
et al. (2021), states sufficient conditions for S such that the
VC dimension of Hr,λ(S) is also lower-bounded by r2/λ2.

Lemma 1. Let S ⊆ Rd. If S contains m := ⌊r2/λ2⌋ vectors
b1, . . . , bm ∈ Rd with bi := (b

(1)
i , b

(2)
i ) and b

(2)
1 , . . . , b

(2)
m

being pairwise orthogonal, ∥bi∥ = r′, and ∥b(2)i ∥ = r, then
VC-dim(Hr′,λ(S)) ∈ Θ(r

2
/λ2).

Next, we derive lower- and upper-bounds on the VC di-
mension of graphs separable by some graph embedding,
e.g., the 1-WL kernel. For n, d > 0, let E(n, d) be a
class of graph embedding methods consisting of mappings
from Gn to Rd, e.g., 1-WL feature vectors. A (graph) sam-
ple (G1, y1), . . . , (Gs, ys) ∈ Gn × {0, 1} is (r, λ)-E(n, d)-
separable if there is an embedding emb ∈ E(n, d) such
that (emb(G1), y1), . . . , (emb(Gs), ys) ∈ Rd × {0, 1} is
(r, λ)-separable, resulting in the set of partial concepts
Hr,λ(E(n, d)) :={

h ∈ {0, 1, ⋆}Gn

∣∣∣ ∀G1, . . . , Gs ∈ supp(h) : (G1,

h(G1)), . . . , (Gs, h(Gs)) is (r, λ)-E(n, d)-separable
}
.

Now, consider the subset S(n, d) := {emb(G) ∈ Rd |
G ∈ Gn, emb ∈ E(n, d)} of Rd. It is clear that the VC
dimension of Hr,λ(E(n, d)) is equal to the VC dimension of
Hr,λ(S(n, d)), which in turn is upper-bounded by r2/λ2. We
next use Lemma 1 to obtain lower bounds on the VC dimen-
sion of Hr,λ(E(n, d)) for specific classes of embeddings.

1-WL-based embeddings We first consider the class of
graph embeddings obtained by the 1-WL feature map after

T ≥ 0 iterations, i.e., EWL(n, dT ) := {G 7→ ϕ
(T )
WL (G) |

G ∈ Gn} and its normalized counterpart sEWL(n, dT ) :=

{G 7→ Ě

ϕ
(T )
WL (G) | G ∈ Gn}, where dT is the dimension of

the corresponding Hilbert space after T rounds of 1-WL;
see Section 2 for details. The following result shows that the
VC dimension of the normalized and unnormalized 1-WL
kernel can be lower- and upper-bounded in the margin λ, the
number of iterations, and the number of vertices.

Theorem 2. For any T, λ > 0, r =
√
T + 1n, and n ≥

r2/λ2, we have VC-dim(Hr,λ(EWL(n, dT ))) ∈ Θ(r
2
/λ2).

Further, for r =
√

T/(T + 1) and n ≥ r2/λ2, we have
VC-dim(H1,λ(sEWL(n, dT ))) ∈ Θ(1/λ2).

In Appendix E.3.1, we derive margin-based bounds for
graphs with a finite number of colors under the 1-WL, cir-
cumventing the dependence on the order in the above result.

Further, by defining EWL,F (n, dT ), EWLOA(n, dT ), and
EWLOA,F (n, dT ) analogously, we can show the same or sim-
ilar results for the 1-WLF , 1-WLOA, and 1-WLOAF . The
only difference is that ∥ϕ(t)

WL(Gi)∥ ≠ ∥ϕ(t)
WLOA(Gi)∥ and thus

the radii and bounds change slightly. Concretely, for the
1-WLF , we get an identical dependency on the margin λ, the
number of iterations, and the number of vertices.

Corollary 3. Let F be a finite set of graphs. For
any T, λ > 0, r =

√
T + 1n, and n ≥ r2/λ2, we

have, VC-dim(Hr,λ(EWL,F (n, dT ))) ∈ Θ(r
2
/λ2). Fur-

ther, for r =
√

T/(T + 1) and n ≥ r2/λ2, we have
VC-dim(H1,λ(sEWL,F (n, dT ))) ∈ Θ(1/λ2).

Similarly, by changing the radii from
√
Tn to

√
Tn, we get

the following results for the 1-WLOA and 1-WLOAF kernel.

Proposition 4. For any T, λ > 0, r =√
(T + 1)n, and n ≥ r2/λ2, we have

VC-dim(Hr,λ(EWLOA(n, dT ))) ∈ Θ(r
2
/λ2). Fur-

ther, for r =
√

T/(T + 1) and n ≥ r2/λ2, we have
VC-dim(H1,λ(sEWLOA(n, dT ))) ∈ Θ(1/λ2).

Corollary 5. Let F be a finite set of graphs. For any
T, λ > 0, for r =

√
(T + 1)n, and n ≥ r2/λ2, we

have, VC-dim(Hr,λ(EWLOA,F (n, dT ))) ∈ Θ(r
2
/λ2). Fur-

ther, for r =
√

T/(T + 1) and n ≥ r2/λ2, we have
VC-dim(H1,λ(sEWLOA,F (n, dT ))) ∈ Θ(1/λ2).

Therefore, using F permits the above statements to be feasi-
ble for smaller values of n or λ.

Margin-based bounds on the VC dimension of MPNNs
and more expressive architectures In the following, we
lift the above results to MPNNs. Assume a fixed but ar-
bitrary number of layers T ≥ 0, vertices n > 0, and an
embedding dimension d > 0. In addition, we denote the fol-
lowing class of graph embeddings EMPNN(n, d, T ) := {G 7→
m(G) | G ∈ Gn and m ∈ MPNNmlp(d, T )}, i.e., the set

5
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of d-dimensional vectors computable by simple T -layer
MPNNs over the set of n-order graphs. Now, the following
result lifts Theorem 2 to MPNNs.

Proposition 6. For any n, T > 0, sufficiently large
d > 0, and r =

√
T + 1n and n ≥ r2/λ2, we

have, VC-dim(Hr,λ(EMPNN(n, d, T ))) ∈ Θ(r
2
/λ2). Fur-

ther, for r =
√
T/(T + 1) and n ≥ r2/λ2, we have,

VC-dim(H1,λ(EMPNN(n, d, T ))) ∈ Θ(1/λ2).

Moreover, we can lift Corollary 3 to MPNNF architectures
by defining EMPNN,F (n, d, T ) analogously to the above.

Corollary 7. Let F be a finite set of graphs. For any n, T >
0, sufficiently large d > 0, and r =

√
T + 1n and n ≥

r2/λ2, we have VC-dim(Hr,λ(EMPNN,F (n, d, T ))) ∈
Θ(r

2
/λ2). For r =

√
T/(T + 1) and n ≥ r2/λ2, we have

VC-dim(H1,λ(EMPNN,F (n, d, T ))) ∈ Θ(1/λ2).

We can also lift the results to the MPNN versions of the
1-WLOA and 1-WLOAF ; see the appendix for details. The
above results are somewhat restrictive since we only consider
MPNNs that behave like linear classifiers by definition of
the considered functions. The above implies that the upper
bound does not hold for general MPNNs since they can
separate non-linearly separable data under mild conditions.

Implications of the results Previous lower and upper
bounds only considered the feature space’s dimensionality,
implying worse generalization performance for more expres-
sive variants of the 1-WL, not aligned with empirical results,
e.g., (Bouritsas et al., 2020). Our results show that more
expressive power only sometimes results in worse gener-
alization properties. Hence, a more fine-grained analysis
is needed to understand when more expressive power, e.g.,
through the 1-WLF or 1-WLOAF , improves generalization
performance. For example, if more expressive power makes
the data linearly separable, leading to a positive margin, or
increases the margin, our results imply improved generaliza-
tion performance. In fact, in the following, we leverage our
results to understand when more expressivity leads to linear
separability and an increased margin. Hence, our results
indicate that the data’s margin can be used as a yardstick to
assess the generalization properties of Weisfeiler–Leman-
based kernels, MPNNs, and their more expressive variants
in a more fine-grained and data-dependent manner.

3.1. Examples of when more power separates the data

We next aim to understand when 1-WL’s more expressive
variants, such as the 1-WLF , can linearly separate the data,
resulting in a positive margin. Therefore, we first derive data
distributions where the 1-WL kernel cannot separate the data
points, while 1-WLF separates them with the largest possible
margin in the case of normalized feature vectors.

Proposition 8. For every n ≥ 6, there exists a pair of non-

isomorphic n-order graphs (Gn, Hn) and a graph F such
that, for F := {F} and for all number of rounds T ≥ 0,∥∥∥Ě

ϕ
(T )
WL (Gn)− Ě

ϕ
(T )
WL (Hn)

∥∥∥ = 0, and∥∥∥Ğ

ϕ
(T )
WL,F (Gn)− Ğ

ϕ
(T )
WL,F (Hn)

∥∥∥ =
√
2.

Moreover, we can also lift the above result to MPNN and
MPNNF architectures; see Proposition 41 in the appendix.

However, more than merely distinguishing the graphs based
on their structure is often required. The following result
shows that data distributions exist such that the 1-WL kernel
can perfectly separate each pair of non-isomorphic graphs
while not being able to separate the data linearly. In fact,
the construction implies data distributions where the 1-WL
kernel cannot do better than random guessing on the test set,
which we also empirically verify in Section 5.

Proposition 9. For every n ≥ 10, there exists a set of pair-
wise non-isomorphic (at most) n-order graphs S, a concept
c : S → {0, 1}, and a graph F , such that the graphs in the
set S are (1) pair-wise distinguishable by 1-WL after one
round; (2) are not linearly separable under the normalized

1-WL feature vector
Ě

ϕ
(T )
WL , concerning the concept c, for any

T ≥ 0, and (3) are linearly separable under the normalized

1-WLF feature vector
Ğ

ϕ
(T )
WL,F , concerning the concept c for

all T ≥ 0, where F := {F}. The results also work for the
unnormalized case.

In addition, we can derive more general results when placing
stronger conditions on the data distribution; see Proposi-
tion 43 in the appendix.

3.2. Examples of when more power shrinks the margin

While the previous results showed that more expressive
power can make the data linearly separable and improve
generalization performance, adding expressive power might
also decrease the data’s margin. The following result shows
that data distributions exist such that more expressive power
leads to a smaller margin, implying, by Section 3, a worsened
generalization.

Proposition 10. For every n ≥ 10, there exists a pair of
2n-order graphs (Gn, Hn) and a graph F , such that, for
F := {F} and for all number of rounds T > 0, it holds that∥∥∥Ğ

ϕ
(T )
WL,F (Gn)− Ğ

ϕ
(T )
WL,F (Hn)

∥∥∥ <
∥∥∥Ě

ϕ
(T )
WL (Gn)− Ě

ϕ
(T )
WL (Hn)

∥∥∥.
The above results easily generalize to other 1-WLF -based
kernels, i.e., more expressive power does not always result
in increased generalization performance. Hence, in the
following subsection, we derive precise conditions when
more expressivity provably leads to better generalization.

6
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3.3. When more power grows the margin

Here, we study when added expressive power provably leads
to improved generalization performance. We start with
the 1-WLF and then move to the 1-WLOAF , where more
interesting results can be shown.

The 1-WLF kernel The following result shows that, under
some assumptions, data distributions exist such that the 1-
WLF kernel leads to a larger margin than the 1-WL kernel.

Proposition 11. Let n > 0 and Gn and Hn be two con-
nected n-order graphs. Further, let F := {F} such that
there is at least one vertex in V (Gn) contained in a sub-
graph of Gn isomorphic to the graph F . For the graph
Hn, no such vertices exist. Further, let T ≥ 0 be the
number of rounds to reach the stable partition of Gn and
Hn under 1-WL, and assume (ϕ

(T )
WL (Gn), 1), (ϕ

(T )
WL (Hn), 0)

is (r1, λ1)-separable, with margin λ1 <
√
2n. Then,

(ϕ
(T )
WL,F (Gn), 1), (ϕ

(T )
WL,F (Hn), 0) is (r2, λ2)-separable, with

margin r2 ≤ r1 and λ2 ≥ λ1.

Hence, in terms of generalization properties, we observe
that r21/λ2

1 ≥ r22/λ2
2 and hence we obtain lower margin-based

bounds by using F .

The 1-WLOAF kernel It is challenging to improve Propo-
sition 11, i.e., to derive weaker conditions such that 1-WLF
provably leads to an increase of the margin over the 1-WL ker-
nel. This becomes more feasible, however, for the 1-WLOAF
kernel. Since, by Proposition 23 in the appendix, the 1-WLF
computes a finer color partition than the 1-WL, pairwise
distances can not decrease compared to the 1-WLOA.
Proposition 12. Let F be a finite set of graphs. Given two
graphs G and H , we have the inequality∥∥∥ϕ(T )

WLOA,F (G)− ϕ
(T )
WLOA,F (H)

∥∥∥ ≥
∥∥∥ϕ(T )

WLOA(G)− ϕ
(T )
WLOA(H)

∥∥∥.
we can derive conditions under which the 1-WLOAF leads
to a strict margin increase. That is, we get a strict increase in
distances if, and only, if the 1-WLF splits up a color c under
1-WL such that the occurrences of this color c are larger or
equal in one graph over the other, while for at least one of
the resulting colors under 1-WLF , refining the color c, the
relation is strictly reversed.
Proposition 13. Let G and H be n-order graphs and let F
be a finite set of graphs and let T ≥ 0, and CF (c) be the
set of colors that color c under 1-WL is split into under 1-
WLF , i.e., ϕt(G)c =

∑
c′∈CF (c) ϕF,t(G)c′ . The following

statements are equivalent,

1.
∥∥∥ϕ(T )

WLOA,F (G)− ϕ
(T )
WLOA,F (H)

∥∥∥ >
∥∥∥ϕ(T )

WLOA(G)− ϕ
(T )
WLOA(H)

∥∥∥.
2. There exists t ∈ [T ] ∪ {0} and c ∈ Σt such that

¬(ϕt(G)c ≥ ϕt(H)c ⇔ ∀ c′ ∈ CF (c) : ϕF,t(G)c′ ≥ ϕF,t(H)c′).

Specifically, this implies that using Proposition 13 as an
assumption on the distances between graphs within one class
and between two classes, respectively, implies a margin
increase via Theorem 47 in the appendix. Then Theorem 29
and Theorem 30 in the appendix imply a decrease in VC-
dimension and consequently an increase in generalization
performance when using F . See Corollary 49 in the appendix
for an example where the above conditions are met.

4. Large margins and gradient flow
Proposition 6 and Corollary 7 (in the appendix) ensure the
existence of parameter assignment such that MPNN and
MPNNF architectures generalize. However, it remains un-
clear how to find them. Hence, building on the results in Ji
& Telgarsky (2019), we now show that, under some assump-
tions, MPNNs exhibit an “alignment” property whereby
gradient flow pushes the network’s weights toward the maxi-
mum margin solution.

Formal setup We consider MPNNs following Section 2
and consider graph classification tasks using a readout layer.
We make some simplifying assumptions and consider lin-
ear MPNNs. That is, set the aggregation function AGG to
summation and UPD at layer i is summation followed by a
dense layer with trainable weight matrix W (i) ∈ Rdi×di−1 .
Let G be an n-order graph, if we pack the node embeddings
h
(i)
v into an di × n matrix X(i) whose vth column is h(i)

v ,
then

X(i+1) = W (i+1)X(i)A′(G),

where A′(G) := A(G) + In, In ∈ Rn×n is the n-
dimensional identity matrix, and X = X(0) is the d0 × n
matrix whose columns correspond to vertices’ initial fea-
tures; we also write d = d0. For the permutation-invariant
readout layer, we use simple summation of the final node
embeddings and assume that X(L) is transformed into a
prediction ŷ as follows,

ŷ = READOUT
(
X(L)

)
= X(L) · 1n.

Since we desire a scalar output, we will have dL = 1.

Suppose our training dataset is {(Gi,Xi, yi)}ki=1, where
Xi ∈ Rd×ni is a set of d-dimensional node features over an
ni-order graph Gi with order ni, and yi ∈ {−1,+1} for all
i. We use a loss function ℓ with the following assumption.

Assumption 14. The loss function ℓ : R → R+ has a
continuous derivative ℓ′ such that ℓ′(x) < 0 for all x,
limx→−∞ ℓ(x) = ∞, and limx→∞ ℓ(x) = 0.
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The empirical risk induced by the MPNN is

R(W (L), . . . ,W (1)) =
1

k

k∑
i=1

ℓ(yi, ŷi)

=
1

k

k∑
i=1

ℓ(WprodZiA
′(G)L1ni

),

where Wprod = W (L)W (L−1) · · ·W (1), and Zi = yiXi.

We consider gradient flow and gradient descent. In gradient
flow, the evolution of W = (W (L),W (L−1), . . . ,W (1))
is given by {W (t) : t ≥ 0}, where there is an initial state
W (0) at t = 0, and

dW (t)

dt
= −∇R(W (t)).

We make one additional assumption on the initialization of
the network.

Assumption 15. The initialization of W at t = 0 satisfies
∇R(W (0)) ̸= R(0) = ℓ(0).

Alignment yheorems We now assume the data is MPNN-
separable, i.e., there is a set of weights that correctly classi-
fies every data point. More specifically, assume there is a
vector ū ∈ Rd such that yi · ū⊺XiA

′(Gi)
L1ni > 0 for all

i. Furthermore, the maximum margin is given by

γ = max
∥ū∥=1

min
1≤i≤k

yi · ū⊺XiA
′(Gi)

L1ni
> 0.

while the corresponding solution ū ∈ Rd is given by

argmax
∥ū∥=1

min
1≤i≤k

yi · ū⊺XiA
′(Gi)

L1ni
.

