
Liouville Flow Importance Sampler

Yifeng Tian * 1 Nishant Panda 1 Yen Ting Lin * 1

Abstract
We present the Liouville Flow Importance Sam-
pler (LFIS), an innovative flow-based model for
generating samples from unnormalized density
functions. LFIS learns a time-dependent veloc-
ity field that deterministically transports samples
from a simple initial distribution to a complex
target distribution, guided by a prescribed path
of annealed distributions. The training of LFIS
utilizes a unique method that enforces the struc-
ture of a derived partial differential equation to
neural networks modeling velocity fields. By con-
sidering the neural velocity field as an importance
sampler, sample weights can be computed through
accumulating errors along the sample trajectories
driven by neural velocity fields, ensuring unbiased
and consistent estimation of statistical quantities.
We demonstrate the effectiveness of LFIS through
its application to a range of benchmark problems,
on many of which LFIS achieved state-of-the-art
performance.

1. Background
We are interested in sampling a hard-to-sample distribution
ν in a continuous state space1 x ∈ RD, given its unnor-
malized probability density function ν̃(x) (assuming its
existence, i.e., ν is dominated by the Lebesgue measure)
up to a normalization constant Z . We are also interested in
estimating logZ , which is the log-marginal likelihood of a
model and is a useful quantity for Bayesian model selection
(Kass & Raftery, 1995; Green, 1995; Llorente et al., 2023).
This problem arises in vast scientific domains, including
statistical physics (Faulkner & Livingstone, 2023), molec-
ular dynamics (Hénin et al., 2022), and diverse Bayesian

*Equal contribution 1Information Sciences Group (CCS-3),
Computational and Statistical Sciences Division, Los Alamos Na-
tional Laboratory, Los Alamos, NM 87545, USA. Correspondence
to: Yifeng Tian <yifengtian@lanl.gov>, Yen Ting Lin <yent-
ingl@lanl.gov>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1We can also consider a subspace x ∈ E ⊆ RD .

inference and model selection problems, for example in com-
putational and systems biology (Hines, 2015; Wilkinson,
2007), astronomy (Sharma, 2017), and political sciences
(Jackman, 2000; McCartan & Imai, 2023).

1.1. Related Work

Numerous Monte Carlo (MC) techniques have been devised
to address this challenge over the past 70 years. Some no-
table examples of these MC methods include the landmark
Metropolis Markov chain MC (MCMC, (Metropolis et al.,
1953)), Hybrid or Hamiltonian MC (HMC, Duane et al.
(1987); Neal (2012)), and the Zig-Zag Sampler (Bierkens
et al., 2019). These approaches are often limited to low-
dimensional problems due to slow convergence rate, and
problems with a single mode as the samplers are prone to
be trapped at a local mode. Annealed Importance Sam-
pler (AIS, Neal (2001)) and Sequential Monte Carlo (SMC,
(Del Moral et al., 2006)) were developed for sampling chal-
lenging multi-modal distributions and are considered the
state-of-the-art MC methods for such problems. Variational
Inference (VI, Wainwright & Jordan (2008)) is an alterna-
tive approach, which turns the sampling problem into an
optimization one by fitting an easy-to-sample parametric
distribution to ν, often by minimizing the reverse (or exclu-
sive) Kullback–Leibler (KL) divergence. The choice of the
reverse KL is commonly thought to be due to computational
convenience but can be validated by an information theoret-
ical argument of optimal information processing of Bayes’
theorem (Zellner, 1988). For VI, it is popular to adopt
mean-field approximation (Wainwright & Jordan, 2008) or
a Normalizing Flow (VI-NF, Rezende & Mohamed (2015))
as the modeling parametric distribution. More recently,
a plethora of neural network (NN) based algorithms, for
example, neural network gradient HMC (Li et al., 2019),
Annealed Flow Transport Monte Carlo (AFTMC, Arbel et al.
(2021)), Path-Integral Sampler (PIS, Zhang & Chen (2022)),
adaptive MC with NF Gabrié et al. (2022), Continual Re-
peated AFTMC (CR-AFTMC, Matthews et al. (2022)), and
Denoising Diffusion Sampler (DDS, (Vargas et al., 2023a)).
For estimating the marginalized likelihood, simple MCMC
methods require augmented algorithms (e.g., Green (1995))
or additional processing of the derived samples (e.g., Robert
& Wraith (2009); Pajor (2017)). SIS and SMC can esti-
mate the marginalized likelihood and are considered the

1

Liouville Flow Importance Sampler

Figure 1. A schematic diagram demonstrating the workflow of the
Liouville Flow Importance Sampler.

gold-standard MC estimates. Among the NN-based algo-
rithms, AFTMC, CR-AFTMC, PIS, and DDS are capable
of estimating the marginalized likelihood. Llorente et al.
(2023) provide a more comprehensive review of methods
estimating the marginalized likelihood.

1.2. Summary of our contribution

We propose Liouville Flow Importance Sampler, a novel
pure flow-based method with which we achieve sampling
ν by (1) constructing a time-dependent target distribution2

ρ∗(t) connecting an easy-to-sample distribution µ and our
target ν, where t ∈ [0, 1] is a fictitious time, i.e., ρ∗(0) =
µ and ρ∗(1) = ν; (2) solving a time-dependent velocity
field v(x, t) : RD × [0, 1] → RD satisfying the following
Generalized Liouville Equation (GLE, Gerlich (1973)),

∂tρ∗(x, t) = −∇x ·[v(x, t)ρ∗(x, t)] , ρ∗(x, 0) = µ(x) (1)

(3) drawing N i.i.d. samples x(i)0 , i = 1 . . . N from µ, then
using the solved velocity field to evolve the samples from
t = 0→ 1 by the ordinary differential equation

ẋ(i)(t) = v
(
x(i)(t), t

)
, x(i)(0) = x

(i)
0 . (2)

The evolved samples at time t = 1 are samples of ν because
GLE ensures that the probability density of independently
evolving samples is the density function in Eq. (1), i.e.,
x(i)(t) ∼ ρ∗ (t), and because ρ∗(1) = ν. The schematic
Fig. 1 illustrates the workflow of our proposal.

We summarize our novel contributions in this study, leaving
a detailed discussion of the differences between our propo-
sition and existing methods in the Results and Discussion
section 4:

•We introduce a pure flow-based model that deterministi-
cally transports samples from an initial distribution µ to a
target distribution ν, relying exclusively on the flow mech-
anism and consistent with a prescribed path of annealed

2We use ρ∗(t) to denote time-dependent distribution and
ρ∗(x, t) and ρ̃∗(x, t) to denote its normalized and unnormalized
density function respectively.

distributions, ρ̃∗(t). This innovation streamlines the mod-
eling process, eliminating the complex tuning of meta and
algorithmic parameters that is typical in hybrid models lever-
aging both flow and Monte Carlo methods.

•We propose an original approach to solving a key equation
(Eq. (5) below), which v(x, t) must satisfy to ensure the sam-
ples move consistently with the specified time-dependent
and unnormalized density function ρ̃∗(x, t). We convert the
problem to an equation-based machine learning task where
samples drawn from µ are used to train an NN that models
the velocity field at a specific time. Trained NNs are used to
generate new samples for training the velocity field at a later
time. This recursive training of a series of NNs facilitates
end-to-end sample transportation from µ to ν.

• We demonstrate a novel derivation that, although finite
NNs do not perfectly learn the solution of Eq. (5), the ac-
cumulated error induced along the sample trajectory can be
used as sample weights, allowing for unbiased and consis-
tent estimation of statistical quantities.

• The proposed method, while having a simpler setup com-
pared to existing methods, achieves state-of-the-art perfor-
mance across a variety of standard benchmarks.

2. Liouville Flow Importance Sampler
2.1. Governing equation of the velocity field

Our proposition hinges on the key research question:
Given an unnormalized time-dependent density function
ρ̃∗(x, t) = Z(t)ρ∗(x, t), up to an unknown normalization
constant Z(t) :=

∫
ρ̃∗ (x, t) dx, how do we solve a time-

dependent velocity field v(x, t)?

We first ask the question: what is the equation a velocity
field v(x, t) must satisfy in terms of only the unnormalized
density function ρ̃∗(x, t) (instead of the inaccessible full
density function ρ(x, t) in Eq. (1))? On the one hand, using
GLE (1) and the chain rule, it is straightforward to establish

∂t log ρ∗(x, t) = −∇x · v (x, t)− v (x, t) · S∗ (x, t) , (3)

where S∗ (x, t) := ∇x log ρ∗ (x, t) ≡ ∇x log ρ̃∗ (x, t) is
the score function of the target density at time t. Here,
we assume that the derivative of the log-density exists
and can be evaluated. On the other hand, applying ∂t to
log ρ∗ (x, t) = log ρ̃∗ (x, t)− logZ (t) leads to

∂t log ρ∗(x, t) = ∂t log ρ̃∗(x, t)− ⟨∂t log ρ̃∗(·, t)⟩∗ , (4)

where we used a common notation in statistical physics,
⟨∂t log ρ̃∗(·, t)⟩∗ := Ex′∼ρ∗(·,t) [∂t log ρ̃∗(x

′, t)]. This term
emerged from the time-derivative of the unknown normaliza-
tion constant Z(t). Equating Eqs. (3) and (4), we obtained

2

Liouville Flow Importance Sampler

the following equation:

[∇x + S∗ (x, t)] · v (x, t) = −∂tδ log ρ̃∗(x, t), (5a)
δ log ρ̃∗(x, t) := log ρ̃∗(x, t)− ⟨log ρ̃∗(·, t)⟩∗ . (5b)

The below theorem, whose proof is given in Appendix A,
states the existence of a solution to Eq. (5).

Theorem 2.1. Suppose ∂tδ log ρ̃∗ (x, t) is square-
integrable and the divergence of target score function is
absolutely bounded i.e., ∃M <∞ s.t. |∇x · S∗(x, t)| < M
almost everywhere for all t. Then, there exists a solution of
Eq. (5), but the solution is not unique in D ≥ 2 dimensions.

We remark that the non-uniqueness of the solution does not
pose an issue for our objectives. Any solution of v(x, t)
satisfying Eq. (5), once obtained, has an equivalent effect of
transporting the samples.

2.2. Learning velocity field for sampling

It is beyond the authors’ knowledge how to solve Eq. (5)
accurately in an arbitrary dimension D. As such, instead of
solving the equation, we propose to learn a velocity field
that approximately satisfies Eq. (5) by the following pro-
cedure. Suppose we could generate samples x(i) at time t
from ρ∗ (t). Both S∗(x

(i), t) and ∂t log ρ̃∗(x(i), t) can be
evaluated, and ⟨∂t log ρ̃∗(·, t)⟩∗ can be estimated by Monte
Carlo, i.e., (1/N)

∑N
i=1 ∂t log ρ̃∗(x

(i), t). Next, we use an
NN to model the velocity field at this specific time t, i.e.
vθ(x, t) = NN(x; θ, t) with NN parameters θ. Using auto-
matic differentiation, the divergence term, ∇x · vθ(x(i), t)
can be evaluated for each sample. Replacing the solution
v(x, t) in Eq. (5) with the neural velocity field vθ(x(i), t),
our objective is to minimize the discrepancy of the LHS and
the RHS in Eq. (5) over the samples at time t,

θ∗ = argminθ

N∑
i=1

ε2
(
x(i); θ

)
, (6a)

ε (x; θ) := [∇x + S∗ (x)] · vθ (x) + ∂tδ log ρ̃∗ (x) , (6b)

where we have suppressed the t-dependence of S∗, vθ, and
ρ̃ for brevity. After the learning, we use the learned velocity
field to evolve the sample to a later time t+∆t by an explicit
Euler scheme, x(i) ← x(i) + vθ∗

(
x(i), t

)
× ∆t, ∆t ≪ 1.

In the ideal scenario that the NN learns the solution of
Eq. (5) and the error induced by the time discretization is
negligible, the GLE (1) ensures that the transported samples
∼ ρ∗ (t+ dt). In turn, the samples can be used to learn the
velocity field at t+∆t. Repeating the process, the samples
can be recursively evolved from t = 0→ 1.

Our proposition of learning the velocity field using equation
Eq. (5) is similar to the Physics Informed Machine Learning
(Raissi et al., 2019; Karniadakis et al., 2021). Moreover, our
proposition can be considered as a self-learning framework

because samples are not labeled, and because we can always
generate more samples from µ and evolve them by previ-
ously trained v(x, s) to t > s, for training v(x, t). We note
that Eq.(5) has been explicitly presented in Vaikuntanathan
& Jarzynski (2008), Heng et al. (2021), and Arbel et al.
(2021); a more detailed discussion is provided in Sec. 4.

