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ABSTRACT

Large Language Models (LLMs) have emerged as a groundbreaking technology
with their unparalleled text generation capabilities across various applications.
Nevertheless, concerns persist regarding the accuracy and appropriateness of their
generated content. A contemporary methodology, self-correction, has been pro-
posed as a remedy to these issues. Building upon this premise, this paper critically
examines the role and efficacy of self-correction within LLMs, shedding light on
its true potential and limitations. Central to our investigation is the notion of in-
trinsic self-correction, whereby an LLM attempts to correct its initial responses
based solely on its inherent capabilities, without the crutch of external feedback.
In the context of reasoning, our research indicates that LLMs struggle to self-
correct their responses without external feedback, and at times, their performance
even degrades after self-correction. Drawing from these insights, we offer sugges-
tions for future research and practical applications in this field.

1 INTRODUCTION

The rapid advancements in the domain of artificial intelligence have ushered in the era of Large
Language Models (LLMs). These models, characterized by their expansive parameter counts and
unparalleled capabilities in text generation, have showcased promising results across a multitude
of applications (Chowdhery et al., 2023; Anil et al., 2023; OpenAI, 2023, inter alia). However,
concerns about their accuracy, reasoning capabilities, and the safety of their generated content have
drawn significant attention from the community (Bang et al., 2023; Alkaissi & McFarlane, 2023;
Zheng et al., 2023; Shi et al., 2023; Carlini et al., 2021; Huang et al., 2022; Shao et al., 2023; Li
et al., 2023; Wei et al., 2023; Zhou et al., 2023b; Zou et al., 2023, inter alia).

Amidst this backdrop, the concept of “self-correction” has emerged as a promising solution, where
LLMs refine their responses based on feedback to their previous outputs (Madaan et al., 2023;
Welleck et al., 2023; Shinn et al., 2023; Kim et al., 2023; Bai et al., 2022; Ganguli et al., 2023;
Gao et al., 2023; Paul et al., 2023; Chen et al., 2023b; Pan et al., 2023, inter alia). However, the
underlying mechanics and efficacy of self-correction in LLMs remain underexplored. A fundamen-
tal question arises: If an LLM possesses the ability to self-correct, why doesn’t it simply offer the
correct answer in its initial attempt? This paper delves deeply into this paradox, critically examining
the self-correction capabilities of LLMs, with a particular emphasis on reasoning (Wei et al., 2022;
Zhou et al., 2023b; Huang & Chang, 2023).

To study this, we first define the concept of intrinsic self-correction, a scenario wherein the model
endeavors to rectify its initial responses based solely on its inherent capabilities, without the crutch
of external feedback. Such a setting is crucial because high-quality external feedback is often un-
available in many real-world applications. Moreover, it is vital to understand the intrinsic capabilities
of LLMs. Contrary to the optimism surrounding self-correction (Madaan et al., 2023; Kim et al.,
2023; Shinn et al., 2023; Pan et al., 2023, inter alia), our findings indicate that LLMs struggle to
self-correct their reasoning in this setting. In most instances, the performance after self-correction
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even deteriorates. This observation is in contrast to prior research such as Kim et al. (2023); Shinn
et al. (2023). Upon closer examination, we observe that the improvements in these studies result
from using oracle labels to guide the self-correction process, and the improvements vanish when
oracle labels are not available.

Besides the reliance on oracle labels, we also identify other issues in the literature regarding mea-
suring the improvement achieved by self-correction. First, we note that self-correction, by design,
utilizes multiple LLM responses, thus making it crucial to compare it to baselines with equivalent
inference costs. From this perspective, we investigate multi-agent debate (Du et al., 2023; Liang
et al., 2023) as a means to improve reasoning, where multiple LLM instances (can be multiple
copies of the same LLM) critique each other’s responses. However, our results reveal that its effi-
cacy is no better than self-consistency (Wang et al., 2022) when considering an equivalent number
of responses, highlighting the limitations of such an approach.

Another important consideration for self-correction involves prompt design. Specifically, each self-
correction process involves designing prompts for both the initial response generation and the self-
correction steps. Our evaluation reveals that the self-correction improvement claimed by some exist-
ing work stems from the sub-optimal prompt for generating initial responses, where self-correction
corrects these responses with more informative instructions about the initial task in the feedback
prompt. In such cases, simply integrating the feedback into the initial instruction can yield better
results, and self-correction again decreases performance.

In light of our findings, we provide insights into the nuances of LLMs’ self-correction capabilities
and initiate discussions to encourage future research focused on exploring methods that can gen-
uinely correct reasoning.

2 BACKGROUND AND RELATED WORK

With the LLM evolution, the notion of self-correction gained prominence. The discourse on self-
correction pivots around whether these advanced models can recognize the correctness of their out-
puts and provide refined answers (Bai et al., 2022; Madaan et al., 2023; Welleck et al., 2023, inter
alia). For example, in the context of mathematical reasoning, an LLM might initially solve a com-
plex problem but make an error in one of the calculation steps. In an ideal self-correction scenario,
the model is expected to recognize the potential mistake, revisit the problem, correct the error, and
consequently produce a more accurate solution.