Furthermore, those vi = ZiA
′(Gi)

L1ni
for which

⟨ū,vi⟩ = γ are called support vectors.

Our first main result shows that under gradient flow, the train-
able weight vectors of our MPNN architecture get “aligned.”

Theorem 16. Suppose Assumption 14 and Assumption 15
hold. Let ui(t) ∈ Rdi and vi(t) ∈ Rdi−1 denote the left and
right singular vectors, respectively, of W (i)(t) ∈ Rdi×di−1 .
Then, we have the following using the Frobenius norm ∥·∥F :

• For j = 1, 2, . . . , L, we have

lim
t→∞

∥∥∥∥ W (j)(t)

∥W (j)(t)∥F
− uj(t)vj(t)

⊺

∥∥∥∥
F

= 0.

• Also,

lim
t→∞

∣∣∣∣∣
〈
(W (L)(t) · · ·W (1)(t))⊺∏L

j=1 ∥W (j)(t)∥F
,v1

〉∣∣∣∣∣ = 1.

Furthermore, we show that under mild assumptions, the
weights converge to the maximum margin solution ū.

Assumption 17. The support vectors vi = ZiA
′(Gi)

L1ni

span Rd.

Note that, for unlabeled graphs, due to separability, the above
assumption is trivially fulfilled.

Theorem 18 (Convergence to the maximum margin solution).
Suppose Assumption 14 and Assumption 17 hold. Then, for
the exponential loss function ℓ(x) = e−x, under gradient
flow, we have that the learned weights of the MPNN converge
to the maximum margin solution, i.e.,

lim
t→∞

W (L)(t)W (L−1)(t) · · ·W (1)(t)

∥W (L)(t)∥F ∥W (L−1)(t)∥F · · · ∥W (1)(t)∥F
= ū.

We note here that the results can be straightforwardly ad-
justed to MPNNF architectures.

5. Experimental evaluation
In the following, we investigate to what extent our theoretical
results translate into practice. Specifically, we answer the
following questions.
Q1 Does adding expressive power make datasets more lin-
early separable?
Q2 Can the increased generalization performance of a more
expressive variant of the 1-WL algorithm be explained by an
increased margin?
Q3 Does the 1-WLOAF lead to increased predictive perfor-
mance?
Q4 Do the results lift to MPNNs?
See Appendix G for further details, the experi-
mental protocol, and model configurations. The
source code of all methods and evaluation proce-
dures is available at https://www.github.com/
chrsmrrs/wl_vc_expressivity.

Results and discussion In the following, we answer ques-
tions Q1 to Q4.

Q1 (“Does adding expressive power make datasets more lin-
early separable?”) See Tables 1, 3 and 6 (in the appendix).
Table 1 confirms Proposition 9, i.e., the 1-WL and 1-WLOA
kernels do not achieve accuracies better than random and
cannot linearly separate the training data. The 1-WLF and
1-WLOAF kernel, linearly separate the data while achieving
perfect test accuracies. In addition, Table 3 also confirms
this for the ER graphs, i.e., for all datasets, the 1-WL and
1-WLOA kernels cannot separate the training data while the
1-WLF and 1-WLOAF can. Moreover, the subgraph-based
kernels achieve the overall best predictive performance over
all datasets, e.g., on the dataset using edge probability 0.2
and F = {C5} the test accuracies of the 1-WLF improves
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Table 1: Experimental validation of Proposition 9 for different numbers of vertices (n), reporting mean test accuraccies and
margins. NLS—Not linearly separable. DNC—Did not compute due to implicit kernel.

Algorithm
Number of vertices (n).

16 32 64 128

1-WL 46.6 ±1.1 NLS 47.3 ±1.7 NLS 47.1 ±1.1 NLS 46.5 ±0.7 NLS
1-WLOA 36.8 ±1.3 DNC 37.4 ±1.7 DNC 37.3 ±0.9 DNC 37.8 ±1.2 DNC
MPNN 47.9 ±0.7 DNC 49.0 ±1.6 DNC 48.3 ±1.3 DNC 47.9 ±1.6 DNC

1-WLF 100.0 ±0.0 0.006 < 0.0001 100.0 ±0.0 0.014 < 0.0001 100.0 ±0.0 0.030 < 0.0001 100.0 ±0.0 0.062 < 0.0001

1-WLOAF 100.0 ±0.0 DNC 100.0 ±0.0 DNC 100.0 ±0.0 DNC 100.0 ±0.0 DNC
MPNNF 100.0 ±0.1 DNC 100.0 ±0.1 DNC 100.0 < 0.1 DNC 100.0 ±0.1 DNC
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Figure 1: Plot illustrating the relation between the margin and generalization error for the ER graphs for different choices of
F .

over the 1-WL by more than 57 %. Similar effects can be
observed for the MPNN architectures; see Table 6.

Q2 (“Can the increased generalization performance of a
more expressive variant of the 1-WL algorithm be explained
by an increased margin?”) See Tables 3 and 5 and Fig-
ure 1 (in the appendix). On the TUDATASETS, an increased
margin often leads to less difference between train and test ac-
curacy; see Table 5. For example, on the PROTEINS dataset,
the 1-WLF , leads to a larger difference for all F , while its
margin is always strictly smaller than 1-WL’s margin. Hence,
the empirical results align with our theory, i.e., a smaller
margin worsens the generalization error. Similar effects can
be observed for all other datasets, except MUTAG. On the
ER dataset, comparing the 1-WL and 1-WLF , for all F , we
can clearly confirm the theoretical results. That is, the 1-WL
cannot separate any dataset with a positive margin, while the
1-WLF can, and we observe a decreased difference between
1-WLF ’s train and test accuracies compared to the 1-WL.
Analyzing the 1-WLF further, for all F , a decreasing margin
always results in an increased difference between test and
train accuracies. For example, for F = {C4} and p = 0.05,
the 1-WLF achieves a margin of 0.037 with a difference of
0.1 %, for p = 0.1, it achieves a margin of 0.009 with a dif-
ference of 1.8 %, for p = 0.2, it achieves a margin of 0.002
with a difference of 31.2 %, and, for p = 0.3, it achieve

a margin of 0.003 with difference of 95.8 %. Moreover,
see Figure 1 of visual illustration of this observation.

See Appendix G for Q3 and Q4.

6. Conclusion
Here, we focused on determining the precise conditions
under which increasing the expressive power of MPNN or
kernel architectures leads to a provably increased generaliza-
tion performance. When viewed through graph isomorphism,
we first showed that an architecture’s expressivity offers
limited insights into its generalization performance. Addi-
tionally, we focused on augmenting 1-WL with subgraph
information and derived tight upper and lower bounds for the
architectures’ VC dimension parameterized by the margin.
Based on this, we derived data distributions where increased
expressivity either leads to improved generalization perfor-
mance or not. Finally, we introduced variations of expressive
1-WL-based kernels and neural architectures with provable
generalization properties. Our empirical study confirmed the
validity of our theoretical findings. Our theoretical results
constitute an essential initial step in unraveling the conditions
under which more expressive MPNN and kernel architec-
tures yield enhanced generalization performance. Hence,
our theory lays a solid foundation for the systematic and
principled design of novel expressive MPNN architectures.
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tending to graph transformers. ArXiv preprint, 2023.

Murphy, R. L., Srinivasan, B., Rao, V. A., and Ribeiro, B.
Relational pooling for graph representations. In Interna-
tional Conference on Machine Learning, pp. 4663–4673,
2019.

Nguyen, H. and Maehara, T. Graph homomorphism convo-
lution. In International Conference on Machine Learning,
pp. 7306–7316, 2020.

Papp, P. A. and Wattenhofer, R. A theoretical comparison of
graph neural network extensions. In International Confer-
ence on Machine Learning, pp. 17323–17345, 2022.

Papp, P. A., K. Martinkus, L. F., and Wattenhofer, R.
DropGNN: Random dropouts increase the expressive-
ness of graph neural networks. In Advances in Neural
Information Processing Systems, 2021.

Puny, O., Lim, D., Kiani, B. T., Maron, H., and Lipman, Y.
Equivariant polynomials for graph neural networks. ArXiv
preprint, 2023.

Qian, C., Rattan, G., Geerts, F., Morris, C., and Niepert, M.
Ordered subgraph aggregation networks. In Advances in
Neural Information Processing Systems, 2022.

Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck,
G. V., Niepert, M., and Morris, C. Probabilistically
rewired message-passing neural networks. ArXiv preprint,
2023.

13



Weisfeiler–Leman at the margin

Rosenbluth, E., Tönshoff, J., and Grohe, M. Some might say
all you need is sum. ArXiv preprint, 2023.

Sato, R., Yamada, M., and Kashima, H. Random features
strengthen graph neural networks. In SIAM International
Conference on Data Mining, pp. 333–341, 2021.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Scarselli, F., Tsoi, A. C., and Hagenbuchner, M. The Vapnik-
Chervonenkis dimension of graph and recursive neural
networks. Neural Networks, pp. 248–259, 2018.

Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt,
C., Huhn, G., and Schomburg, D. Brenda, the enzyme
database: updates and major new developments. Nucleic
acids research, pp. D431–3, 2004.

Shervashidze, N., Vishwanathan, S. V. N., Petri, T. H.,
Mehlhorn, K., and Borgwardt, K. M. Efficient graphlet
kernels for large graph comparison. In International
Conference on Artificial Intelligence and Statistics, pp.
488–495, 2009.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-Lehman
graph kernels. Journal of Machine Learning Research, pp.
2539–2561, 2011.

Simonovsky, M. and Komodakis, N. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 29–38, 2017.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The implicit bias of gradient descent on sepa-
rable data. Journal of Machine Learning Research, 19:
70:1–70:57, 2018.

Sperduti, A. and Starita, A. Supervised neural networks
for the classification of structures. IEEE Transactions on
Neural Networks, 8(3):714–35, 1997.

Stokes, J., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A.,
Donghia, N., MacNair, C., French, S., Carfrae, L., Bloom-
Ackerman, Z., Tran, V., Chiappino-Pepe, A., Badran, A.,
Andrews, I., Chory, E., Church, G., Brown, E., Jaakkola,
T., Barzilay, R., and Collins, J. A deep learning approach
to antibiotic discovery. Cell, pp. 688–702.e13, 2020.

Talak, R., Hu, S., Peng, L., and Carlone, L. Neural trees for
learning on graphs. ArXiv preprint, 2021.

Thiede, E. H., Zhou, W., and Kondor, R. Autobahn:
Automorphism-based graph neural nets. In Advances
in Neural Information Processing Systems, pp. 29922–
29934, 2021.

Tolstikhin, I. O. and Lopez-Paz, D. Minimax lower bounds
for realizable transductive classification. ArXiv preprint,
2016.

Tönshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Graph
learning with 1D convolutions on random walks. ArXiv
preprint, 2021.

Vapnik, V. Statistical learning theory. Wiley, 1998.

Vapnik, V. N. The Nature of Statistical Learning Theory.
Springer, 1995.

Vapnik, V. N. and Chervonenkis, A. A note on one class of
perceptrons. Avtomatika i Telemekhanika, 24(6):937–945,
1964.

Velingker, A., Sinop, A. K., Ktena, I., Velickovic, P., and
Gollapudi, S. Affinity-aware graph networks. ArXiv
preprint, 2022.
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A. Extended related work
Here, we give a more detailled account of related work.

A.1. Graph kernels based on the 1-WL

Shervashidze et al. (2011) were the first to utilize the 1-WL as a graph kernel. Later, Morris et al. (2017; 2020b; 2022)
generalized this to variants of the k-WL. Moreover, Kriege et al. (2016) derived the Weisfeiler-Leman optimal assignment
kernel, using the 1-WL to compute optimal assignments between vertices of two given graphs. Yanardag & Vishwanathan
(2015a) successfully employed the Weisfeiler–Leman kernels within frameworks for smoothed (Yanardag & Vishwanathan,
2015a) and deep graph kernels (Yanardag & Vishwanathan, 2015b). For a theoretical investigation of graph kernels based on
the 1-WL, see (Kriege et al., 2018). See also (Morris et al., 2021) for an overview of the Weisfeiler–Leman algorithm in
machine learning and Borgwardt et al. (2020); Kriege et al. (2020) for a detailed review of graph kernels.

A.2. MPNNs

Recently, MPNNs (Gilmer et al., 2017; Scarselli et al., 2009) emerged as the most prominent graph representation learning
architecture. Notable instances of this architecture include, e.g., Duvenaud et al. (2015); Hamilton et al. (2017), and Veličković
et al. (2018), which can be subsumed under the message-passing framework introduced in Gilmer et al. (2017). In parallel,
approaches based on spectral information were introduced in, e.g., Bruna et al. (2014); Defferrard et al. (2016); Gama
et al. (2019); Kipf & Welling (2017); Levie et al. (2019), and Monti et al. (2017)—all of which descend from early
work in Baskin et al. (1997); Goller & Küchler (1996); Kireev (1995); Merkwirth & Lengauer (2005); Micheli & Sestito
(2005); Micheli (2009); Scarselli et al. (2009), and Sperduti & Starita (1997). Rcently, connections between MPNNs and
Weisfeiler–Leman-type algorithms have been shown (Barceló et al., 2020; Geerts et al., 2021; Morris et al., 2019; Xu et al.,
2019). Specifically, Morris et al. (2019) and Xu et al. (2019) showed that the 1-WL limits the expressive power of any possible
MPNN architecture in distinguishing non-isomorphic graphs. (Bouritsas et al., 2020) showed how to make MPNNs more
expressive by incorporating subgraph information; see Appendix A for an extended discussion on more expressive MPNNs.

A.3. Expressive power of MPNNs

Recently, connections between MPNNs and Weisfeiler–Leman-type algorithms have been shown (Barceló et al., 2020; Geerts
et al., 2021; Morris et al., 2019; Xu et al., 2019). Specifically, Morris et al. (2019) and Xu et al. (2019) showed that the 1-WL
limits the expressive power of any possible MPNN architecture in distinguishing non-isomorphic graphs. In turn, these
results have been generalized to the k-WL, e.g., Azizian & Lelarge (2021); Geerts (2020); Maron et al. (2019); Morris et al.
(2019; 2020b; 2022), and connected to the permutation-equivariant function approximation over graphs, see, e.g., Chen et al.
(2019); Geerts & Reutter (2022); Maehara & NT (2019); Azizian & Lelarge (2021). Furthermore, Aamand et al. (2022);
Amir et al. (2023) devised an improved analysis using randomization and moments of neural networks, respectively. Recent
works have extended the expressive power of MPNNs, e.g., by encoding vertex identifiers (Murphy et al., 2019; Vignac et al.,
2020), using random features (Abboud et al., 2021; Dasoulas et al., 2020; Sato et al., 2021) or individualization-refinement
algorithms (Franks et al., 2023), affinity measures (Velingker et al., 2022), equivariant graph polynomials (Puny et al., 2023),
homomorphism and subgraph counts (Barceló et al., 2021; Bouritsas et al., 2020; Nguyen & Maehara, 2020), spectral
information (Balcilar et al., 2021), simplicial (Bodnar et al., 2021b) and cellular complexes (Bodnar et al., 2021a), persistent
homology (Horn et al., 2022), random walks (Tönshoff et al., 2021; Martinkus et al., 2022), graph decompositions (Talak
et al., 2021), relational (Barceló et al., 2022), distance (Li et al., 2020) and directional information (Beaini et al., 2021), graph
rewiring (Qian et al., 2023) and adaptive message passing (Finkelshtein et al., 2023), subgraph information (Bevilacqua et al.,
2022; Cotta et al., 2021; Feng et al., 2022; Frasca et al., 2022; Huang et al., 2022; Morris et al., 2021; Papp et al., 2021; Papp
& Wattenhofer, 2022; Qian et al., 2022; Thiede et al., 2021; Wijesinghe & Wang, 2022; You et al., 2021; Zhang & Li, 2021;
Zhao et al., 2022; Zhang et al., 2023a), and biconnectivity (Zhang et al., 2023b). See Morris et al. (2021) for an in-depth
survey on this topic. Geerts & Reutter (2022) devised a general approach to bound the expressive power of a large variety of
MPNNs using 1-WL or k-WL.