We remark that our methodology significantly differs from
the Flow Matching approach (Lipman et al., 2023; Tong
et al., 2024). Flow Matching trains a continuous-time nor-
malizing flow by matching it to a known velocity field. This
technique is specifically designed for training Generative
Models using samples of a data distribution. In contrast,
our task involves learning the normalizing flow using a
prescribed path of annealed distributions, ρ̃∗(x, t). In this
scenario, we do not have access to the samples of the tar-
get distribution nor a target velocity field for matching: the
problem would have been solved if we already had the sam-
ples of the target distribution, and we could have simply
driven the samples by a known target velocity field if it is
already known. Instead, our knowledge is limited to the fact
that the velocity field at each of the samples must satisfy
Eq. (5). Our goal is to solve for the unknown v(x, t) in
Eq. (5), rather than attempting to match a target flow.

2.3. Neural network as an importance sampler

Our proposition described in Sec. 2.2 works only if the NN
is expressive enough to accurately reproduce the true solu-
tion satisfying Eq. (5). Without the assumption, transported
samples would not be representative samples at t+ dt for
training vθ.

More specifically, let us consider a sub-optimal velocity
field vθ∗ (x, t) which does not satisfy Eq. (5), ∀x ∈ RD.
This is very likely because the training of an NN is not
perfect, or because we may not have enough computational
resources to train an expressive enough network to fully
solve Eq. (5). Using the trained NNs to transform the initial
distribution µ, the induced distribution ρθ(t) still satisfies
a GLE ∂tρθ(x, t) = −∇x [v(x, t)ρθ (x, t)] but ρθ(t) is no
longer be the same as ρ∗(t). In this case, the RHS of Eq. (3)
becomes −∇x · vθ (x, t)−Sθ (x, t) · vθ (x, t), where Sθ :=
∇x log ρθ (x, t), and consequently we could not establish
Eq. (5). In addition, we will no longer have samples to
estimate unbiasedly the term ⟨∂t log ρ̃∗(·, t)⟩∗ in Eq. (5).
Our proposition outlined in Sec. 2.2 appears to lose its
theoretical grounding.

Fortunately, a more careful derivation presented in Appendix
B revealed that we can use the trained, albeit imperfect,
neural networks to transport the samplers as an importance
sampler. We provide key equations here, leaving detailed
derivation and proof in Appendices B and C.

3

Liouville Flow Importance Sampler

We first write the generic solution of Eq. (2):

x(i)(t) = x
(i)
0 +

∫ t

0

vθ

(
x(s;x

(i)
0), s

)
ds, (7)

where vθ is an NN-modeled velocity field and x(i)0 ∼ µ is
the initial condition. Below, when the context is clear, we
will suppress the sample superscript (i) and write x(t) and
x0 for brevity. We stress that the sample trajectory implicitly
depends on the initial condition x0, which is the only ran-
domness; once x0 is drawn, x(t) is a deterministic trajectory.
Then, the probability density of the modeling distribution
along this trajectory can be computed (see Appendix B):

log ρθ(x(t), t) = log µ(x0)−
∫ t

0

∇ · vθ (x(s), s) ds. (8)

Treating ρθ as an importance sampler, interestingly, the un-
normalized log-weights of the samplers can be shown to be
the error accumulated along each of the sample trajectories:

log w̃ (t;x0) =

∫ t

0

ε (x (s;x0)) ds, (9)

where ε is defined in Eq. (6b). With N initial samples
x
(i)
0 ∼ µ, i = 1 . . . N , we can obtained the normalized

weights (Liu, 2008; Tokdar & Kass, 2010)

wi(t) := w̃
(
t, x

(i)
0

)
/

N∑
j=1

w̃
(
t, x

(j)
0

)
. (10)

which can be used to estimate unbiasedly asymptotically
(i.e. unbiased as N →∞)

⟨∂t log ρ̃∗(·, t)⟩∗ ≈
N∑
i=1

wi(t)∂t log ρ̃∗

(
x(i) (t) , t

)
, (11)

which can be used for learning v(x, t) without an accu-
rate solution of Eq. (5). Furthermore, a derivation akin to
Gelman & Meng (1998) revealed that we can unbiasedly
asymptotically estimate the logarithm of the marginalized
likelihood logZ(t),

̂logZ(t) ≈
∫ t

0

N∑
i=1

wi (s) ∂s log ρ̃∗

(
x(i) (s) , s

)
ds, (12)

which can be computed on-the-fly as samples are transported
from t = 0 → 1. Theorem 2.2, whose proof is given in
Appendix C, articulates the mathematical statements about
the asymptotically unbiased estimator.

Theorem 2.2. For any t ∈ [0, 1], suppose the ∂t log ρ̃∗(x, t)
is an integrable function with respect to the target distribu-
tion ρ∗(t). Let {x(i)0 }Ni=1 be a finite set of initial samples

drawn from the initial distribution µ and consider the fol-
lowing finite sum for each time s ∈ (0, t) given by

WN (s) =

N∑
i=1

wi (s) ∂t log ρ̃∗

(
x(i)(s), s

)
(13)

where wi (s) is the dynamic sample weight along the trajec-
tory given by the evolution of x(i)0 as defined in Eqs. (9) and
(10). Suppose the following conditions hold: (1) the neural
velocity field induced distribution ρθ(t) dominates the tar-
get distribution ρ∗(t) and, (2) both the dynamic weights
w̃ (t;x0) and ∂t log ρ̃ are absolutely bounded, i.e there
exists constants M1,M2 such that |w̃ (t;x0)| < M1 and
|∂t log ρ̃∗ (x, t)| < M2. Then, the marginalized likelihood
can be estimated unbiasedly asymptotically (i.e. unbiased
as N →∞) and persistently∫ t

0

WN (s) ds a.s.−→ logZ(t) as N →∞.

While the above theorem provides the unbiased estimation
of logZ directly, i.e., l̂ogZ , many published methods fo-
cus on unbiasedly estimating Z directly, i.e., Ẑ , but report
log Ẑ . To make a fair comparison, we established a similar
estimator for LFIS in the following theorem

Theorem 2.3. For any t ∈ [0, 1], suppose ∂t log ρ̃∗(x, t) is
an integrable function with respect to the target distribu-
tion ρ∗(t). Let ϵ (x; θ) be a modified error function that is
analogous to Eq. (6b) as

ϵ (x; θ) := [∇x + S∗ (x)] · vθ (x) + ∂t log ρ̃∗ (x) , (14)

and the modified unnormalized importance weights that are
analogous to Eq. (9):

logϖ (t;x0) =

∫ t

0

ϵ (x (s;x0)) ds. (15)

If the same conditions as in Theorem 2.2 hold, the marginal-
ized likelihood Z can be unbiasedly estimated:

Ẑ (t) =
1

N

N∑
i=1

elogϖ(t;x0). (16)

The proof of the above estimate is given in Appendix C. In
the rest of the main text, we focus on log Ẑ to ensure a fair
comparison between different methods and report l̂ogZ in
the Appendix (Table 11).

2.4. Choice of ρ̃∗(x, t) and the schedule function τ(t)

Our proposition requires an unnormalized time-dependent
target density function ρ̃∗(x, t). In this manuscript, we
primarily consider two types of applications: (1) sampling a

4

Liouville Flow Importance Sampler

Algorithm 1 Liouville Flow Importance Sampler

procedure GENERATESAMPLES(k, n, θ(0:k−1)
∗ , optional ⟨∂t log ρ̃∗⟩(0:k−1)

∗)
▷ Generate n samples at a target time k/T using previously trained v

θ
(j)
∗

and optionally provided ⟨∂t log ρ̃∗⟩(0:k−1)
∗

xi ∼ µ, δi ← 0, i = 1 . . . n ▷ Drawing samples from the initial distribution
for ℓ = 0 . . . k − 1 do ▷ Evolve samples using previously trained fields vθ∗ and estimated ⟨∂t log ρ̃∗⟩∗

If ⟨∂t log ρ̃∗⟩(ℓ)∗ is not provided then ⟨∂t log ρ̃∗⟩(ℓ)∗ ←
∑n

i=1 exp(−δi)∂t log ρ̃∗ (xi, ℓ/T) /
(
T
∑n

j=1 exp(−δj)
)

δi ← δi +
{
[∇x + S∗ (xi, ℓ/T)] · vθ(ℓ)

∗
(xi) + ∂t log ρ̃∗ (xi, ℓ/T)− ⟨∂t log ρ̃∗⟩(ℓ)∗

}
/T ▷ Error accumulation

xi ← xi + v
θ
(ℓ)
∗

(xi) /T ▷ Transporting samples

wi ← exp(−δi)/
∑n

j=1 exp(−δj) ▷ Weight computation

return {xi, wi}Ni=1

procedure LEARNING() ▷ Learning the flow
for k = 0 . . . T − 1 do
{xi, wi}Ni=1 = GenerateSamples

(
k, N, θ

(0:k−1)
∗ , ⟨∂t log ρ̃∗⟩(0:k−1)

∗

)
▷ Samples for estimating ⟨∂t log ρ̃∗⟩(k)∗

⟨∂t log ρ̃∗⟩(k)∗ ←
∑N

i=1 wi∂t log ρ̃∗ (xi, k/T) ▷ Store the estimated ⟨∂t log ρ̃∗⟩(k)∗
while Training criteria are not met do ▷ Trianing the NN
{xi, wi}Bi=1 = GenerateSamples

(
k, B, θ

(0:k−1)
∗ , ⟨∂t log ρ̃∗⟩(0:k−1)

∗

)
▷ Batch (B) samples for training

εi(θ)← [∇x + S∗ (xi, k/T)] · vθ (xi) + ∂t log ρ̃∗(xi, k/T)− ⟨∂t log ρ̃∗⟩(k)∗ ▷ Sample-by-sample error
θ ← GradientDecentStep

(
θ,∇θ

(∑B
i=1 ε

2
i (θ)/B

))
θ
(k)
∗ ← θ ▷ Store trained NN parameters

procedure SAMPLING ▷ Generate S samples of ν after learning the flow
return GenerateSamples

(
T, S, θ

(0:T−1)
∗

)

distribution ν, given its unnormalized density function ν̃(x)
and (2) Bayesian posterior sampling, given a prior density
function π(x) and a likelihood function L(x). Motivated by
AIS (Neal, 1996; 2001) and SMC (Del Moral et al., 2006),
we consider ρ̃∗(x, t) := µ1−τ(t)(x) ν̃τ(t)(x) for application
(1) and ρ̃∗(x, t) := Lτ(t)(x)π(x) for application (2), where
τ(t) is a monotonic function transforming time t, satisfying
τ(0) = 0 and τ(1) = 1. We term τ(t) as the schedule
function. The corresponding key quantities are

∂t log ρ̃∗(x, t) = [log ν̃(x)− logµ(x)]
dτ (t)

dt
,

S∗(x, t) = (1− τ (t))∇x logµ(x) + τ (t)∇x log ν̃(x)

for type-1 application, and

∂t log ρ̃∗(x, t) = logL(x)
dτ (t)

dt
,

S∗(x, t) = τ (t)∇x logL(x) + log π(x)

for application type-2. We remark that the general learning
and sampling procedures of LFIS do not depend on the
particular choice of ρ̃∗(t).

We term our proposition in Sec. 2.2 with the importance
sampling in Sec. 2.3 and the choices of ρ̃∗(x, t) in Sec. 2.4
as the Liouville Flow Importance Sampler (LFIS).

3. Numerical Experiments
In this section, we present numerical experiments comparing
the proposed LFIS with other state-of-the-art approaches
using NNs, including AFTMC, PIS, and DDS. We left out
VI-NF as its inferior performance has been established in
Arbel et al. (2021). We also optimized an SMC to provide a
reference of the performance of a state-of-the-art sampling
algorithm without NNs; see Appendix D.10.

We use a set of NNs to model the temporally discretized
velocity field v(x, t), at t = 0, 1/T, 2/T, . . . , 1. Here, T is
the total number of time steps, which plays the same role as
the number of tempering scales (or “temperatures”) in AIS,
AFT, or SMC. We investigated T = 32, 64, 128, and 256.
Results with T = 256 of all the methods are presented in
the main manuscript, and others are presented in Appendix
D.9 for completeness. We chose a cosine schedule function
(see Sec. 2.4) based on the results of a smaller-scale analysis
presented in Appendix D.5. At each discrete time step, we
used a separate feed-forward NN with a similar structure
as in Vargas et al. (2023a) and Zhang & Chen (2022) (two
hidden layers, each of which has 64 nodes) to model the
discrete-time velocity field. Except for the first (t = 0)
NN, which was initialized randomly, we instantiated the
NN at t = k/T using the weights of the trained NN at the

5

Liouville Flow Importance Sampler

previous time t = (k − 1)/T to amortize the training cost.
We initialized the weights of the last layer of the NN to be
zero, which was observed to expedite the training process
empirically. The divergence of the flow field and the score
function can either be computed theoretically or by using
the autograd function in PyTorch.