Yet, the definition of “self-correction” varies across the literature, leading to ambiguity. A pivotal
distinction lies in the source of feedback (Pan et al., 2023), which can purely come from the LLM, or
can be drawn from external inputs. Internal feedback relies on the model’s inherent knowledge and
parameters to reassess its outputs. In contrast, external feedback incorporates inputs from humans,
other models (Wang et al., 2023b; Paul et al., 2023, inter alia), or external tools and knowledge
sources (Gou et al., 2023; Chen et al., 2023b; Olausson et al., 2023; Gao et al., 2023, inter alia).

In this work, we focus on examining the self-correction capability of LLMs for reasoning. Reasoning
is a fundamental aspect of human cognition, enabling us to understand the world, draw inferences,
make decisions, and solve problems. To enhance the reasoning performance of LLMs, Kim et al.
(2023); Shinn et al. (2023) use oracle labels about the answer correctness to guide the self-correction
process. However, in practice, high-quality external feedback such as answer correctness is often
unavailable. For effective self-correction, the ability to judge the correctness of an answer is crucial
and should ideally be performed by the LLM itself. Consequently, our focus shifts to self-correction
without any external or human feedback. We term this setting intrinsic self-correction. For brevity,
unless explicitly stated otherwise (e.g., self-correction with oracle feedback), all references to “self-
correction” in the remainder of this paper pertain to intrinsic self-correction.

In the following sections, we will evaluate a variety of existing self-correction techniques. We
demonstrate that existing techniques actually decrease reasoning performance when oracle labels
are not used (Section 3), perform worse than methods without self-correction when utilizing the
same number of model responses (Section 4), and lead to less effective outcomes when using infor-
mative prompts for generating initial responses (Section 5). We present an overview of issues in the
evaluation setups of previous LLM self-correction works in Table 1, with detailed discussions in the
corresponding sections.
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Table 1: Summary of issues in previous LLM self-correction evaluation.

Method Issue

RCI (Kim et al., 2023); Reflexion (Shinn et al., 2023) Use of oracle labels (Section 3)
Multi-Agent Debate (Du et al., 2023) Unfair comparison to self-consistency (Section 4)
Self-Refine (Madaan et al., 2023) Sub-optimal prompt design (Section 5)

3 LLMS CANNOT SELF-CORRECT REASONING INTRINSICALLY

In this section, we evaluate existing self-correction methods and compare their performance with
and without oracle labels regarding the answer correctness.

3.1 EXPERIMENTAL SETUP

Benchmarks. We use datasets where existing self-correction methods with oracle labels have
demonstrated significant performance improvement, including

• GSM8K (Cobbe et al., 2021): GSM8K comprises a test set of 1,319 linguistically diverse grade
school math word problems, curated by human problem writers. There is a notable improvement
of approximately 7% as evidenced by Kim et al. (2023) after self-correction.

• CommonSenseQA (Talmor et al., 2019): This dataset offers a collection of multi-choice questions
that test commonsense reasoning. An impressive increase of around 15% is showcased through
the self-correction process, as demonstrated by Kim et al. (2023). Following Kojima et al. (2022);
Kim et al. (2023), we utilize the dev set for our evaluation, which encompasses 1,221 questions.

• HotpotQA (Yang et al., 2018): HotpotQA is an open-domain multi-hop question answering
dataset. Shinn et al. (2023) demonstrate significant performance improvement through self-
correction. We test models’ performance in a closed-book setting and evaluate them using the
same set as Shinn et al. (2023). This set contains 100 questions, with exact match serving as the
evaluation metric.

Test Models and Setup. We first follow Kim et al. (2023); Shinn et al. (2023) to evaluate the per-
formance of self-correction with oracle labels, using GPT-3.5-Turbo (gpt-3.5-turbo-0613)
and GPT-4 accessed on 2023/08/29. For intrinsic self-correction, to provide a more
thorough analysis, we also evaluate GPT-4-Turbo (gpt-4-1106-preview) and Llama-2
(Llama-2-70b-chat) (Touvron et al., 2023). For GPT-3.5-Turbo, we employ the full evalua-
tion set. For other models, to reduce the cost, we randomly sample 200 questions for each dataset
(100 for HotpotQA) for testing. We prompt the models to undergo a maximum of two rounds of
self-correction. We use a temperature of 1 for GPT-3.5-Turbo and GPT-4, and a temperature of 0 for
GPT-4-Turbo and Llama-2, to provide evaluation across different decoding algorithms.

Prompts. Following Kim et al. (2023); Shinn et al. (2023), we apply a three-step prompting strategy
for self-correction: 1) prompt the model to perform an initial generation (which also serves as the
results for Standard Prompting); 2) prompt the model to review its previous generation and produce
feedback; 3) prompt the model to answer the original question again with the feedback.

For our experiments, we mostly adhere to the prompts from the source papers. For GSM8K and
CommonSenseQA, we integrate format instructions into the prompts of Kim et al. (2023) to facilitate
a more precise automatic evaluation (detailed prompts can be found in Appendix A). For HotpotQA,
we use the same prompt as Shinn et al. (2023). We also assess the performance of various self-
correction prompts for intrinsic self-correction. For example, we use “Assume that this answer
could be either correct or incorrect. Review the answer carefully and report any serious problems
you find.” as the default feedback prompt for the evaluation on GPT-4-Turbo and Llama-2.