Recently, Kim et al. (2022) showed that transformer architectures (Müller et al., 2023) can simulate the 2-WL. Grohe
(2023) showed tight connections between MPNNs’ expressivity and circuit complexity. Moreover, Rosenbluth et al. (2023)
investigated the expressive power of different aggregation functions beyond sum aggregation. Finally, Böker et al. (2023)
defined a continuous variant of the 1-WL, deriving a more fine-grained topological characterization of the expressive power of
MPNNs.
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A.4. Generalization abilities of graph kernels and MPNNs

Scarselli et al. (2018) used classical techniques from learning theory (Karpinski & Macintyre, 1997) to show that MPNNs’
VC dimension (Vapnik, 1995) with piece-wise polynomial activation functions on a fixed graph, under various assumptions, is
in O(P 2n log n), where P is the number of parameters and n is the order of the input graph; see also Hammer (2001). We
note here that Scarselli et al. (2018) analyzed a different type of MPNN not aligned with modern MPNN architectures (Gilmer
et al., 2017). Garg et al. (2020) showed that the empirical Rademacher complexity (see, e.g., Mohri et al. (2012)) of a specific,
simple MPNN architecture, using sum aggregation, is bounded in the maximum degree, the number of layers, Lipschitz
constants of activation functions, and parameter matrices’ norms. We note here that their analysis assumes weight sharing
across layers. Liao et al. (2021) refined these results via a PAC-Bayesian approach, further refined in Ju et al. (2023). Maskey
et al. (2022) used random graphs models to show that MPNNs’ generalization ability depends on the (average) number
of vertices in the resulting graphs. In addition, Levie (2023) defined a measure of a natural graph-signal similarity notion,
resulting in a generalization bound for MPNNs depending on the covering number and the number of vertices. Verma &
Zhang (2019) studied the generalization abilities of 1-layer MPNNs in a transductive setting based on algorithmic stability.
Similarly, Esser et al. (2021) used stochastic block models to study the transductive Rademacher complexity (El-Yaniv &
Pechyony, 2007; Tolstikhin & Lopez-Paz, 2016) of standard MPNNs. For semi-supervised node classification, (Baranwal
et al., 2021) studied the classification of a mixture of Gaussians, where the data corresponds to the node features of a
stochastic block model, under which conditions the mixture model is linearly separable using the GCN layer (Kipf & Welling,
2017). Most recently, (Morris et al., 2023) made progress connecting MPNNs’ expressive power and generalization ability via
the Weisfeiler–Leman hierarchy. They studied the influence of graph structure and the parameters’ encoding lengths on
MPNNs’ generalization by tightly connecting 1-WL’s expressivity and MPNNs’ Vapnik–Chervonenkis (VC) dimension. They
derived that MPNNs’ VC dimension depends tightly on the number of equivalence classes computed by the 1-WL over a
given set of graphs. Moreover, they showed that MPNNs’ VC dimension depends logarithmically on the number of colors
computed by the 1-WL and polynomially on the number of parameters. Kriege et al. (2018) leveraged results from graph
property testing (Goldreich, 2010) to study the sample complexity of learning to distinguish various graph properties, e.g.,
planarity or triangle freeness, using graph kernels (Borgwardt et al., 2020; Kriege et al., 2020). Finally, (Yehudai et al., 2021)
showed negative results for MPNNs’ generalization ability to larger graphs.

B. Extended notation
Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use {{. . .}} to denote multisets, i.e., the generalization
of sets allowing for multiple instances for each of its elements. For two sets X and Y , let XY denote the set of functions
mapping from Y to X . Let S ⊂ Rd, then the convex hull conv(S) is the minimal convex set containing the set S. For
p ∈ Rd, d > 0, and ε > 0, the ball B(p, ε, d) := {s ∈ Rd | ∥p− s∥ ≤ ε}. Here, and in the remainder of the paper, ∥ · ∥
refers to the 2-norm ∥x∥ :=

√
x2
1 + · · ·+ x2

d for x ∈ Rd.

Graphs An (undirected) graph G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G) and edges E(G) ⊆
{{u, v} ⊆ V (G) | u ̸= v}. For ease of notation, we denote an edge {u, v} in E(G) by (u, v) or (v, u). The order of a graph
G is its number |V (G)| of vertices. If not stated otherwise, we set n := |V (G)| and call G an n-order graph. We denote
the set of all n-order graphs by Gn. For a graph G ∈ Gn, we denote its adjacency matrix by A(G) ∈ {0, 1}n×n, where
A(G)vw = 1 if, and only, if (v, w) ∈ E(G). We use standard notation

The neighborhood of v ∈ V (G) is denoted by N(v) := {u ∈ V (G) | (v, u) ∈ E(G)} and the degree of a vertex v
is |N(v)|. A (vertex-)labeled graph G is a triple (V (G), E(G), ℓ) with a (vertex-)label function ℓ : V (G) → N. Then
ℓ(v) is a label of v, for v ∈ V (G). For X ⊆ V (G), the graph G[X] := (X,EX) is the subgraph induced by X , where
EX := {(u, v) ∈ E(G) | u, v ∈ X}. Two graphs G and H are isomorphic, and we write G ≃ H if there exists a bijection
φ : V (G) → V (H) preserving the adjacency relation, i.e., (u, v) is in E(G) if, and only, if (φ(u), φ(v)) is in E(H). Then
φ is an isomorphism between G and H . In the case of labeled graphs, we additionally require that l(v) = l(φ(v)) for all v in
V (G). We denote the complete graph on n vertices by Kn and a cycle on n vertices by Cn. for r ≥ 0, a graph is r-regular if
all of its vertices have degree r. Given two graphs G and H with disjoint vertex sets, we denote their disjoint union by G ∪̇H .

C. Simple MPNNs
Here, we provide more details on the simple MPNNs mentioned in Section 2. That is, for given d and L ∈ N, we define
the class MPNNmlp(d, L) of simple MPNNs as L-layer MPNNs for which, according to Section 2, for each t ∈ [L], the
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aggregation function AGG(t) is summation and the update function UPD(t) is a multilayer perceptron mlp(t) : R2d → Rd of
width at most d. Similarly, the readout function in Equation (1) consists of a multilayer perceptron mlp : Rd → Rd applied
on the sum of all vertex features computed in layer L.1 More specifically, MPNNs in MPNNmlp(d, L) compute on a labeled
graph G = (V (G), E(G), ℓ) with d-dimensional initial vertex features h(0)

v ∈ Rd, consistent with ℓ, the following vertex
features, for each v ∈ V (G),

h(t)
v := mlp(t)

(
h(t−1)
v ,

∑
u∈N(v)

h(t−1)
u

)
∈ Rd,

for t ∈ [L], and

hG := mlp
( ∑
v∈V (G)

h(L)
v

)
∈ Rd.

Note that the class MPNNmlp(d, L) encompasses the GNN architecture derived in Morris et al. (2019) that has the same
expressive power as the 1-WL in distinguishing non-isomorphic graphs.

Notation In the subsequent sections, we use the following notation for MPNNs. We denote the class of all (labeled)
graphs by G. For d, l > 0, we denote the class of MPNNs using summation for aggregation, and such that update and
readout functions are multilayer perceptrons (MLPs), all of a width of at most d, by MPNNmlp(d, L). We refer to elements in
MPNNmlp(d, L) as simple MPNNs; see Appendix C for details. We stress that simple MPNNs are already expressive enough
to be equivalent to the 1-WL in distinguishing non-isomorphic graphs (Morris et al., 2019). The class MPNNmlp,F (d, L) is
defined similarly, based on MPNNF s.

D. Graph kernels based on the 1-WLF

Similar to the 1-WL, we can also define a graph kernel based on the 1-WLF . Let G be a graph, we run the 1-WLF for T ≥ 0
iterations, resulting in a coloring function C1,F

t → Σt for each iteration t ≤ T . Let Σt denote the range of C1,F
t , i.e.,

Σt := {c | ∃ v ∈ V (G) : C1,F
t (v) = c}. Again, we assume Σt to be ordered by the natural order of N, i.e., we assume that

Σt consists of c1 < · · · < c|Σt|. After each iteration, we compute a feature vector ϕF,t(G) ∈ R|Σt| for each graph G. Each
component ϕF,t(G)i counts the number of occurrences of vertices of G labeled by ci ∈ Σt. The overall feature vector
ϕWLF (G) is defined as the concatenation of the feature vectors of all T iterations, i.e.,

ϕ
(T )
WLF (G) :=

[
ϕF,0(G), . . . , ϕF,T (G)

]
,

where [. . . ] denote column-wise vector concatenation. We then define the kernel and its normalized counterpart in the same
way as with the 1-WL.

E. Proofs missing from the main paper
Here, we outline proofs missing in the main paper.

E.1. Fundamentals

Here, we prove some fundamental statements for later use.

Margin optimization Let (x1, y1), . . . , (xn, yn) ∈ Rd × {0, 1}, d > 0, be a linearly separable sample, and let I+ :=
{i ∈ [n] | yi = 1} and I− := {i ∈ [n] | yi = 0}. Consider the well-known alternative—to the typical hard-margin SVM
formulation—optimization problem for finding the minimum distance between the convex sets induced by the two classes,

1For simplicity, we assume that all feature dimensions of the layers are fixed to d ∈ N.
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i.e.,
2λ := min

α∈R|I+|,β∈R|I−|
∥x+

α − x−
β ∥

s.t. x+
α =

∑
i∈I+

αixi, x−
β =

∑
j∈I−

βjxj∑
i∈I+

αi = 1,
∑
j∈I−

βj = 1,

∀ i ∈ I+, j ∈ I− : αi ≥ 0, βj ≥ 0,

(2)

where α and β are the variables determining the convex combinations for both the positive and negative classes. Moreover, λ
is exactly the margin that is computed by the typical hard-margin SVM and from the optimal arguments α∗ and β∗, we can
compute the usual hard-margin solution w and b as:

w :=
x+
α∗ − x−

β∗

λ2

b :=
∥x−

β∗∥2 − ∥x+
α∗∥2

2λ2

.

We can describe ∥x+
α − x−

β ∥2 by a sum of pairwise distances.∥∥∥∥x+
α − x−

β

∥∥∥∥2 =

∥∥∥∥∑
i∈I+

αixi −
∑
j∈I−

βjxj

∥∥∥∥2

=

∥∥∥∥∑
i∈I+

αixi

∑
j∈I−

βj −
∑
j∈I−

βjxj

∑
i∈I+

αi

∥∥∥∥2

=

∥∥∥∥∑
i∈I+

∑
j∈I−

αiβjxi −
∑
i∈I+

∑
j∈I−

αiβjxj

∥∥∥∥2

=

∥∥∥∥ ∑
(i,j)∈I+×I−

δi,j(xi − xj)

∥∥∥∥2 (δi,j := αiβj)

=
∑

(i,j)∈I+×I−

∑
(k,l)∈I+×I−

δi,jδk,l(xi − xj)
⊺(xk − xl)

=
∑

(i,j),(k,l)∈I+×I−

δi,jδk,l(−x⊺
i xl − x⊺

jxk + x⊺
i xk + x⊺

jxl)

=
1

2

∑
(i,j),(k,l)∈I+×I−

δi,jδk,l(∥xi − xl∥2 + ∥xj − xk∥2 − ∥xi − xk∥2 − ∥xj − xl∥2). (3)

We remark that the pairwise distances indexed by (i, l) and (j, k) represent inter-class distances, since yi = yk = 1 and
yj = yl = 0. Along the same line, the pairwise distances indexed by (i, k) and (j, l) represent intra-class distances.

Proposition 19. Let (x1, y1), . . . , (xn, yn) and (x̃1, y1), . . . , (x̃n, yn) in Rd be two linearly-separable samples, with
margins λ and λ̃, respectively, with the same labels yi ∈ {0, 1}. If

min
yi ̸=yj

∥x̃i − x̃j∥2 − ∥xi − xj∥2 > max
yi=yj

∥x̃i − x̃j∥2 − ∥xi − xj∥2, (4)

then λ̃ > λ. That is, we get an increase in margin if the minimum increase in distances between classes considering the two
samples is strictly larger than the maximum increase in distance within each class.

Proof. Let
∆min := min

yi ̸=yj

∥x̃i − x̃j∥2 − ∥xi − xj∥2,
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and
∆max := max

yi=yj

∥x̃i − x̃j∥2 − ∥xi − xj∥2.

By Equation (4), ∆min > ∆max. Starting at Equation (3),

∥x+
α − x−

β ∥2 =
1

2

∑
(i,j)

∑
(k,l)

αi,jαk,l(∥xi − xl∥2 + ∥xj − xk∥2 − ∥xi − xk∥2 − ∥xj − xl∥2)

<
1

2

∑
(i,j)

∑
(k,l)

αi,jαk,l(∥xi − xl∥2 +∆min + ∥xj − xk∥2 +∆min

− ∥xi − xk∥2 −∆max − ∥xj − xl∥2 −∆max

≤ 1

2

∑
(i,j)

∑
(k,l)

αi,jαk,l(∥x̃i − x̃l∥2 + ∥x̃j − x̃k∥2 − ∥x̃i − x̃k∥2 − ∥x̃j − x̃l∥2)

= ∥x̃+
α − x̃−

α∥2,

where x̃+
α and x̃−

α are derived from applying the optimization (2) to the datapoints (x̃1, y1), . . . , (x̃n, yn).

In the following, we omit all of the conditions from Equation (2) for simplicity. Let x+∗ and x−∗ be the representatives of
the optimal solution to Equation (2), then

∀α : γ = ∥x+∗ − x−∗∥ ≤ ∥x+
α − x−

α∥.

Hence,
∀α : γ = ∥x+∗ − x−∗∥ ≤ ∥x+

α − x−
α∥ < ∥x̃+

α − x̃−
α∥,

which implies that
γ < min

α
∥x̃+

α − x̃−
α∥ =: γ̃,

showing the desired result.

Concatenating feature vectors We will consider concatenating two feature vectors and analyze how this affects attained
margins. To this end, let X := {(xi, yi) ∈ Rd × {0, 1} | i ∈ [n]}. When we split up Rd into Rd1 × Rd2 , we write
xi := (x1

i ,x
2
i ) with x1

i ∈ Rd1 and x2
i ∈ Rd2 .

Proposition 20. If X := {(x1, y1), . . . , (xn, yn)} is a sample, such that

1. (x1
1, y1), . . . , (x

1
n, yn) is (r1, γ1)-separable and

2. (x2
1, y1), . . . , (x

2
n, yn) is (r2, γ2)-separable,

then (x1, y1), . . . , (xn, yn) is (
√

r21 + r22,
√
γ2
1 + γ2

2)-separable.

Proof. Let I := I+ ∪̇ I− satisfying yi = 1 if, and only, if i ∈ I+ and yi = 0 if, and only, if i ∈ I−, p := |I|, p+ := |I+|
and p− := |I−|. Further, let x+

i := xi, (x1
i )

+ := (x1
i , 0), (x

2
i )

+ := (0,x2
i ) for i ∈ I+, and x−

i := xi, (x1
i )

− := (x1
i , 0),

and (x2
i )

− := (0,x2
i ) for i ∈ I−. We collect x+

i , x−
i , (x1

i )
+, (x2

i )
+, (x1

i )
−, and (x2

i )
− into matrices X+ ∈ Rp+×d,

X− ∈ Rp−×d, X+
1 , X+

2 ∈ Rp+×d, and X−
1 ,X−

2 ∈ Rp−×d.

The margins γ1, γ2, and γ (the margin of (x1, y1), . . . , (xn, yn)) are given by

γ1 := min
α∈(R+,p+ ,β∈R+,p− ,1⊺α=1=1⊺β

∥(X+
1 )⊺α− (X−

1 )⊺β∥

γ2 := min
α∈R+,p+ ,β∈R+,p− ,1⊺α=1=1⊺β

∥(X+
2 )⊺α− (X−

2 )⊺β∥

γ := min
α∈R+,p+ ,β∈R+,p− ,1⊺α=1=1⊺β

∥(X+)⊺α− (X−)⊺β∥,

20



Weisfeiler–Leman at the margin

where R+ is the set of positive real numbers and 1 is a vector of ones of appropriate size. We have

∥(X+)⊺α− (X−)⊺β∥2 = ∥(X+
1 )⊺α1 + (X+

2 )⊺α2 − (X−
1 )⊺β1 − (X−

2 )⊺β2∥2

= ∥((X+
1 )⊺α1 − (X−

1 )⊺β1) + ((X+
2 )⊺α2 − (X−

2 )⊺β2)∥2

= ∥(X+
1 )⊺α1 − (X−

1 )⊺β1∥2 + ∥(X+
2 )⊺α2 − (X−

2 )⊺β2∥2.
The latter terms attain, by assumption, minimal values of γ1 and γ2, respectively. Thus, γ2 = γ2

1 + γ2
2 . Also note that

∥xi∥2 ≤ r21 + r22 for all i ∈ I . This implies that (x1, y1), . . . , (xn, yn) is (
√
r21 + r22,

√
γ2
1 + γ2

2)-separable.

Existence of regular graphs The following result ensures the existence of enough regular graphs needed for the proof
of Theorem 2 and its variants.
Lemma 21. For any even n and all i ∈ {0, . . . , n− 1}, there exists an i-regular graph with one orbit containing all vertices.

Proof. Let n be even, and let c be an arbitrary natural number. We define

Eodd := {(i, i+ n/2) | i ∈ [n/2]},
and

Ec := {(i, i+ c mod n) | i ∈ [n]},
where mod is the modulo operator with equivalence classes [n]. It is easily verified that for any C ∈ N, ([n],

⋃
c∈[C] Ec) is a

2C-regular graph. Also, ([n], Eodd ∪
⋃

c∈[C] Ec) is a 2C + 1-regular graph. The permutation, in cycle notation, (1, 2, . . . , n)
is an automorphism for both graphs, implying that all vertices are in the same orbit.

Remark 22. For any odd n, no i-regular graph exists with i odd. This is a classical textbook question that can be verified by
handshaking. For regular graphs, ∑

i∈[n]

deg(i) = i · n.

Summing the degrees for each vertex counts each edge twice. Thus, i · n must be even, and since n is odd, i must be even.

E.2. Expressive power of enhanced variants

We now prove results on the expressive power of the 1-WLF .
Proposition 23. Let G be a graph and F be a set of graphs. Then, for all rounds, the 1-WLF distinguishes at least the same
vertices as the 1-WL.

Proof. Using, induction on t, we show that, for all vertices v, w ∈ V (G),

C1,F
t (v) = C1,F

t (w) implies C1
t (v) = C1

t (w). (5)

The base case, t = 0, is clear since 1-WLF refines the single color class induced by C1
0 . For the induction, assume that

Equation (5) holds and assume that, C1,F
t+1(v) = C1,F

t+1(w) holds. Hence, C1
t (v) = C1

t (w) and

{{C1,F
t (a) | a ∈ N(v)}} = {{C1,F

t (b) | b ∈ N(w)}}
holds. Hence, there is a color-preserving bijection φ : N(v) → N(w) between the above two multisets, i.e., C1,F

t (a) =

C1,F
t (φ(a)), for a ∈ N(v). Hence, by Equation (5), C1

t (a) = C1
t (φ(a)), for a ∈ N(v). Consequently, it holds that

C1
t+1(v) = C1

t+1(w), proving the desired result.

