
Published as a conference paper at ICLR 2024

A GRAPH IS WORTH 1-BIT SPIKES: WHEN GRAPH
CONTRASTIVE LEARNING MEETS SPIKING NEURAL
NETWORKS

Jintang Li1∗, Huizhe Zhang1, Ruofan Wu2, Zulun Zhu3, Baokun Wang2,
Changhua Meng2, Zibin Zheng1, Liang Chen1†
1Sun Yat-sen University
2Ant Group
3Nanyang Technological University
{lijt55,zhanghzh33}@mail2.sysu.edu.cn;
{ruofan.wrf,yike.wbk,changhua.mch}@antgroup.com;
ZULUN001@e.ntu.edu.sg

ABSTRACT

While contrastive self-supervised learning has become the de-facto learning
paradigm for graph neural networks, the pursuit of higher task accuracy requires a
larger hidden dimensionality to learn informative and discriminative full-precision
representations, raising concerns about computation, memory footprint, and energy
consumption burden (largely overlooked) for real-world applications. This work
explores a promising direction for graph contrastive learning (GCL) with spiking
neural networks (SNNs), which leverage sparse and binary characteristics to learn
more biologically plausible and compact representations. We propose SPIKEGCL,
a novel GCL framework to learn binarized 1-bit representations for graphs, making
balanced trade-offs between efficiency and performance. We provide theoretical
guarantees to demonstrate that SPIKEGCL has comparable expressiveness with
its full-precision counterparts. Experimental results demonstrate that, with nearly
32x representation storage compression, SPIKEGCL is either comparable to or
outperforms many fancy state-of-the-art supervised and self-supervised methods
across several graph benchmarks.

1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated remarkable capabilities in learning representations
of graphs and manifolds that are beneficial for a wide range of tasks. Especially since the advent
of recent self-supervised learning techniques, rapid progress toward learning universally useful
representations has been made Liu et al. (2021); Yu et al. (2021a;b). Graph contrastive learning
(GCL), which aims to learn generalizable and transferable graph representations by contrasting
positive and negative sample pairs taken from different graph views, has become the hotspot in graph
self-supervised learning. As an active area of research, numerous variants of GCL methods have been
proposed to achieve state-of-the-art performance in graph-based learning tasks, solving the dilemma
of learning useful representations from graph data without end-to-end supervision Li et al. (2023a);
Velickovic et al. (2019); Thakoor et al. (2021); Zheng et al. (2022).

In recent years, real-world graphs have been scaling and growing even larger. For example, Amazon’s
product recommendation graph has over 150M users and 350M products Chen et al. (2022b), while
Microsoft Academic Graph consists of more than 120M publications and related authors, venues,
organizations, and fields of study Sinha et al. (2015). New challenges beyond label annotations
have arisen in terms of processing, storage, and deployment in many industrial scenarios Chen et al.
(2022a). While GNNs-based contrastive learning has advanced the frontiers in many applications,
current state-of-the-arts mainly requires large hidden dimensions to learn generalizable full-precision

∗Work done during an internship at Ant Group.
†Corresponding author.

1

Published as a conference paper at ICLR 2024

representations Mo et al. (2022); Li et al. (2023a), making them memory inefficient, storage excessive,
and computationally expensive especially for resource-constrained edge devices Zhou et al. (2023).

In parallel, biological neural networks continue to inspire breakthroughs in modern neural network
performance, with prominent examples including spiking neural networks (SNNs) Malcolm & Casco-
Rodriguez (2023). SNNs are a class of brain-inspired networks with asynchronous discrete and sparse
characteristics, which have increasingly manifested their superiority in low energy consumption
and inference latency Feng et al. (2022). Unlike traditional artificial neural networks (ANNs),
which use floating-point outputs, SNNs use a more biologically plausible approach where neurons
communicate via sparse and binarized representations, referred to as ‘spikes’. Such characteristics
make them a promising choice for low-power, mobile, or otherwise hardware-constrained settings.
In literature Zhou et al. (2022); Zhu et al. (2022), SNNs are proven to consume ∼100x less energy
compared with modern ANNs on the neuromorphic chip (e.g. ROLLs Indiveri et al. (2015)).

SpikeGCL

−∞

∞

1

0

32 bit

1 bit

Input graph 𝒢

GCL

0.5

Figure 1: Comparison between conven-
tional GCL and SPIKEGCL. Instead of us-
ing full-precision (32-bit) representations,
SPIKEGCL produces sparse and compact
1-bit representations, making them more
memory-friendly and computationally effi-
cient for cheap devices with limited resources.

Inspired by the success of vision research Kim et al.
(2021); Zhou et al. (2022), some recent efforts have
been made toward generalizing SNNs to graph data.
For example, SpikingGCN Zhu et al. (2022) and
SpikeNet Li et al. (2023b) are two representative
works combining SNNs with GNN architectures,
in which SNNs are utilized as the basic building
blocks to model the underlying graph structure and
dynamics. Despite the promising potentiality, SNNs
have been under-appreciated and under-investigated
in graph contrastive learning. This has led to an in-
teresting yet rarely explored research question:

Can we explore the possibilities
of SNNs with contrastive learning schemes to learn
sparse, binarized yet generalizable representations?

Present work. Deviating from the large body of prior works on graph contrastive learning, in this
paper we take a new perspective to address self-supervised and binarized representation learning on
graphs. We present SPIKEGCL, a principled GCL framework built upon SNNs to learn binarized
graph representations in a compact and efficient manner. Instead of learning full-precision node
representations, we learn sparse and compact 1-bit representations to unlock the power of SNNs on
graph data and enable fast inference. In addition, we noticed the problem of vanishing gradients
(surprisingly overlooked) during direct training of SNNs and proposed a blockwise training approach
to tackle it. Although SPIKEGCL uses binarized 1-bit spikes as representations, it comes with
both theoretical guarantees and comparable performance in terms of expressiveness and efficacy,
respectively. Compared with floating point counterparts, SPIKEGCL leads to less storage space,
smaller memory footprint, lower power consumption, and faster inference speed, all of which are
essential for practical applications such as edge deployment.

Overall, our contributions can be mainly summarized as follows:

• We believe our work is timely. In response to the explosive data expansion, we study the
problem of self-supervised and binarized representations learning on graphs with SNNs,
whose potential is especially attractive for low-power and resource-constrained settings.

• We propose SPIKEGCL to learn binarized representations from large-scale graphs.
SPIKEGCL exhibits high hardware efficiency and significantly reduces memory consump-
tion of node representations by ∼32x and energy consumption of GNNs by up to ∼7x,
respectively. SPIKEGCL is a theoretically guaranteed framework with powerful capabilities
in learning node representations.

• We address the challenge of training deep SNNs with a simple blockwise learning paradigm.
By limiting the backpropagation path to a single block of time steps, we prevent SNNs from
suffering from the notorious problem of vanishing gradients.

• Extensive experiments demonstrate that SPIKEGCL performs on par with or even sometimes
better than advanced full-precision competitors, across multiple graphs of various scales.
Our results hold great promise for accurate and fast online inference of graph-based systems.

2

Published as a conference paper at ICLR 2024

We leave two additional remarks: (i) SPIKEGCL is designed to reduce computation, energy, and
storage costs from the perspective of compressing graph representations using biological networks,
which is orthogonal to existing advances on sampling Hamilton et al. (2017), data condensation Jin
et al. (2022); Zeng et al. (2020) and architectural simplifications Thakoor et al. (2021); Mo et al.
(2022); Zheng et al. (2022). (ii) To the best of our knowledge, our work is the first to explore
the feasibility of implementing graph self-supervised learning with SNNs for learning binarized
representations. We hope our work will inspire the community to explore more promising algorithms.

2 RELATED WORK

Graph contrastive learning. Self-supervised representation learning from graph data is a quickly
evolving field. The last years have witnessed the emergence of a promising self-supervised learning
strategy, referred to as graph contrastive learning (GCL) Liu et al. (2021). Typically, GCL works
by contrasting so-called positive samples against negative ones from different graph augmentation
views, which has led to the development of several novel techniques and frameworks such as
DGI Velickovic et al. (2019), GraphCL You et al. (2020), GRACE Zhu et al. (2020), and GGD Zheng
et al. (2022). Recent research has also suggested that negative samples are not always necessary
for graph contrastive learning, with prominent examples including BGRL Thakoor et al. (2021) and
CCA-SSG Zhang et al. (2021). Negative-sample-free approach paves the way to a simple yet effective
GCL method and frees the model from intricate designs. We refer readers to Liu et al. (2021) for a
comprehensive review of graph contrastive learning. Despite the achievements, current GCL designs
mainly focus on task accuracy with a large hidden dimensionality Mo et al. (2022); Li et al. (2023a),
and lack consideration of hardware resource limitations to meet the real-time requirements of edge
application scenarios Zhou et al. (2023).