Algorithm 1 provides a more detailed description of the
implementation of LFIS. Samples are drawn from either
standard isotropic Gaussian distribution for type-1 applica-
tions, or from the prior distribution for type-2 applications
(see Sec. 2.4). The samples are transported by the previ-
ously learned velocity fields to a specific time step, which
will then be used for learning the velocity field at the next
time step. Our experiments suggested that the learning per-
forms better with the following implementations. (1) A
large number of samples (N = 5 × 104) are used to esti-
mate ⟨∂t log ρ̃∗ (t)⟩∗ at a specific time. For computational
efficiency, we only draw a fixed batch at each target time to
estimate this quantity once. (2) A small batch of samples
(B = 300-10000 depending on applications) are drawn for
each gradient descent step.

After training, we performed 30 independent samplings
(each with S = 2000 samples, different from those used in
training) using the learned velocity fields. Following the
recent series of papers (Arbel et al., 2021; Zhang & Chen,
2022; Vargas et al., 2023a), we focus on assessing sample
qualities by the estimation of log normalization constant
log Ẑ . For low dimensional (D ≤ 10) problems, we also
compare the sliced Wasserstein distance Wp (Bonneel et al.)
to ground-truth samples with p = 2 as an additional metric.
For all the methods with importance sampling, we used the
weighted samples for computing these statistical quantities.

3.1. Testing problems

Mode-separated Gaussian mixture (type-1): An illustra-
tive model of D = 2 Gaussian mixture distribution with
separated modes. We consider a similar challenging dis-
tribution as in PIS (Zhang & Chen, 2022): a mixture of
nine Gaussian distributions centered at the grid {−1, 0, 1}2,
and each Gaussian has variance 0.012. We present results
with equally-weighted (1/9) modes in the main text, and
unequally-weighted modes in Appendix D.2.

Funnel distribution (type-1): A challenging ten-
dimensional distribution proposed by Neal (2003) is com-
monly used for testing samplers. The formulation of the
funnel distribution is:

x0 ∼ N (µ = 0, σ2 = 9), (19a)
x1:9|x0 ∼ N (µ = 0,Σ = ex0I) (19b)

Log Gaussian Cox Process (type-2): The Log-Gaussian
Cox Process (LGCP) is a commonly used model for the

Table 1. Results of type-1 problems. The best model (in bold font)
in log Ẑ is determined by its deviation from the theoretical value,
0. The best model in Wasserstein-2 distance to the ground-truth
samples is determined by the smallest value. The best model in
effective sample size (EES) is determined by its deviation from the
optimal value, 1.

Model MG (D = 2) Funnel (D = 10)

SMC -1.28 ± 0.01 -0.12 ± 0.06
LFIS -0.0002 ± 0.004 -0.07 ± 0.003

log Ẑ DDS -0.31 ± 0.43 -0.31± 0.12
PIS 0.0035 ± 0.02 -1.14 ± 0.13
AFT 2.43 ± 0.05 -0.11 ± 0.68

SMC 0.066 ± 0.017 6.07 ± 1.52
LFIS 0.054 ± 0.014 5.57 ± 1.52

W2 DDS 0.368 ± 0.23 6.54 ± 1.44
PIS 0.061 ± 0.015 6.40 ± 1.49
AFT 0.10 ± 0.042 6.20 ± 1.41

SMC 0.99 ± 0.003 0.99 ± 0.005
LFIS 0.97 ± 0.001 0.97 ± 0.063

ESS DDS 0.012 ± 0.009 0.163 ± 0.086
PIS 0.59 ± 0.038 0.12 ± 0.066
AFT 0.66 ± 0.185 0.76 ± 0.277

analysis of spatial point pattern data and is designed for
modeling the positions of Findland pine saplings (Møller
et al., 1998). The LGCP is a hierarchical combination of a
Poisson process and a Gaussian Process prior, which can be
naturally framed as a Bayesian problem. Here we use the
variant of LGCP on a 40 × 40 grid, resulting a D = 1600
sampling problem. The target posterior density is:

λ(x) ∼ N (x;µ,K)
∏
i

exp(xiyi − αexi). (20)

To frame the LGCP as a Bayesian posterior sampling prob-
lem, we treat the Gaussian Process as the prior distribution
and the Poisson process as the likelihood function:

π(x) = N (x;µ,K), L(x) =
∏
i

exp(xiyi − αexi). (21)

Logistic regression (type-2): Here we consider the
Bayesian logistic regression with the prior distribution
π(x) = N (0, I), and the logistic regression model P (yi) =
Bernoulli(sigmoid(xT ·ui)). The Bayesian inference of the
logistic regression model is performed on the Ionosphere
dataset with D = 35 and the Sonar dataset with D = 61.

Latent space of Variational Autoencoder (type-2): In this
experiment, we investigate sampling in the latent space of
a pre-trained Variational Autoencoder (VAE) on the binary
MNIST dataset. The posterior distribution in the latent
space is denoted as the combination of a Gaussian prior of
latent variable z and the decoder pθ(x|z).

6

Liouville Flow Importance Sampler

Table 2. log Ẑ estimation of the Bayesian problems. As the ground-truth value is not known, SMC (with 1024 scales) results are
considered as gold standard. Models that fall within the statistical margin of error relative to the gold-standard values are highlighted in
bold font.

Model LGCP (D = 1600) Ionosphere (D = 35) Sonar (D = 61) VAE (D = 30)

SMC (1024) 506.96 ± 0.24 -111.61 ± 0.03 -108.38 ± 0.02 -110.16 ± 0.41

SMC (256) 506.77 ± 0.68 -111.62 ± 0.05 -108.39 ± 0.04 -110.20 ± 0.55
LFIS 505.53 ± 0.95 -111.60 ± 0.01 -108.38 ± 0.01 -109.99 ± 0.08
DDS 503.01 ± 0.77 -111.58 ± 0.12 -108.92 ± 0.26 -110.02 ± 0.06
PIS 506.34 ± 0.63 -111.69 ± 0.16 -109.35 ± 0.74 -109.96 ± 0.09
AFT 505.96 ± 1.19 -121.63 ± 16.37 -104.79 ± 68.31 -110.07 ± 0.36

3.2. Results

Tables 1 and 2 show the performance of different methods
on type-1 and type-2 problems respectively. We visualize
the samples and weight distributions of type-1 problems
in Fig. 2. Comprehensive results of different experimental
settings can be found in Appendix D. Our numerical results
showed that LFIS is capable of generating competitive sam-
ples to existing methods. For two type-1 applications, we
observed reasonable estimates of log Ẑ . Ground-truth (GT)
samples can be generated for these two test problems, and
the samples generated by LFIS have the lowest sample-to-
GT-sample Wasserstein-2 distance. We remark that LFIS
performs even better than the conventionally regarded gold-
standard SMC with the same number of scales (T = 256).
For Effective Sample Size (ESS) (Liu, 2008), LFIS also
shows competitive performance among all methods stud-
ied. Note that both SMC and AFT perform resampling
when ESS is lower than a certain threshold (0.98 for SMC
and 0.3 for AFT (Arbel et al., 2021)), while LFIS, DDS,
PIS do not resample. Even without resampling, LFIS can
still achieve high ESS comparable to SMC with a high re-
sampling threshold. The samples generated by LFIS also
provide more uniform coverage over the different modes
of the Gaussian mixture and the tails of funnel distribution
compared to all other methods. In addition, the weight dis-
tributions of LFIS in these two problems are significantly
narrower than other methods, explaining the higher ESS.
For type-2 problems, LFIS is the only method delivering
estimates of log Ẑ that are consistent with the gold-standard
SMC (with T = 1024) on all problems.

4. Discussion
We first provide a discussion contrasting LFIS to existing
methods and highlight the originality of LFIS. Among many
existing methodologies for sampling unnormalized density
functions, most closely related to LFIS are sampling by
tempered transitions (Neal, 1996), AIS (Neal, 2001), and
SMC (Del Moral et al., 2006)), VI-NF (Rezende & Mo-
hamed, 2015), AFTMC (Arbel et al., 2021), PIS (Zhang

& Chen, 2022), CR-ACFMC (Matthews et al., 2022), and
DDS (Vargas et al., 2023a). Table 15 provides a summary
of the differences between LFIS and other existing methods.

LFIS shares the same spirit of a collection of MC methods
(Neal, 1996; 2001; Del Moral et al., 2006), which all used a
series of tempered densities for guiding the samplers con-
verging to the target distribution. We adopted the specific
form of the time-dependent distribution for type-1 appli-
cations from Neal (1996) and Neal (2001), and for type-2
applications from Del Moral et al. (2006). In addition, the
weights derived by change-of-measure (see Appendix B)
align with the sequential importance sampling technique
employed in these MC methods. The distinct difference
between our proposed method to these MC-based methods
is the transition dynamics between the prescribed series of
densities: our proposition is a deterministic flow, in contrast
to the stochastic Markov chains (Neal, 1996; 2001) or par-
ticle filters (Del Moral et al., 2006). The performance of
these MC-based methods critically depends on the choice
of transition kernels, which are often an MCMC step, used
for evolving samples between consecutive intermediate den-
sities. This requires extensive engineering, i.e., tuning the
meta parameters. In contrast, taking a flow-based model to
evolve the samples allows us to derive the key equation (5)
and formulate an equation-based learning problem, which
may streamline the modeling process.

VI-NF (Rezende & Mohamed, 2015) uses a normalizing
flow as the modeling distribution, which is parametrized by
variational inference. LFIS shares many similar features of
VI-NF when a Neural ODE (Chen et al., 2018) is used as
the flow. In this case, both our proposition and VI-NF draw
samples from simple initial distributions (µ in our case; the
base distribution in VI-NF) and use the NN-modeled flow
to transport the samples to a future time. Both methods
leverage the computable density function along the sam-
ple trajectory, a unique feature of flow-based models (see
Eq. (8)). The key difference between our proposition and
VI-NF is the learning target. VI-NF is an end-to-end ap-
proach, that the loss function only depends on matching the
final distribution at the end of the flow to the target distri-

7

Liouville Flow Importance Sampler

1 0 1

1

0

1

(a) GT PDF

1 0 1

1

0

1

(b) GT samples

1 0 1

1

0

1

(c) SMC

1 0 1

1

0

1

(d) LFIS

1 0 1

1

0

1

(e) DDS

1 0 1

1

0

1

(f) PIS

1 0 1

1

0

1

(g) AFT

10 5 0 5
log(W)

10 3

10 2

10 1

100

101

PD
F

(h)
LFIS
DDS
PIS
AFT

8 0 812

0

12
(i)

8 0 812

0

12
(j)

8 0 812

0

12
(k)

8 0 812

0

12
(l)

8 0 812

0

12
(m)

8 0 812

0

12
(n)

8 0 812

0

12
(o)

5.0 2.5 0.0 2.5 5.0
log(W)

10 3

10 2

10 1

100

101

PD
F

(p)
LFIS
DDS
PIS
AFT

Figure 2. Sampling performance and sample weight distributions for the type-1 problems: (a-h) 2-D Gaussian mixture and (i-p) 10-D
funnel distribution. Subfigures (a,i) show the ground-truth PDF contours (marginalized 2-D contour for the funnel distribution). Subfigures
(b-g , j-o) compare the generated samples from the ground-truth distribution and different sampling methods. For the funnel distribution,
the samples are projected onto (x0, x1) plane. Subfigures (h,p) show the log-weight distributions for different sampling methods.

bution. In contrast, LFIS aims to capture ρ̃∗(t), t ∈ [0, 1].
We hypothesized that providing the whole evolution ρ̃∗(t),
instead of only the final ν̃ = ρ̃∗(1), could improve the
learning3. Moreover, VI-NF aims to directly optimize the
reverse Kullback–Leibler (KL) divergence. In contrast, our
approach first establishes the PDE (5) for the optimal flow
which perfectly matches the evolution of the target distri-
bution. Then, we parametrize the neural flow model by
minimizing its discrepancy to the evolutionary equation, an
approach similar to the Physics Informed Neural Networks
(Raissi et al., 2019; Karniadakis et al., 2021). Because VI-
NF has been shown to perform worse than AFTMC (Arbel
et al., 2021), we did not include VI-NF in our quantitative
comparison in Sec. 3.