In addition, by choosing the set of graphs F appropriately, 1-WLF gets strictly more expressive than 1-WL in distinguishing
non-isomorphic graphs.
Proposition 24. For every n ≥ 6, there exists at least one pair of non-isomorphic graphs and a set of graphs F containing a
single constant-order graph, such that, for all rounds, 1-WL does not distinguish them while 1-WLF distinguishes them after a
single round.

Proof. For n = 6, we can choose a pair of a 6-cycle and the disjoint union of two 3-cycles. Since both graphs are 2-regular,
the 1-WL cannot distinguish them. By choosing F = {C3}, the 1-WLF distinguishes them. For n > 6, we can simply pad
the graphs with n− 6 isolated vertices.
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E.3. Margin-based upper and lower bounds on the VC dimension of Weisfeiler–Leman-based kernels

We first state the upper bound that we will be using for all the following cases, which is a classical result, for instance based
on fat-shattering.

Lemma 25 (Theorem 1.6 in (Bartlett & Shawe-Taylor, 1999)). Let S ⊆ Rd.

VC-dim(Hr,λ(S)) ∈ O(r
2
/λ2).

We now prove the VC dimension theory results from the main paper. In the following, we will reuse our notation of splitting
up Rd into Rd1 × Rd2 . We write xi = (x

(1)
i ,x

(2)
i ) with x

(1)
i ∈ Rd1 and x

(2)
i ∈ Rd2 . Further, let (x(1)

i )+ := (x
(1)
i , 0), and

(x
(2)
i )+ := (0,x

(2)
i ).

Lemma 26 (Lemma 1 in the main paper). Let S ⊆ Rd. If S contains m := ⌊r2/λ2⌋ vectors b1, . . . , bm ∈ Rd with
bi := (b

(1)
i , b

(2)
i ) and b

(2)
1 , . . . , b

(2)
m being pairwise orthogonal, ∥bi∥ = r′, and ∥b(2)i ∥ = r, then

VC-dim(Hr′,λ(S)) ∈ Ω(r
2
/λ2).

Proof. Following the argument in Alon et al. (2021), we show that the vectors b1, . . . , bm can be shattered. Indeed, let A and
B be two arbitary sets partitioning [m]. Consider the vector

w :=
λ

r2

(∑
i∈A

(b
(2)
i )+ −

∑
i∈B

(b
(2)
i )+

)
.

We observe that, because of assumptions underlying the vectors bi, we have

w⊺bj =

{(
λ
r2

)
· (b(2)j )⊺b

(2)
j = λ if j ∈ A

−
(

λ
r2

)
· (b(2)j )⊺b

(2)
j = −λ if j ∈ B.

In other words, w witnesses that the distance between the convex hull of {bi | i ∈ A} and {bi | i ∈ B} is at least 2λ,
implying the result.

In the following, we will heavily rely upon Lemma 26 and more specifically we can construct m = ⌊r2/λ2⌋ graphs. Since we
will be using regular graphs for simplicity where each regular graph has different regularity, we require n ≥ m, which is true
for n ≥ r2/λ2. Notice that this requirement can be relaxed, and we could, for instance, consider graphs with nodes of two
regularities, which would significantly lower the requirement on n. However, for these graphs, the construction and proofs
would become significantly more complex as we would have to additionally deal with signal propagation within these graphs
until we can guarantee orthogonality of the 1-WL-feature vectors. For this type of proof, we believe en/e ≥ r2/λ2 would need
to hold. However, we leave this to future research.

Theorem 27. For any T, λ > 0, we have,

VC-dim(H√
T+1n,λ(EWL(n, dT ))) ∈ Ω(r

2
/λ2), for r =

√
Tn and n ≥ r2/λ2,

VC-dim(H1,λ(sEWL(n, dT ))) ∈ Ω(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

Proof. The upper bounds follow from the general upper bound described earlier. For the lower bound, we show that for even
n ≥ r2/λ2, there exist m = ⌊r2/λ2⌋ graphs G1, . . . , Gm in Gn such that the vectors bi := ϕ

(1)
WL (Gi) and sbi := sϕ

(1)
WL (Gi)

satisfy the assumptions of Lemma 26. Indeed, we can simply consider Gi to be an (i− 1)-regular graph of order n; see
Lemma 21. We break up the feature vectors into two parts: a one-dimensional part corresponding to the information related to
the initial color and the remaining part containing all other information. We remark that for the 1-WL and for unlabeled
graphs, all vertices have the same initial color. The interesting information is contained in the second part. If we inspect the
1-WL feature vectors, excluding the initial colors, for T = 1 of Gi, we obtain (0, . . . , n︸︷︷︸

pos i

, . . . , 0) in the unnormalized case,

and 1√
1+1n

(0, . . . , n︸︷︷︸
pos i

, . . . , 0) in the normalized case. It is readily verified that b(2)i := (0, . . . , n︸︷︷︸
pos i

, . . . , 0) and b
(1)
i being
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the remaining initial colors are vectors satisfying the assumptions of Lemma 26 in the unnormalized case. For larger T , b(2)i

is ϕ(1)
WL (Gi) except for the initial colors. Note that ∥b(2)i ∥ =

√
Tn = r and ∥bi∥ =

√
T + 1n : = r′. For the normalized

case, one simply needs to rescale with 1/r′. Note that for T > 0, 1/2 ≤ r2/r′2 < 1. This implies a lower bound of Ω( r
2

λ2 ) in
the unnormalized case, and Ω( r2

λ2r′2 ) = Ω( 1
λ2 ) in the normalized case.

So far, we assumed n to be even. For odd n, there is a slight technicality in that we can construct all r-regular graphs where
r is even, i.e., we can construct n+1/2 regular graphs. Analogously this means for odd n and n+1/2 ≥ r2/λ2, which is
equivalent to n ≥ 2r2/λ2 − 1, by a slight variant of Lemma 26 this implies a lower bound of Ω(2r

2
/λ2 − 1) = Ω(r

2
/λ2).

Analogous to the normalized case can be considered for odd n and results in the same bound, which proves the desired
result.

Theorem 28. Let F be a finite set of graphs. For any T, λ > 0, we have,

VC-dim(H√
T+1n,λ(EWL,F (n, dT ))) ∈ Ω(r

2
/λ2), for r =

√
Tn and n ≥ r2/λ2

VC-dim(H1,λ(sEWL,F (n, dT ))) ∈ Ω(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

Proof. This proof is analogous to the proof of Theorem 27. Note that in the proof above, we can choose the regular graphs
such that all vertices in one graph are in the same orbit; see Lemma 21. This implies that if one vertex is colored according to
F , all vertices are colored in the same color, and the feature vectors ϕ(1)

WL,F (Gi) look exactly as described before, implying the
result.

A careful reader might wonder why we did not consider the initial colors in the proofs above. In the 1-WL-case, the initial
colors are the same for all graphs in Gn, i.e., the 1-WL feature vectors take the form (n, . . . ). We could leverage this to
reduce the radius of the hypothesis class slightly. However, when considering the 1-WLF -case, the graphs in F change the
initial colors. Because of our regular graph construction from Lemma 21, all nodes within one graph share the same color,
determined by a subset F ⊆ F , where F contains all graphs that are subgraphs of the regular graph in question. Hence, 2|F|

possible initial colorings of graphs in Gn exists. Also, in both cases, our regular graphs are not necessarily orthogonal in the
dimensions of these initial colors. Therefore, we disregarded them in the constructions of w above.

Theorem 29. For any T, λ > 0, we have,

VC-dim(H√
(T+1)n,λ

(EWLOA(n, dT ))) ∈ Ω(r
2
/λ2), for r =

√
Tn and n ≥ r2/λ2,

VC-dim(H1,λ(sEWLOA(n, dT ))) ∈ Ω(1/λ2), for r =
√

T/(T + 1) and n ≥ r2/λ2.

Proof. This proof is analogous to the proof of Theorem 27 except ∥ϕ(1)
WLOA(Gi)∥ =

√
(T + 1)n =: r′ and ∥ei∥ =

√
Tn = r.

This implies a lower bound of Ω( r
2

λ2 ) in the unnormalized case, and Ω( r2

λ2r′2 ) = Ω( 1
λ2 ) in the normalized case, as

desired.

Theorem 30. Let F be a finite set of graphs. For any T, λ > 0, we have,

VC-dim(H√
(T+1)n,λ

(EWLOA,F (n, dT ))) ∈ Ω(r
2
/λ2), for r =

√
Tn and n ≥ r2/λ2,

VC-dim(H1,λ(sEWLOA,F (n, dT ))) ∈ Ω(1/λ2), for r =
√

T/(T + 1) and n ≥ r2/λ2.

Proof. This proof is analogous to the proofs of Theorems 28 and 29.

Note that the upper bound and the previous theorems on lower bounds imply tight bounds in O-notation.

Corollary 31 (Theorem 2 in the main paper). For any T, λ > 0, we have,

VC-dim(Hr,λ(EWL(n, dT ))) ∈ Θ(r
2
/λ2), for r =

√
T + 1n and n ≥ r2/λ2,

VC-dim(H1,λ(sEWL(n, dT ))) ∈ Θ(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.
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Corollary 32 (Corollary 3 in the main paper). Let F be a finite set of graphs. For any T, λ > 0, we have,

VC-dim(Hr,λ(EWL,F (n, dT ))) ∈ Θ(r
2
/λ2), for r =

√
T + 1n and n ≥ r2/λ2

VC-dim(H1,λ(sEWL,F (n, dT ))) ∈ Θ(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

Corollary 33 (Proposition 4 in the main paper). For any T, λ > 0, we have,

VC-dim(Hr,λ(EWLOA(n, dT ))) ∈ Θ(r
2
/λ2), for r =

√
(T + 1)n and n ≥ r2/λ2,

VC-dim(H1,λ(sEWLOA(n, dT ))) ∈ Θ(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

Corollary 34 (Corollary 5 in the main paper). Let F be a finite set of graphs. For any T, λ > 0, we have,

VC-dim(Hr,λ(EWLOA,F (n, dT ))) ∈ Θ(r
2
/λ2), for r =

√
(T + 1)n and n ≥ r2/λ2,

VC-dim(H1,λ(sEWLOA,F (n, dT ))) ∈ Θ(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

E.3.1. COLORED MARGIN BOUNDS

Given T ≥ 0 and C ⊆ N, we say that a graph G has color complexity (C, T ) if the first T iterations of 1-WL assign colors to
G in the set C. Let GC,T be the class of all graphs of color complexity (C, T ). We note that GC,T possibly contains infinitely
many graphs. Indeed, if C corresponds to the color assigned by 1-WL to degree two nodes, then GC,T contains all 2-regular
graphs.

Let E(C, T, d) be a class of graph embedding methods consisting of mappings from GC,T to Rd. Separability is lifted to the
setting by considering the set of partial concepts defined on GC,T , as follows

Hr,λ(E(C, T, d)) :=
{
h ∈ {0, 1, ⋆}GC,T

∣∣∣ ∀G1, . . . , Gs ∈ supp(h) :

(G1, h(G1)), . . . , (Gs, h(Gs)) is (r, λ)-E(n, d)-separable
}
.

Let sEWL(C, T, d) be the class of embeddings corresponding to the normalized 1-WL kernel, i.e., sEWL(C, T, d) := {G 7→
Ě

ϕ
(T )
WL (G) | G ∈ GC,T }. We note that d is a constant depending on |C| and T we denote this constant by dC,T . An immediate

consequence of the proof of Theorem 2 is that we can obtain a margin-bound for infinite classes of graphs.

Corollary 35. For any T > 0, C ⊆ N, and λ > 0, such that GC,T contains all regular graphs of degree 0, 1, . . . , r
2
/λ2, for

r =
√
T/(T + 1), we have

VC-dim(H1,λ(sEWL(C, T, dC,T ))) ∈ Θ(1/λ2).

E.4. Margin-based bounds on the VC dimension of MPNNs and more expressive architectures

We now lift the above results for the 1-WL kernel to MPNNs. To prove Proposition 6, we show that EMPNN(n, d, T ) contains
EWL(n, dT ). Thereto, the following result shows that MPNNs can compute the 1-WL feature vector.

Proposition 36. Let Gn be the set of n-order graphs and let S ⊆ Gn. Then, for all T ≥ 0, there exists a sufficiently wide
T -layered simple MPNN architecture mpnnn : S → Rd, for an appropriately chosen d > 0, such that, for all G ∈ S,

mpnnn(G) = ϕ
(T )
WL (G).

Proof. The proof follows the construction outlined in the proof of (Morris et al., 2023, Proposition 2). Let s := |S|. Hence,
sn is an upper bound for the number of colors computed by 1-WL over all s graphs in one iteration.

Now, by Morris et al. (2019, Theorem 2), there exists an MPNN architecture with feature dimension (at most) n and consisting
of t layers such that for each graph G ∈ S it computes 1-WL-equivalent vertex features f (t)

v in R1×n for v ∈ V (G). That is,
for vertices v and w in V (G) it holds that

f (t)
v = f (t)

w ⇐⇒ C1
T (v) = C1

T (w).
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We note, by the construction outlined in the proof of Morris et al. (2019, Theorem 2), that f (t)
v , for v ∈ V (G), is defined over

the rational numbers. We further note that we can construct a single MPNN architecture for all s graphs by applying Morris
et al. (2019, Theorem 2) over the disjoint union of the graphs in S. This increases the width from n to sn. We now show how
to compute the 1-WL feature vector of a single iteration t. The overall feature vector can be obtained by (column-wise)
concatenation over all layers.

Since the vertex features are rational, there exists a number M in N such that M · f (t)
v is in N1×sn for all v ∈ V (G) and

G ∈ S, i.e., a vector over N. Now, let

W ′ =

K
sn−1 · · · Ksn−1

... · · ·
...

K0 · · · K0

 ∈ Nsn×2sn,

for a sufficiently large K > 0, then kv := M · f (t)
v W ′, for vertex v ∈ V (G) and graph G ∈ S, computes a vector kv in

N2sn containing 2sn occurrences of a natural number uniquely encoding the color of the vertex v. We next turn kv into a
one-hot encoding. More specifically, we define

h′
v = lsig(kv ◦ (w′′)⊺ + b),

where ◦ denotes element-wise multiplication, with w′′ = (1,−1, 1,−1, . . . , 1,−1) ∈ R2sn and b = (−c1−1, c1+1,−c2−
1, c2 + 1, . . . ,−csn − 1, csn + 1) ∈ R2snwith ci the number encoding the ith color under 1-WL at iteration t on the set S.
We note that for odd i,

(h′
v)i := lsig(C1

t (v)− ci − 1) =

{
1 C1

t (v) ≥ ci

0 otherwise.

and for even i,

(h′
v)i := lsig(−C1

t (v) + ci + 1) =

{
1 C1

t (v) ≤ ci

0 otherwise.

In other words, ((h′
v)i, (h

′
v)i+1) are both 1 if and only if C1

t (v) = ci. We thus obtain one-hot encoding of the color C1
t (v)

by combining ((h′
v)i, (h

′
v)i+1) using an “AND” encoding (e.g., lsig(x+ y − 1)) applied to pairs of consecutive entries in h′

v .
That is,

hv := lsig


h′
v ·



1 0 · · · 0
1 0 · · · 0
0 1 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 1


− (1, 1, . . . , 1)


∈ Rsn.

We obtain the overall 1-WL vector by row-wise summation and concatenation over all layers. We remark that, for a single
iteration, the maximal width of the whole construction is 2sn.

By the above proposition, MPNNs of sufficient width can compute the 1-WL feature vectors. Moreover, the normalization
can be included in the MPNN computation. Hence, we can prove the lower bound by simulating the proof of Theorem 2.
The upper bound follows by the same arguments as described at the beginning of Section 3. The above result can be easily
extended to the 1-WLF , implying Corollary 7.

Corollary 37. Let Gn be the set of n-order graphs, let S ⊆ Gn, and let F be a set of graphs. Then, for all T ≥ 0, there exists
a sufficiently wide T -layered MPNN architecture mpnnn : S → Rd, for an appropriately chosen d > 0, such that, for all
G ∈ S,

mpnnn(G) = ϕ
(T )
1-WLF (G).

Proof sketch. By definition of the 1-WLF , the algorithm is essentially the 1-WL operating on a specifically vertex-labeled
graph. Since Morris et al. (2019, Theorem 2) also works for vertex-labeled graphs, the proof technique for Proposition 36 can
be straightforwardly lifted to the 1-WLF .
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We can also extend Proposition 36 to the 1-WLOA and 1-WLOAF , i.e., derive an MPNN architecture that can compute
1-WLOA’s and 1-WLOAF ’s feature vectors. By that, we can extend Proposition 4 and Corollary 5 to their corresponding
MPNN versions.

Proposition 38. Let Gn be the set of n-order graphs and let S ⊆ Gn. Then, for all T ≥ 0, there exists a sufficiently wide
T -layered MPNN architecture mpnnn : S → Rd, for an appropriately chosen d > 0, such that, for all G ∈ S,

mpnnn(G) = ϕ
(T )
WLOA(G).

Proof. By Proposition 36, there exists a T -layered MPNN architecture mpnnn : S → Rd, for an appropriately chosen d > 0,
such that, for all G ∈ S,

mpnnn(G) = ϕ
(T )
1-WL(G).