Spiking neural networks. SNNs, which mimic biological neural networks by leveraging sparse
and event-driven activations, are very promising for low-power applications. SNNs have been
around for a while, and although they have not gained the same level of popularity as GNNs, they
have steadily increased their influence in recent years. Over the past few years, SNNs have gained
significant popularity in the field of vision tasks, including image classification Zhou et al. (2022),
objection detection Kim et al. (2020), and segmentation Kim et al. (2021). Efforts have been made
to incorporate their biological plausibility and leverage their promising energy efficiency into GNN
learning. SpikingGCN Zhu et al. (2022) is a recent endeavor on encoding the node representation
through SNNs. As SNNs are intrinsically dynamic with abundant temporal information conveyed by
spike timing, SpikeNet Li et al. (2023c) then proceeds to model the temporal evolution of dynamic
graphs via SNNs. In spite of the increasing research interests, the benefits of SNNs have not been
discovered in GCL yet.

Binarized graph representation learning. Model size, memory footprint, and energy consumption
are common concerns for many real-world applications Bahri et al. (2021). In reaction, binarized
graph representation learning has been developed in response to the need for more efficient and
compact representations for learning on large-scale graph data. Currently, there are two lines of
research being pursued in this area. One line of research involves directly quantizing graphs by
using discrete hashing techniques Yang et al. (2018); Bahri et al. (2021) or estimating gradients of
non-differentiable quantization process Chen et al. (2022b). Another research line to produce binary
representations using deep learning methods are those binarized networks, which are designed for fast
inference and small memory footprint, in which binary representation is only a by-product Wang et al.
(2021). On one hand, binarized graph representation learning is a novel and promising direction that
aims to encode graphs into compact binary vectors that can facilitate efficient storage, retrieval, and
computation. On the other hand, SNNs that use discrete spikes rather than real values to communicate
between neurons are naturally preferred for learning binary representations. Therefore, it is intuitively
promising to explore the marriage between them.

3 PRELIMINARIES

Problem formulation. Let G = (V, E ,X) denote an attributed undirected graph where V =
{vi}Ni=1 and E ⊆ V × V are a set of nodes and edges, respectively. We focus primarily on undirected
graphs though it is straightforward to extend our study to directed graphs. G is associated with an

3

Published as a conference paper at ICLR 2024

d-dimensional attribute feature matrix X = {xi}Ni=1 ∈ RN×d. In the self-supervised learning setting
of this work, our objective is to learn an encoder fθ : Rd → {0, 1}d parameterized by θ, which
maps between the space of graph G and their low-dimensional and binary latent representations
Z = {zi}Ni=1, such that fθ(G) = Z ∈ {0, 1}N×d given d the embedding dimension. Note that for
simplicity we assume the feature dimensions are the same across all layers.

Spiking neural networks. Throughout existing SNNs, the integrate-fire (IF) Salinas & Sejnowski
(2002) model and its variants are commonly adopted to formulate the spiking neuron and evolve into
numerous variants with different biological features. As the name suggests, IF models have three
fundamental characteristics: (i) Integrate. The neuron integrates current by means of the capacitor
over time, which leads to a charge accumulation; (ii) Fire. When the membrane potential has reached
or exceeded a given threshold Vth, it fires (i.e., emits a spike). (iii) Reset. After that, the membrane
potential is reset, and here we introduce two types of reset Rueckauer et al. (2016): reset to zero which
always sets the membrane potential back to a constant value Vreset < Vth, typically zero, whereas
reset by subtraction subtracts the threshold Vth from the membrane potential at the time where the
threshold is exceeded: We use a unified model to describe the dynamics of IF-based spiking neurons:

Integrate: V t = Ψ(V t−1, It), (1)

Fire: St = Θ(V t − Vth), (2)

Reset: V t =

{
StVreset + (1− St)V t, reset to zero,

St(V t − Vth) + (1− St)V t, reset by subtraction, (3)

where It and V t denote the input current and membrane potential (voltage) at time-step t, respectively.
The decision to fire a spike in the neuron output is carried out according to the Heaviside step function
Θ(·), which is defined by Θ(x) = 1 if x ≥ 0 and 0 otherwise. The function Ψ(·) in Eq. 1 describes
how the spiking neuron receives the resultant current and accumulates membrane potential. We have
IF Salinas & Sejnowski (2002) and its variant Leaky Integrate-and-Fire (LIF) Gerstner et al. (2014)
model, formulated as follows:

IF: V t = V t−1 + It, (4)

LIF: V t = V t−1 +
1

τm

(
It − (V t−1 − Vreset)

)
, (5)

where τm in Eq. 5 represents the membrane time constant to control how fast the membrane potential
decays, leading to the membrane potential charges and discharges exponentially in response to the
current inputs. Typically, τm can also be optimized automatically instead of manually tuning to
learn different neuron dynamics during training, which we referred to as Parametric LIF (PLIF) Fang
et al. (2020). In this paper, the surrogate gradient method is used to define Θ′(x) ≜ σ′(αx) during
error back-propagation, with σ(·) denote the surrogate function such as Sigmoid and α the smooth
factor Li et al. (2023b).

4 SPIKING GRAPH CONTRASTIVE LEARNING (SPIKEGCL)

In this section, we introduce our proposed SPIKEGCL framework for learning binarized representa-
tions. SPIKEGCL is a simple yet effective derivative of the standard GCL framework with minimal
but effective modifications on the encoder design coupled with SNNs. In what follows, we first shed
light on building sequential inputs for SNNs from a single non-temporal graph (§ 4.1) and depict how
to binarize node representations using SNNs (§ 4.2). Then, we explain the architectural overview and
detailed components of SPIKEGCL one by one (§ 4.3). Finally, we employ blockwise learning for
better training of deep SNNs (§ 4.4).

4.1 GROUPING NODE FEATURES

Typically, SNNs require sequential inputs to perform the integrated-and-fire process to emit spikes.
One major challenge is how to formulate such inputs from a non-temporal graph. A common practice
introduced in literature is to repeat the graph multiple times (i.e., a given time window T), typically
followed by probabilistic encoding methods (e.g., Bernoulli encoding) to generate diverse input
graphs Zhu et al. (2022); Xu et al. (2021). However, this will inevitably introduce high computational
and memory overheads, becoming a major bottleneck for SNNs to scale to large graphs.

4

Published as a conference paper at ICLR 2024

In this work, we adopt the approach of partitioning the graph data into different groups rather than
repeating the graph multiple times to construct the sequential inputs required for SNNs. Given a time
window T (T > 1) and a graph G, we uniformly partition the node features into the following T

groups1: X = [X1, . . . ,XT] along the feature dimension, where Xt ∈ RN× d
T consists of the group

of features in the t-th partition. In cases where d cannot be divided by T , we have Xt ∈ RN×(d//T)

for t < T and XT ∈ RN×(d mod T). Thus we have T subgraphs as

Ĝ = [G1, . . . ,GT] = [(V, E ,X1), . . . , (V, E ,XT)]. (6)

Each subgraph in Ĝ shares the same graph structure but only differs in node features. Note that
[X1, . . . ,XT] are non-overlapping groups, which avoids unnecessary computation on input features.
Our strategy leads to huge memory and computational benefits as each subgraph in the graph sequence
Ĝ only stores a subset of the node features instead of the whole set. This is a significant improvement
over previous approaches such as SpikingGCN Zhu et al. (2022), as it offers substantial benefits in
terms of computational and memory complexity.