The theoretical underpinning of LFIS, Eq. (5), appeared
in Vaikuntanathan & Jarzynski (2008) and AFTMC (Ar-
bel et al., 2021). However, our proposition is significantly
different from these studies. In the context of stochastic ther-
modynamics, Vaikuntanathan & Jarzynski (2008) aimed to
obtain the time-dependent density function for a prescribed
time-dependent velocity field, contrasting our focus where
we provide the unnormalized density function to solve for
the velocity field. On the other hand, AFTMC sought to
learn normalizing flows but entwined these flows and Monte
Carlo kernels across the tempered scales. An ablation study
in Appendix E demonstrates that the bulk of learning in
AFTMC was predominantly driven by the Monte Carlo ker-
nels, aligning it more closely with SMC (Del Moral et al.,
2006) than a pure flow model like LFIS or VI-NF. Without
the normalizing flows, AFTMC is functionally identical to
SMC. Given that the Monte Carlo kernels can be refined
through optimization and that plain SMC competently han-
dles the test problems (as observed in Appendix D.10), the
true advantage brought forth by the inclusion of normalizing

3As the same philosophy applies to AIS and SMC (analogous
to LFIS) to simple MCMC-type inference (analogous to VI-NF).

flows in AFTMC remains nebulous. We remark that CR-
AFTMC (Matthews et al., 2022), similar to the construct of
AFTMC but has some nuanced differences, also relies on
the MC step. Gibbs Flow Approximation (GFA, Heng et al.
(2021)) also proposed to leverage the Liouville equation
for learning the velocity field, employing a Gibbs sampler
instead of relying on Eq. (5) and its associated importance
sampling. GFA also integrated Monte Carlo kernels in a
manner akin to AFTMC. Nonetheless, it remains uncertain
whether the dimension-by-dimension transportation frame-
work of GFA is capable of addressing high-dimensional
inference problems effectively.

LFIS is significantly different from other hybrid methods
combining AIS and NF, for example, Wu et al. (2020);
Geffner & Domke (2021); Zhang et al. (2021); Thin et al.
(2021); Doucet et al. (2022); Geffner & Domke (2023). This
class of models also rely heavily on Monte Carlo sampling
and thus requires special engineering i.e. fine-tuning the
Monte Carlo kernel on a case-by-case problem setting.

PIS (Zhang & Chen, 2022) and DDS (Vargas et al., 2023a)
are diffusion-based models that share many similar fea-
tures. PIS learns the drift of an Itô process and DDS learns
the time-dependent score function. Both PIS and DDS
parametrize the neural network in the path space, by mini-
mizing the reverse KL divergence from a reference process4

to a modeling process, where the importance sampling is
done through a change of measure via the Girsanov theorem
(Protter & Protter, 2005). PIS and DDS both are specific
examples of a wider class of Schrödinger Bridge problem
(Pavon, 1989; Dai Pra, 1991; De Bortoli et al., 2021). Sim-
ilar to VI-NF, PIS and DDS are both end-to-end and only

4We adopted the nomenclature of DDS, which used “reference
process” (PIS used the term “prior uncontrolled process”). A subtle
difference between PIS and DDS is the choice of this reference
process: PIS uses the standard Wiener process, while DDS uses
either over- or under-damped Ornstein–Uhlenbeck process.

8

Liouville Flow Importance Sampler

the terminal distribution ν influences the learning. The per-
formance of this class of models critically depends on the
choice of the reference process and how it covers the tar-
get distribution. LFIS is closely related to the path-based
philosophy of PIS and DDS, but it aims to learn the entire
path ρ∗(t), t ∈ [0, 1]. PIS, DDS, and LFIS all estimate
the weights of the samples, which can be understood as
an integration of the deviation from some optimality along
the paths. As a deterministic flow, the path-measure of a
particular trajectory with LFIS is always singular (δ dis-
tributions) and Girsanov transformation is not applicable.
Consequently, the mathematical derivation of the impor-
tance sampler for LFIS is original and significantly different
from the ones in PIS and DDS. We remark that methods
using change of measure as a correction of imperfect com-
putation exist, in addition to AFTMC, PIS, and DDS, see
(Chorin & Tu, 2009; Morzfeld et al., 2015; Goodman et al.,
2016; Leach et al., 2018). However, it is beyond the authors’
knowledge that the accumulated error of Eq. (5) along the
trajectory plays a role as the sample weight for a determinis-
tically transported dynamical system. Importance sampling
by quantifying the accrued error along the trajectories signif-
icantly improved the accuracy of the model (see Appendix
D.6). As such, we advocate the novelty of the theoretical
construct of LFIS. LFIS is more efficient in sampling than
PIS without the need to generate random sample paths, but
similar to DDS as it utilizes probability flow ODE (Song
et al.), which is a flow model and can be parametrized by
our proposed method5.

LFIS is a sequential importance sampler and it accrues error
as the samples evolve. This leads to an expansion in the
spread of the weight distribution, consequently reducing the
corresponding ESS of the sampler and diminishing its over-
all quality. This phenomenon is commonly observed in most
sequential importance samplers, e.g., AIS, SMC, AFTMC,
and CR-AFTMC. To mitigate this issue, one common ap-
proach is to perform resampling of the samples as in SMC,
AFTMC and CR-AFTMC. In our experiments, we did not
observe the weight distribution of LFIS deteriorating to the
extent where resampling was deemed necessary. All the
results in this manuscript are without resampling, although
the incorporation of resampling into LFIS remains a viable
option. Conducting LFIS without resampling can be viewed
as a stringent test when compared to methods like SMC,
AFTMC, or CR-AFTMC. Nonetheless, we still observed
narrower weight distributions in LFIS, when compared to
other methods, as illustrated in Figure 2 (h) and (p) and also
in type-2 problems (data not shown).

We conclude the manuscript by listing the potential limi-
tations of LFIS. (1) LFIS cannot handle non-differentiable

5The drift of the probability flow has a noise-induced term that
depends on the score function already, so Eq. (5) for probability
flow ODE will have an even higher-order derivative ∇2

x log ρ∗(t).

density function ν̃(x). For example, bounded uniform pri-
ors. Theoretically, these singularities can be handled by
inserting sources at the discontinuities, a direction that mer-
its future developments. A practical solution to address
the challenge is to consider the non-differentiable density
function as the limit of differentiable ρ̃∗(x, t). For example,
using sigmoid functions ν̃(x, t) = σ(tx/(1−t)) which con-
verge to step functions ν̃(x) = Θ(x). (2) When the flow sat-
isfying Eq. (5) is too complex, LFIS’ approach may require
a more expressive NN than end-to-end DDS and PIS require.
This can result in a more resource-intensive training process,
but we speculate that it might offer a tradeoff in terms of
improved accuracy. (3) LFIS is more memory-demanding
as it requires ∇xS∗ in the equation, and cross terms like
∂θ∂xvθ(x, t) in the optimization step. These terms are cur-
rently evaluated by memory-demanding autograd. (4)
As an integrator and with the currently adopted explicit
scheme, LFIS does not perform well when T is small due
to the error induced by a finite time-step (see Fig. 7). This
may result in a higher training cost. Optimizing LFIS using
higher-order integration schemes and an interpolation of the
neural flow along the time domain merits future research.

Code availability
The code for LFIS and the results of numerical experiments
have been deposited at https://github.com/lanl/
LFIS.

Acknowledgments
The authors acknowledge continual support from Labo-
ratory Directed Research and Development (LDRD). YT
was supported by LDRD project “Accelerated Dynamics
Across Computational and Physical Scales” (220063DR),
NP was supported by LDRD project “Learning Uncer-
tainties In Coupled-Physics Models via Operator Theory”
(20230254ER), and YTL was supported by LDRD project
“Diffusion Modeling with Physical Constraints for Scientific
Data” (20240074ER). YTL sincerely thanks Prof. A. Doucet
for several insightful email exchanges that partially inspired
this work.

Impact Statement
This manuscript presents work whose goal is to advance the
field of statistical sampling and machine learning. There are
many potential societal consequences of our work, none of
which we feel must be specifically highlighted here.

9

https://github.com/lanl/LFIS
https://github.com/lanl/LFIS

Liouville Flow Importance Sampler

References
Arbel, M., Matthews, A., and Doucet, A. Annealed flow

transport monte carlo. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 318–330.
PMLR, July 2021.

Bhatia, H., Norgard, G., Pascucci, V., and Bremer, P.-T.
The Helmholtz-Hodge decomposition—a survey. IEEE
Transactions on visualization and computer graphics, 19
(8):1386–1404, 2012.

Bierkens, J., Fearnhead, P., and Roberts, G. The Zig-Zag
process and super-efficient sampling for Bayesian analy-
sis of big data. The Annals of Statistics, 47(3), June 2019.
ISSN 0090-5364. doi: 10.1214/18-AOS1715.

Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. Sliced and
Radon Wasserstein Barycenters of measures. 51(1):22–
45. ISSN 1573-7683. doi: 10.1007/s10851-014-0506-3.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Advances
in Neural Information Processing Systems, volume 31,
2018.

Chorin, A. J. and Tu, X. Implicit sampling for particle
filters. Proceedings of the National Academy of Sciences,
106(41):17249–17254, October 2009. ISSN 0027-8424,
1091-6490. doi: 10.1073/pnas.0909196106.

Dai Pra, P. A stochastic control approach to reciprocal diffu-
sion processes. Applied Mathematics and Optimization,
23(1):313–329, January 1991. ISSN 1432-0606. doi:
10.1007/BF01442404.

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. Diffu-
sion Schrödinger Bridge with applications to score-based
generative modeling. In Advances in Neural Information
Processing Systems, volume 34, pp. 17695–17709, 2021.

Del Moral, P., Doucet, A., and Jasra, A. Sequential Monte
Carlo Samplers. Journal of the Royal Statistical Society.
Series B (Statistical Methodology), 68(3):411–436, 2006.
ISSN 13697412, 14679868.

Doucet, A., Grathwohl, W., Matthews, A. G., and Strath-
mann, H. Score-based diffusion meets annealed impor-
tance sampling. In Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 21482–21494, 2022.

Duane, S., Kennedy, A., Pendleton, B. J., and Roweth,
D. Hybrid Monte Carlo. Physics Letters B, 195(2):
216–222, September 1987. ISSN 0370-2693. doi:
10.1016/0370-2693(87)91197-X.

Evans, L. C. Partial differential equations, volume 19.
American Mathematical Society, 2022.

Faulkner, M. F. and Livingstone, S. Sampling algorithms
in statistical physics: A guide for statistics and machine
learning, June 2023.

Gabrié, M., Rotskoff, G. M., and Vanden-Eijnden, E. Adap-
tive Monte Carlo augmented with Normalizing Flows.
Proceedings of the National Academy of Sciences, 119
(10):e2109420119, March 2022. ISSN 0027-8424, 1091-
6490. doi: 10.1073/pnas.2109420119.

Geffner, T. and Domke, J. MCMC variational inference
via uncorrected Hamiltonian annealing. In Advances in
Neural Information Processing Systems, volume 34, pp.
639–651, 2021.

Geffner, T. and Domke, J. Langevin Diffusion Variational
Inference. In Proceedings of the 26th International Con-
ference on Artificial Intelligence and Statistics, volume
206 of Proceedings of Machine Learning Research, pp.
576–593. PMLR, April 2023.

Gelman, A. and Meng, X.-L. Simulating normalizing con-
stants: From importance sampling to Bridge Sampling
to Path Sampling. Statistical Science, 13(2), May 1998.
ISSN 0883-4237. doi: 10.1214/ss/1028905934.

Gerlich, G. Die verallgemeinerte Liouville-Gleichung. Phys-
ica, 69(2):458–466, November 1973. ISSN 0031-8914.
doi: 10.1016/0031-8914(73)90083-9.

Geweke, J. Bayesian inference in econometric models using
monte carlo integration. Econometrica: Journal of the
Econometric Society, pp. 1317–1339, 1989.

Goodman, J., Lin, K. K., and Morzfeld, M. Small-Noise
Analysis and Symmetrization of Implicit Monte Carlo
Samplers. Communications on Pure and Applied Math-
ematics, 69(10):1924–1951, October 2016. ISSN 0010-
3640, 1097-0312. doi: 10.1002/cpa.21592.

Green, P. J. Reversible jump Markov chain Monte
Carlo computation and Bayesian model determination.
Biometrika, 82(4):711–732, 12 1995. ISSN 0006-3444.
doi: 10.1093/biomet/82.4.711.

Heng, J., Doucet, A., and Pokern, Y. Gibbs flow for ap-
proximate transport with applications to bayesian com-
putation. 83(1):156–187, 2021. ISSN 1369-7412. doi:
10.1111/rssb.12404.

Hénin, J., Lelièvre, T., Shirts, M. R., Valsson, O., and Dele-
motte, L. Enhanced sampling methods for molecular
dynamics simulations [Article v1.0]. Living Journal of
Computational Molecular Science, 4(1):1583, December
2022. doi: 10.33011/livecoms.4.1.1583.

Hines, K. E. A primer on Bayesian inference for biophysical
systems. Biophysical Journal, 108(9):2103–2113, 2015.
ISSN 0006-3495. doi: 10.1016/j.bpj.2015.03.042.