We now show how to transform ϕ
(T )
1-WL(G) into ϕ

(T )
WLOA(G). We show the transformation for a single iteration t ≤ T , i.e.,

transforming ϕt,1-WL(G) into ϕt,1-WLOA(G). Let C denote the number of colors at iteration t of the 1-WL over all |S| graphs.
Since n is finite, C is finite as well. That is, ϕt,1-WL(G) has C entries. Hence, the number of components for ϕt,WLOA(G) is at
most Cn. By multiplying ϕt,1-WL(G) with an appropriately chosen matrix M ∈ {0, 1}C×Cn, we get a vector r ∈ RCn,
where each entry of ϕt,1-WL(G) is repeated n times. Specifically,

M :=



1 0 · · · 0
1 0 · · · 0
...

... · · · 0
1 0 · · · 0
0 1 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 1
0 0 · · · 1

0 0 · · ·
...

0 0 · · · 1



∈ {0, 1}C×Cn.

Now let
b := (1, 2, . . . , n, 1, 2, . . . , n, . . . , 1, 2, . . . , n) ∈ RCn and r′ := sign(r − b).

Observe that r′ = ϕt,1-WLOA(G), implying the result

In a similar way as for Corollary 37, we can lift the above result to the 1-WLOAF .

Corollary 39. Let Gn be the set of n-order graphs, let S ⊆ Gn, and let F be a set of graphs. Then, for all T ≥ 0, there exists
a sufficiently wide T -layered MPNN architecture mpnnn : S → Rd, for an appropriately chosen d > 0, such that, for all
G ∈ S,

mpnnn(G) = ϕ
(T )
1-WLOAF

(G).

E.5. Increased separation power of the 1-WLF

We now prove how more expressive architectures help to separate the data.

Lemma 40 (Proposition 8 in the main paper). For every n ≥ 6, there exists a pair of non-isomorphic n-order graphs (Gn,
Hn) and a graph F such that, for F := {F} and for all number of rounds T ≥ 0, it holds that∥∥∥∥Ě

ϕ
(T )
WL (Gn)− Ě

ϕ
(T )
WL (Hn)

∥∥∥∥ = 0, and
∥∥∥∥Ğ

ϕ
(T )
WL,F (Gn)− Ğ

ϕ
(T )
WL,F (Hn)

∥∥∥∥ =
√
2.

Proof. Let Gn := Cn, a cycle on n vertices. Further, let Hn := C⌈n/2⌉∪̇C⌊n/2⌋, a disjoint union of cycles on ⌈n/2⌉ and
⌊n/2⌋ vertices, respectively. Since the graphs Gn and Hn are regular, 1-WL cannot distinguish them. Hence, the distances of

the two feature vectors
Ě

ϕ
(T )
WL (Gn) and

Ě

ϕ
(T )
WL (Hn) is zero. Moreover, by setting F := {C⌊n/2⌊}, 1-WLF reaches the stable
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coloring at iteration t = 0 on both graphs and distinguishes the two graphs. In addition, the feature vectors
Ğ

ϕ
(T )
WL,F (Gn) and

Ğ

ϕ
(T )
WL,F (Hn) are orthonormal for all choices of T ≥ 0, implying the result.

Proposition 41. For every n ≥ 6, there exists a pair of non-isomorphic n-order graphs (Gn, Hn) and set of graphs F of
cardinality one, such that, for all number of layers T ≥ 0, and widths d > 0, and all m ∈ MPNNmlp(d, T ), it holds that∥∥∥∥m(Gn)−m(Hn)

∥∥∥∥ = 0,

while for sufficiently large d > 0, there exists an m̂ ∈ MPNNmlp,F (d, T ), such that∥∥∥∥m̂(Gn)− m̂(Hn)

∥∥∥∥ =
√
2.

Proof. We use the same graphs as in the proof of Lemma 40. The first statement is a direct implication of Morris et al.
(2019, Theorem 1), i.e., any MPNN is upper bounded by the 1-WL in distinguishing vertices. The second statement follows
from Proposition 36 and Corollary 37. That is, an MPNNF architecture of sufficient width exactly computes the 1-WLF
feature vectors for the graphs of Lemma 40, as shown in the proof of Proposition 36.

Proposition 42 (Proposition 9 in the main paper). For every n ≥ 10, there exists a set of pair-wise non-isomorphic (at most)
n-order graphs S, a concept c : S → {0, 1}, and a graph F , such that the graphs in the set S,

1. are pair-wise distinguishable by 1-WL after one round,

2. are not linearly separable under the normalized 1-WL feature vector
Ě

ϕ
(T )
WL , concerning the concept c, for any T ≥ 0,

3. and are linearly separable under the normalized 1-WLF feature vector
Ğ

ϕ
(T )
WL,F , concerning the concept c and , for all

T ≥ 0, where F := {F}.

Moreover, the results also work for the unnormalized feature vectors.

Proof. We first outline the construction for the set S with |S| = 4. However, the construction can easily be generalized to
larger cardinalities. Concretely, we construct the graphs G1, . . . , G4. For odd i, the graph Gi consists of the disjoint union of
i isolated vertices and a disjoint union of cycles on ⌈n/2⌉ − 2 and ⌊n/2⌋ − 2 vertices. Set c(Gi) := 0. For even i, the graph
Gi consists of the disjoint union of i isolated vertices and a cycle on n− 4 vertices. Set c(Gi) := 1.

We proceed by showing items 1 to 3. Since the order of the graphs G1 to G4 is pair-wise different 1-WL pair-wise distinguishes
the graphs, showing item 1. We proceed with item 2. Since the disjoint union of cycles on ⌈n/2⌉ − 2 and ⌊n/2⌋ − 2 vertices
are 2-regular, the 1-WL cannot distinguish them. Therefore, the four 1-WL feature vectors have the following forms,

ϕ
(T )
WL (G1) = (n− 4, 1, n− 4, 1, . . . , n− 4, 1),

ϕ
(T )
WL (G2) = (n− 4, 2, n− 4, 2, . . . , n− 4, 2),

ϕ
(T )
WL (G3) = (n− 4, 3, n− 4, 3, . . . , n− 4, 3),

ϕ
(T )
WL (G4) = (n− 4, 4, n− 4, 4, . . . , n− 4, 4).

Since, for each round t ≥ 0, the feature vectors have the form (n− 4, 1), (n− 4, 2), (n− 4, 3), and (n− 4, 4), respectively,
the resulting four unnormalized 1-WL feature vectors are co-linear and, by the construction, of the concept c, they are not
linearly separable.

Note that, for each round t ≥ 0, the feature vectors only differ by at most 3 in the second components. Hence, their respective
ℓ2 norms are controlled by n, and their respective ℓ2 norms are also close. For a single iteration, when projecting the feature
vectors onto the 1-dimensonal unit sphere, by dividing by their respective ℓ2, the lexicographic order is preserved on the
unit sphere, making them not linearly separable. For t ≥ 1, notice that the vectors are just concatenations of the above.
We can write the original vectors for t = 0 as g1, g2, g3, and g4 and for larger t > 0 as [g1, . . . , g1], . . . , [g4, . . . , g4].
Assume, for t > 0, that the aforementioned vectors are linearly separable by a hyperplane 0 = w⊺x + b, then, by
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definition, we can decompose w = [w0,w1, . . . ,wt] such that (sign(
∑T

i=0 w
⊺
i gi + b) + 1)/2 = c(gj) and by construction∑T

i=0 w
⊺
i gj + b = (

∑T
i=0 wi)

⊺gj + b. Thus, such w and b would verify that g1, . . . , g4 are linearly separable, which is
impossible. This implies that even for larger t > 0 ϕ

(T )
WL (G1), . . . , ϕ

(T )
WL (G4) are not linearly separable.

For item 3, we set F := {Cn−4}, the cycle on n− 4 vertices. Observe that the 1-WLF feature vectors at T = 0 for all four
graphs have three components. Concretely,

ϕ
(0)
WL,F (G1) = (1, 0, n− 4),

ϕ
(0)
WL,F (G2) = (2, n− 4, 0),

ϕ
(0)
WL,F (G3) = (3, 0, n− 4),

ϕ
(0)
WL,F (G4) = (4, n− 4, 0).

Further, note that, for all four graphs, 1-WLF reaches the stable coloring at T = 0. Hence, for all T ≥ 0, the four vectors are
linearly separable concerning the concept c. Further, by dividing by their respective ℓ2 norms, this property is preserved. That
is, for graphs with class label 0, the first and third graph, third component of the 1-WL feature vectors are equal to (n− 4)
while for the other two graphs, this component is 0. Hence, we can easily find a vector w ∈ R3 that linearly separates the
normalized 1-WL feature vectors.

Proposition 43. Let n ≥ 6 and let F be a finite set of graphs. Further, let c : Gn → {0, 1} be a concept such that, for all

T ≥ 0, the graphs are not linearly separable under the normalized 1-WL feature vector
Ě

ϕ
(T )
WL , concerning the concept c.

Further, assume that for all graphs G ∈ Gn for which c(G) = 0, it holds that there is at least one vertex v ∈ V (G) such it is
contained in a subgraph of G that is isomorphic to a graph in the set F , while no such vertices exist in graphs G for which

c(G) = 1. Then the graphs are linearly separable under the normalized 1-WLF feature vector
Ğ

ϕ
(T )
WL,F , concerning the concept

c.

Proof. By assumption, for graphs G with c(G) = 0 it holds that there exists an index i ≥ 0 such that ϕ(0)
WL,F (G)i ̸= 0 while

for all graphs H with c(H) = 1 it holds that ϕ(0)
WL,F (H)i = 0. Without loss of generality, assume this is the case for i = 0.

Hence, for all T ≥ 0, we can find a vector w := (1, 0, . . . , 0) ∈ Rd with an appropriate number of components d and C > 0
such that 〈

w, ϕ
(T )
WL,F (G)

〉
=

{
> C, if c(G) = 0,

< C, if c(G) = 1.

Hence, the data is linearly separable by the 1-WLF for T ≥ 0, showing the result.

E.6. Results on shrinking the margin

Here, we prove negative results, showing that using more expressive architecture can also decrease the margin.
Proposition 44 (Proposition 10 in the main paper). For every n ≥ 10, there exists a pair of 2n-order graphs (Gn, Hn) and a
graph F , such that, for F := {F} and for all number of rounds T > 0, it holds that∥∥∥∥Ğ

ϕ
(T )
WL,F (Gn)− Ğ

ϕ
(T )
WL,F (Hn)

∥∥∥∥ <

∥∥∥∥Ě

ϕ
(T )
WL (Gn)− Ě

ϕ
(T )
WL (Hn)

∥∥∥∥.
Proof. Let Gn be the disjoint union of a complete graph on n vertices Kn and n isolated vertices. Further, let Hn be the
disjoint union of the complete graph on three vertices K3, the cycle on (n− 3) vertices Cn−3, and n isolated vertex. By
construction and definition of the 1-WL feature vector, for T > 0,

ϕ
(T )
WL (Gn) = (2n, n, 0, n, . . . , n, 0, n) ∈ R1+3T , and

ϕ
(T )
WL (Hn) = (2c, 0, n, n, . . . , 0, n, n) ∈ R1+3T .

Moreover, by setting F := {C3} and by definition of the 1-WLF feature vector, for T > 0,

ϕ
(T )
WL,F (Gn) = (0, 2n, n, 0, 0, n, . . . , n, 0, 0, n) ∈ R2+4T and

ϕ
(T )
WL,F (Hn) = (3, 2n− 3, 0, n− 3, 3, n, . . . , 0, n− 3, 3, n) ∈ R2+4T .
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Since
√
2n2 =

√
2n >

√
3 · 32 + n2 + (n− 3)2 for n ≥ 10, the statement is clear for the unnormalized 1-WL feature vector

is clear. Now, for the normalized 1-WL feature vector, the component counting the n isolated vertices in each iteration T > 0
will sufficiently downgrade the (constant) contribution of the 1-WLF feature vector for iteration 0, leading to a larger ℓ2
distance of the 1-WL feature vectors for iterations T > 0. That is, for the first two iterations ∥Ě

ϕ
(1)
WL (Gn)− Ě

ϕ
(1)
WL (Hn)∥ =

√
2/6,

which, is always strictly larger than ∥Ğ

ϕ
(1)
WL,F (Gn)− Ğ

ϕ
(1)
WL,F (Hn)∥, which can be verified by tedious calculation. The argument

can be extended to iterations t > 1.

E.7. Results on growing the margin

We now prove results showing that more expressive architectures often result in an increased margin.

Proposition 45 (Proposition 11 in the main paper). Let n > 0 and Gn and Hn be two connected n-order graphs. Further, let
F := {F} such that there is at least one vertex in V (Gn) contained in a subgraph of Gn isomorphic to the graph F . For the
graph Hn, no such vertices exist. Further, let T ≥ 0 be the number of rounds to reach the stable partition of Gn and Hn

under 1-WL, and assume

(ϕ
(T )
WL (Gn), 1), (ϕ

(T )
WL (Hn), 0) is (r1, λ1)-separable, with λ1 <

√
2n.

Then,

(ϕ
(T )
WL,F (Gn), 1), (ϕ

(T )
WL,F (Hn), 0) is (r2, λ2)-separable, with r2 ≤ r1 and λ2 ≥ λ1.

Proof. First, by assumption, there exists a vertex v ∈ V (Gn) that, by definition of the 1-WLF , gets assigned a color at
initialization of the 1-WLF that never gets assigned to any vertex in the graphs Gn and Hn under the 1-WL. Secondly, since
the graphs Gn and Hn are connected, at the stable partition of Gn and Hn under 1-WLF , it holds that

⟨ϕF,T (Gn), ϕF,T (Hn)⟩ = 0,

i.e., the feature vector of Gn and Hn under 1-WL are orthogonal. Hence, the ℓ2 distance between the two vectors is√
∥ϕF,T (Gn)∥2 + ∥ϕF,T (Hn)∥2, due to the pythagorean theorem. This ℓ2 distance is minimized for minimized norms,

which, since the sum of all elements is n and all elements are in N, is minimized for ∥ϕF,T (Gn)∥2 = n = ∥ϕF,T (Hn)∥2.
Thus the above ℓ2 distance is at least

√
2nm and

(ϕF,T (Gn), 1), (ϕF,T (Hn), 0) is (n,
√
2n)-separable.

We now just need to lower-bound by how much previous iterations can decrease this distance. Again, since Gn is connected,
we know that at every iteration t < T , one vertex in the graphs Gn gets assigned a color that never gets assigned to Hn under
the 1-WLF . Since we want to lower bound the ℓ2 distance between feature vectors between 1-WLF for all iteration i < T ,
we can assume that for the graph Gn, the normalized 1-WLF feature vector has the form (n − (i + 1), i+ 1), since this
maximizes the ℓ2 norm of the vector. For the graph H , we can assume the form (n, 0), again maximizing the vector’s ℓ2
norm. For simplicity, we can assume that their ℓ2 distance is 0. By applying Proposition 20 T times iteratively, it follows that

(ϕ
(T )
WL,F (Gn), 1), (ϕ

(T )
WL,F (Hn), 0) is (

√
Tn,

√
2n)-separable.

Due to Proposition 23, we can further reduce the radius
√
Tn to be r2 ≤ r1, since the colors under 1-WLF are finer than

under 1-WL. Hence, by assumption, λ2 ≥
√
2n > λ1 and the result follows.

Notice, that under mild assumptions due to Theorem 27 and Theorem 28, Proposition 45 implies that the VC dimension for
the 1-WLF decreases, since r21

λ2
1
>

r22
λ2
2

, and thus generalization improves.

Growing the margin for 1-WLF and 1-WLOAF It is challenging to improve Proposition 11, i.e., to derive weaker
conditions such that 1-WLF provably leads to an increase of the margin over the 1-WL kernel. This becomes more feasible,

29



Weisfeiler–Leman at the margin

however, for the 1-WLOAF kernel. First, note that for two graphs G and H , it holds that

kWLOA(G,H) :=
∑

t∈[T ]∪{0}

∑
c∈Σt

min(ϕt(G)c, ϕt(H)c)

=
∑

t∈[T ]∪{0}

∑
c∈Σt

n∑
j=1

1ϕt(G)c≥j∧ϕt(H)c≥j (6)

=
∑

t∈[T ]∪{0}

∑
c∈Σt

n∑
j=1

1ϕt(G)c≥j1ϕt(H)c≥j .

Equation (6) provides an intuition for the feature map of the kernel kWLOA, namely, a unary encoding of the count for each
color in each iteration. Such a feature map is quite natural as the inner product between unary encodings of a and b is the
minimum of a and b. This also implies that, for a graph G ∈ Gn, it holds that ∥ϕ(T )

WLOA(G)∥ =
√
Tn, i.e., we can easily bound

the norm of the feature vector.

Now, the 1-WLOA simplifies the computation of distances between two graphs G,H ∈ Gn, since

∥∥∥ϕ(T )
WLOA(G)− ϕ

(T )
WLOA(H)

∥∥∥ =

√∥∥∥ϕ(T )
WLOA(G)

∥∥∥2 + ∥∥∥ϕ(T )
WLOA(H)

∥∥∥2 − 2ϕ
(T )
WLOA(G)⊺ϕ

(T )
WLOA(H)

=

√
2Tn− 2k

(T )
WLOA(G,H).

Therefore, due to the monotonicity of the square root, margin increases are directly controlled by the kernel value k(T )
WLOA(G,H).

For the 1-WLOAF , since by Proposition 23 the 1-WLF computes a finer color partition than the 1-WL, pairwise distances can
not decrease compared to the 1-WLOA, resulting in the following statement.