4.2 BINARIZING GRAPH REPRESENTATIONS

In GCL, GNNs are widely adopted as encoders for representing graph-structured data. GNNs
generally follow the canonical message passing scheme in which each node’s representation is
computed recursively by aggregating representations (‘messages’) from its immediate neighbors Kipf
& Welling (2016); Hamilton et al. (2017). Given an L layer GNN fθ, the updating process of the l-th
layer could be formulated as:

h(l)
u = COMBINE(l)

({
h(l−1)
u ,AGGREGATE(l)

({
h(l−1)
v : v ∈ Nu

})})
(7)

where AGGREGATE(·) is an aggregation function that aggregates features of neighbors, and
COMBINE(·) denotes the combination of aggregated features from a central node and its neighbors.
h
(l)
u is the embedding of node u at the l-th layer of GNN, where l ∈ {1, . . . , L} and initially h

(0)
u =

xu; Nu is the set of neighborhoods of u. After L rounds of aggregation, each node u ∈ V obtains its
representation vector h(L)

u . The final node representation is denoted as H = [h
(L)
1 , . . . , h

(L)
N].

We additionally introduce SNNs to the encoder for binarizing node representations. SNNs receive
continuous values and convert them into binary spike trains, which opens up possibilities for mapping
graph structure from continuous Euclidian space into discrete and binary one. Given a graph sequence
Ĝ = [G1, . . . ,GT], we form T graph encoders [f1

θ1
, . . . , fT

θT
] accordingly such that each encoder f t

θt

maps a graph Gt to its hidden representations Ht. Here we denote fθ = [f1
θ1
, . . . , fT

θT
] with slightly

abuse of notations. Then, a spiking neuron is employed on the outputs to generate binary spikes in a
dynamic manner:

St = Θ
(
Ψ(V t−1,Ht)− Vth

)
, Ht = f t

θ(Gt), (8)

where Ψ(·) denotes a spiking function that receives the resultant current from the encoder and
accumulates membrane potential to generate the spikes, such as IF or LIF introduced in § 3. St ∈
{0, 1}N× d

T is the output spikes at time step t. In this regard, the binary representations are derived
by taking historical spikes in each time step with a concatenate pooling Li et al. (2023b), i.e.,
Z =

(
S1|| · · · ||ST

)
.

4.3 OVERALL FRAMEWORK

We decompose our proposed SPIKEGCL from four dimensions: (i) augmentation, (ii) encoder, (iii)
predictor head (a.k.a. decoder), and (iv) contrastive objective. These four components constitute
the design space of interest in this work. We present an architectural overview of SPIKEGCL in
Figure 2(a), as well as the core step of embedding generation in Figure 2(b).

Augmentation. Augmentation is crucial for contrastive learning by providing different graph views
for contrasting. With a given graph G, SPIKEGCL involves bi-level augmentation techniques, i.e.,

1Exploring non-uniform partition with clustering methods is an important direction for future work.

5

Published as a conference paper at ICLR 2024

Input graph 𝒢

1 0

Spiking neuron

Fire

Integrate

Reset

Encoder

Group 𝒢1

Group 𝒢2

1-bit Spikes

Predictor

head
Grouping

Augmentation/

Corruption
Share parameters

Loss ℒ

(a) SpikeGCL framework (b) SpikeGCL embedding (spikes) generation

Concat

Encoder
Predictor

head
Grouping

𝑚

graph 𝒢

positive

negative

Grouping

Grouping

Encoder

𝐿 layers

Figure 2: Overview of SPIKEGCL framework. (a) SPIKEGCL follows the standard GCL philosophy,
which learns binary representations by contrasting positive and negative samples with a margin
ranking loss. (b) SPIKEGCL first partitions node features into T non-overlapping groups, each of
which is then fed to an encoder whereby spiking neurons represent nodes of graph as 1-bit spikes.

topology (structure) and feature augmentation, to construct its corrupted version G̃. To be specific, we
harness two ways for augmentation: edge dropping and feature shuffling. Edge dropping randomly
drops a subset of edges from the original graph, while feature shuffling gives a new permutation of the
node feature matrix along the feature dimension. In this way, we obtain the corrupted version of an
original graph G̃ = {V, Ẽ , X̃}, where Ẽ ⊆ E and X̃ denotes the column-wise shuffled feature matrix
such that X̃ = X[:,P] with P the new permutation of features. Since we partition node features in a
sequential manner that is sensitive to the permutation of input features, feature shuffling is able to
offer hard negative samples for contrastive learning.

Encoder. As detailed in § 4.2, our encoder is a series of peer GNNs corresponding to each group of
input node features, followed by a spiking neuron to binarize the representations. Among the many
variants of GNNs, GCN Kipf & Welling (2016) is the most representative structure, and we adopt it
as the basic unit of the encoder in this work. The number of peer GNNs in the encoder is relative
to the number of time steps T , which makes the model excessively complex and potentially lead to
overfitting if T is large. We circumvent this problem by parameter sharing. Note that only the first
layer is different in response to diverse groups of features. For the remaining L− 1 layers, parameters
are shared across peer GNNs to prevent excessive memory footprint and the overfitting issue.

Predictor head (decoder). A non-linear transformation named projection head is adopted to map
binarized representations to continuous latent space where the contrastive loss is calculated, as
advocated in Thakoor et al. (2021); Zhang et al. (2021). As a proxy for learning on discrete spikes, we
employ a single-layer perceptron (MLP) to the learned representations, i.e., gϕ(zu) = MLP(zu),∀u ∈
V . Since the hidden representations are binary, we can instead use ‘masked summation’ Li et al.
(2023b) to enjoy the sparse characteristics and avoid expensive matrix multiplication computations
during training and inference.

Contrastive objective. Contrastive objectives are widely used to measure the similarity or distance
between positive and negative samples. Rather than explicitly maximizing the discrepancy between
positive and negative pairs as most existing works on contrastive learning have done, the ‘contrastive-
ness’ in this approach is reflected in the diverse ‘distance’ naturally measured by a parameterized
model gϕ(·). Specifically, we employ a margin ranking loss (MRL) Chen et al. (2020) to gϕ(·):

J =
1

N

∑
u∈V

max(0, gϕ(zu)− gϕ(z
−
u) +m), (9)

with the margin m a hyperparameter to make sure the model disregards abundant far (easy) negatives
and leverages scarce nearby (hard) negatives during training. zu and z−u is the representation of node
u obtained from original graph sequence Ĝ and its corrupted one, respectively. MRL forces the score
of positive samples to be lower (towards zero) and assigns a higher score to negative samples by a
margin of at least m. Therefore, positive samples are separated from negative ones.

4.4 BLOCKWISE SURROGATE GRADIENT LEARNING

From an optimization point of view, SNNs lack straightforward gradient calculation for backward
propagation, and also methods that effectively leverage their inherent advantages. Recent attempts

6

Published as a conference paper at ICLR 2024

have been made to surrogate gradient learning Lee et al. (2016), an alternative of gradient descent
that avoids the non-differentiability of spike signals. As a backpropagation-like training method,
it approximates the backward gradients of the hard threshold function using a smooth activation
function (such as Sigmoid) during backpropagation. At present, the surrogate learning technique
plays an extremely important role in advanced methods to learn SNNs properly Zhu et al. (2022); Xu
et al. (2021); Li et al. (2023b); Fang et al. (2021; 2020).

Despite the promising results, surrogate gradient learning has its own drawbacks. Typically, SNNs
require relatively large time steps to approximate continuous inputs and endow the network with
better expressiveness Zhu et al. (2022). However, a large time step often leads to many problems
such as high overheads and network degradation Fang et al. (2021). Particularly, the training of SNNs
also comes with a serious vanishing gradient problem in which gradients quickly diminish with time
steps. We have further discussion with respect to the phenomenon in Appendix B. These drawbacks
greatly limit the performance of directly trained SNNs and prevent them from going ‘deeper’ with
long sequence inputs.

𝑥!

…

𝑥"

𝑦! 𝑦"

𝑥#

𝑦#

Encoder Decoder Forward
propagation path

Backpropagation
path

Input Output

𝑥 𝑦

(a) End-to-end
backpropagation

(b) Blockwise backpropagation

Block

𝑥

𝑦

…

Figure 3: A comparison between two back-
propagation learning paradigms. The back-
propagation path during blockwise train-
ing is limited to a single block of networks
to avoid a large memory footprint and van-
ishing gradient problem.