3.2 RESULTS

Self-Correction with Oracle Labels. Following previous works (Kim et al., 2023; Shinn et al.,
2023), we use the correct label to determine when to stop the self-correction loop. This means we
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Table 2: Results of GPT-3.5 and GPT-4 on reasoning benchmarks with oracle labels.

GSM8K CommonSenseQA HotpotQA

GPT-3.5 Standard Prompting 75.9 75.8 26.0
Self-Correct (Oracle) 84.3 89.7 29.0

GPT-4 Standard Prompting 95.5 82.0 49.0
Self-Correct (Oracle) 97.5 85.5 59.0

Table 3: Results of GPT-3.5 and GPT-4 on reasoning benchmarks with intrinsic self-correction.

# calls GSM8K CommonSenseQA HotpotQA

GPT-3.5
Standard Prompting 1 75.9 75.8 26.0
Self-Correct (round 1) 3 75.1 38.1 25.0
Self-Correct (round 2) 5 74.7 41.8 25.0

GPT-4
Standard Prompting 1 95.5 82.0 49.0
Self-Correct (round 1) 3 91.5 79.5 49.0
Self-Correct (round 2) 5 89.0 80.0 43.0

utilize the ground-truth label to verify whether each step’s generated answer is correct. If the answer
is already correct, no (further) self-correction will be performed. Table 2 summarizes the results
of self-correction under this setting, showcasing significant performance improvements, consistent
with the findings presented in Kim et al. (2023); Shinn et al. (2023).

However, these results require careful consideration. For reasoning tasks, like solving mathematical
problems, the availability of oracle labels seems counter-intuitive. If we are already in possession
of the ground truth, there seems to be little reason to deploy LLMs for problem-solving. Therefore,
the results can only be regarded as indicative of an oracle’s performance.

Intrinsic Self-Correction. Per the above discussion, performance improvements achieved using
oracle labels do not necessarily reflect true self-correction ability. Therefore, we turn our focus to
the results in the intrinsic self-correction setting as defined in Section 2. To achieve this, we elimi-
nate the use of labels, requiring LLMs to independently determine when to stop the self-correction
process, i.e., whether to retain their previous answers.

Tables 3 and 4 report the accuracies and the number of model calls. We observe that, after self-
correction, the accuracies of all models drop across all benchmarks.

To provide a more comprehensive assessment, we also design several different self-correction
prompts to determine if there are better prompts that could enhance reasoning performance.
Nonetheless, as shown in Tables 5 and 6, without the use of oracle labels, self-correction consis-
tently results in a decrease in performance.

3.3 WHY DOES THE PERFORMANCE NOT INCREASE, BUT INSTEAD DECREASE?

Empirical Analysis. Figure 1 summarizes the results of changes in answers after two rounds of
self-correction, with two examples of GPT-3.5 illustrated in Figure 2. For GSM8K, 74.7% of the
time, GPT-3.5 retains its initial answer. Among the remaining instances, the model is more likely to
modify a correct answer to an incorrect one than to revise an incorrect answer to a correct one. The
fundamental issue is that LLMs cannot properly judge the correctness of their reasoning. For
CommonSenseQA, there is a higher chance that GPT-3.5 alters its answer. The primary reason for
this is that false answer options in CommonSenseQA often appear somewhat relevant to the ques-
tion, and using the self-correction prompt might bias the model to choose another option, leading to
a high “correct ⇒ incorrect” ratio. Similarly, Llama-2 also frequently converts a correct answer into
an incorrect one. Compared to GPT-3.5 and Llama-2, both GPT-4 and GPT-4-Turbo are more likely
to retain their initial answers. This may be because GPT-4 and GPT-4-Turbo have higher confidence

4



Published as a conference paper at ICLR 2024

Table 4: Results of GPT-4-Turbo and Llama-2 with intrinsic self-correction.

# calls GSM8K CommonSenseQA

GPT-4-Turbo
Standard Prompting 1 91.5 84.0
Self-Correct (round 1) 3 88.0 81.5
Self-Correct (round 2) 5 90.0 83.0

Llama-2
Standard Prompting 1 62.0 64.0
Self-Correct (round 1) 3 43.5 37.5
Self-Correct (round 2) 5 36.5 36.5

Table 5: Results of GPT-4-Turbo with different feedback prompts.

# calls GSM8K CommonSenseQA

Standard Prompting 1 91.5 84.0

Feedback Prompt: Assume that this answer could be either correct or incorrect.
Review the answer carefully and report any serious problems you find.

Self-Correct (round 1) 3 88.0 81.5
Self-Correct (round 2) 5 90.0 83.0

Feedback Prompt: Review your previous answer and determine whether it’s correct.
If wrong, find the problems with your answer.

Self-Correct (round 1) 3 90.0 74.5
Self-Correct (round 2) 5 90.0 81.0

Feedback Prompt: Verify whether your answer is correct, and provide an explanation.

Self-Correct (round 1) 3 91.0 81.5
Self-Correct (round 2) 5 91.0 83.5

Table 6: Results of Llama-2 with different feedback prompts.

# calls GSM8K CommonSenseQA

Standard Prompting 1 62.0 64.0

Feedback Prompt: Assume that this answer could be either correct or incorrect.
Review the answer carefully and report any serious problems you find.