Proposition 46 (Proposition 12 in the main paper). Let F be a finite set of graphs. Given two graphs G and H ,∥∥∥ϕ(T )
WLOA,F (G)− ϕ

(T )
WLOA,F (H)

∥∥∥ ≥
∥∥∥ϕ(T )

WLOA(G)− ϕ
(T )
WLOA(H)

∥∥∥.
Proof. Consider Proposition 23 applied to the disjoint union of G and H , which implies that any color class c in G or H after
t ≤ T steps of 1-WL gets refined to be finer, i.e., c =

⋃
j cj for some color classes cj in G or H after t steps when applying

F . Note also that each color class is naturally partitioned into subsets in G and H . This then implies that 1-WLOA can only
increase the pairwise distance when F is added. Note that for any color class c shattered into c1, . . . , cf as above,

ϕt(G)c =

f∑
j=1

ϕF,t(G)cj , ϕt(H)c =

f∑
j=1

ϕF,t(H)cj .

This trivially implies that
f∑

j=1

min(ϕF,t(G)cj , ϕF,t(H)cj ) ≤ min(ϕt(G)c, ϕt(H)c).

Which, since it holds for all color classes, implies

k
(T )
WLOA,F (G,H) ≤ k

(T )
WLOA(G,H)√

2Tn− 2k
(T )
WLOA,F (G,H) ≥

√
2Tn− 2k

(T )
WLOA(G,H)∥∥∥ϕ(T )

WLOA,F (G)− ϕ
(T )
WLOA,F (H)

∥∥∥ ≥
∥∥∥ϕ(T )

WLOA(G)− ϕ
(T )
WLOA(H)

∥∥∥.
This concludes the proof.

We now look into conditions under which the 1-WLF and 1-WLOAF provably increase the margin. The first result that we can
directly state that holds for both 1-WLF and 1-WLOAF is the following direct application of Proposition 19.
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Theorem 47. Let (G1, y1), . . . , (Gs, ys) in Gn × {0, 1} be a (graph) sample that is linearly separable in the 1-WLOA feature
space with margin γ. If

min
yi ̸=yj

∥∥∥ϕ(T )
WLOA,F (Gi)− ϕ

(T )
WLOA,F (Gj)

∥∥∥2 − ∥∥∥ϕ(T )
WLOA(Gi)− ϕ

(T )
WLOA(Gj)

∥∥∥2 >

max
yi=yj

∥∥∥ϕ(T )
WLOA,F (Gi)− ϕ

(T )
WLOA,F (Gj)

∥∥∥2 − ∥∥∥ϕ(T )
WLOA(Gi)− ϕ

(T )
WLOA(Gj)

∥∥∥2,
that is, the minimum increase in distances between classes is strictly larger than the maximum increase in distance within
each class, then the margin λ increases when F is considered.

Proof. Direct application of Proposition 19 by considering xi := ϕ
(T )
WLOA(Gi) and x̃i := ϕ

(T )
WLOA,F (Gi).

In fact, for the pairwise distances to increase strictly, we can use the following equivalences. Let CF (c) be the set of colors
that color c under 1-WL is split into under 1-WLF . I.e., ϕt(G)c =

∑
c′∈CF (c) ϕF,t(G)c′ .

Proposition 48 (Implies Proposition 13 in the main paper). The following statements are equivalent,

1.
∥∥∥ϕ(T )

WLOA,F (G)− ϕ
(T )
WLOA,F (H)

∥∥∥ =
∥∥∥ϕ(T )

WLOA(G)− ϕ
(T )
WLOA(H)

∥∥∥.
2. k

(T )
WLOA,F (G,H) = k

(T )
WLOA(G,H).

3. ∀ t ∈ [T ] ∪ {0},∀c ∈ Σt : min(ϕt(G)c, ϕt(H)c) =
∑

c′∈CF (c) min(ϕF,t(G)c′ , ϕF,t(H)c′).

4. ∀ t ∈ [T ] ∪ {0},∀c ∈ Σt : (ϕt(G)c ≥ ϕt(H)c ⇐⇒ ∀c′ ∈ CF (c) : ϕF,t(G)c′ ≥ ϕF,t(H)c′).

Proof. (1) ⇐⇒ (2): This equivalence follows from the formulas for the kernel obtained in Section 3.3. Indeed

k
(T )
WLOA,F (G,H) = k

(T )
WLOA(G,H)

⇕√
2Tn− 2k

(T )
WLOA,F (G,H) =

√
2Tn− 2k

(T )
WLOA(G,H)

⇕ Section 3.3∥∥∥ϕ(T )
WLOA,F (G)− ϕ

(T )
WLOA,F (H)

∥∥∥ =
∥∥∥ϕ(T )

WLOA(G)− ϕ
(T )
WLOA(H)

∥∥∥.
(2) ⇐⇒ (3): Indeed, we have

k
(T )
WLOA,F (G,H) = k

(T )
WLOA(G,H)

⇕ (by definition)∑
t∈[T ]∪{0}

∑
c∈Σt

min(ϕt(G)c, ϕt(H)c) =
∑

t∈[T ]∪{0}

∑
c∈Σt

∑
c′∈CF (c)

min(ϕF,t(G)′c, ϕF,t(H)′c).

Furthermore, by the proof of Proposition 46,

∀ t ∈ [T ] ∪ {0}, c ∈ Σt : min(ϕt(G)c, ϕt(H)c) ≥
∑

c′∈CF (c)

min(ϕF,t(G)′c, ϕF,t(H)′c).

Hence,

k
(T )
WLOA,F (G,H) = k

(T )
WLOA(G,H)

⇕
∀ t ∈ [T ] ∪ {0},∀ c ∈ Σt : min(ϕt(G)c, ϕt(H)c) =

∑
c′∈CF (c)

min(ϕF,t(G)c′ , ϕF,t(H)c′).
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(4) =⇒ (3): Assume (4) to be true, i.e.,

∀ t ∈ [T ] ∪ {0},∀c ∈ Σt : ϕt(G)c ≥ ϕt(H)c ⇐⇒ ∀ c′ ∈ CF (c) : ϕF,t(G)c′ ≥ ϕF,t(H)c′ .

Consider any t ∈ [T ] ∪ {0} and c ∈ Σt, and assume, without loss of generality,

ϕt(G)c ≥ ϕt(H)c,

then by assumption
∀ c′ ∈ CF (c) : ϕF,t(G)c′ ≥ ϕF,t(H)c′ .

This implies
min(ϕt(G)c, ϕt(H)c) = ϕt(H)c,

and
∀ c′ ∈ CF (c) : min(ϕt(G)c′ , ϕt(H)c′) = ϕt(H)c′ ,

and thus,

∀ t ∈ [T ] ∪ {0},∀c ∈ Σt : min(ϕt(G)c, ϕt(H)c) = ϕt(H)c

=
∑

c′∈CF (c)

ϕF,t(H)c′

=
∑

c′∈CF (c)

min(ϕF,t(G)c′ , ϕF,t(H)c′).

(3) =⇒ (4): Assume (4) to be false, i.e.,

∃ t ∈ [T ] ∪ {0},∃ c ∈ Σt∃ c′ ∈ CF (c) : (ϕt(G)c ≥ ϕt(H)c ∧ ϕF,t(G)c′ < ϕF,t(H)c′)

∨(ϕt(G)c ≤ ϕt(H)c ∧ ϕF,t(G)c′ > ϕF,t(H)c′).

Without loss of generality, assume ϕt(G)c ≥ ϕt(H)c ∧ ϕF,t(G)c′ < ϕF,t(H)c′ . This implies

min(ϕt(G)c, ϕt(H)c) = ϕt(H)c,

and ∑
c′′∈CF (c)

min(ϕF,t(G)c′′ , ϕF,t(H)c′′)

= min(ϕF,t(G)c′ , ϕF,t(H)c′) +
∑

c′′∈CF (c),c′′ ̸=c′

min(ϕF,t(G)c′′ , ϕF,t(H)c′′)

= ϕF,t(G)c′ +
∑

c′′∈CF (c),c′′ ̸=c′

min(ϕF,t(G)c′′ , ϕF,t(H)c′′)

≤ ϕF,t(G)c′ +min(ϕt(G)c − ϕF,t(G)c′ , ϕt(H)c − ϕF,t(H)c′)

= ϕF,t(G)c′ + ϕt(H)c − ϕF,t(H)c′

< ϕt(H)c = min(ϕt(G)c, ϕt(H)c),

proving that (3) is false if (4) is false and by contraposition (3) =⇒ (4).

Corollary 49. For n ≥ 8, there exists a graph sample (G1, y1), . . . , (Gs, ys) ∈ Gn × {0, 1} and F such that

1. ∀i, j ∈ [s] : yi = yj =⇒
∥∥∥ϕ(T )

WLOA,F (Gi)− ϕ
(T )
WLOA,F (Gj)

∥∥∥ =
∥∥∥ϕ(T )

WLOA(Gi)− ϕ
(T )
WLOA(Gj)

∥∥∥.
2. ∀i, j ∈ [s] : yi ̸= yj =⇒

∥∥∥ϕ(T )
WLOA,F (Gi)− ϕ

(T )
WLOA,F (Gj)

∥∥∥ >
∥∥∥ϕ(T )

WLOA(Gi)− ϕ
(T )
WLOA(Gj)

∥∥∥.
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Proof. In this proof, we will construct two graphs, i.e., s = 2, such that the above conditions hold. Note that the above
conditions are the conditions from Proposition 48 and Proposition 13; thus, we can and will use their equivalent notions.

The graph sample will be (G1, 1), (G2, 0) ∈ G8 × {0, 1}. For both graphs, we start with the 8-cycle C8 and add edges. For
G1 we add all skip-lengths of 2, so G1 := ([8], {(i, i+ 1 mod 8) | i ∈ [8]} ∪ {(i, i+ 2 mod 8) | i ∈ [8]}). As for G2, we
add all skip-lengths of 3, so G2 := ([8], {(i, i+ 1 mod 8) | i ∈ [8]} ∪ {(i, i+ 3 mod 8) | i ∈ [8]}). Note that G1 contains
triangles, while G2 does not. Also, note that both graphs only have one orbit (verified by the permutation in cycle notation
(1, 2, 3, 4, 5, 6, 7, 8)). Consider F := {C3} to contain a triangle.

Notice that the first condition is true since we are considering one graph of each class and thus Gi = Gj . As for the second
condition, we will consider the equivalent notion that

∃ t ∈ [T ] ∪ {0} ∃ c ∈ Σt : ¬(ϕt(G)c ≥ ϕt(H)c ⇐⇒ ∀ c′ ∈ CF (c) : ϕF,t(G)c′ ≥ ϕF,t(H)c′).

We must prove this statement to be true for our construction. Consider t = 0, c to be the color that all nodes in G1 and G2 are
colored (not considering F) and let c′ be the color of being contained in a triangle (considering F). Then by definition

ϕt(G1)c ≤ ϕt(G2)c ∧ ϕF,t(G1)c′ > ϕF,t(G2)c′ .

The first inequality holds since they are in fact equal n = ϕt(G1)c ≤ ϕt(G2)c = n and the second holds, since all nodes in
G1 are contained in triangles and no nodes in G2 are contained in triangles and thus n = ϕF,t(G1)c′ > ϕF,t(G2)c′ = 0
which proves the statement above is true.

This construction can be extended such that both classes contain more than one graph by considering n-order 4-regular
graphs, where one class contains graphs where all nodes are contained in triangles, and the other class contains graphs where
no node is contained in a triangle. By definition, the first condition will always hold since the graphs in each class cannot be
distinguished by 1-WL or 1-WLF , i.e., the intra-class distances will be 0 regardless of considering F .

F. Large margins and stochastic gradient descent
We present the proofs of our main results from Section 4, i.e., Theorem 57 and Theorem 60. We will need some supporting
lemmas, which we state and prove next. We note that the proof structure is close to the one in Ji & Telgarsky (2019).

F.0.1. SETUP

Recall that we consider linear L-layer MPNNs following Section 2 with trainable weight matrices W (i) ∈ Rdi×di−1 .
Moreover, in our linear MPNN, after L layers, the final node embeddings X(L) are given by

X(L) := W (L)W (L−1) · · ·W (1)X(0)A′(G)L,

where A′(G) := A(G) + In, In ∈ Rn×n is the n-dimensional identity matrix, and X = X(0) is the d0 × n matrix whose
columns correspond to vertices’ initial features; d = d0.

These node embeddings are then converted into predictions

ŷ := READOUT
(
X(L)

)
= X(L)1n = W (L)W (L−1) · · ·W (1)X(0)A′(G)L1n.

In our analysis, we will often need to reason about the singular values of the weight matrices. For j = 1, 2, . . . , L, we let
σj(t) denote the largest singular value of W (j)(t), and we let u(t) and v(t) denote the left-singular and right-singular
vectors, respectively, corresponding to this singular value.

Recall that the training dataset is {(Gi,Xi, yi)}ki=1, where Xi ∈ Rdi×ni is a set of di-dimensional node features over an
ni-order graph Gi with |V (Gi)| =: ni, and yi ∈ {−1,+1} for all i. Also, we write d = d0 for the input node feature
dimension. We further recall that the loss function ℓ satisfies the following assumptions.

Assumption 14. The loss function ℓ : R → R+ has a continuous derivative ℓ′ such that ℓ′(x) < 0 for all x, limx→−∞ ℓ(x) =
∞, and limx→∞ ℓ(x) = 0.
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The empirical risk induced by the MPNN is

R(W (L), . . . ,W (1)) :=
1

k

k∑
i=1

ℓ(yi, ŷi)

=
1

k

k∑
i=1

ℓ(WprodZiA
′(Gi)

L1ni),

where Wprod = W (L)W (L−1) · · ·W (1), and Zi = yiXi.

For convenience, it will often be useful to write R as a function of the product Wprod. Let R1 be the risk function R written
as a function of the product Wprod, i.e.,

R1(Wprod) :=
1

k

k∑
i=1

ℓ(WprodZiA
′(Gi)

L1ni).

We will consider gradient flow. In gradient flow, the evolution of W = (W (L),W (L−1), . . . ,W (1)) is given by {W (t) : t ≥
0}, where there is an initial state W (0) at t = 0, and

dW (t)

dt
:= −∇R(W (t)).

Note that gradient flow satisfies the following:

dR(W (t))

dt
=

〈
∇R(W (t)),

dW (t)

dt

〉
= −∥∇R(W )∥22 = −

L∑
j=1

∥∥∥∥ ∂R
∂W (j)

∥∥∥∥2
F

, (7)

which implies that the risk never increases. The discrete version of this is given by

W (t+ 1) := W (t)− ηt∇R(W (t)),

which corresponds to gradient descent with step size ηt. Recall that we make the following assumption on the initialization of
the network under consideration:
Assumption 15. The initialization of W at t = 0 satisfies ∇R(W (0)) ̸= R(0) = ℓ(0).

F.0.2. LEMMAS AND THEOREMS

The proof structure of our main theorems largely follows that of Ji & Telgarsky (2019), except with the main change that
xi 7→ XiA

′(G)L1n and zi 7→ ZiA
′(G)L1n. Many of the lemmas follow directly from the relevant lemma in Ji & Telgarsky

(2019) with this transformation; we therefore defer to their proofs for a number of lemmas.

We start with a lemma that relates the weight matrices at successive levels to each other under the dynamics of gradient
flow. This is essentially Theorem 1 of Arora et al. (2018) applied to our setting—our R1 and R correspond to L1 and LN ,
respectively, in the aforementioned work.
Lemma 50 (Theorem 1 in Arora et al. (2018)). (W (j+1))⊺(t)W (j+1)(t)−W (j)(t)(W (j))⊺(t) is a constant function of t.

Proof. For each j = 1, 2, . . . , L,

∂R
∂W (j)

=

L∏
i=j+1

(W (i))⊺ · dR1

dWprod
(W (L)W (L−1) · · ·W (1)) ·

j−1∏
i=1

(W (i))⊺.

Hence, Ẇ (j) = dW
dt is given by

Ẇ (j) = −∇R(W (t))

= −η

L∏
i=j+1

(W (i)(t))⊺ · dR
dW

(W (L)(t)W (L−1)(t) · · ·W (1)(t)) ·
j−1∏
i=1

(W (i)(t))⊺.
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Right multiplying the equation for j by (W (j))⊺(t) and left multiplying the equation for j + 1 by (W (j+1))⊺(t), we see that

(W (j+1))⊺(t)Ẇ (j+1)(t) = Ẇ (j)(t)(W (j))⊺(t).

Adding the above equation to its transpose, we obtain

(W (j+1))⊺(t)Ẇ (j+1)(t) + (Ẇ (j+1))⊺(t)W (j+1)(t) = Ẇ (j)(t)(W (j))⊺(t) +W (j)(t)(Ẇ (j))⊺(t).

Note that this is equivalent to

d

dt

[
(W (j+1))⊺(t)W (j+1)(t)

]
=

d

dt

[
W (j+1)(t)(W (j+1))⊺(t)

]
,

which implies that (W (j+1))⊺(t)W (j+1)(t)−W (j+1)(t)(W (j+1))⊺(t) does not depend on t, as desired.

For the remainder of this section, let B(R) denote the set of W = (W (L),W (L−1), . . . ,W (1)) for which each component
is bounded by R in Frobenius norm, i.e.,

B(R) =

{
W : max

1≤j≤L
∥W (j)∥F ≤ R

}
.

We now present the following lemma, which shows that the partial derivative of the risk function with respect to the first
weight matrix W (1) is bounded away from 0 in the Frobenius norm.

Lemma 51. For any R > 0, there exists a constant ϵR > 0 such that for any t ≥ 1 and
(W (L)(t),W (L−1)(t), · · · ,W (1)(t)) ∈ B(R), we have ∥∂R(t)/∂W (1)(t)∥F ≥ ϵR.

Proof. The lemma is the same as the first part of Lemma 2.3 in (Ji & Telgarsky, 2019). Therefore, we defer to the proof
there.

Our main interest in Lemma 51 is that it allows us to prove the following important corollary, which establishes that under
gradient flow, the weight matrices grow unboundedly in Frobenius norm and do not spend much time inside a ball of any
fixed finite radius.