In this paper, we explore alternatives to end-to-end back-
propagation in the form of surrogate gradient learning
rules, leveraging the latest advances in self-supervised
learning Siddiqui et al. (2023) to address the above lim-
itation in SNNs. Specifically, we propose a blockwise
training strategy that separately learns each block with
a local objective. We consider one or more consecu-
tive time steps as a single block, and limit the length of
the backpropagation path to each of these blocks. Pa-
rameters within each block are optimized locally with
a contrastive learning objective, using stop-gradient to
prevent the gradients from flowing through the blocks.
A technical comparison between the existing end-to-
end surrogate learning paradigm and our proposed local
training strategy is shown in Figure 3.

5 THEORETICAL GUARANTEES

There are several works on designing practical graph-based SNNs that achieve comparable per-
formance with GNNs Li et al. (2023c); Xu et al. (2021); Zhu et al. (2022). However, the basic
principles and theoretical groundwork for their performance guarantees are lacking, and related
research only shows the similarity between the IF neuron model and the ReLU activation Rueckauer
et al. (2016). In this section, we are motivated to bridge the gap between SNNs and GNNs. We
present an overview of theoretical results regarding the approximation properties of SPIKEGCL with
respect to its full-precision counterparts through the following theorem:

Theorem 1 (Informal). For any full-precision GNN with a hidden dimension of d/T , there exists a
corresponding SPIKEGCL such that its approximation error, defined as the ℓ2 distance between the
firing rates of the SPIKEGCL representation and the GNN representation at any single node, is of the
order Θ(1/T).

In the order relation Θ(1
T), we hide factors dependent upon the underlying GNN structure, network

depth as well as characteristics of the input graph, which will be stated precisely in Theorem
Theorem 2 in Appendix A. Theorem 1 suggests that with a sufficiently large node feature dimension
such that we may set a large simulation length T , we are able to (almost) implement vanilla GNNs
with a much better computational and energy efficiency. Moreover, the approximation is defined
using the firing rates of SNN outputs, which measures only a restricted set of inductive biases
offered by SPIKEGCL. Consequently, we empirically observe that a moderate level of T might
also provide satisfactory performance in our experiments. Our analysis is presented to shed insights
on the connection between the computational neuroscience model (e.g., SNNs) and the machine
learning neural network model (e.g., GNNs). This connection has been analytically proven under
certain conditions and empirically demonstrated through our experiments (see § 6). It can serve as the
theoretical basis for potentially combining the respective merits of the two types of neural networks.

7

Published as a conference paper at ICLR 2024

6 EXPERIMENTS

In this section, we perform experimental evaluations to demonstrate the effectiveness of our proposed
SPIKEGCL framework. Due to space limitations, we present detailed experimental settings and
additional results in Appendix E and Appendix F.

Datasets. We evaluate SPIKEGCL on several graph benchmarks with different scales and properties.
Following prior works Zhang et al. (2021); Thakoor et al. (2021); Zhu et al. (2022), we adopt
9 common benchmark graphs, including two co-purchase graphs, i.e., Amazon-Photo, Amazon-
Computer Shchur et al. (2018), two co-author graphs, i.e., Coauthor-CS and Coauthor-Physics Shchur
et al. (2018), three citation graphs, i.e., Cora, CiteSeer, PubMed Sen et al. (2008), as well as two
large-scale datasets ogbn-arXiv and ogbn-MAG from Open Graph Benchmark Hu et al. (2020). The
detailed introduction and statistics of these datasets are presented in Appendix E.

Baselines. We compare our proposed methods to a wide range of baselines that fall into four
categories: (i) full-precision (supervised) GNNs: GCN Kipf & Welling (2016) and GAT Veličković
et al. (2018); (ii) 1-bit quantization-based GNNs: Bi-GCN Wang et al. (2021), BinaryGNN Bahri
et al. (2021) and BANE Yang et al. (2018); (iii) contrastive methods: DGI Velickovic et al. (2019),
GRACE Zhu et al. (2020), CCA-SSG Zhang et al. (2021), BGRL Thakoor et al. (2021), SUGRL Mo
et al. (2022), and GGD Zheng et al. (2022); (iv) Graph SNNs: SpikingGCN Zhu et al. (2022),
SpikeNet Li et al. (2023b), GC-SNN and GA-SNN Xu et al. (2021). SpikeNet is initially designed for
dynamic graphs, we adapt the author’s implementation to static graphs following the practice in Zhu
et al. (2022); Xu et al. (2021). The hyperparameters of all the baselines were configured according
to the experimental settings officially reported by the authors and were then carefully tuned in our
experiments to achieve their best results.

Table 1: Classification accuracy (%) on six large scale datasets. The best result for each dataset is
highlighted in red. The missing results are due to the out-of-memory error on a GPU with 24GB
memory. (U: unsupervised or self-supervised; S: spike-based; B: binarized)

U S B Computers Photo CS Physics arXiv MAG
GCN Kipf & Welling (2016) 86.5±0.5 92.4±0.2 92.5±0.4 95.7±0.5 70.4±0.3 30.1±0.3

GAT Veličković et al. (2018) 86.9±0.2 92.5±0.3 92.3±0.2 95.4±0.3 70.6±0.3 30.5±0.3

SpikeNet Li et al. (2023b) ✓ 88.0±0.7 92.9±0.1 93.4±0.2 95.8±0.7 66.8±0.1 -
SpikingGCN Zhu et al. (2022) ✓ 86.9±0.3 92.6±0.7 92.6±0.3 94.3±0.1 55.8±0.7 -
GC-SNN Xu et al. (2021) ✓ 88.2±0.6 92.8±0.1 93.0±0.4 95.6±0.7 - -
GA-SNN Xu et al. (2021) ✓ 88.1±0.1 93.5±0.6 92.2±0.1 95.8±0.5 - -

Bi-GCN Wang et al. (2021) ✓ 86.4±0.3 92.1±0.9 91.0±0.7 93.3±1.1 66.0±0.8 28.2±0.4

BinaryGNN Bahri et al. (2021) ✓ 87.8±0.2 92.4±0.2 91.2±0.1 95.3±0.1 67.2±0.9 -
BANE Yang et al. (2018) ✓ ✓ 72.7±0.3 78.2±0.3 92.8±0.1 93.4±0.4 >3days >3days

DGI Velickovic et al. (2019) ✓ 84.0±0.5 91.6±0.2 92.2±0.6 94.5±0.5 65.1±0.4 31.4±0.3

GRACE Zhu et al. (2020) ✓ 86.3±0.3 92.2±0.2 92.9±0.0 95.3±0.0 68.7±0.4 31.5±0.3

CCA-SSG Zhang et al. (2021) ✓ 88.7±0.3 93.1±0.1 93.3±0.1 95.7±0.1 71.2±0.2 31.8±0.4

BGRL Thakoor et al. (2021) ✓ 90.3±0.2 93.2±0.3 93.3±0.1 95.7±0.0 71.6±0.1 31.1±0.1

SUGRL Mo et al. (2022) ✓ 88.9±0.2 93.2±0.4 93.4±0.0 95.2±0.0 68.8±0.4 32.4±0.1

GGD Zheng et al. (2022) ✓ 88.0±0.1 92.9±0.2 93.1±0.1 95.3±0.0 71.6±0.5 31.7±0.7

SPIKEGCL ✓ ✓ ✓ 88.9±0.3 93.0±0.1 92.8±0.1 95.2±0.6 70.9±0.1 32.0±0.3

Overall performance. The results on six graph datasets are summarized in Table 1. We defer the
results on Cora, CiteSeer, and PubMed to Appendix F. Table 1 shows a significant performance
gap between full-precision methods and 1-bit GNNs, particularly with the unsupervised method
BANE. Even supervised methods Bi-GCN and binaryGNN struggle to match the performance of
full-precision methods. In contrast, SPIKEGCL competes comfortably and sometimes outperforms
advanced full-precision methods. When compared to full-precision GCL methods, our model
approximates about 95%∼99% of their performance capability across all datasets. Additionally,
SPIKEGCL performs comparably to supervised graph SNNs and offers the possibility to scale to
large graph datasets (e.g., arXiv and MAG). Overall, the results indicate that binary representation
does not necessarily lead to accuracy loss as long as it is properly trained.