10

Liouville Flow Importance Sampler

Jackman, S. Estimation and Inference via Bayesian Simu-
lation: An Introduction to Markov Chain Monte Carlo.
American Journal of Political Science, 44(2):375, April
2000. ISSN 00925853. doi: 10.2307/2669318.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P.,
Wang, S., and Yang, L. Physics-informed machine learn-
ing. Nature Reviews Physics, 3(6):422–440, June 2021.
ISSN 2522-5820. doi: 10.1038/s42254-021-00314-5.

Kass, R. E. and Raftery, A. E. Bayes factors. Journal of
the American Statistical Association, 90(430):773–795,
1995. doi: 10.1080/01621459.1995.10476572.

Larsson, S. and Thomée, V. Partial differential equations
with numerical methods, volume 45. Springer, 2003.

Leach, A., Lin, K. K., and Morzfeld, M. Symmetrized im-
portance samplers for stochastic differential equations.
Communications in Applied Mathematics and Computa-
tional Science, 13(2):215–241, June 2018. ISSN 2157-
5452, 1559-3940. doi: 10.2140/camcos.2018.13.215.

Li, L., Holbrook, A., Shahbaba, B., and Baldi, P. Neural net-
work gradient Hamiltonian Monte Carlo. Computational
Statistics, 34(1):281–299, March 2019. ISSN 0943-4062,
1613-9658. doi: 10.1007/s00180-018-00861-z.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=PqvMRDCJT9t.

Liu, J. S. Monte Carlo Strategies in Scientific Computing.
Springer Series in Statistics. Springer, New York, NY, 2.
ed edition, 2008. ISBN 978-0-387-76369-9.

Llorente, F., Martino, L., Delgado, D., and López-Santiago,
J. Marginal likelihood computation for model selection
and hypothesis testing: An extensive review. SIAM Re-
view, 65(1):3–58, 2023. doi: 10.1137/20M1310849.

Matthews, A., Arbel, M., Rezende, D. J., and Doucet, A.
Continual repeated annealed flow transport Monte Carlo.
In Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pp. 15196–15219. PMLR, July
2022.

McCartan, C. and Imai, K. Sequential Monte Carlo for
sampling balanced and compact redistricting plans. The
Annals of Applied Statistics, 17(4), December 2023. ISSN
1932-6157. doi: 10.1214/23-AOAS1763.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., and Teller, E. Equation of state calculations
by fast computing machines. The Journal of Chemical

Physics, 21(6):1087–1092, 1953. ISSN 0021-9606. doi:
10.1063/1.1699114.

Møller, J., Syversveen, A. R., and Waagepetersen, R. P.
Log Gaussian Cox Processes. Scandinavian Journal of
Statistics, 25(3):451–482, 1998.

Morzfeld, M., Tu, X., Wilkening, J., and Chorin, A. Param-
eter estimation by implicit sampling. Communications in
Applied Mathematics and Computational Science, 10(2):
205–225, September 2015. ISSN 2157-5452, 1559-3940.
doi: 10.2140/camcos.2015.10.205.

Neal, R. M. Sampling from multimodal distributions using
tempered transitions. Statistics and Computing, 6(4):353–
366, December 1996. ISSN 1573-1375. doi: 10.1007/
BF00143556.

Neal, R. M. Annealed importance sampling. Statistics and
Computing, 11(2):125–139, April 2001. ISSN 1573-1375.
doi: 10.1023/A:1008923215028.

Neal, R. M. Slice sampling. The Annals of Statistics, 31(3):
705–767, June 2003. ISSN 0090-5364, 2168-8966. doi:
10.1214/aos/1056562461.

Neal, R. M. MCMC using Hamiltonian dynamics.
arXiv:1206.1901 [physics, stat], June 2012. doi: 10.
1201/b10905.

Pajor, A. Estimating the Marginal Likelihood Using the
Arithmetic Mean Identity. Bayesian Analysis, 12(1):261–
287, 2017. ISSN 1936-0975. doi: 10.1214/16-BA1001.

Pavon, M. Stochastic control and nonequilibrium thermody-
namical systems. Applied Mathematics and Optimization,
19(1):187–202, January 1989. ISSN 1432-0606. doi:
10.1007/BF01448198.

Protter, P. E. and Protter, P. E. Stochastic differential equa-
tions. Springer, 2005.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019. ISSN 0021-9991. doi:
10.1016/j.jcp.2018.10.045.

Resnick, S. A probability path. Springer, 2019.

Rezende, D. and Mohamed, S. Variational inference with
Normalizing Flows. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pp. 1530–
1538, Lille, France, 07–09 Jul 2015. PMLR.

11

https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t

Liouville Flow Importance Sampler

Robert, C. P. and Wraith, D. Computational methods for
Bayesian model choice. AIP Conference Proceedings,
1193(1):251, 2009. doi: 10.1063/1.3275622.

Sharma, S. Markov chain Monte Carlo methods for
Bayesian data analysis in astronomy. Annual Review
of Astronomy and Astrophysics, 55(1):213–259, 2017.
doi: 10.1146/annurev-astro-082214-122339.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-Based Generative Model-
ing through Stochastic Differential Equations. Comment:
ICLR 2021 (Oral).

Thin, A., Kotelevskii, N., Doucet, A., Durmus, A.,
Moulines, E., and Panov, M. Monte Carlo variational
auto-encoders. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 10247–
10257. PMLR, July 2021.

Tokdar, S. T. and Kass, R. E. Importance sampling: a
review. Wiley Interdisciplinary Reviews: Computational
Statistics, 2(1):54–60, 2010.

Tong, A., FATRAS, K., Malkin, N., Huguet, G., Zhang, Y.,
Rector-Brooks, J., Wolf, G., and Bengio, Y. Improving
and generalizing flow-based generative models with mini-
batch optimal transport. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://
openreview.net/forum?id=CD9Snc73AW. Ex-
pert Certification.

Vaikuntanathan, S. and Jarzynski, C. Escorted free energy
simulations: Improving convergence by reducing dissi-
pation. Phys. Rev. Lett., 100:190601, May 2008. doi:
10.1103/PhysRevLett.100.190601.

Vargas, F., Grathwohl, W. S., and Doucet, A. Denoising
Diffusion Samplers. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023a.

Vargas, F., Grathwohl, W. S., and Doucet, A. Github
repository of Denoising Diffusion Samplers.
https://github.com/franciscovargas/
denoising_diffusion_samplers, 2023b.
[Online; accessed 4-Jan-2024].

Wainwright, M. J. and Jordan, M. I. Graphical models, ex-
ponential families, and variational inference. Foundations
and Trends® in Machine Learning, 1(1–2):1–305, 2008.
ISSN 1935-8237. doi: 10.1561/2200000001.

Wilkinson, D. J. Bayesian methods in bioinformatics and
computational systems biology. Briefings in Bioinformat-
ics, 8(2):109–116, April 2007. ISSN 1467-5463. doi:
10.1093/bib/bbm007.

Wu, H., Köhler, J., and Noe, F. Stochastic normalizing
flows. In Advances in Neural Information Processing
Systems, volume 33, pp. 5933–5944, 2020.

Zellner, A. Optimal information processing and Bayes’s the-
orem. The American Statistician, 42(4):278–280, 1988.
doi: 10.1080/00031305.1988.10475585.

Zhang, G., Hsu, K., Li, J., Finn, C., and Grosse, R. B. Dif-
ferentiable annealed importance sampling and the perils
of gradient noise. In Advances in Neural Information
Processing Systems, volume 34, pp. 19398–19410, 2021.

Zhang, Q. and Chen, Y. Path integral sampler: A stochastic
control approach for sampling. In International Confer-
ence on Learning Representations, 2022.

12

https://openreview.net/forum?id=CD9Snc73AW
https://openreview.net/forum?id=CD9Snc73AW
https://github.com/franciscovargas/denoising_diffusion_samplers
https://github.com/franciscovargas/denoising_diffusion_samplers

Liouville Flow Importance Sampler

A. Existence of Velocity Field
We prove theorem 2.1. We want to state that uniqueness is not guaranteed, however the existence of the velocity field in
Eq. (5) only depends on the condition that ∇x · S∗ (x, t) is bounded for all t almost everywhere. Our proof shows that many
solutions can exist, i.e., non-uniqueness. Our proposed Liouville Flow Importance Sampler models the velocity field using a
neural network that satisfies Eq. (5) in a least squares sense, nonetheless the existence of the velocity field rests on a concrete
mathematical foundation based on the Helmholtz–Hodge decomposition as shown below.

Proof. Theorem 2.1. We first show existence. Let t ∈ [0, 1]. By Helmholtz–Hodge decomposition (see the survey in (Bhatia
et al., 2012)), we can decompose the velocity field v(x, t) as

v(x, t) = ∇xψ(x; t) + u(x; t), (22a)

where u(x; t) is divergence free, that is∇x · u = 0. Plugging this decomposition into Eq. (5), we obtained,

∇2
xψ(x; t) + S∗(x, t) · ∇xψ(x; t) + S∗(x, t) · u(x; t) = −f(x, t). (22b)

Next, by adding and subtracting cψ(x; t) to the equation above,

∇2
xψ(x; t) + S∗(x, t) · ∇xψ(x; t) + cψ(x; t) + S∗(x, t) · u(x; t)− cψ(x; t) = −f(x, t). (22c)

By demanding that ψ and u satisfy the following equations respectively,

∇2
xψ(x; t) + S∗(x, t) · ∇xψ(x; t) + cψ(x; t) = −f(x, t); ψ(x, t) = 0 on boundary, (22d)

and
S∗(x, t) · u(x; t) = cψ(x; t), (22e)

we see that v(x, t) = ∇xψ(x; t)+u(x; t) satisfies Eq. (5). Observe that the equation in (22d) is an elliptic partial differential
equation of the form

−∇x · (a∇xψ) + b · ∇ψ + dψ = f, (22f)

where a = 1, b = −S∗ and d = −c. By the Lax–Milgram theorem (see chp. 6 in (Evans, 2022) for a general description
and sec 3.5 in (Larsson & Thomée, 2003) for the particular case described by Eq. (22f)), a unique ψ(x, t) exists provided
d− 1

2∇x · b ≥ 0 for all x, t. In other words, 2d ≥ −∇x · S∗(x; t), that is 2c ≤ ∇x · S∗. By our assumption, this is indeed
true.

Observe that if v1(x, t) is a solution to Eq. (5) and let ṽ(x, t) be a vector field such that [∇+ S∗] · ṽ = 0 then v2(x, t) =
v1(x, t) + ṽ(x, t) is also a solution to Eq. (5). As [∇+ S∗] · ṽ = 0 only provides one constraint on the D-dimensional field
ṽ, for D ≥ 2, there is no unique solution to Eq. (5).

B. Importance Sampling for Imperfect Neural Networks
Almost surely, a finite network cannot accurately model the velocity field that satisfies Eq. (5). Let us denote the neural
velocity field by vθ(x, t), where θ stands for the weights of the neural network. In this scenario, we denote the induced
density function by ρθ(x, t), which in general is not the target density function ρ∗(x, t). Note that GLE (1) ensures that the
trajectories of N samples following the deterministic evolution (2) as given by Eq. (7) share the same statistics of ρθ(·, t).
That is, x(i)(t) ∼ ρθ(·, t) whenever x(i)0 ∼ µ. Our goal is to derive an equation that is analogous to Eq. (5) using variational
inference (VI) for this imperfect (ρθ ̸= ρ∗) scenario.