Corollary 52. Under gradient flow subject to Assumption 14 and Assumption 15, {t ≥ 0: W (t) ∈ B(R)} has finite
measure.

Proof. The corollary corresponds to the second part of Ji & Telgarsky (2019). We reproduce the proof here. Note that since
dR(W (t))/dt = −∥∇R(W (t))∥2F ≤ 0 for all t ≥ 0 (see Equation (7)),

R(W (0)) ≥ −
∫ ∞

0

dR(W (t))

dt
dt

=

∫ ∞

0

∥∥∥∥ ∂R(t)

∂W (t)

∥∥∥∥2
F

dt

=

∫ ∞

0

 L∑
j=1

∥∥∥∥ ∂R(t)

∂W (j)(t)

∥∥∥∥2
F

 dt

≥
∫ ∞

0

∥∥∥∥ ∂R(t)

∂W (1)(t)

∥∥∥∥2
F

dt

≥
∫ ∞

1

∥∥∥∥ ∂R(t)

∂W (1)(t)

∥∥∥∥2
F

dt

≥ ϵ(R)2
∫ ∞

1

I[W (t) ∈ B(R)] dt,

where the final implication holds due to Lemma 51. Since R(W (0)) is finite, this implies that {t ≥ 0: W (t) ∈ B(R)} has
finite measure.
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We now define the following notation for convenience:

Bj(t) := W (j)(t)(W (j))⊺(t)−W (j+1)(t)(W (j+1))⊺(t), and

D :=

(
max

1≤j≤L
∥W (j)(0)∥2F

)
− ∥W (L)(0)∥2F +

L−1∑
j=1

∥Bj(0)∥22.

While the previous corollary allows us to show the unboundedness of the weight matrices in the Frobenius norm, we often
need to reason about the weight matrices in the standard operator norm. The following lemma shows that the two norms can
not differ by too much.

Lemma 53. For every 1 ≤ i ≤ L, we have ∥W (i)∥2F − ∥W (i)∥22 ≤ D.

Proof. A proof appears in (Ji & Telgarsky, 2019); see part 1 of Lemma 2.6.

The next lemma is the key to establishing the “alignment” property. Roughly speaking, it establishes that the largest left
singular vector of a weight matrix gets minimally aligned with the largest right singular vector of the weight matrix in the
successive round of message passing.

Lemma 54. For all 1 ≤ j ≤ L, we have

⟨vj+1,uj⟩2 ≥ 1− D + ∥W (j)(0)∥22 + ∥W (j+1)(0)∥22
σ2
j+1

.

Proof. Once again, the proof appears in (Ji & Telgarsky, 2019) (see part 2 of Lemma 2.6).

The previous two lemmas can be used to establish the following lemma, which shows that each (normalized) weight matrix
tends to a rank-1 approximation given by its top left and right singular vectors, and the (normalized) partial product of weight
matrices tend to the relevant right singular vector of the final weight matrix in the product. We note that the first part of the
lemma appears in Theorem 2.2 of (Ji & Telgarsky, 2019); however, the second part does not appear explicitly in their work
(although the proof is similar to the third part of Lemma 2.6 in (Ji & Telgarsky, 2019)). Therefore, we provide the proof
below.

Lemma 55. Suppose min1≤j≤L ∥W (j)(t)∥F → ∞ as t → ∞. For any 1 ≤ j ≤ L, we have,

• W (j)(t)/∥W (j)(t)∥F → uj(t)vj(t)
⊺ as t → ∞.

• Also, ∣∣∣∣ W (L)(t)W (L−1)(t) · · ·W (j)(t)

∥W (L)(t)∥F ∥W (L−1)(t)∥F · · · ∥W (j)(t)∥F
vj(t)

∣∣∣∣→ 1

as t → ∞.

Proof. Since ∥W (j)(t)∥F → ∞, Lemma 53 implies that, as t → ∞, ∥W (j)(t)∥2 → ∞, and, moreover, the singular values
of W (j)(t) beyond the top singular value are dominated by ∥W (j)(t)∥F . Thus, W (j)(t)/∥W (j)(t)∥F → uj(t)vj(t)

⊺,
which establishes the first part.

For the second part, note that by Lemma 54 and the fact that σj = ∥W (j)(t)∥2 → ∞, we have that |⟨uj(t),vj+1(t)⟩| → 1.
Hence, for any j, we have∣∣∣∣ W (L)W (L−1) · · ·W (j)

∥W (L)∥F ∥W (L−1)∥F · · · ∥W (j)∥F
vj

∣∣∣∣→ ∣∣(uLv
⊺
L) · · · (ujv

⊺
j )vj

∣∣
=
∣∣uL(v

⊺
LuL−1) · · · (v⊺

j+1uj)(v
⊺
j vj)

∣∣
→ |uL|
= 1

as t → ∞, which completes the proof.
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The following theorem shows that under gradient flow, the risk goes to zero as t → ∞, while the Frobenius norm of each
weight matrix tends to infinity. The theorem corresponds to parts 1 and 2 of Theorem 2.2 in Ji & Telgarsky (2019); therefore,
we defer to the proofs there.

Theorem 56 (Parts 1 and 2 of Theorem 2.2 in (Ji & Telgarsky, 2019)). We have the following:

• limt→∞ R(W (t)) = 0.

• For all i = 1, 2, . . . , L, we have limt→∞ ∥W (i)(t)∥F = ∞.

Proof. See the proof of parts 1 and 2 of Theorem 2.2 in (Ji & Telgarsky, 2019).

Our main alignment result for linear MPNNs is the following, whose proof follows easily from the previous lemmas.

Theorem 57. Suppose Assumption 14 and Assumption 15 hold. Let ui(t) ∈ Rdi and vi(t) ∈ Rdi−1 denote the left and right
singular vectors, respectively, of W (i)(t) ∈ Rdi×di−1 . Then, we have the following using the Frobenius norm ∥·∥F :

• For j = 1, 2, . . . , L, we have

lim
t→∞

∥∥∥∥ W (j)(t)

∥W (j)(t)∥F
− uj(t)vj(t)

⊺

∥∥∥∥
F

= 0.

• Also,

lim
t→∞

∣∣∣∣∣
〈
(W (L)(t) · · ·W (1)(t))⊺∏L

j=1 ∥W (j)(t)∥F
,v1

〉∣∣∣∣∣ = 1.

Proof. Note that by Theorem 56, we have that ∥W (j)∥F → ∞ for every j. Thus, the first part of Lemma 55 implies the
first part of the theorem. Note that setting j = 1 in the second part of Lemma 55 implies the second part of the theorem,
completing the proof.

F.0.3. MARGIN

We now state results on the margin.

Lemma 58. Suppose the data set {(Xi, yi)}ki=1 and Gi on ni nodes are sampled according to Assumption 17. Let
S ⊂ {1, 2, . . . , k} be the set of indices for support vectors. Then,

min
∥ξξξ∥2=1
⟨ξξξ,ū⟩=0

max
i∈S

〈
ξξξ, ZiA

′(Gi)
L1ni

〉
> 0 (8)

with probability 1 over the sampling.

Proof. First, we note that there are s ≤ d support vectors; furthermore, each support vector ZiA
′(Gi)

L1ni has a correspond-
ing dual variable αi that is positive, so that ∑

i∈S

αiZiA
′(Gi)

L1ni
= ū. (9)

This follows from Soudry et al. (2018) (see Lemma 12 in Appendix B), which was also used by Ji & Telgarsky (2019)).

Next, assume for the sake of contradiction that there exists ξξξ with ∥ξξξ∥2 = 1 and ⟨ξξξ, ū⟩ = 0 but

max
1≤i≤k

〈
ξξξ, ZiA

′(Gi)
L1ni

〉
≤ 0.
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Then, note that

0 = ⟨ξξξ, ū⟩

=

〈
ξξξ,
∑
i∈S

αiZiA
′(Gi)

L1ni

〉
=
∑
i∈S

αi

〈
ξξξ, ZiA

′(Gi)
L1ni

〉
≤ 0.

This implies that
〈
ξξξ, ZiA

′(Gi)
L1ni

〉
= 0 for all i ∈ S, which contradicts our assumption that the support vectors span the

entirety of Rd. This completes the proof.

Lemma 59. Suppose Assumption 17 holds. Let ℓ be the exponential loss given by ℓ(x) = e−x. For almost all data, if w ∈ Rd

satisfies ⟨w,u⟩ ≥ 0 and w⊥, the projection of w on to the subspace of Rd orthogonal to u, satisfies ∥w⊥∥2 ≥ 1+ln(k)
α , then

⟨w⊥,∇R(w)⟩ ≥ 0 (recall α from Equation (9)).

Proof. Let vj = ZjA
′(Gj)

L1 = yjXjA
′(Gj)

L. Moreover, for any z ∈ Rd let z = z∥ + z⊥, where z∥ is the projection
of z on to u and z⊥ is the component of z orthogonal to u. Let j′ = argmaxj∈S⟨−w⊥,vj⟩ (recall that S is the index set
for support vectors).. We note that −⟨w⊥,v⊥

j′ ⟩ = −⟨w⊥,vj′⟩ ≥ α∥w⊥∥, where α is the quantity on the lefthand side of (8).

Observe that

⟨w⊥,∇R(w⊺)⟩ = 1

k

k∑
i=1

ℓ′(⟨w,vi⟩) · ⟨w⊥,vi⟩

= −1

k

k∑
i=1

exp(−⟨w,vi⟩) · ⟨w⊥,v⊥
i ⟩

= −1

k
exp(−⟨w,vj′⟩) · ⟨w⊥,v⊥

j′ ⟩ −
1

k

∑
1≤i≤k

⟨w⊥,v⊥
i ⟩≥0

exp(−⟨w,vi⟩) · ⟨w⊥,v⊥
i ⟩. (10)

The first term on the righthand side of (10) can be bounded as follows:

−1

k
exp(−⟨w,vj′⟩) · ⟨w⊥,v⊥

j′ ⟩ = −1

k
exp
(
−⟨w,v

∥
j′⟩ − ⟨w,v⊥

j′ ⟩
)
· ⟨w⊥,v⊥

j′ ⟩

= −1

k
exp
(
−⟨w∥,v

∥
j′⟩
)
exp
(
−⟨w⊥,v⊥

j′ ⟩
)
· ⟨w⊥,v⊥

j′ ⟩

≥ 1

k
exp(−⟨w, γu⟩) exp(α∥w⊥∥) · α∥w⊥∥. (11)

For the second term in (10), we have∑
1≤i≤k

⟨w⊥,v⊥
i ⟩≥0

−1

k
exp(−⟨w,vi⟩) · ⟨w⊥,v⊥

i ⟩ =
∑

1≤i≤k

⟨w⊥,v⊥
i ⟩≥0

−1

k
exp(−⟨w, γū⟩) exp(−⟨w,vi − γū⟩) · ⟨w⊥,v⊥

i ⟩

≥
∑

1≤i≤k

⟨w⊥,v⊥
i ⟩≥0

−1

k
exp(−⟨w, γū⟩) exp(−⟨w⊥,v⊥

i ⟩) · ⟨w⊥,v⊥
i ⟩

≥
∑

1≤i≤k

⟨w⊥,v⊥
i ⟩≥0

1

k
exp(−⟨w, γū⟩)(−e−1)

≥ exp(−⟨w, γū⟩)(−e−1), (12)
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since xe−x ≤ −e−1 for x ≥ 0, and the assumption ⟨w,u⟩ ≥ 0 along with the fact that vi has margin at least γ implies that
⟨w,vi − γu− v⊥

i ⟩ ≥ 0.

By plugging (11) and (12) into (10), we obtain

⟨w⊥,∇R(w⊺)⟩ ≥ exp(−⟨w, γū⟩)
[
1

k
exp(α∥w⊥∥) · α∥w⊥∥ − e−1

]
.

Finally, note that since ∥w⊥∥ ≥ (1 + ln(k))/α (by the assumption in the lemma), 1
k exp(α∥w⊥∥) · α∥w⊥∥ − e−1 ≥ 0,

which completes the proof.

Our main theorem establishes the convergence of linear MPNNs to the maximum margin solution.

Theorem 60 (Convergence to the maximum margin solution). Suppose Assumption 14 and Assumption 17 hold. Then, for
the exponential loss function ℓ(x) = e−x, under gradient flow, we have that the learned weights of the MPNN converge to the
maximum margin solution, i.e.,

lim
t→∞

W (L)(t)W (L−1)(t) · · ·W (1)(t)

∥W (L)(t)∥F ∥W (L−1)(t)∥F · · · ∥W (1)(t)∥F
= ū.

Proof. The proof follows that of Theorem 2.8 in (Ji & Telgarsky, 2019), except that one uses Assumption 17 along with
the transformations xi 7→ XiA

′(G)L1n and zi 7→ ZiA
′(G)L1n, where the relevant support vectors are of the form

ZiA
′(G)L1n. The proof follows similarly from Lemma 59 as in (Ji & Telgarsky, 2019).

G. Additional experimental details, data, and results
Here, we outline additional details on the experiments and state more experimental results.

G.1. Datasets

We used the well-known graph classification benchmark datasets from Morris et al. (2020a); see Table 2 for dataset statistics
and properties.2 Specifically, we used the ENZYMES (Schomburg et al., 2004; Borgwardt & Kriegel, 2005), MUTAG (Debnath
et al., 1991; Kriege & Mutzel, 2012), PROTEINS (Dobson & Doig, 2003; Borgwardt & Kriegel, 2005), PTC FM, and
PTC MR (Helma et al., 2001) datasets. To concentrate purely on the graph structure, we omitted potential vertex and edge
labels. Moreover, we created two sets of synthetic datasets. First, we created synthetic datasets to verify Proposition 9.
We followed the construction outlined in the proof of Proposition 9 to create 1 000 graphs on 16, 32, 64, and 128 vertices.
Secondly, we created 1 000 Erdős–Rényi graphs with 20 vertices each using edge probabilities 0.05, 0.1, 0.2, and 0.3,
respectively. Here, we set a graph’s class to the number of subgraphs isomorphic to either C3, C4, C5, or K4, resulting in
sixteen different datasets.

G.2. Graph kernel and MPNNs architectures

We implemented the (normalized) 1-WL, 1-WLOA, 1-WLF , and the 1-WLOAF in Python. For the MPNN experiments, we
used the GIN layer (Xu et al., 2019) using reLU activation functions and fixed the feature dimension to 64. We used mean
pooling and a two-layer MLP using a dropout of 0.5 after the first layer for all experiments for the final classification. For the
MPNNF architectures, we encoded the initial label function lF as a one-hot encoding.

G.3. Experimental protocol and model configuration

For the graph kernel experiments, for the 1-WLOA variants, we computed the (cosine) normalized Gram matrix for each
kernel and computed the classification accuracies using the C-SVM implementation of LIBSVM (Chang & Lin, 2011). Here,
a large C enforces linear separability with a large margin. We computed the ℓ2 normalized feature vectors for the other
kernels and computed the classification accuracies using the linear SVM implementation of LIBLINEAR (Fan et al., 2008). In
both cases, we used 10-fold cross-validation. We repeated each 10-fold cross-validation ten times with different random
folds and report average training and testing accuracies and standard deviations. We additionally report the margin on the

2All datasets are publicly available at www.graphlearning.io.
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Table 2: Dataset statistics and properties.

Dataset
Properties

Number of graphs Number of classes/targets ∅ Number of nodes ∅ Number of edges

ENZYMES 600 6 32.6 62.1
MUTAG 188 2 17.9 19.8
PROTEINS 1 113 2 39.1 72.8
PTC FM 349 2 14.1 14.5
PTC MR 344 2 14.3 14.7

Table 3: Mean train, test accuracies, and margins of kernel architectures on ER graphs for different levels of sparsity and
different subgraphs. NLS—Not linearly separable. NB—Only one class in the dataset.