Self-Correct (round 1) 3 43.5 37.5
Self-Correct (round 2) 5 36.5 36.5

Feedback Prompt: Review your previous answer and determine whether it’s correct.
If wrong, find the problems with your answer.

Self-Correct (round 1) 3 46.5 26.0
Self-Correct (round 2) 5 30.5 37.0

Feedback Prompt: Verify whether your answer is correct, and provide an explanation.

Self-Correct (round 1) 3 58.0 24.0
Self-Correct (round 2) 5 41.5 43.0

in their initial answers, or because they are more robust and thus less prone to being biased by the
self-correction prompt.1

1We omit the analysis on HotpotQA because the sample size used in the source paper is quite small, which
may not produce meaningful statistics.
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GSM8K (GPT-3.5)
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Figure 1: Analysis of the changes in answers after two rounds of self-correction. No Change: The
answer remains unchanged; Correct ⇒ Incorrect: A correct answer is changed to an incorrect one;
Incorrect ⇒ Correct: An incorrect answer is revised to a correct one; Incorrect ⇒ Incorrect: An
incorrect answer is altered but remains incorrect.

Terry eats 2 yogurts a day. They are currently on sale at 
4 yogurts for $5.00. How much does he spend on 
yogurt over 30 days?

... So, Terry spends $\boxed{75.00}$ on yogurt over 30 
days. (Correct)

Review your previous answer and find problems with 
your answer.

Upon reviewing my previous answer, I realized that I 
made a mistake in calculating Terry's spending on 
yogurt over 30 days. I incorrectly stated that Terry 
spends $2.50 per day for 30 days, resulting in a total of 
$75.00…

Based on the problems you found, improve your 
answer.

... Therefore, the final answer is Terry spends 
$\boxed{37.50}$ on yogurt over 30 days. (Incorrect)

Christina is planning a birthday party and needs .75 gift 
bags per invited guest, because 1/4 of attendees don't 
show up. She invited 16 friends. Gift bags are $2 each. 
How much will she spend?

... Therefore, Christina will spend $18 on gift bags. 
Answer: \boxed{18}. (Incorrect)

Review your previous answer and find problems with 
your answer.

Upon reviewing my previous answer, I recognize a 
mistake. I incorrectly stated that Christina needs 0.75 
gift bags per invited guest. The given information states 
that 1/4 of the attendees won't show up…

Based on the problems you found, improve your 
answer.

... Therefore, Christina will spend $24 on gift bags. 
Answer: \boxed{24}. (Correct)

Figure 2: Examples on GSM8K with GPT-3.5. Left: successful self-correction; Right: failed self-
correction. Full prompts and responses can be viewed in Figures 3 and 4 of Appendix A.

Let’s take another look at the results presented in Table 2. These results use ground-truth labels to
prevent the model from altering a correct answer to an incorrect one. However, determining how to
prevent such mischanges is, in fact, the key to ensuring the success of self-correction.

Intuitive Explanation. If the model is well-aligned and paired with a thoughtfully designed ini-
tial prompt, the initial response should already be optimal relative to the prompt and the specific
decoding algorithm. Introducing feedback can be viewed as adding an additional prompt, poten-
tially skewing the model towards generating a response that is tailored to this combined input. In
an intrinsic self-correction setting, on the reasoning tasks, this supplementary prompt may not offer
any extra advantage for answering the question. In fact, it might even bias the model away from
producing an optimal response to the initial prompt, resulting in a performance drop.
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Table 7: Results of multi-agent debate and self-consistency.

# responses GSM8K

Standard Prompting 1 76.7
Self-Consistency 3 82.5
Multi-Agent Debate (round 1) 6 83.2
Self-Consistency 6 85.3
Multi-Agent Debate (round 2) 9 83.0
Self-Consistency 9 88.2

Table 8: Results of Constrained Generation.

# calls CommonGen-Hard

Standard Prompting* 1 44.0*
Self-Correct* 7 67.0*
Standard Prompting* 1 53.0
Self-Correct* 7 61.1
Standard Prompting (ours) 1 81.8
Self-Correct* 7 75.1
* Prompts and results from Madaan et al. (2023).

4 MULTI-AGENT DEBATE DOES NOT OUTPERFORM SELF-CONSISTENCY

Another potential approach for LLMs to self-correct their reasoning involves allowing the models
to critique and debate through multiple model calls (Du et al., 2023; Liang et al., 2023; Chen et al.,
2023a). Du et al. (2023) implement a multi-agent debate method by leveraging multiple instances of
a single ChatGPT model and demonstrate significant improvements on reasoning tasks. We adopt
their method to test performance on GSM8K. For an unbiased implementation, we use the exact
same prompt as Du et al. (2023) and replicate their experiment with the gpt-3.5-turbo-0301
model, incorporating 3 agents and 2 rounds of debate. The only distinction is that, to reduce result
variance, we test on the complete test set of GSM8K, compared to their usage of 100 examples. For
reference, we also report the results of self-consistency (Wang et al., 2022), which prompts models
to generate multiple responses and performs majority voting to select the final answer.