Efficiency. We first provide a comparison of the number of parameters and theoretical energy
consumption of SPIKEGCL and full-precision GCL methods. The computation of theoretical energy

8

Published as a conference paper at ICLR 2024

Table 2: The parameter size (KB) and theoretical energy consumption (mJ) of various GCL methods.
The row in ‘Average’ denotes the averaged results of full-precision GCL baselines. Darker color in
SPIKEGCL indicates a larger improvement in efficiency over the baselines.

Computers CS Physics arXiv MAG
#Param↓ Energy↓ #Param↓ Energy↓ #Param↓ Energy↓ #Param↓ Energy↓ #Param↓ Energy↓

DGI 917.5 0.5 4008.9 8 4833.3 6 590.3 5 590.3 568
GRACE 656.1 1.1 3747.5 17 4571.9 13 328.9 21 328.9 4463
CCA-SSG 262.4 17 1808.1 152 2220.2 352 98.8 78 98.8 340
BGRL 658.4 25 3749.8 163 4574.2 373 331.2 180 331.2 787
SUGRL 193.8 13 2131.2 147 2615.1 342 99.5 26 99.5 117
GGD 254.7 15 3747.3 140 4571.6 340 30.0 100 30.0 1400

Average 490.4 11.9 3198.7 104.5 3906.0 237.6 246.4 68.3 246.4 1279.1
SpikeGCL 60.9 0.038 460.7 0.048 564.4 0.068 7.3 0.2 6.6 0.18

Figure 4: Comparison of SPIKEGCL and other graph SNNs in terms of accuracy (%), training time
(s), memory usage (GB), and energy consumption (mJ), respectively.

consumption follows existing works Zhu et al. (2022); Zhou et al. (2022); Wang et al. (2021) and is
detailed in Appendix E. Table 2 summarizes the results in terms of model size and energy efficiency
compared to full-precision GCL methods. SPIKEGCL consistently shows better efficiency across all
datasets, achieving ∼7x less energy consumption and ∼1/60 model size on MAG. As the time step T
is a critical hyperparameter for SNNs to better approximate real-valued inputs with discrete spikes, we
compare the efficiency of SPIKEGCL and other graph SNNs in terms of accuracy, training time, GPU
memory usage, and theoretical energy consumption with varying time steps from 5 to 30. The results
on the Computers dataset are shown in Figure 4. It is observed that SPIKEGCL and other graph
SNNs benefit from increasing time steps, generally improving accuracy as the time step increases.
However, a large time step often leads to more overheads. In our experiments, a larger time step can
make SNNs inefficient and become a major bottleneck to scaling to large graphs, as demonstrated
by increasing training time, memory usage, and energy consumption. Nevertheless, the efficiency
of SPIKEGCL is less affected by increasing time steps. The results demonstrate that SPIKEGCL,
coupled with compact graph sequence input and blockwise training paradigm, alleviates such a
drawback of training deep SNNs. Overall, SPIKEGCL is able to significantly reduces computation
costs and enhance the representational learning capabilities of the model simultaneously.

7 CONCLUSION

In this work, we present SPIKEGCL, a principled graph contrastive learning framework to learn
binarized and compact representations for graphs at scale. SPIKEGCL leverages the sparse and
binary characteristics of SNNs, as well as contrastive learning paradigms, to meet the challenges
of increasing graph scale and limited label annotations. The binarized representations learned by
SPIKEGCL require less memory and computations compared to traditional GCL, which leads to
potential benefits for energy-efficient computing. We provide theoretical guarantees and empirical
results to demonstrate that SPIKEGCL is an efficient yet effective approach for learning binarized
graph representations. In our extensive experimental evaluation, SPIKEGCL is able to achieve
performance on par with advanced baselines using full-precision or 1-bit representations while
demonstrating significant efficiency advantages in terms of parameters, speed, memory usage, and
energy consumption. We believe that our work is promising from a neuroscientific standpoint, and
we hope it will inspire further research toward efficient graph representation learning.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

The research is supported by the National Key R&D Program of China under grant No.
2022YFF0902500, the Guangdong Basic and Applied Basic Research Foundation, China (No.
2023A1515011050), Shenzhen Research Project (KJZD20231023094501003), Ant Group Research
Intern Program.

REFERENCES

Mehdi Bahri, Gaétan Bahl, and Stefanos Zafeiriou. Binary graph neural networks. In CVPR, pp.
9492–9501. Computer Vision Foundation / IEEE, 2021.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In ICLR (Poster). OpenReview.net, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In ICML, volume 119 of Proceedings of Machine
Learning Research, pp. 1597–1607. PMLR, 2020.

Yankai Chen, Huifeng Guo, Yingxue Zhang, Chen Ma, Ruiming Tang, Jingjie Li, and Irwin King.
Learning binarized graph representations with multi-faceted quantization reinforcement for top-k
recommendation. In KDD, pp. 168–178. ACM, 2022a.

Yankai Chen, Huifeng Guo, Yingxue Zhang, Chen Ma, Ruiming Tang, Jingjie Li, and Irwin King.
Learning binarized graph representations with multi-faceted quantization reinforcement for top-k
recommendation. In KDD, pp. 168–178, 2022b.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
arXiv preprint arXiv:2007.05785, 2020.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. In NeurIPS, pp. 21056–21069, 2021.

Lang Feng, Qianhui Liu, Huajin Tang, De Ma, and Gang Pan. Multi-level firing with spiking ds-resnet:
Enabling better and deeper directly-trained spiking neural networks. In IJCAI, pp. 2471–2477.
ijcai.org, 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NeurIPS, pp. 1024–1034, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Giacomo Indiveri, Federico Corradi, and Ning Qiao. Neuromorphic architectures for spiking deep
neural networks. In 2015 IEEE International Electron Devices Meeting (IEDM), pp. 4–2. IEEE,
2015.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In ICLR, 2022.

Sei Joon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-yolo: Spiking neural
network for energy-efficient object detection. In AAAI, pp. 11270–11277. AAAI Press, 2020.

Youngeun Kim, Joshua Chough, and Priyadarshini Panda. Beyond classification: Directly training
spiking neural networks for semantic segmentation. arXiv preprint arXiv:2110.07742, 2021.

10

Published as a conference paper at ICLR 2024

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Junhaeng Lee, Tobi Delbrück, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation. CoRR, abs/1608.08782, 2016.

Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng, Zibin
Zheng, and Weiqiang Wang. What’s behind the mask: Understanding masked graph modeling for
graph autoencoders. In KDD, pp. 1268–1279. ACM, 2023a.

Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
Changhua Meng. Scaling up dynamic graph representation learning via spiking neural networks.
In AAAI, 2023b.

Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
Changhua Meng. Scaling up dynamic graph representation learning via spiking neural networks.
In AAAI, 2023c.

Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S. Yu. Graph self-supervised
learning: A survey. CoRR, abs/2103.00111, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR (Poster).
OpenReview.net, 2019.

Kai Malcolm and Josue Casco-Rodriguez. A comprehensive review of spiking neural networks:
Interpretation, optimization, efficiency, and best practices. CoRR, abs/2303.10780, 2023.

Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. Simple unsupervised graph
representation learning. In AAAI, pp. 7797–7805. AAAI Press, 2022.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth. In ICLR.
OpenReview.net, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pp. 8024–8035, 2019.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling (eds.), Computer Vision – ECCV 2016, pp. 525–542, Cham, 2016. Springer
International Publishing.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR. OpenReview.net, 2020.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer. Theory and tools for
the conversion of analog to spiking convolutional neural networks. CoRR, abs/1612.04052, 2016.

Emilio Salinas and Terrence J Sejnowski. Integrate-and-fire neurons driven by correlated stochastic
input. Neural computation, 14(9):2111–2155, 2002.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of
graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS, 2018.

Shoaib Ahmed Siddiqui, David Krueger, Yann LeCun, and Stéphane Deny. Blockwise self-supervised
learning at scale. CoRR, abs/2302.01647, 2023.

11

Published as a conference paper at ICLR 2024

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan
Wang. An overview of microsoft academic service (mas) and applications. In WWW, WWW ’15
Companion, pp. 243–246. Association for Computing Machinery, 2015. ISBN 9781450334730.
doi: 10.1145/2740908.2742839.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Remi Munos, Petar Veličković,
and Michal Valko. Bootstrapped representation learning on graphs. In ICLR 2021 Workshop on
Geometrical and Topological Representation Learning, 2021.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. ICLR (Poster), 2(3):4, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Junfu Wang, Yunhong Wang, Zhen Yang, Liang Yang, and Yuanfang Guo. Bi-gcn: Binary graph
convolutional network. In CVPR, pp. 1561–1570. Computer Vision Foundation / IEEE, 2021.