Subgraph Algorithm
Edge probability

0.05 0.1 0.2 0.3

C3

1-WL 94.2 ±1.7 88.6 ±0.7 NLS 96.3 ±4.6 42.12 ±1.7 0.013 ±0.001 44.1 ±12.4 11.2 ± NLS 38.4 ±5.0 6.99 ±1.1 NLS

1-WLOA 100.0 ±0.0 87.9 ±0.1 DNC 100.0 ±0.0 44.6 ±1.1 DNC 100.0 ±0.0 11.5 ±0.9 DNC 100.0 ±0.0 5.2 ±0.3 DNC

1-WLF 100.0 ±0.0 100.0 ±0.0 0.037 ±0.0 100.0 ±0.0 99.7 ±0.1 0.009 < 0.001 100.0 ±0.0 100.0 ±0.4 0.002 < 0.001 99.1 ±0.2 64.7 ±0.8 0.001 < 0.001

1-WLOAF 100.0 ±0.0 98.6 ±0.0 DNC 100.0 ±0.0 93.8 ±0.3 DNC 100.0 ±0.0 42.0 ±1.0 DNC 100.0 ±0.0 7.4 ±0.2 DNC

C4

1-WL 95.1 ±1.0 92.3 ±0.2 NLS 89.7 ±3.9 46.8 ±0.8 NLS 48.7 ±10.1 5.4 ±0.5 NLS 46.6 ±10.8 2.2 ±0.4 NLS

1-WLOA 100.0 ±0.0 92.6 ±0.0 DNC 100.0 ±0.0 49.6 ±0.8 DNC 100.0 ±0.0 5.13 ±0.6 DNC 100.0 ±0.0 1.7 ±0.3 DNC

1-WLF 100.0 ±0.0 99.9 ±0.1 0.037 ±0.001 100.0 ±0.0 98.2 ±0.2 0.009 < 0.001 100.0 0.0 78.9 ±0.6 0.002 < 0.001 100.0 ±0.0 7.3 ±0.4 0.002 < 0.001

1-WLOAF 100.0 ±0.0 99.3 < 0.1 DNC 100.0 ±0.0 93.7 ±0.2 DNC 100.0 ± 22.4 ±0.9 DNC 100.0 ±0.0 2.8 ±0.6 DNC

C5

1-WL 97.2 ±0.5 95.8 ±0.3 NLS 69.3 ±6.6 53.5 ±0.6 NLS 65.1 ±14.9 4.3 ±0.7 NLS 64.8 ±9.9 1.26 ±0.2 NLS

1-WLOA 100.0 ±0.0 95.9 ±0.0 DNC 100.0 ±0.0 54.2 ±0.3 DNC 100.0 ±0.0 4.7 ±0.5 DNC 100.0 ±0.0 1.4 ±0.5 DNC

1-WLF 100.0 ±0.0 99.9 ±0.0 0.058 ±0.001 100.0 ±0.0 98.4 ±0.2 0.012 < 0.001 100.0 ±0.0 68.8 ±0.5 0.002 < 0.001 100.0 ±0.0 4.2 ±0.5 0.003 < 0.001

1-WLOAF 100.0 ±0.0 99.5 ±0.0 DNC 100.0 ±0.0 91.8 ±0.4 DNC 100.0 ±0.0 20.0 ±0.0 DNC 100.0 ±0.0 2.6 ±0.2 DNC

K4

1-WL NB 99.4 < 0.1 99.4 ±0.0 NLS 78.0 ±0.6 77.7 ±0.3 NLS 68.7 ±9.9 17.1 ±0.9 NLS

1-WLOA NB 100.0 ±0.0 99.4 ±0.0 DNC 100.0 ±0.0 77.8 ±0.3 DNC 100.0 ±0.0 20.6 ±0.9 DNC

1-WLF NB 100.0 ±0.0 100.0 ±0.0 0.122 ±0.0 100.0 ±0.0 99.9 ±0.1 0.022 < 0.001 100.0 ±0.0 94.8 ±0.4 0.004 < 0.001

1-WLOAF NB 100.0 ±0.0 99.4 ±0.0 DNC 100.0 ±0.0 97.8 ±0.1 DNC 100.0 ±0.0 74.6 ±0.6 DNC

training splits for the linear SVM experiments. For the kernelized SVM, this was not possible. For the experiments on the
TUDATSETS, following the evaluation method proposed in Morris et al. (2020a), the C-parameter and numbers of iterations
were selected from {10−3, 10−2, . . . , 102, 103} and {1, . . . , 5}, respectively, using a validation set sampled uniformly at
random from the training fold (using 10 % of the training fold). For 1-WLF and MPNNF , we used cycles and complete
graphs on three to six vertices, respectively.

For the synthetic datasets, we set the C-parameter to 1010 to enforce linear separability and choose the number of iterations
as with the TUDATSETS. All kernel experiments were conducted on a workstation with 512 GB of RAM using a single CPU
core.

For the MPNN experiments, we also followed the evaluation method proposed in Morris et al. (2020a), choosing the number
of layers from {1, . . . , 5}, using a validation set sampled uniformly at random from the training fold (using 10 % of the
training fold). We used an initial learning rate of 0.01 across all experiments with an exponential learning rate decay with
patience of 5, a batch size of 128, and set the maximum number of epochs to 200. All MPNN experiments were conducted on
a workstation with 512 GB of RAM using a single core and one NVIDIA Tesla A100s with 80 GB of GPU memory.

G.4. Results and discussion

In the following we answer questions Q1 to Q4.

Q1 (“Does adding expressive power make datasets more linearly separable?”) See Tables 1, 3 and 6. Table 1 confirms Propo-
sition 9, i.e., the 1-WL and 1-WLOA kernels do not achieve accuracies better than random and cannot linearly separate
the training data. The 1-WLF and 1-WLOAF kernel linearly separate the data while achieving perfect test accuracies. In
addition, Table 3 also confirms this for the ER graphs, i.e., for all datasets, the 1-WL and 1-WLOA kernels cannot separate the
training data while the 1-WLF and 1-WLOAF can. Moreover, the subgraph-based kernels achieve the overall best predictive
performance over all datasets, e.g., on the dataset using edge probability 0.2 and F = {C5} the test accuracies of the 1-WLF
improves over the 1-WL by more than 57 %. Similar effects can be observed for the MPNN architectures; see Table 6.
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Table 4: Mean train and test accuracies of the MPNN architectures on TUDATASETS datasets for different subgraphs.

F Algorithm
Dataset

ENZYMES MUTAG PROTEINS PTC FM PTC MR

— MPNN 25.5 ±1.9 20.9 ±1.5 84.5 ±1.2 82.4 ±1.9 68.4 ±0.8 67.1 ±0.8 61.4 ±1.8 59.2 ±2.4 56.7 ±2.3 53.7 ±3.0

C3 MPNNF 61.3 ±4.1 29.2 ±1.5 84.2 ±1.9 81.8 ±2.6 72.7 ±0.8 67.8 ±0.8 61.9 ±2.4 59.7 ±2.4 57.3 ±0.9 56.3 ±2.5

C3-C4 MPNNF 61.8 ±3.0 28.9 ±1.5 84.5 ±2.4 82.1 ±2.6 72.5 ±0.8 69.0 ±0.9 62.0 ±0.8 59.4 ±1.9 57.5 ±0.8 54.3 ±1.3

C3-C5 MPNNF 61.6 ±2.8 28.5 ±2.2 83.9 ±2.2 81.8 ±2.4 72.6 ±0.8 68.6 ±0.9 62.0 ±2.0 58.8 ±2.5 56.7 ±1.4 54.9 ±1.8

C3-C6 MPNNF 61.8 ±6.0 28.8 ±1.6 83.4 ±2.4 82.2 ±2.6 72.7 ±0.6 68.4 ±0.5 62.4 ±0.9 60.5 ±2.4 57.2 ±1.3 54.0 ±2.0

K3 MPNNF 60.1 ±4.5 28.8 ±1.0 84.8 ±1.6 84.2 ±1.7 72.6 ±0.6 67.7 ±0.7 62.1 ±1.6 59.0 ±2.3 57.2 ±0.8 54.3 ±1.8

K3-K4 MPNNF 61.8 ±5.5 29.5 ±1.6 83.2 ±2.6 80.9 ±2.4 73.2 ±0.8 68.1 ±0.6 62.3 ±2.0 59.1 ±3.2 57.0 ±1.4 53.7 ±2.6

K3-K5 MPNNF 60.6 ±3.9 29.2 ±1.3 84.9 ±1.4 82.9 ±2.1 72.9 ±0.9 68.0 ±1.1 61.7 ±2.1 57.8 ±2.8 58.6 ±1.3 54.4 ±1.8

K3-K6 MPNNF 60.3 ±4.7 28.8 ±1.4 84.6 ±1.3 82.4 ±2.5 73.4 ±0.7 68.5 ±0.9 62.2 ±1.3 59.3 ±1.6 57.7 ±1.0 54.4 ±2.8

Table 5: Mean train, test accuracies, and margins of the kernel architectures on TUDATASETS datasets for different subgraphs.
DNC—Did not compute due to implicit kernel.

F Algorithm
Dataset

ENZYMES MUTAG PROTEINS PTC FM PTC MR

— 1-WL 90.4 ±4.4 34.1 ±1.7 0.023 ±0.002 88.9 ±1.4 83.7 ±2.1 0.073 ±0.044 79.9 ±1.8 68.1 ±1.1 0.090 ±0.0189 70.1 ±3.4 55.7 ±2.7 0.196 ±0.104 67.0 ±2.2 54.2 ±2.2 0.296 ±0.194

— 1-WLOA 100.0 0.0 ±0.0 32.3 ±1.7 DNC 99.3 ±1.4 82.6 ±2.0 DNC 96.6 ±2.7 73.9 ±0.7 DNC 91.7 ±4.2 58.2 ±1.5 DNC 95.5 ±4.4 55.7 ±1.5 DNC

C3 1-WLF 97.0 ±1.8 37.9 ±1.8 0.021 ±0.002 88.1 ±2.4 83.3 ±2.0 0.134 ±0.082 89.1 ±2.3 65.3 ±1.1 0.078 ±0.090 72.1 ±3.1 57.0 ±2.2 0.167 ±0.070 70.9 ±3.6 54.7 ±2.3 0.143 ±0.044

C3-C4 1-WLF 97.5 ±1.1 40.6 ±1.7 0.020 ±0.001 88.6 ±1.2 84.7 ±1.9 0.065 ±0.044 90.5 ±2.1 65.2 ±1.3 0.056 ±0.014 72.5 ±4.2 56.3 ±1.4 0.188 ±0.113 70.1 ±4.9 55.5 ±3.2 0.121 ±0.037

C3-C5 1-WLF 97.1 ±1.1 38.0 ±1.5 0.022 ±0.001 89.9 ±1.8 83.0 ±2.1 0.072 ±0.066 91.6 ±2.1 63.6 ±1.1 0.052 ±0.018 71.4 ±3.5 56.6 ±1.2 0.229 ±0.187 68.8 ±2.9 55.5 ±1.7 0.138 ±0.067

C3-C6 1-WLF 96.5 ±1.5 38.7 ±1.4 0.021 ±0.001 92.2 ±1.4 83.5 ±2.2 0.090 ±0.039 92.1 ±2.4 64.9 ±0.9 0.050 ±0.019 74.8 ±2.7 57.2 ±2.8 0.193 ±0.167 73.2 ±4.2 56.5 ±1.9 0.171 ±0.123

K3 1-WLF 96.4 ±2.5 37.6 ±0.9 0.021 ±0.001 89.5 ±1.8 84.0 ±1.8 0.086 ±0.064 87.2 ±2.4 64.9 ±1.6 0.059 ±0.021 71.7 ±4.1 57.0 ±2.1 0.150 ±0.081 67.8 ±3.2 54.7 ±3.1 0.162 ±0.068

K3-K4 1-WLF 96.8 ±3.0 36.8 ±1.4 0.020 ±0.002 88.3 ±2.0 84.7 ±1.8 0.100 ±0.064 88.9 ±2.6 64.7 ±1.2 0.062 ±0.018 70.6 ±3.1 56.0 ±2.3 0.151 ±0.065 68.6 ±4.2 55.6 ±2.2 0.135 ±0.049

K3-K5 1-WLF 96.5 ±2.2 36.6 ±1.8 0.021 ±0.001 88.2 ±2.2 82.7 ±2.6 0.098 ±0.072 89.7 ±2.8 64.5 ±0.9 0.047 ±0.012 72.9 ±5.7 57.2 ±1.2 0.182 ±0.077 67.6 ±4.4 54.3 ±1.3 0.145 ±0.055

K3-K6 1-WLF 95.8 ±2.0 37.7 ±1.5 0.021 ±0.001 88.7 ±1.8 84.3 ±1.1 0.078 ±0.049 88.9 ±3.0 63.6 ±1.4 0.055 ±0.022 71.0 ±2.7 56.0 ±2.4 0.147 ±0.047 69.6 ±3.7 55.0 ±2.1 0.133 ±0.038

C3 1-WLOAF 100.0 ±0.0 36.7 ±1.8 DNC 99.3 ±1.4 83.4 ±2.7 DNC 100.0 ±0.0 67.6 ±0.9 DNC 91.7 ±4.2 59.6 ±0.5 DNC 93.7 ±5.7 56.1 ±1.4 DNC

C3-C4 1-WLOAF 100.0 ±0.0 36.1 ±1.8 DNC 99.6 ±1.1 84.3 ±1.9 DNC 99.6 ±1.1 66.5 ±0.4 DNC 88.0 ±4.7 59.5 ±1.2 DNC 94.6 ±3.4 55.5 ±1.7 DNC

C3-C5 1-WLOAF 100.0 ±0.0 35.0 ±1.7 DNC 99.7 ±1.0 82.2 ±1.3 DNC 100.0 ±0.0 65.9 ±0.5 DNC 89.7 ±4.6 58.6 ±1.2 DNC 92.8 4.7 ±4.7 55.4 ±1.0 DNC

C3-C6 1-WLOAF 100.0 ±0.0 35.8 ±1.8 DNC 98.3 ±3.2 83.1 ±2.6 DNC 99.6 ±1.2 66.2 ±0.6 DNC 91.7 ±5.3 58.7 ±2.6 DNC 89.2 ±5.4 55.9 ±1.5 DNC

K3 1-WLOAF 100.0 ±0.0 37.0 ±1.6 DNC 100.0 ±0.0 83.2 ±1.7 DNC 99.2 ±1.5 67.2 ±0.5 DNC 92.5 ±5.9 59.0 ±1.7 DNC 92.7 ±3.6 57.0 ±1.8 DNC

K3-K4 1-WLOAF 100.0 ±0.0 37.7 ±1.4 DNC 99.3 ±1.5 82.1 ±1.6 DNC 100.0 ±0.0 66.7 ±0.7 DNC 92.5 ±5.9 59.0 ±1.7 DNC 94.1 ±5.0 57.6 ±1.7 DNC

K3-K5 1-WLOAF 100.0 ±0.0 37.1 ±1.4 DNC 100.0 ±0.0 82.5 ±1.8 DNC 98.9 ±1.7 66.7 ±1.1 DNC 93.3 ±4.3 59.6 ±1.0 DNC 94.6 ±2.7 57.1 ±1.3 DNC

K3-K6 1-WLOAF 100.0 ±0.0 38.3 ±1.6 DNC 99.6 ±1.1 83.4 ±1.4 DNC 98. ±1.8 5 66.8 ±0.6 DNC 94.6 ±4.6 58.9 ±1.1 DNC 93.2 ±6.1 56.4 ±2.5 DNC

Table 6: Mean test accuracies of MPNN architectures on ER graphs for different levels of sparsity and different subgraphs.
NB—Only one class in the dataset.

Subgraph Algorithm
Probability

0.05 0.1 0.2 0.3

C3
MPNN 90.7 ±0.5 50.7 ±1.0 20.1 ±0.7 9.5 ±0.6

MPNNF 98.8 ±0.3 96.1 ±0.3 72.5 ±1.3 32.9 ±1.0

C4
MPNN 90.7 ±0.7 51.3 ±1.4 20.1 ±0.8 9.9 ±0.9

MPNNF 99.1 ±0.2 96.2 ±0.4 73.3 ±0.9 33.1 ±1.3

C5
MPNN 90.6 ±0.5 51.3 ±1.2 20.1 ±0.6 9.9 ±0.6

MPNNF 98.9 ±0.2 96.2 ±0.4 73.6 ±1.0 33.8 ±1.0

K4
MPNN NB 51.0 ±1.2 20.1 ±1.0 10.1 ±1.3

MPNNF NB 96.2 ±0.5 72.9 ±0.9 33.6 ±1.2
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Q2 (“Can the increased predictive performance of a more expressive variant of the 1-WL algorithm be explained by an
increased margin?”) See Tables 3 and 5 and Figure 1. On the TUDATASETS, an increased margin often leads to less
difference between train and test accuracy; see Table 5. For example, on the PROTEINS datasets, the 1-WLF , for all F , leads
to a larger difference, while its margin is always strictly smaller than 1-WL’s margin. Hence, the empirical results align with
our theory, i.e., a smaller margin worsens the generalization error. Similar effects can be observed for all other datasets, except
MUTAG. On the ER dataset, comparing the 1-WL and 1-WLF , for all F , we can clearly confirm the theoretical results. That is,
the 1-WL cannot separate any dataset with a positive margin, while the 1-WLF can, and we observe a decreased difference
between 1-WLF ’s train and test accuracies compared to the 1-WL. Analyzing the 1-WLF further, for all F , a decreasing
margin always results in an increased difference between test and train accuracies. For example, for F = {C4} and p = 0.05,
the 1-WLF achieves a margin of 0.037 with a difference of 0.1 %, for p = 0.1, it achieves a margin of 0.009 with a difference
of 1.8 %, for p = 0.1, it achieves a margin of 0.002 with a difference of 31.2 %, and, for p = 0.3, it achieve a margin of 0.003
with difference of 95.8 %, confirming the theoretical results. Moreover, see Figure 1 of visual illustration of this observation.

Q3 (“Does the 1-WLOAF lead to increased predictive performance?”) See Tables 1, 3 and 5. Table 5 shows that the
1-WLOAF kernel performs similarly to the 1-WLF , while sometimes achieving better accuracies, e.g., on the PTC FM and
PTC MR datasets. Table 1 confirms this observation for the empirical verification of Proposition 9, i.e., the 1-WLOAF
achieve perfect accuracy scores. The results are less clear for the ER datasets. On some datasets, e.g., edge probability 0.05,
the 1-WLOAF performs similarly to the 1-WLF architecture. However, the algorithm leads to significantly worse predictive
performance on other datasets. We speculate this is due to numerical problems of the kernelized SVM implementation.

Q4 (“Do the results lift to MPNNs?”) See Tables 1, 4 and 6. Table 1 shows that Proposition 9 also lifts to MPNNs, i.e., like
the 1-WLF kernel, the MPNNF architecture achieves perfect prediction accuracies while the standard MPNNs does not
perform better than random. In addition, on the TUDatasets, the MPNNF architecture clearly outperforms the standard
MPNN over all datasets; see Table 4. For example, on the ENZYMES dataset, the MPNNF architecture beats the MPNN by at
least 7 %, for all subgraph choices. This observation holds across all datasets. Moreover, the MPNNF architectures also
achieve better predictive performance on all ER datasets, see Table 6, compared to MPNNs. For example on the dataset using
edge probability 0.2 and F = {C5}, the test accuracies of the MPNNF architecture improves over the MPNN by more than
52 %.
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