Table 7 presents the results. The results indicate that both multi-agent debate and self-consistency
achieve significant improvements over standard prompting. However, when comparing multi-agent
debate to self-consistency, we observe that the performance of multi-agent is only slightly better than
that of self-consistency with the same number of agents (3 responses, the baseline also compared
in Du et al. (2023)). Furthermore, for self-consistency with an equivalent number of responses,
multi-agent debate significantly underperforms simple self-consistency using majority voting.

In fact, rather than labeling the multi-agent debate as a form of “debate” or “critique”, it is more
appropriate to perceive it as a means to achieve “consistency” across multiple model generations.
Fundamentally, its concept mirrors that of self-consistency; the distinction lies in the voting mech-
anism, whether voting is model-driven or purely based on counts. The observed improvement is
evidently not attributed to “self-correction”, but rather to “self-consistency”. If we aim to argue that
LLMs can self-correct reasoning through multi-agent debate, it is preferable to exclude the effects
of selection among multiple generations.

5 PROMPT DESIGN ISSUES IN SELF-CORRECTION EVALUATION

In Section 3, we observe that although self-correction decreases reasoning performance with all
types of feedback prompts we have evaluated, performance varies with different feedback prompts.
In this section, we further emphasize the importance of proper prompt design in generating initial
LLM responses to fairly measure the performance improvement achieved by self-correction. For
example, if a task requires that the model response should meet criteria that can be easily specified
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in the initial instruction (e.g., the output should contain certain words, the generated code should
be efficient, the sentiment should be positive, etc.), instead of including such requirements only
in the feedback prompt, an appropriate comparison would be to directly and explicitly incorporate
these requirements into the prompt for generating initial responses. Otherwise, when the instruction
for generating initial predictions is not informative enough, even if the performance improves, it
is unclear whether the improvement merely comes from more detailed instructions in the feedback
prompt or from the self-correction step itself.

To illustrate such prompt design issues in the self-correction evaluation of some prior work, we
take the Constrained Generation task in Madaan et al. (2023) as an example, where the task re-
quires models to generate coherent sentences using all 20-30 input concepts. The original prompt in
Madaan et al. (2023) (Figure 7) does not clearly specify that the LLM needs to include all concepts
in the prompt; thus, they show that self-correction improves task performance by asking the model
to identify missing concepts and then guiding it to incorporate these concepts through feedback.

Based on this observation, we add the following instruction “Write a reasonable paragraph that
includes *ALL* of the above concepts” to the prompt for initial response generation (refer to Figure 8
for the full prompt). Following Madaan et al. (2023), we use concept coverage as the metric. We
reference their results and replicate their experiments using gpt-3.5-turbo-0613. Table 8
demonstrates that our new prompt, denoted as Standard Prompting (ours), significantly outperforms
the results after self-correction of Madaan et al. (2023), and applying their self-correction prompt
on top of model responses from our stronger version of the standard prompting again leads to a
decrease in performance.

6 CONCLUSION AND DISCUSSION

Our work shows that current LLMs struggle to self-correct their reasoning without external feed-
back. This implies that expecting these models to inherently recognize and rectify their reasoning
mistakes is overly optimistic so far. In light of these findings, it is imperative for the community to
approach the concept of self-correction with a discerning perspective, acknowledging its potential
and recognizing its boundaries. By doing so, we can better equip the self-correction technique to
address the limitations of LLMs and develop the next generation of LLMs with enhanced capabili-
ties. In the following, we provide insights into scenarios where self-correction shows the potential
strengths and offer guidelines on the experimental design of future self-correction techniques to
ensure a fair comparison.

Leveraging external feedback for correction. In this work, we demonstrate that current LLMs
cannot improve their reasoning performance through intrinsic self-correction. Therefore, when valid
external feedback is available, it is beneficial to leverage it properly to enhance model performance.
For example, Chen et al. (2023b) show that LLMs can significantly improve their code generation
performance through self-debugging by including code execution results in the feedback prompt to
fix issues in the predicted code. In particular, when the problem description clearly specifies the in-
tended code execution behavior, e.g., with unit tests, the code executor serves as the perfect verifier
to judge the correctness of predicted programs, while the error messages also provide informative
feedback that guides the LLMs to improve their responses. Gou et al. (2023) demonstrate that LLMs
can more effectively verify and correct their responses when interacting with various external tools
such as search engines and calculators. Cobbe et al. (2021); Lightman et al. (2023); Wang et al.
(2023b) train a verifier or a critique model on a high-quality dataset to verify or refine LLM outputs,
which can be used to provide feedback for correcting prediction errors. Besides automatically gen-
erated external feedback, we also often provide feedback ourselves when interacting with LLMs,
guiding them to produce the content we desire. Designing techniques that enable LLMs to interact
with the external environment and learn from different kinds of available feedback is a promising
direction for future work.

Evaluating self-correction against baselines with comparable inference costs. By design, self-
correction requires additional LLM calls, thereby increasing the costs for encoding and generating
extra tokens. Section 4 demonstrates that the performance of asking the LLM to produce a final
response based on multiple previous responses, such as with the multi-agent debate approach, is in-
ferior to that of self-consistency (Wang et al., 2022) with the same number of responses. Regarding
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this, we encourage future work proposing new self-correction methods to always include an in-depth
inference cost analysis to substantiate claims of performance improvement. Moreover, strong base-
lines that leverage multiple model responses, like self-consistency, should be used for comparison.
An implication for future work is to develop models with a higher probability of decoding the opti-
mal solution in their answer distributions, possibly through some alignment techniques. This would
enable the model to generate better responses without necessitating multiple generations.