Mingkun Xu, Yujie Wu, Lei Deng, Faqiang Liu, Guoqi Li, and Jing Pei. Exploiting spiking dynamics
with spatial-temporal feature normalization in graph learning. In IJCAI, pp. 3207–3213. IJCAI, 8
2021. Main Track.

Hong Yang, Shirui Pan, Peng Zhang, Ling Chen, Defu Lian, and Chengqi Zhang. Binarized attributed
network embedding. In ICDM, pp. 1476–1481. IEEE Computer Society, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In NeurIPS, 2020.

Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph information
bottleneck for subgraph recognition. In ICLR, 2021a.

Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Recognizing predictive
substructures with subgraph information bottleneck. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021b.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In ICLR. OpenReview.net, 2020.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S. Yu. From canonical correlation
analysis to self-supervised graph neural networks. In NeurIPS, 2021.

Yizhen Zheng, Shirui Pan, Vincent C. S. Lee, Yu Zheng, and Philip S. Yu. Rethinking and scaling up
graph contrastive learning: An extremely efficient approach with group discrimination. In NeurIPS,
2022.

Ao Zhou, Jianlei Yang, Yingjie Qi, Yumeng Shi, Tong Qiao, Weisheng Zhao, and Chunming Hu.
Hardware-aware graph neural network automated design for edge computing platforms. CoRR,
abs/2303.10875, 2023.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and Li Yuan.
Spikformer: When spiking neural network meets transformer. CoRR, abs/2209.15425, 2022.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive
Representation Learning. In ICML Workshop on Graph Representation Learning and Beyond,
2020.

Zulun Zhu, Jiaying Peng, Jintang Li, Liang Chen, Qi Yu, and Siqiang Luo. Spiking graph con-
volutional networks. In IJCAI, pp. 2434–2440, 7 2022. doi: 10.24963/ijcai.2022/338. Main
Track.

12

Published as a conference paper at ICLR 2024

A THEORY AND PROOF

To establish the expressiveness of the proposed model, we define an oracle GNN which performs
standard message passing operations with input node feature being the raw features, with per-layer
hidden dimension d

T . For simplicity, we assume the oracle GNN is instantiated by stacking L GCN
layers, with parameters θ∗ = {W(1)

∗ , . . . ,W
(L)
∗ }. We additionally make two assumptions that are

usually satisfied in graph modeling scenarios:
Assumption 1. The input graph G has its degree bounded from above by D.
Assumption 2. The operator norm of all the weight matrices of the oracle GNN model is bounded
from above by ν, i.e., supl∈[L] ∥W

(l)
∗ ∥op ≤ ν

Assumption 3. The membrane potential at any time step is lower bounded by Vlb < 0 with |Vlb| ≤
κVth, with some κ > 1.
Remark 1. Assumption 3 is actually not necessary and is stated primarily for a sleeker presentation
of results. In particular, given assumption 2, we are able to derive a lower bound that depends on the
GNN matrices’ operator norms, length T as well as the characteristics of the underlying GNN.

For some node v, denote ẑv = 1
T

∑T
t=1 sv as the firing rate derived from the binaried representation

learned by SNNs. The following theorem states that with a sufficiently large time window T , the
proposed SNN can implement the oracle GNN with a small approximation error.
Theorem 2. Assume that assumptions 1-3 hold, for any input graph G, let z∗v be the representation of
node v produced by some L-layer oracle GCN model. Under the IF model and reset by subtraction
mechanism, there exists an SNN such that its firing rate ẑv has the following approximation property:

sup
G

sup
v∈V
∥ẑv − z∗v∥2 ≤

√
dκ
(√

1 +Dν
)L

T
√
T

(10)

With a slight abuse of notation, hereafter we will denote V(·) as either a scalar with a value equal
to V(·) or a vector of length d

T with each coordinate being V(·), the meaning shall be clear from the
context. The proof relies on the following simple Lemma:
Lemma 1. For any node v and 1 ≤ l ≤ L, let V l

v (t) and H l
v(t) be the membrane potential and input

current at time step 1 ≤ t ≤ T and layer l, further let N l
v(T) =

∑T
t=1 sv(t) be the number of fired

spikes throughout the T steps. We have the following inequality:

V l
v (T) =

T∑
t=1

H l
v(t)−N l

v(T)Vth (11)

Proof of Lemma 1. The Lemma follows from the trivial fact that each time upon firing, the membrane
potential reduces by exactly Vth.

Proof of theorem 2. We will first give the construction of the approximation SNN. Recall that the
parameter configuration of an L-layer SNN is given by:

1st-layer Since there are T distinct GNN encoders, denote the corresponding weight matrices as
W

(1)
1 , . . . ,W

(1)
T .

2nd to Lth layer (if exists) We equip each layer with a single weight matrix W(l), 2 ≤ l ≤ L.

Now we construct the approximation SNN as follows: Given the oracle GNN with parameter
θ∗ = {W(1)

∗ , . . . ,W
(L)
∗ }. In the first layer, we partition W

(1)
∗ row-wise into T blocks, with each

block having an identical number of rows if d is divided by T , otherwise the first T − 1 blocks
constructed with row d//T with the last one having d mod T rows, denote the resulting blocks
W

(1)
∗,1, . . . ,W

(1)
∗,T . Then we set W(1)

t = TW
(1)
∗,t , 1 ≤ t ≤ T . In the subsequent layers, we set

W(l) = VthW
(l)
∗ . For notational simplicity, we define αuv = 1√

(|Nu|+1)·(|Nv|+1)
for some node pair

13

Published as a conference paper at ICLR 2024

(u, v). Now fix some arbitrary node v ∈ V . Recall the aggregation equation at the l-th layer of the
SNN, with time step t:

H l
v(t) =

{ ∑
u∈Nv∪{v} auvW

(l)sl−1
v (t), if 2 ≤ l ≤ L∑

u∈Nv∪{v} auvW
(1)
t xt

v, if l = 1
. (12)

Here note that in the first layer, the pre-activation output of the oracle GNN is 1
T

∑T
t=1 H

1
v (t) =

1
T

∑T
t=1 s

1
v(t) for any node v. Now we average Eq. 12 at the L-th (final) layer according to all

timesteps, yielding

1

T

T∑
t=1

HL
v (t) =

1

T

∑
u∈Nv∪{v}

auvVthW
(L)
∗

T∑
t=1

sL−1
u (t) (13)

=
∑

u∈Nv∪{v}

auvVthW
(L)
∗ ẑL−1

v . (14)

Now use Lemma 1 at layer L:

ẑv = ẑLv =
NL

v (T)

T
=

1

Vth

(
1

T

T∑
t=1

HL
v (t)−

V L
v (T)

T

)
(15)

=
∑

u∈Nv∪{v}

auvW
(L)
∗ ẑL−1

u − V L
v (T)

TVth
(16)

=
∑

u∈Nv∪{v}

auvW
(L)
∗ ReLU

(
ẑL−1
u

)
︸ ︷︷ ︸

T1

−V L
v (T)

TVth
, (17)

where the last equality follows since the firing rates are by definition non-negative. Next we further
analyze T , apply Lemma 1 at layer L− 1 yields:

T1 =
∑

u∈Nv∪{v}

auvW
(L)
∗ ReLU

 ∑
ω∈Nu∪{u}

auωW
(L−1)
∗ ẑL−2

ω − V L−1
u (T)

TVth

 (18)

=
∑

u∈Nv∪{v}

auvW(L)
∗ ReLU

 ∑
ω∈Nu∪{u}

auωW
(L−1)
∗ ẑL−2

ω

+ auvW
(L)
∗ ΥL−1

 (19)

=
∑

u∈Nv∪{v}

auvW
(L)
∗ ReLU

 ∑
ω∈Nu∪{u}

auωW
(L−1)
∗ ReLU

(
ẑL−2
ω

)+
∑

u∈Nv∪{v}

auvW
(L)
∗ ΥL−1

︸ ︷︷ ︸
RL−1

(20)

where in the remainder termRL−1, we define

ΥL−1 = ReLU

 ∑
ω∈Nu∪{u}

auωW
(L−1)
∗ ẑL−2

ω − V L−1
u (T)