To describe an instantaneous equation for the velocity field, it suffices to consider performing variational inference at
time t+ dt, where the infinitesimal advanced time dt≪ 1. Using VI, we aim to minimize the reverse Kullback–Leibler
divergence KL (ρθ (·, t+ dt) ∥ρ∗ (·, t+ dt)). As we will be using the sample trajectories, it is convenient to first quantify
both log ρθ(x(t), t) and log ρ∗(x(t), t) along the trajectory. Note that we are adopting the Lagrangian specification of

13

Liouville Flow Importance Sampler

the flow because we are computing the quantity of interests along the trajectory. Below, for brevity, we denote a sample
trajectory x(i)(t) by the abbreviated x(t). We first compute the instantaneous rate of log-densities along the trajectories:

d
dt

log ρθ(x(t), t) = ∂x [log ρθ(x(t), t)] ·
dx(t)

dt
+ ∂t log ρθ(x(t), t)

= Sθ(x(t), t) · vθ(x(t), t)−
1

ρ(x(t), t)
∇x · (vθ(x(t), t)ρθ(x(t), t)) (By Eq. (1))

= −∇x · vθ (x(t), t) , (23)

d
dt

log ρ∗(x(t), t) = ∂x [log ρ∗(x(t), t)] ·
dx(t)

dt
+ ∂t log ρ∗(x(t), t)

= S∗(x(t), t) · vθ(x(t), t) + ∂tδ log ρ̃∗(x(t), t), (24)

where we have used ρ∗(x, t) = ρ̃∗(x, t)/Z(t) and Eq. (5b). From the above equations, it is clear that the log-densities along
the trajectories can be computed along the dynamics via

log ρθ(x(t), t) = log ρθ(x(0), 0)−
∫ t

0

∇ · vθ (x(s), s) ds, (25)

log ρ∗(x(t), t) = log ρ∗(x(0), 0) +

∫ t

0

[S∗(x(s), s) · vθ(x(s), s) + ∂tδ log ρ̃∗(x(s), s)] ds (26)

We remark that Eq. (25) is the pivotal construct to enable density estimation by Neural ODE (Chen et al., 2018). Because
the initial distribution ρθ(·, 0) = µ(0) = ρ∗(·, 0) we get the following important result,

With ρθ and ρ∗ defined as above, we have the following density ratio

log
ρ∗(x(t), t)

ρθ(x(t), t)
=

∫ t

0

[∇ · vθ (x(s), s) + S∗(x(s), s) · vθ(x(s), s) + ∂tδ log ρ̃∗(x(s), s)] ds. (27)

The above equation hints that we should define a dynamic error function along a specific sample trajectory

ε(t;x0) ≡ ∇ · vθ (x(t;x0), t) + S∗(x(t;x0), t) · vθ(x(t;x0), t) + ∂tδ log ρ̃∗ (x(t;x0), t) , (28)

which is identically the difference between the LHS and RHS of Eq. (5) along the trajectory. We remark that the error
function defined in (6) is consistent to the definition (28) above, but we have dropped the time-dependence in Eq. (6). Then,
for every trajectory x(t), we associate a dynamic weight w(t;x0) to the trajectory

w̃(t;x0) :=
ρ∗(x(t;x0), t)

ρθ(x(t;x0), t)
= exp

(∫ t

0

ε(s;x0) ds.
)

(29)

Note that because x(t;x0) depends on the initial condition x0, the dynamic error function ε(t;x0) and the difference
between the log-densities also depend on the initially sampled x0 ∼ µ.

Proposition B.1. Assuming ρθ dominates ρ∗. In the optimal case when ε(x, t) = 0 ∀x in the support of ρθ, the density
function ρθ induced by the (trained) neural-network-modeled flow is identical to that of the target distribution, ρ∗. In this
case, w̃ = 1.

Proof. By Eqs. (27) and (29).

Equation (29) plays a key role in the following analysis.

Theorem B.2. Given a neural velocity field vθ(x, t) and an integrable function F (x). Then for any t ≥ 0,

Ex∼ρθ(·,t) [F (x)] = Ex0∼µ [F (x (t;x0))] , (30)

where ρθ (·, t) is the solution of the following Generalized Liouville Equation

∂tρθ (x, t) = −∇x · [vθ (x, t) ρθ (x, t)] (31)

with initial data
ρθ (x, 0) = µ(x). (32)

14

Liouville Flow Importance Sampler

Proof. This Lemma follows directly from the definition of ρθ(·, t) in the Generalized Liouville Equation, that ρ (x, t) is the
density of the trajectory x(t) with an initial condition x0 ∼ µ. See Gerlich (1973).

Remark B.3. Lemma B.2 is the theoretical foundation of Neural ODE (Chen et al., 2018), a continuous-time normalizing
flow.

Next, we show that the ratio of the log-densities in Eq. (29) provides a way for us to estimate the expectation of a measurable
function F with respect to the target density ρ∗ (·, t) by a change-of-measure, without the need of generating samples from
the target distribution.

Lemma B.4. Assuming ρθ dominates ρ∗, for any t ∈ [0, 1],

Ex′∼ρ∗(·,t) [F (x
′)] = Ex0∼µ [w̃(t;x0)F (x (t;x0))] . (33)

Proof.

Ex′∼ρ∗(·,t) [F (x′)] =

∫
F (x′) ρ∗(x

′, t) dx′

=

∫
F (x′)

ρ∗(x
′, t)

ρθ(x′, t)
ρθ(x

′, t) dx′

= Ex′∼ρθ(·,t)

[
F (x′)

ρ∗(x
′, t)

ρθ(x′, t)

]
= Ex0∼µ

[
F (x (t;x0))

ρ∗(x (t;x0) , t)

ρθ(x (t;x0) , t)

]
= Ex0∼µ [w̃ (t;x0) F (x (t;x0))] , (34)

where we used Lemma B.2 to establish the second-to-last equality and the definition Eq. (29) to establish the last equality.

Remark B.5. We put a stringent condition that ρθ has to dominate ρ∗ for any arbitrary function F . The condition is often
relaxed to “ρθ(x) > 0 where F (x)ρ∗(x) > 0” in the importance sampling literature (e.g., Tokdar & Kass (2010)), which
requires knowledge of the function F .

Lemma B.6. Assuming ρθ dominates ρ∗ and ∂t log ρ̃∗(x, t) is integrable with respect to ρ∗(·, t) for any t ∈ [0, 1],

Ex′∼ρ∗(·,t) [∂t log ρ̃∗(x
′, t)] = Ex0∼µ [w̃(t;x0) ∂t log ρ̃∗ (x(t;x0), t)] . (35)

Proof. By Lemma B.4 with F (x) := ∂t log ρ̃∗(x, t).

Proposition B.7. Given an integrable function F , Ex′∼ρ∗(·,t) [F (x′)] can be unbiasedly estimated by a finite set of initial

samples x(i)0 ,

Ex′∼ρ∗(·,t) [F (x′)]
i.p.−→ FN (t) :=

N∑
i=1

wi(t)F
(
x
(
t;x

(i)
0

))
, (36)

where normalized weights wi(t) are defined as (Eq. (10)):

wi(t) :=
w̃
(
t, x

(i)
0

)
∑N

j=1 w̃
(
t, x

(j)
0

) . (37)

Remark B.8. Note that the convergence result using the weight normalization (Eq. (10)) rests on the following fact

lim
N→∞

1

N

N∑
i=1

w̃(t;x
(i)
0)F (x(t;x

(i)
0)) = lim

N→∞

N∑
i=1

wi(t)F
(
x
(
t;x

(i)
0

))
which follows from importance sampling. See (Geweke, 1989) for the proof and (Tokdar & Kass, 2010) for a review.

15

Liouville Flow Importance Sampler

Remark B.9. Note that in practice we get the stronger almost sure convergence in the result above by demanding that
Ex0∼µ| w̃ (t;x0) F (x (t;x0)) | <∞. This is not an unreasonable assumption as each weight w̃ is absolutely bounded when
using a suitably expressive neural network.

Corollary B.10. Assuming ∂t log ρ̃∗ (x, t) is integrable, Ex′∼ρ∗(·,t) [∂t log ρ̃∗ (x, t)] can be unbiasedly asymptotically

(i.e. unbiased as N →∞) estimated by a finite set of initial samples x(i)0 ,

Ex′∼ρ∗(·,t) [F (x′)] ≈
N∑
i=1

wi(t) ∂t log ρ̃∗

(
x
(
t;x

(i)
0 , t

))
. (38)

Corollary B.11. The last term in Eq. (28), ∂tδ log ρ̃∗ (x(t), t), can be estimated at time t.

Proof. By Eq. (5b), ∂tδ log ρ̃∗ (x(t), t) contains two terms: log ρ̃∗
(
x(i) (t) , t

)
, and Ex′∼ρ∗(·,t) [∂t log ρ̃∗(x

′, t)]. The former
can be evaluated straightforwardly as the density function is given. The latter can be estimated by Corollary B.10.

C. (Asymptotically) Unbiased Estimators of the Marginalized Likelihood
Proof. Theorem 2.2

First, we show that that logZ(t) is given by integrating I(s) on [0, t] where I(s) = Eρ∗(·,s) [∂s log ρ̃∗ (x, s)] i.e.

logZ(t) =
∫ t

0

Eρ∗(·,s) [∂s log ρ̃∗ (x, s)] ds. (39)

This can be established by first applying d/dt to logZ (t) :=
∫
ρ̃∗ (x, t) dx:

d
dt

logZ(t) = d
dt

log

∫
ρ̃∗ (x, t) dx =

1

Z(t)

∫
1

ρ̃∗ (x, t)

(
∂ρ̃∗ (x, t)

∂t

)
ρ̃∗ (x, t) dx

=

∫
∂ log ρ̃∗ (x, t)

∂t

ρ̃∗ (x, t)

Z(t)
dx = Ex∼ρ∗(·,t) [∂t log ρ̃∗ (x, t)] . (40)

Integrating the above equation from 0 to t, we obtained

logZ(t) =
∫ t

0

Eρ∗(·,s) [∂s log ρ̃∗ (x, s)] ds, (41)

because logZ(0) = 0 a we fix ρ∗(t = 0) = µ, a normalized distribution. We remark that this derivation is akin to that in
(Gelman & Meng, 1998). Corollary B.10 provides us with an unbiased estimate of I(s) using normalized weights as in
Eq. (10). Thus we have,

lim
N→∞

N∑
i=1

wi (t) ∂t log ρ̃
(
x(i) (t) , t

)
i.p.−→ I(s), (42)

for each s ∈ [0, t]. In practice as remark B.9 suggests, we do get stronger almost sure convergence. However, given the
assumption that both the dynamic weights wi(t) and ∂t log ρ̃∗

(
x(i)(t), t

)
are absolutely bounded almost everywhere along

the sample trajectories our final result still holds. With this assumption in mind, we observe that the convergence of the
integrand in probability

lim
N→∞

N∑
i=1

wi (t) ∂t log ρ̃
(
x(i) (t) , t

)
i.p.−→ Eρ∗(·,s) [∂s log ρ̃∗ (·, s)] (43)

implies the almost-surely convergence of the integration via the Lebesgue Dominated Convergence Theorem (see Corollary
6.3.2 in (Resnick, 2019)). Thus, we have

lim
N→∞

∫ t

0

N∑
i=1

wi (s) ∂s log ρ̃
(
x(i) (s) , s

)
ds

a.s.−→
∫ t

0

Eρ∗(·,s) [∂s log ρ̃∗ (·, s)] ds
Eq. (41)
= logZ (t) . (44)

16

Liouville Flow Importance Sampler

Remark C.1. The boundedness assumption in Theorem 2.2 can be relaxed to require a dominating integrable function.
However, in practice we do see the assumptions met especially if we have a suitably expressive neural velocity model.

We now show the proof of the unbiased estimation of Z , Theorem 2.3.

Proof. Unbiased estimator of Z . We first relate ε defined in (6b) and ϵ in (14):

ϵ (x (s) , θ) = ε (x (s) , θ) + ∂s ⟨log ρ̃∗(·, s)⟩∗ , (45)

because of the definition Eq. (5b). Integrating both sides from s = 0→ t and using Eqs. (15) (28), (29), and (41), we obtain

logϖ(t;x0) = logw(t;x0) + logZ(t). (46)

Exponentiating the above expression leads to

ϖ(t;x0) = w(t;x0)Z(t). (47)

Now, we perform expectation over the empirical distribution ρθ and using Eq. (29):

Eρθ
[ϖ(t;x0)] = Eρθ

[w(t;x0)Z(t)] = Z(t)Eρθ
[w(t;x0)] = Z(t)Eρ∗ [t] = Z(t). (48)

We can now unbiasedly estimate Z(t) using Monte Carlo, i.e., Eq. (16).

Remark C.2. Our results are in continuous time and the Generalized Liouville Equation requires that we have the exact
velocity field. In practice, we use a time integrator to evolve the velocity field in discrete time in chunks of δt. In this paper
we use (Forward) Euler time stepping. Hence the results above do not hold in general; in fact there is a bias term which
depends on δt. However, in the limit as δt→ 0 we do get the unbiased estimate (assuming that our neural network modeled
velocity is Lipschitz and not chaotically dependent on the initial condition).

D. Additional Experiment Details and Results
In this section, we provide additional details of the numerical experiments for reproducibility.

D.1. Additional details of the test distributions

For the Mode-separated Gaussian mixture problems, we followed the testing problem proposed in Zhang & Chen (2022)
and chose a small variance (σ = 0.012) for each mode of the Gaussian mixture to make it more challenging for different
methods. We reduce the grid size to {−1, 0, 1}2 such that using the simplest prior/reference distributionN (0, I) for different
methods could provide good coverage of the target distribution. This testing problem could provide a fair comparison
between different methods for samples from well-separated modes in a distribution. Our results show that the proposed
LFIS excels at generating evenly distributed samples from different modes of the target distributions.

For the Log Gaussian Cox process, the covariance matrix of the prior distribution K takes the form K(u, v) =

σ2 exp
(
− |u−v|2

Mβ

)
, where σ2 = 1.91, M = 40 is the grid number in each direction, and β = 1/33. Here, u and v

denote the normalized positions on two grid points. The mean vector of the prior distribution is log(126)− σ2.