Putting equal efforts into prompt design. As discussed in Section 5, to gain a better understanding
of the improvements achieved by self-correction, it is important to include a complete task descrip-
tion in the prompt for generating initial responses, rather than leaving part of the task description for
the feedback prompt. Broadly speaking, equal effort should be invested in designing the prompts
for initial response generation and for self-correction; otherwise, the results could be misleading.

7 LIMITATIONS AND BROADER IMPACT

Although we have conducted a comprehensive evaluation spanning a variety of self-correction strate-
gies, prompts, and benchmarks, our work focuses on evaluating reasoning of LLMs. Thus, it is
plausible that there exist self-correction strategies that could enhance LLM performance in other
domains. For example, prior works have demonstrated the successful usage of self-correction that
aligns model responses with specific preferences, such as altering the style of responses or enhanc-
ing their safety (Bai et al., 2022; Ganguli et al., 2023; Madaan et al., 2023). A key distinction arises
in the capability of LLMs to accurately assess their responses in relation to the given tasks. For
example, LLMs can properly evaluate whether a response is inappropriate (Ganguli et al., 2023),
but they may struggle to identify errors in their reasoning.

Furthermore, several prior works have already shown that LLM self-correction performance be-
comes significantly weaker without access to external feedback (Gou et al., 2023; Zhou et al., 2023a)
and can be easily biased by misleading feedback (Wang et al., 2023a), which is consistent with our
findings in this work. However, we still identified prevailing ambiguity in the wider community.
Some existing literature may inadvertently contribute to this confusion, either by relegating crucial
details about label usage to less prominent sections or by failing to clarify that their designed self-
correction strategies actually incorporate external feedback. Regarding this, our paper serves as a
call to action, urging researchers to approach this domain with a discerning and critical perspective.
We also encourage future research to explore approaches that can genuinely enhance reasoning.
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Our experiments utilize GPT-3.5 and GPT-4, which are accessible via the public API at https:
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A PROMPTS AND EXAMPLE OUTPUTS

Can you solve the following math problem? Christina is planning a
birthday party and needs .75 gift bags per invited guest, because 1/4 of
attendees don't show up. She invited 16 friends. Gift bags are $2 each.
How much will she spend? Explain your reasoning. Your final answer should
be a single numerical number, in the form \boxed{answer}, at the end of
your response.

If Christina invited 16 friends, then 1/4 of them won't show up, which
means there will be 16 * 1/4 = 4 friends who won't attend the party. To
determine how many gift bags to buy, we need to subtract the number of
friends who won't show up from the total number of invited guests. The
number of invited guests is 16 - 4 = 12. Since Christina needs 0.75 gift
bags per invited guest, we can multiply this quantity by the number of
invited guests to find the total number of gift bags needed, which is
0.75 * 12 = 9 gift bags. If each gift bag is $2, then Christina will
spend a total of 2 * 9 = $<<2*9=18>>18 on gift bags. Therefore, Christina
will spend $18 on gift bags. Answer: \boxed{18}. (Incorrect)

Review your previous answer and find problems with your answer.

Upon reviewing my previous answer, I recognize a mistake. I incorrectly
stated that Christina needs 0.75 gift bags per invited guest. The given
information states that 1/4 of the attendees won't show up, so the
correct calculation should take this into account. To calculate the
number of gift bags needed, we will multiply the number of invited guests
by the ratio of attendees who will actually show up (75%). The number of
invited guests is 16, and if 1/4 of them won't show up, then the ratio of
attendees who will show up is 1 - 1/4 = 3/4. Multiplying the number of
invited guests by the ratio of attendees who will show up gives us: 16 *
(3/4) = 12 gift bags needed. Since each gift bag costs $2, the total
amount Christina will spend on gift bags is: 12 * $2 = $<<12*2=24>>24.

Based on the problems you found, improve your answer. Please reiterate
your answer, with your final answer a single numerical number, in the
form \boxed{answer}.

Upon reviewing my previous answer, I recognize a mistake. I incorrectly
stated that Christina needs 0.75 gift bags per invited guest. The given
information states that 1/4 of the attendees won't show up, so the
correct calculation should take this into account. To calculate the
number of gift bags needed, we will multiply the number of invited guests
by the ratio of attendees who will actually show up (75%). The number of
invited guests is 16, and if 1/4 of them won't show up, then the ratio of
attendees who will show up is 1 - 1/4 = 3/4. Multiplying the number of
invited guests by the ratio of attendees who will show up gives us: 16 *
(3/4) = 12 gift bags needed. Since each gift bag costs $2, the total
amount Christina will spend on gift bags is: 12 * $2 = $<<12*2=24>>24.
Therefore, Christina will spend $24 on gift bags. Answer: \boxed{24}.
(Correct)

Figure 3: Example on GSM8K where self-correction changes an incorrect answer to a correct one.
Text in bold denotes user prompts.