TVth

− ReLU

 ∑
ω∈Nu∪{u}

auωW
(L−1)
∗ ẑL−2

ω


(21)

We will first obtain an upper bound of the ℓ2-norm of ΥL−1, specifically, using the inequality
|ReLU(x+ y)− ReLU(x)| ≤ |y|,

∥∥ΥL−1
∥∥
2
≤
∥∥∥∥V L−1

u (T)

TVth

∥∥∥∥
2

=

∥∥V L−1
u (T)

∥∥
2

TVth
≤
√

d

T

κ

T
(22)

14

Published as a conference paper at ICLR 2024

where the last inequality follows from the fact the membrane potential never exceeds Vth and
assumption 3. Next we bound the termRL−1 under the GCN model, we further define deg(v) = |Nv|.
We have: ∥∥RL−1

∥∥
2
≤

∑
u∈Nv∪{v}

1√
(1 + deg(u))(1 + deg(v))

∥∥∥W(L)
∗ ΥL−1

∥∥∥
2

(23)

≤
∑

u∈Nv∪{v}

1√
(1 + deg(u))(1 + deg(v))

ν

√
d

T

κ

T
(24)

≤
√
1 +Dν

√
d

T

κ

T
, (25)

where the second inequality follows by assumption 2, and the last inequality follows by the bounded
degree assumption 1 and deg(u) ≥ 0. Now we further unravel the right hand side of Eq. 20 untill
there are altogether L− 1 remainders. It is straightforward to check that the leftmost term would be
z∗v , combining with Eq. 17, we write

ẑv = z∗v +R1 + · · ·+RL−1 +RL, (26)

withRL = −V L
v (T)
TVth

being the remainder term in Eq. 17. Following similar arguments, we can show
that the remainder terms satisfy:

∥∥Rl
∥∥
2
≤
(√

1 +Dν
)L−l

√
d

T

κ

T
, 1 ≤ l ≤ L, (27)

Consequently we have:

∥ẑv − z∗v∥2 ≤
∥∥R1

∥∥
2
+ · · ·+

∥∥RL
∥∥
2

(28)

≤
√

d

T

κ

T

(
1 + · · ·+

(√
1 +Dν

)L−1
)

(29)

≤
√
dκ
(√

1 +Dν
)L

√
TT

(30)

Remark 2. The approximation bound Eq. 10 is dependent on the specific form of GCN, and therefore
has the scaling term O

(
(ν
√
1 +D)L

)
which is exponential in L. With an alternative underlying

GNN model, we may get better approximations, for example in the SAGE model Hamilton et al.
(2017), following similar arguments, we may prove that we may remove the exponential dependence
over (root)-degree bounds, i.e., the scaling factor reduces to O

(
LνL

)
.

Remark 3. Theorem 2 relies on the reset by subtraction mechanism, for the reset to constant (zero)
mechanism, as stated in Rueckauer et al. (2016), we have to sacrifice an error term that does not
vanish as T grows even in the i.i.d setting.

B VANISHING GRADIENTS IN SURROGATE LEARNING

The vanishing gradient problem is a well-known issue that hinders convergence in modern neural
networks. To address this problem, ReLU activation functions were introduced as alternatives to
Sigmoid and Tanh to avoid dead neurons during backpropagation. However, in SNNs, the vanishing
gradient problem can arise again when using a layer of spiking neurons to learn long sequences,
similar to the vanishing problem in deep artificial neural networks. We attribute the vanishing gradient
problem in SNNs to the surrogate gradient learning technique, wherein surrogate functions (typically
smooth Sigmoid or Tanh) are used to approximate the gradient of the Heaviside step function in
spiking neurons. While surrogate learning plays a crucial role in directly training SNNs, it inherits the
defects of surrogate functions, resulting in poor training performance and slow convergence. Recent
works, such as Fang et al. (2021); Feng et al. (2022), have also noted this issue in SNNs and reached
the same conclusion.

15

Published as a conference paper at ICLR 2024

Figure 5: Average gradient
norms of IF and LIF neurons,
with and without the block-
wise learning strategy.

Addressing the vanishing gradient problem is essential for unlock-
ing the full potential of deep SNNs and enabling them to learn and
generalize effectively. Recent success in local learning Siddiqui
et al. (2023) has pointed out a new way to train deep modern net-
works without suffering severe network degradation and vanishing
gradients problems. Specifically, the network is divided into sev-
eral individual blocks that are trained locally with gradient isolation
during training to avoid a long backpropagation path. Inspired by
this approach, we are motivated to explore an interesting research
direction in SNNs: Is it possible to address the issue of vanishing
gradients by adjusting the backpropagation path in a reasonable
way?

In this work, we present a blockwise training strategy to address
the vanishing gradient problem in SNNs. Unlike conventional end-
to-end learning, we horizontally divide the encoder network into
several individual blocks along the time dimension2. We limit the length of the backpropagation path
to each of these blocks and apply a self-supervised contrastive loss locally at different blocks, using
stop-gradient to ensure that the loss function from one block does not affect the learned parameters
of other blocks. We argue that the blockwise learning rule is unlikely to cause vanishing gradients
as long as each block has a reasonable depth. We plot the averaged gradient norm of IF and LIF in
Figure 5 and observe that signals in both IF and LIF neurons are prone to vanishing with an increasing
time step. However, the backward gradients exhibit healthy norms in IF and LIF, and the vanishing
gradient problem is largely alleviated by incorporating our blockwise optimization paradigm.

C ALGORITHM

Algorithm 1 Spiking Graph Contrastive Learning (SPIKEGCL)
Input: Graph G = (V, E ,X), encoder fθ(·) = [f1

θ1
, . . . , fT

θT
], predictor head gϕ(·), time step T ;

Output: Learned encoder fθ(·);
1: while not converged do;
2: G̃ = (V, E , X̃)← corruption(G);
3: for t = 1 to T do
4: Z1 ← f t

θt
(Gt);

5: H1 ← gϕ(Z1);
6: Z2 ← f t

θt
(G̃t);

7: H2 ← gϕ(Z2);
8: Calculate contrastive loss J over H1,H2;
9: Update θt, ϕ by gradient descent;

10: end for
11: end while;
12: return fθ(·);

2Our work differs from Siddiqui et al. (2023), in which the network is vertically divided from bottom to top.

16

Published as a conference paper at ICLR 2024

Algorithm 2 PyTorch-style pseudocode for SPIKEGCL
f: a set of peer GNNs
h: SNN neuron
g: MLP network
m: margin
perm: random permutation of node features
T: time steps
G: input graph
x: node features

x1 = torch.chunk(x, T, dim=1)
G1 = G
corruption
x2 = torch.chunk(x[:, perm)], T, dim=1)
G2 = drop edge(G)
for t in range(T):

z1 = f[t](x1[t], G1)
gradient isolation
z1 = h(z1.detach())
z1 = g(z1)

z2 = f(x2[t], G2)
gradient isolation
z2 = h(z2.detach())
z2 = g(z2)
compute loss & backpropagation
loss = F.margin ranking loss(z1, z2, margin=m)
loss.backward()

D DISCUSSION

D.1 DISCUSSION ON COMPLEXITY

As SPIKEGCL uses a relatively simple predictor head (a single-layer MLP), the main complexity
bottleneck lies in the GNN-based encoder network. Therefore, we discuss the overall computation
and parameter complexity of SPIKEGCL from the perspective of the encoder. Recall that our encoder
consists of T peer GNNs coupled with a spiking neuron. The computation and parameter complexity
of our method is generally T times larger than standard GCL methods that use a single GNN as an
encoder. Here we omit the bias term in GNN and learnable parameters (if have) in spiking neurons as
they do not significantly affect the computation and parameter complexity. Note that we divide the
input features into T groups and share parameters across different GNNs. Each GNN actually has
only 1

T size of parameters with a hidden dimension of d
T compared to the standard case. Therefore,

our method achieves similar computation and parameter complexity as traditional GCL methods
that use a single GNN as an encoder. Since each GNN accepts each group of features as input and
performs message aggregation individually, the computation can be trivially parallelized, which
accelerates computations on larger graphs. This further reduces the complexity of our method and
endows it with desirable scalability not only to larger dataset sizes but also to larger embedding
dimensions.