For the sampling problem in the latent space of VAE, we took the decoder pθ(x|z) of the pre-trained VAE in Arbel et al.
(2021) and used it to construct the likelihood function with binary cross-entropy loss. In Fig. 3, we demonstrate the test
image and the reconstructed image using the pre-trained decoder pθ(x|z) from samples generated by LFIS.

D.2. LFIS for multi-modal distributions with unequally weighted modes

In this section, we test LFIS on distributions with unequally weighted modes. We reformulate the mode-separated Gaussian
mixture distribution and give each mode different weights. We tested three different configurations of unequally weighted
modes whose PDFs are shown in Figs. 4 (a,d,g). The numerical experiments are performed using the exact setup as the
regular Gaussian mixture distribution. The samples drawn from the ground-truth distributions and LFIS are shown Fig. 4
(b,c,e,f,h,i). The logZ estimation for each configuration is shown in table 3. Evidently, LFIS is capable of sampling from
multi-modal distributions with unequally weighted modes.

17

Liouville Flow Importance Sampler

Bi
na

ry
 M

NI
ST

(a) (b) (c) (d) (e) (f)

LF
IS

 sa
m

pl
e

(g) (h) (i) (j) (k) (l)

Ra
nd

om
 V

AE
 sa

m
pl

es

(m) (n) (o) (p) (q) (r)

Figure 3. Binary MNIST dataset (a-f), decoded LFIS samples (g-l), and decoded image from random latent space samples (m-r).

Table 3. log Ẑ estimation for mode-separated Gaussian mixture with unequal weights.

MG (D = 2)

Configuration 1 -0.0016 ± 0.005
Configuration 2 0.0013 ± 0.004
Configuration 3 -0.0003 ± 0.006

D.3. Neural network architecture

The expressibility of the neural network could significantly impact the sampling quality of the LFIS, considering that LFIS
imposes a specific density flow from t = 0→ 1 to satisfy ρ∗(x, t), while other methods like PIS, DDS do not enforce this
condition. However, in the numerical experiments, we find that an NN similar to those used in PIS and DDS is expressive
enough for all the testing problems. For LFIS, we use an NN with 2 hidden layers, each with 64 nodes to parameterize
the discrete-time velocity field. For both DDS and PIS, the NNs have time-encoding and are augmented by the gradient
information or the score S(x, t).

It is difficult to make a direct comparison of NN structures and numbers of parameters between the discrete-time and
continuous-time models. For LFIS, the total number of parameters will increase with the total number of steps. For DDS
and PIS, the number of parameters will increase with the number of channels used for time-encoding. Overall, when LFIS
uses the same number of time steps as the time-encoding in DDS and PIS, the total number of NN parameters are very
similar, thus causing no additional memory footprint.

D.4. Additional details of the training procedure

The general training procedure is summarized in Algorithm 1. For each discretized time step k, at each training epoch, a new
minibatch (B) of samples is generated by calling the GenerateSamples function. This step is crucial to provide good
coverage of the sampling space. However, for low-dimensional problems, repeatedly calling the GenerateSamples
function for each minibatch could slow down the training process, because the initial samples need to be passed through all
the previously trained flow v

θ
(l)
∗

. To accelerate the training of low-dimensional sampling problems (D < 10), we skip the
generation of new samples at each epoch. Instead, we use a subset of the N samples used for estimating ⟨∂t log ρ̃∗⟩∗ for
training. When N is large enough to provide good coverage of the sampling space, this simplified training procedure could
provide a noticeable acceleration of learning the Liouville flow.

The choice of stopping criteria for training the Liouville flow at each time step v
θ
(l)
∗

is also crucial for im-

18

Liouville Flow Importance Sampler

1 0 1
1

0

1

0.025

0.18

0.025

0.18

0.18

0.18

0.025

0.18

0.025
(a) GT PDF

1 0 1
1

0

1

0.025

0.169

0.024

0.187

0.179

0.177

0.026

0.186

0.024
(b) GT samples

1 0 1
1

0

1

0.028

0.192

0.025

0.173

0.177

0.175

0.020

0.179

0.025
(c) LFIS

1 0 1
1

0

1

0.224

0.02

0.224

0.02

0.02

0.02

0.224

0.02

0.224
(d)

1 0 1
1

0

1

0.232

0.026

0.249

0.019

0.02

0.015

0.205

0.02

0.212
(e)

1 0 1
1

0

1

0.237

0.016

0.225

0.021

0.018

0.019

0.217

0.020

0.223
(f)

1 0 1
1

0

1

0.224

0.224

0.02

0.224

0.224

0.02

0.02

0.02

0.02
(g)

1 0 1
1

0

1

0.228

0.225

0.018

0.222

0.221

0.02

0.022

0.022

0.020
(h)

1 0 1
1

0

1

0.240

0.187

0.023

0.233

0.229

0.017

0.021

0.023

0.022
(i)

Figure 4. Mode-separated Gaussian mixture with mixed weights for each mode. Three different configures of the mixed weights are
considered. Subfigures (a,d,g) show the ground-truth PDFs with the corresponding weights annotated by each mode. The samples
generated from the ground-truth PDF and LFIS are shown in subfigures (b,e,h) and (c,f,i), with the sizes of the samples scaled by the
sample weights (note that the sample weights are different from the modal wights).

proving the training quality and speed. Through a series of numerical experiments, we introduce the criteria
Ei

[
ε2(x(i)(t); θ)

]
/vari

[
∂t log ρ̃∗

(
x(i)(t), t

)]
at each training time, which represents the percentage of the squared error

to the total variation of the RHS of the equation. In general, we found that when the criteria converge to less than 0.001
during training, the learned velocity field can provide a good approximation of the Liouville flow. If the proposed criteria
can not be met during training, either due to the limited expressibility of the NN, or accumulated error from the previous
velocity field, we will stop the training at 2,000 epochs. Empirically, we found the NNs converged to the desired 0.001 for at
least half of the discrete timesteps, for most of the test problems. The imperfect representation of the Liouville flow using
NN will be quantified using the sample weights during sampling.

For all the numerical experiments, we use the Adam optimizer with an initial learning rate of 5 × 10−3. We employ an
optimizer schedule that will reduce the learning rate to 50% every 200 epochs without observing any improvement in the
loss.

19

Liouville Flow Importance Sampler

32 64 128 256
Steps

0.3

0.2

0.1

0.0

0.1

0.2
lo

g

(a)

Cosine
Linear
Quadratic

1 0 1

1.0

0.5

0.0

0.5

1.0

(b) Linear schedule

1 0 1

1.0

0.5

0.0

0.5

1.0

(c) Quadratic schedule

1 0 1

1.0

0.5

0.0

0.5

1.0

(d) Cosine schedule

Figure 5. The effects of schedule on log Ẑ estimation at different T s and sample quality.

Table 4. The effects of schedule on log Ẑ estimation.

Schedule MG (D = 2)

Linear -0.06 ± 0.003
Quadratic -0.05 ± 0.005

Cosine -0.0002 ± 0.004

D.5. Choice of schedule

We tested three different choices of the schedule function τ(t), which controls the “pace” of the annealing: (1) a linear
schedule τ(t) = t (with an even “pace”), (2) a quadratic schedule τ(t) = t (a slow pace at the beginning when ρ∗(t) is
close to µ and fast in the end when ρ∗(t) is close to ν), and (3) a cosine schedule τ(t) = (1− cos(πt)) /2 (slow pace at
the beginning when ρ∗(t) is close to µ and in the end when ρ∗(t) is close to ν and fast during intermediate times.) The
numerical experiment results are shown in Table 4 and Fig. 5 following the same procedure as described above for estimating
logZ for the 2D Gaussian mixture problems. As we can see in Fig. 5 (a), the cosine schedule shows better convergence of
logZ as we increase the number of total time steps. In Fig. 5 (b-d), we show the samples generated using three types of
schedules. We observe that the samples from both the linear schedule and quadratic schedule show non-uniform coverage at
the edge of the distribution, while the samples generated with the cosine schedule uniformly span over each mode of the
Gaussian mixture distribution. Based on these tests, we use the cosine schedule for the rest of the numerical experiments for
LFIS.

D.6. Improvement of statistical estimation by sample weights

A novel contribution of LFIS is using the accumulated error induced by imperfectly trained NN as sample weights for
unbiased and consistent estimation of statistical quantities. In this section, we provide numerical results showing the
improvement of statistics estimation using accumulated errors as weights, using the MG and Funnel test problems which are
analytical. In the proposed LFIS algorithm, the weights are used in both training and sampling procedures for computing
⟨∂t log ρ̃∗⟩∗. To measure the effects of sample weights on training and sampling separately, we performed four different
combinations of numerical experiments for both MG and funnel distributions. We compare the logZ estimation in Table
5. There are no significant improvements in adding sample weights during training. However, by using the accumulated
errors as sample weights during sampling, the estimations can be significantly improved in these two models. The results
evidentiate the effectiveness of our proposed novel corrections for sampling.

D.7. Training and sampling cost

Similar to PIS and DDS, the proposed LFIS is an NN-parameterized model that can be trained once and then deployed for
sampling, while the MC-based algorithms need to be repeated every time they are used to perform sampling. In this section,
we focus on comparing training costs and sampling costs within similar type of algorithms that are based on NN.

For LFIS, DDS, and PIS, we performed 30 independent training and sampling processes for the 10D funnel distributions.
We set the total steps to be T = 256 and trained the NNs of different methods for a maximum of 2,000 epochs or until the

20

Liouville Flow Importance Sampler

Table 5. log Ẑ estimation of LFIS with/without weights

Training w/ weights Training w/o weights
T Sampling w/ weights Sampling w/o weights Sampling w/ weights Sampling w/o weights

32 0.0060± 0.005 −0.130± 0.050 0.0048± 0.005 −0.150± 0.061
MG 64 0.0015± 0.003 −0.076± 0.051 0.0009± 0.004 −0.058± 0.045

(D = 2) 128 −0.0001± 0.004 −0.032± 0.066 0.0001± 0.004 −0.042± 0.064
256 −0.0002± 0.004 −0.035± 0.070 0.0002± 0.004 −0.028± 0.044

32 −0.29± 0.022 −0.45± 0.052 −0.56± 0.002 −0.61± 0.044
Funnel 64 −0.159± 0.028 −0.31± 0.053 −0.16± 0.009 −0.29± 0.043
(D=10) 128 −0.19± 0.01 −0.27± 0.070 −0.15± 0.010 −0.24± 0.048

256 −0.07± 0.003 −0.15± 0.045 −0.06± 0.018 −0.15± 0.065

Table 6. Traning and sampling cost

Method Training time (minutes) Sampling time (ms)

LFIS (w/o weight, not compiled) 27.6± 1.84 90.4± 4.18
LFIS (w/ weight, not compiled) - 526.9± 7.48

PIS 36.4± 1.51 819.9± 3.99
DDS (w/o weight, JIT) 37.13± 0.28 51.91± 2.27
DDS (w/ weight, JIT) - 57.10± 6.09

convergence criteria were met for each of the methods. The batch size is chosen to be 10,000. The optimizer, learning rate,
and learning rate schedule are set to be the same as provided by the original papers. For the sampling experiments, we took
the pre-trained models and deployed them to independently generate 30 batches of samples, each with 2,000 points. All the
experiments are performed using a single NVIDIA A100 GPU with 40GB of RAM.

Table 6 compares the training and sampling time of different NN-based sampling methods. For training, the LFIS is faster
than both PIS and DDS, which is partially due to the proposed stop criteria for the convergence of NN at each discrete
time step. On the other hand, DDS has the fastest sampling time because of the probability flow ODE and the just-in-time
(JIT) compilation with JAX. However, the first run/compilation of the DDS took 4942ms (with weight computation)
and 1528ms (w/o weight computation). As such, DDS with JIT has a worse performance unless one desires multiple
sampling with the same trained model. For LFIS, the majority of the sampling time is attributed to the computation of
sample weights. In our implementation of LFIS based on PyTorch, the divergence of the velocity field is computed via
the torch.autograd.functional.jacobian function, which is not optimized for divergence computation, nor
compilable currently.

D.8. Reproducibility of LFIS training

We demonstrate the reproducibility of the LFIS sampling statistics by performing the 30 independent trainings from different
initializations of the NN parameters. For each of the independently trained LFIS, we run 30 sampling procedures of 2,000
samples to estimate the mean and variance of logZ . In Fig. 6, we plot the histograms of logZ statistics for 30 LFISs.
We observe a very narrow spread of logZ statistics over all 30 trainings, which shows the reproducibility of the proposed
methods. In the main text, we report the statistics that is the closest to the mean of 30 LFISs.

D.9. Choice of total time steps and tempered scales

Here, we provide the results of T ∈ {32, 64, 128, 256} for SMC (Table 7), AFTMC (Table 8), PIS (Table 9), DDS (Table
10), LFIS (Table 11), and a summary plot (Fig. 7). To enforce uniformity, we ran each method 30 times independently and
computed the summary statistics from the collected results.