13



Published as a conference paper at ICLR 2024

Can you solve the following math problem? Terry eats 2 yogurts a day.
They are currently on sale at 4 yogurts for $5.00. How much does he spend
on yogurt over 30 days? Explain your reasoning. Your final answer should
be a single numerical number, in the form \boxed{answer}, at the end of
your response.

First, we need to calculate how many sets of 4 yogurts Terry buys in 30
days. Since Terry eats 2 yogurts a day, he will need 2/4 = 0.5 sets of 4
yogurts per day. Next, we multiply the number of sets by the price of
each set to calculate how much Terry spends per day. Each set of 4
yogurts costs $5.00, so Terry spends 0.5 * $5.00 = $<<0.5*5=2.50>>2.50 on
yogurt per day. Finally, we multiply the amount Terry spends per day by
the number of days to find the total amount he spends on yogurt over 30
days. Terry spends $2.50 per day for 30 days, so he spends $2.50 * 30 =
$<<2.5*30=75.00>>75.00 on yogurt over 30 days. So, Terry spends
$\boxed{75.00}$ on yogurt over 30 days. (Correct)

Review your previous answer and find problems with your answer.

Upon reviewing my previous answer, I realized that I made a mistake in
calculating Terry's spending on yogurt over 30 days. I incorrectly stated
that Terry spends $2.50 per day for 30 days, resulting in a total of
$75.00. However, since Terry eats 2 yogurts a day and the yogurts are
sold in sets of 4 for $5.00, Terry would actually need to buy 1 set of 4
yogurts to last for 2 days. Therefore, his spending on yogurt per set
would be $5.00 for 2 days, or $5.00/2 = $2.50 per day. To calculate the
total amount spent on yogurt over 30 days, we would multiply the amount
spent per day ($2.50) by the number of sets needed in 30 days (which is
30 divided by 2 days per set). Therefore, the correct calculation would
be $2.50 * (30/2) = $2.50 * 15 = $37.50. Apologies for the mistake. The
correct answer is Terry spends $\boxed{37.50}$ on yogurt over 30 days.

Based on the problems you found, improve your answer. Please reiterate
your answer, with your final answer a single numerical number, in the
form \boxed{answer}.

Apologies for the error in my previous response. Upon reviewing the
problem, here is the correct answer: Since Terry eats 2 yogurts a day and
the yogurts are sold in sets of 4 for $5.00, Terry needs to buy 1 set of
4 yogurts to last for 2 days. Therefore, Terry's spending on yogurt per
set is $5.00 for 2 days, or $5.00/2 = $2.50 per day. To calculate the
total amount spent on yogurt over 30 days, we multiply the amount spent
per day ($2.50) by the number of sets needed in 30 days. In this case,
Terry needs 30/2 = 15 sets of yogurts over 30 days. Multiplying $2.50 by
15, we find that Terry spends a total of $2.50 * 15 = $37.50 on yogurt
over 30 days. Therefore, the final answer is Terry spends $\boxed{37.50}$
on yogurt over 30 days. (Incorrect)

Figure 4: Example on GSM8K where self-correction changes a correct answer to an incorrect one.
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Can you solve the following math problem? Toulouse has twice as many
sheep as Charleston. Charleston has 4 times as many sheep as Seattle. How
many sheep do Toulouse, Charleston, and Seattle have together if Seattle
has 20 sheep? Explain your reasoning. Your final answer should be a
single numerical number, in the form \boxed{answer}, at the end of your
response.

Let's start by figuring out how many sheep Charleston has. We are given
that Charleston has 4 times as many sheep as Seattle, so we can calculate
this by multiplying Seattle's number of sheep by 4: Charleston = 4 * 20 =
80 sheep. Next, we are told that Toulouse has twice as many sheep as
Charleston. Therefore, we can find Toulouse's number of sheep by
multiplying Charleston's number of sheep by 2: Toulouse = 2 * 80 = 160
sheep. Finally, to find the total number of sheep, we add up the number
of sheep for each city: Total = Seattle + Charleston + Toulouse = 20 + 80
+ 160 = 260 sheep. Therefore, Toulouse, Charleston, and Seattle have a
total of 260 sheep. Answer: \boxed{260}. (Correct)

Review your previous answer and find problems with your answer.

I apologize for the mistake in my previous response. Let's go through the
problem again and find the correct answer. We are given that Charleston
has 4 times as many sheep as Seattle. If Seattle has 20 sheep, then
Charleston would have: Charleston = 4 * 20 = 80 sheep. Next, we are told
that Toulouse has twice as many sheep as Charleston. Therefore, Toulouse
would have: Toulouse = 2 * 80 = 160 sheep. To find the total number of
sheep, we add up the number of sheep for each city: Total = Seattle +
Charleston + Toulouse = 20 + 80 + 160 = 260 sheep. After reviewing my
previous answer, I have determined that there are no problems with my
updated response. The correct answer is 260 sheep.

Based on the problems you found, improve your answer. Please reiterate
your answer, with your final answer a single numerical number, in the
form \boxed{answer}.