For the two transformation problems: Gaussian mixture and funnel distributions, we perform the numerical experiments
under the assumption that the coverage of the distribution is unknown so that the prior/reference distribution is set to be the
simplest uncorrelated normal distributions with zero mean and identity covariance matrix. For LFIS, this can be achieved by

21

Liouville Flow Importance Sampler

0.004 0.002 0.000 0.002 0.004
Mean(log)

0

2

4

6

8

10

12

14

Hi
st

og
ra

m

(a)

Reported

0.0035 0.0040 0.0045
Stdev(log)

0

1

2

3

4

5

(b)

Figure 6. log Ẑ estimates from 30 independent Liouville flow training for MG (D=2) problem.

Table 7. All logZ results of SMC with different tempering scale setting (T).

T MG (D = 2) Funnel (D = 10) VAE (D = 30) Ionosphere (D = 35) Sonar (D = 61) LGCP (D = 1600)

32 −1.29± 0.015 −0.17± 0.11 −110.91± 1.19 −111.84± 0.38 −108.41± 0.27 408.75± 7.27
64 −1.29± 0.013 −0.14± 0.15 −110.22± 0.77 −111.60± 0.14 −108.39± 0.10 483.00± 4.26
128 −1.29± 0.010 −0.13± 0.061 −110.01± 0.74 −111.60± 0.059 −108.39± 0.04 503.51± 1.74
256 −1.29± 0.006 −0.12± 0.062 −110.20± 0.55 −111.62± 0.046 −108.39± 0.035 506.77± 0.68

1024 −1.29± 0.004 −0.03± 0.17 −110.16± 0.41 −111.61± 0.026 −108.38± 0.018 506.96± 0.24

Table 8. All logZ results of AFTMC with different tempering scale setting (T).

T MG (D = 2) Funnel (D = 10) VAE (D = 30) Ionosphere (D = 35) Sonar (D = 61) LGCP (D = 1600)

32 2.53± 0.05 −0.34± 0.13 −110.12± 0.48 −86.03± 6.95 −99.39± 39.49 406.90± 7.96
64 2.51± 0.05 −0.34± 0.079 −110.03± 0.39 −118.46± 64.28 −97.82± 65.72 477.27± 4.76

128 2.55± 0.05 −0.28± 0.10 −110.11± 0.41 −113.33± 16.61 −98.18± 82.91 501.11± 2.23
256 2.44± 0.05 −0.11± 0.68 −110.07± 0.36 −121.63± 16.37 −104.80± 68.31 505.97± 1.19

setting ρ∗(0) = N (0, I). For DDS, we set the σ of the Ornstein–Uhlenbeck process to be 1, which will result in a reference
distribution of N (0, I). For PIS, the uncontrolled reference distribution is determined by the end time of the stochastic
process Tend and the magnitude of the stochastic process g coef. Using the original settings in the PIS Github repo with
g coef=

√
0.2, we set Tend = 5.0 to fix the uncontrolled reference distribution as N (0, I). By doing so, we impose a more

challenging and practical set of problems for comparing different methods.

For the Bayesian problems, it is natural to choose the prior distribution as the initial distribution for LFIS. For DDS, to avoid
tuning hyper-parameters, we directly use the results provided in the DDS Github repository (Vargas et al., 2023b), which
has the same numerical setup for computing the statistics as all other methods. For PIS, we can reproduce the statistics for
most of the Bayesian problems by tuning the hyperparameters, except for the LGCP. For completeness, we use the statistics
reported in the DDS GitHub repository (Vargas et al., 2023b) for table 9.

D.10. Sequential Monte Carlo

Sequential Monte Carlo (Del Moral et al., 2006) serves both as the reference method as well as the gold standard for those
problems that are not analytically tractable. A series of similar studies including AFT (Arbel et al., 2021), PIS (Zhang &
Chen, 2022), and DDS (Vargas et al., 2023a) took the same approach. We found that the SMC implementations in AFT and
DDS were unnecessarily complicated. In particular, the leapfrog step size in the Hamiltonian Monte Carlo (HMC) kernel
in those implementations depends on the progression of the tempered scales. Although progression-dependent step size
was meticulously tuned, we found that a fixed step size with a sufficiently long HMC kernel and sufficiently high Effective

22

Liouville Flow Importance Sampler

32 64 128 256
Steps

8

6

4

2

0

2

lo
g

(a) MG (D=2)

DDS
PIS
AFT
SMC
LFIS

32 64 128 256
Steps

1.5

1.0

0.5

0.0

0.5

lo
g

(b) Funnel (D=10)

32 64 128 256
Steps

480

485

490

495

500

505

510

lo
g

(c) LGCP (D=1600)

32 64 128 256
Steps

113.00
112.75
112.50
112.25
112.00
111.75
111.50
111.25
111.00

lo
g

(d) Ionosphere (D=35)

32 64 128 256
Steps

112

111

110

109

108

107

lo
g

(e) Sonar (D=61)

32 64 128 256
Steps

112.0

111.5

111.0

110.5

110.0

109.5

109.0

lo
g

(f) VAE (D=30)

Figure 7. The effects of time steps on log Ẑ esitmation

Table 9. All logZ results of PIS with different tempering scale setting setting (T). The statistics marked by ∗ are results from Vargas et al.
(2023a) using the same numerical experimental setup.

T MG (D = 2) Funnel (D = 10) VAE (D = 30) Ionosphere (D = 35) Sonar (D = 61) LGCP (D = 1600)

32 −0.016± 0.045 −1.35± 0.13 −110.20± 0.71 −111.87± 0.50 −109.73± 1.07 498.86± 1.02∗
64 −0.003± 0.037 −1.33± 0.12 −110.22± 0.41 −111.63± 0.21 −110.27± 1.17 502.00± 0.96∗

128 0.002± 0.030 −1.02± 0.33 −109.98± 0.12 −111.88± 0.45 −108.67± 1.01 505.50± 0.72∗
256 0.004± 0.018 −1.14± 0.13 −109.96± 0.10 −111.69± 0.16 −109.36± 0.74 506.34± 0.63∗

Table 10. All logZ results of DDS with different tempering scale setting setting (T). The statistics marked by ∗ are results from Vargas
et al. (2023a) using the same numerical experimental setup.

T MG (D = 2) Funnel (D = 10) VAE (D = 30) Ionosphere (D = 35) Sonar (D = 61) LGCP (D = 1600)

32 −6.57± 1.11 −0.42± 0.12 −110.04± 0.11∗ −111.69± 0.17∗ −109.41± 0.31∗ 488.17± 1.45∗
64 −2.09± 0.89 −0.28± 0.12 −110.01± 0.07∗ −111.59± 0.14∗ −108.90± 0.23∗ 497.94± 0.99∗

128 −0.40± 0.53 −0.20± 0.13 −110.01± 0.06∗ −111.58± 0.16∗ −108.89± 0.36∗ 501.78± 0.90∗
256 −0.31± 0.43 −0.31± 0.11 −110.01± 0.06∗ −111.58± 0.12∗ −108.92± 0.25∗ 503.01± 0.77∗

Sample Size (ESS) threshold for triggering resampling can achieve similar results.

As such, we have streamlined the SMC implementation in this manuscript. The source codes, implemented in PyTorch, will
be released if the manuscript is accepted for publication. Our SMC implementation is relatively simple: for each scale, the
Monte Carlo step consists of NH HMC kernels, each of which has L leapfrog steps, and each time step is fixed at δ. Table
12 specifies these hyper-parameters of the SMC for each of the test problems.

We also noticed a nuanced detail about applying SMC on LGCP. AIS and DDS both suggested performing SMC on a
whitened representation of the LGCP problem, which was based on diagonalizing the covariance matrix of the problem
by Cholesky decomposition. However, we found that for the tempering scale T ≳ 256, a whitened representation is not
necessary. We provide a comparison of applying SMC on the whitened and un-whitened representations in Table 13. As

23

Liouville Flow Importance Sampler

Table 11. All logZ results of LFIS with different tempering scale setting setting (T).

T MG (D = 2) Funnel (D = 10) VAE (D = 30)

32 −0.064± 0.065 −0.43± 0.050 −220.70± 2.23

l̂ogZ 64 −0.019± 0.060 −0.27± 0.066 −110.58± 0.39
128 −0.007± 0.066 −0.23± 0.057 −110.07± 0.31
256 0.004± 0.059 −0.11± 0.075 −109.95± 0.25

32 0.006± 0.005 −0.29± 0.023 −215.64± 0.87

log Ẑ 64 0.002± 0.003 −0.16± 0.028 −109.98± 0.01
128 −0.0001± 0.004 −0.20± 0.011 −109.95± 0.01
256 −0.0002± 0.004 −0.07± 0.003 −109.99± 0.08

T Ionosphere (D = 35) Sonar (D = 61) LGCP (D = 1600)

32 −112.28± 0.68 −133.36± 2.08 470.13± 5.57

l̂ogZ 64 −112.04± 0.38 −108.94± 0.30 489.31± 3.20
128 −111.67± 0.26 −108.60± 0.31 505.26± 5.56
256 −111.63± 0.33 −108.48± 0.30 505.43± 3.00

32 −111.42± 0.01 −130.45± 0.233 463.40± 2.61

log Ẑ 64 −111.58± 0.006 −108.36± 0.011 484.54± 2.01
128 −111.59± 0.004 −108.37± 0.008 504.32± 1.56
256 −111.60± 0.006 −108.38± 0.009 505.53± 0.95

Table 12. Specification of our SMC implementations.

MG Funnel VAE Ionosphere Sonar LGCP

δ 0.02 0.02 0.2 0.02 0.02 0.2
L 20 20 10 20 20 20
NH 10 10 2 10 10 2

ESS threshold 0.98 0.98 0.98 0.98 0.98 0.98

such, we only reported the SMC results on the unwhitened LGCP problem in the rest parts of our manuscript.

Table 13. SMC estimation of logZ on whitened and unwhitened representation of the Log-Gaussian Cox Problem.

T Whitened Unwhitened

32 506.90± 0.12 408.75± 7.27
64 506.89± 0.09 483.00± 4.26

128 506.87± 0.068 503.51± 1.74
256 506.89± 0.049 506.77± 0.68
1024 506.90± 0.018 506.96± 0.24

E. Ablation study of Annealed Flow Transport Monte Carlo Sampler
We tested the AFTMC sampler (with 256 scales) without the MC kernel on the Gaussian Mixture, Funnel, Variational
Auto-Encoder, and Log-Gaussian Cox Process problems. We juxtapose the results of (1) SMC with T = 1024 as the gold
standard, (2) SMC with T = 256 as a reference, (3) AFT with a Monte Carlo kernel and T = 256, and (4) AFT without
the Monte Carlo kernel and T = 256 in Table 14. The results indicate that the MC kernel, instead of the flow-transport
kernel, is the major functioning component in estimating the marginal likelihood logZ . The AFTMC algorithm with only
the MC kernel is functionally identical to SMC. The numerical experiments on these datasets suggest that the flow transport,
implemented as a normalizing flow and parametrized by variational inference, does not function independently from the
MCMC steps, which still need to be designed and fine-tuned akin to typical SMCs. This contrasts with the proposed LFIS,

24

Liouville Flow Importance Sampler

Table 14. Ablation study on the effect of Monte Carlo kernel in Annealed Flow Transport Monte Carlo sampler (Arbel et al., 2021)
estimating logZ .

Model MG (D = 2) Funnel (D = 10) VAE (D = 30) LGCP (D = 1600)

SMC (1024) −1.29± 0.0046 −0.034± 0.17 −110.16± 0.41 506.96± 0.24
SMC (256) −1.29± 0.0062 −0.12± 0.062 −110.20± 0.54 506.77± 0.68
AFT with MC (256) 2.44± 0.05 −0.11± 0.68 −110.07± 0.36 505.97± 1.19
AFT without MC (256) 2.94± 0.39 −0.79± 0.40 −288.18± 58.28 −826.73± 8.96

Table 15. Adjustable meta-parameters and objects in a range of methods. Markers ✓ indicate the adjustable objects that the user must
specify. We remark that within the MC kernel there could be multiple adjustable parameters, e.g., see Sec. D.10 and Table 12.

Adjustable parameters/objects SMC AFTMC CR-AFTMC PIS DDS LFIS

Number of time steps/scales T ✓ ✓ ✓ ✓ ✓ ✓
Terminal time ✓
Neural network (per time step/scale) ✓ ✓ ✓ ✓ ✓
Monte Carlo kernel (per time step/scale) ✓ ✓ ✓
Reference process ρ̃∗(x, t) ✓ ✓
Annealed path of distributions ρ̃∗(x, t) ✓ ✓ ✓ ✓
Resampling threshold ✓ ✓ ✓
Initial distribution ✓ ✓ ✓ ✓

which solely depends on the flow for transporting samples without designing additional MCMC kernels.

25