Apologies for the confusion. Let me provide an improved answer. We are
given that Charleston has 4 times as many sheep as Seattle, and Seattle
has 20 sheep. So, Charleston would have 4 * 20 = 80 sheep. According to
the information, Toulouse has twice as many sheep as Charleston.
Therefore, Toulouse would have 2 * 80 = 160 sheep. To determine the total
number of sheep, we add up the number of sheep for each city: Total =
Seattle + Charleston + Toulouse = 20 + 80 + 160 = 260 sheep. After
reviewing the previous answer, the correct final answer is \boxed{260}.
(Correct)

Figure 5: Example on GSM8K where self-correction does not change the answer.
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Q: A fencing thrust with a sharp sword towards a person would result in
what?
Answer Choices: (A) injury (B) small cuts (C) fever (D) competition (E)
puncture wound.
Explain your reasoning. You must choose only one option from A to E. Your
final answer should be a single letter from A to E, in the form (answer),
at the end of your response.

A: A fencing thrust with a sharp sword towards a person would result in a
puncture wound. This is because a fencing thrust involves forcefully
stabbing with a sword, which can penetrate the skin and create a deep,
narrow wound. Puncture wounds can be very dangerous as they can damage
internal organs and cause bleeding. Therefore, the most appropriate
answer is (E) puncture wound. (Correct)

Review your previous answer and find problems with your answer.

Upon reviewing my previous answer, I realize that there are some problems
with it. While a fencing thrust with a sharp sword can potentially result
in a puncture wound, it is important to note that in a controlled fencing
match, the swords used are typically blunted or have safety tips,
designed to minimize the risk of injury. Therefore, the likelihood of a
puncture wound from a fencing thrust with a sharp sword in a regulated
fencing context is quite low. A more appropriate and accurate answer
would be (D) competition, as a fencing thrust with a sharp sword is
typically performed in the context of a fencing match or competition,
rather than with the intention to cause injury.

Based on the problems you found, improve your answer. You must choose
only one option from A to E. Please reiterate your answer, with your
final answer a single letter from A to E, in the form (answer).

Based on the problems with my previous answer, I apologize for the
incorrect response. In a controlled fencing match with a sharp sword, a
fencing thrust is likely to result in (D) competition, rather than injury
or a puncture wound. Therefore, the correct final answer is (D)
competition. (Incorrect)

Figure 6: Example on CommonSenseQA where self-correction changes a correct answer to an in-
correct one.
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Concepts: ['footage', 'motion', 'ruin', 'tilt', 'window']

Sentence: time lapse footage with tilt up motion of the sun streaking
through window of ruin

###

Concepts: ['cause', 'hate', 'hut', 'local', 'love']

Sentence: new beach huts on the island have caused some controversy some
locals love them others hate them

[8 more in-context examples]

###

Concepts: ['vest', 'snow','remove', 'silhouette', 'dunk', 'step',
'item', 'toddler', 'plaster', 'wall', 'piece', 'tool', 'circle',
'pull','wrap', 'headphone', 'deck', 'suit', 'press', 'mother', 'pit',
'cupcake', 'priest', 'rink', 'counter', 'rest','piano', 'wine', 'serve',
'winter']

Sentence: A toddler wearing a vest and snow boots steps onto the icy
deck, removes a circle-shaped piece of plaster from the wall, and pulls
out a tool from their winter suit to wrap their head around a headphone.

Figure 7: Example output for Constrained Generation using the prompt from Madaan et al. (2023).
The constraint that the output needs to contain all the concepts is not explicitly mentioned in the
prompt for initial response generation. However, in the feedback & refine prompts, the constraint is
implied by “what concepts from the concept list are missing from the sentence?” (refer to Figures
25 and 26 of Madaan et al. (2023) for the feedback & refine prompts).

Concepts: ['vest', 'snow','remove', 'silhouette', 'dunk', 'step',
'item', 'toddler', 'plaster', 'wall', 'piece', 'tool', 'circle',
'pull','wrap', 'headphone', 'deck', 'suit', 'press', 'mother', 'pit',
'cupcake', 'priest', 'rink', 'counter', 'rest','piano', 'wine', 'serve',
'winter']

Write a reasonable paragraph that includes *ALL* of the above concepts.

In the winter wonderland, a mother dressed in a warm vest watched her
toddler play in the snow. As the child attempted to remove the snow from
the ground, their silhouette created an enchanting image against the
white backdrop. Nearby, a group of friends gathered around a basketball
hoop, taking turns to dunk the ball with skillful steps. One of them,
holding an item resembling a tool, used it to plaster a piece of the wall
that had been damaged. Meanwhile, on the other side of the park, a circle
of children pulled their hats tightly to wrap around their heads,
protecting their ears from the cold wind as they listened to music
through their colorful headphones. On the deck of a nearby house, a man
in a sleek suit pressed a button, causing a hidden mechanism to reveal a
grand piano. As the music filled the air, the host served glasses of wine
to the guests, creating a warm and inviting atmosphere in the winter
evening. In the distance, a priest skated gracefully in an ice rink, his
movements mirroring the smoothness of his words during a sermon. At the
counter of a bakery, a customer ordered a cupcake and watched as the
baker skillfully decorated it with a winter-themed design. Not far away,
a group of friends gathered around a pit, roasting marshmallows and
enjoying the warmth of the fire. The scene painted a picture of joy,
friendship, and the beauty of winter.

Figure 8: Example output for Constrained Generation using a prompt casually written by the authors.
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