D.2 LIMITATION

We note certain limitations of our work. (i) First, the linear evaluation used in our experiments
assumes that the downstream task can be solved by a linear classifier, which may not always be
the case. In addition, the quality of the learned graph representations may depend on the specific
downstream task of interest, and linear evaluation may not be able to capture all relevant aspects of
the learned representations for the task. (ii) Second, one common assumption behind the theoretical
guarantees is that the neuron adopts a ‘reset by subtraction’ mechanism, which may not always hold

17

Published as a conference paper at ICLR 2024

for spiking neurons that use the ‘reset to zero’ mechanism, as also mentioned in Remark 3. (iii)
Third, our empirical evaluations on real-world datasets do not include any significantly large-scale
datasets (N ∼ 106 or higher), although our collection of 9 datasets is a broad selection among those
commonly used in related research. These aspects mark potential areas for future enhancements and
investigations

E DETAILED EXPERIMENTAL SETTINGS

Table 3: Dataset statistics.
Computers Photo CS Physics Cora CiteSeer PubMed arXiv MAG

#Nodes 13,752 7,650 18,333 34,493 2,708 3,327 19,717 16,9343 736,389
#Edges 491,722 238,162 163,788 495,924 10,556 9,104 88,648 2,315,598 10,792,672
#Features 767 745 6,805 8,415 1,433 3,703 500 128 128
#Classes 10 8 15 5 7 6 3 40 349
Density 0.144% 0.082% 0.023% 0.407% 0.260% 0.049% 0.042% 0.008% 0.002%

Datasets. We evaluate SPIKEGCL on several graph benchmarks with different scales and properties.
Following prior works Zhang et al. (2021); Thakoor et al. (2021); Zhu et al. (2022), we adopt
9 common benchmark graphs, including two co-purchase graphs, i.e., Amazon-Photo, Amazon-
Computer Shchur et al. (2018), two co-author graphs, i.e., Coauthor-CS and Coauthor-Physics Shchur
et al. (2018), three citation graphs, i.e., Cora, CiteSeer, PubMed Sen et al. (2008), as well as two
large-scale datasets ogbn-arXiv and ogbn-MAG from Open Graph Benchmark Hu et al. (2020).
Dataset statistics are listed in Table 3. For three citation datasets, we evaluate the models on the
public full splits introduced in Rong et al. (2020); Chen et al. (2018). we adopt the random 1:1:8
split for Amazon-Computer, Amazon-Photo, Coauthor-CS, and Coauthor-Physics. We use stratified
sampling to ensure that the class distribution remains the same across splits.

Baselines. We compare our proposed methods to a wide range of baselines that fall into four
categories:

• Full-precision (supervised) GNNs: GCN Kipf & Welling (2016) and GAT Veličković et al.
(2018).

• 1-bit quantization-based GNNs: Bi-GCN Wang et al. (2021), BinaryGNN Bahri et al.
(2021) and BANE Yang et al. (2018). Bi-GCN and BinaryGNN are both supervised methods
while BANE is an unsupervised one.

• Full-precision contrastive methods: DGI Velickovic et al. (2019), GRACE Zhu et al.
(2020), CCA-SSG Zhang et al. (2021), BGRL Thakoor et al. (2021), SUGRL Mo et al.
(2022), and GGD Zheng et al. (2022). DGI, GRACE, SUGRL, and GGD are negative-
sampling-based methods, whereas BGRL and CCA-SSG are negative-sample-free ones.

• Graph SNNs: SpikingGCN Zhu et al. (2022), SpikeNet Li et al. (2023b), GC-SNN and
GA-SNN Xu et al. (2021). Note that SpikeNet is initially designed for dynamic graphs, we
adapt the author’s implementation to static graphs following the practice in Zhu et al. (2022);
Xu et al. (2021). Although these methods are also based on the combination of SNNs and
GNNs, they do not fully utilize the binary nature of SNNs to learn binaried representations
in an unsupervised fashion.

The hyperparameters of all the baselines were configured according to the experimental settings
officially reported by the authors and were then carefully tuned in our experiments to achieve their
best results.

Implementation details. We present implementation details for our experiments for reproducibility.
We implement our model as well as the baselines with PyTorch Paszke et al. (2019) and PyTorch
Geometric Fey & Lenssen (2019), which are open-source software released under BSD-style 3

and MIT4 license, respectively. All datasets used throughout experiments are publicly available in

3https://github.com/pytorch/pytorch/blob/master/LICENSE
4https://github.com/pyg-team/pytorch_geometric/blob/master/LICENSE

18

https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/pyg-team/pytorch_geometric/blob/master/LICENSE

Published as a conference paper at ICLR 2024

PyTorch Geometric library. All experiments are conducted on an NVIDIA RTX 3090 Ti GPU with 24
GB memory unless specified. Code is available at https://github.com/EdisonLeeeee/
SpikeGCLfor reproducibility.

Hyperparameter settings. The embedding dimension for each time step is searched in {4, 8, 16,
32, 64}. We carefully tune the time step T from 8 to 64 to better approximate the full-precision
performance. The firing threshold is tuned within {5e-4, 5e-3, 5e-2, 5e-1, 1.0}. The margin m is
tuned in {0, 0.5, 1.0, 1.5, 2.0}. We initialize and optimize all models with default normal initializer
and AdamW optimizer Loshchilov & Hutter (2019). For all datasets, we follow the practice in Li et al.
(2023b) and increase the sparsity of the network using PLIF Fang et al. (2020) units, a bio-inspired
neuron model that adopts a learnable τm = 1 to activate sparsely in time solely when crossing a
threshold. We adopt Sigmoid as the surrogate function during backpropagation, with a smooth factor
α = 2.0. Exploration on parameters of SPIKEGCL including time step T , encoder architecture,
spiking neurons, and threshold Vth are elaborated in Appendix F.

Evaluation protocol. For unsupervised or self-supervised methods, including SPIKEGCL, we
follow the linear evaluation scheme as described in literature Velickovic et al. (2019); Thakoor et al.
(2021): (i) we first train the model on all the nodes in a graph with self-defined supervision to learn
node representations; (ii) we then train a linear classifier (e.g., a logistic regression model) on top
with the learned representations under the supervised setting to evaluate the performance. We report
averaged accuracy with standard deviation across 10 different trials with random seeds.

Computation of theoretical energy consumption. Different from common ANNs implemented on
GPUs, SNNs are designed for neuromorphic chips that adopt synaptic operations (SOPs) to run neural
networks in a low power consumption manner. However, training SNNs directly on neuromorphic
chips has been rarely explored in the literature. To investigate the energy consumption of SNN-based
methods on neuromorphic chips, we follow previous works Zhu et al. (2022); Zhou et al. (2022)
and adopt an alternative estimation approach, which involves counting the total number of spikes
generated during the embedding generation process. The computation of energy consumption involves
two parts. The first one comes from the spike encoding process, which converts the full-precision
node representations into discrete spikes to run on neuromorphic chips (e.g., Bernoulli encoding). It
is estimated by multiply-and-accumulate (MAC) operations. The second one is the spiking process,
which receives the resultant current and accumulates the membrane potential to generate the spikes.
Therefore, the theoretical energy consumption can be estimated as follows:

E = Eencoding + Espiking

= EMAC

T∑
t=1

Nd+ ESOP

T∑
t=1

L∑
l=1

Sl
t,

(31)

where Sl
t denotes the output spikes at time step t and layer l. Note that SPIKEGCL has only one

spiking neuron, so we count the number of spikes at the last layer. According to Zhu et al. (2022);
Zhou et al. (2022), EMAC and ESOP are set to 4.6pJ and 3.7pJ , respectively. We also detail how to
calculate the theoretical energy consumption of methods other than graph SNNs. For 1-bit GNNs,
the processing time required to execute a single cycle operation, encompassing one multiplication
and one addition, can be utilized to perform 64 binary operations effectively Rastegari et al. (2016).
Therefore, we use the following formula derived from Wang et al. (2021) to calculate the theoretical
energy consumption of 1-bit GNNs (specifically GCN):

E = EMAC(
1

64
Ndlind

l
out + 2Ndlout + |E|dlout), (32)

where dlin and dlout are the input and output dimensions of the representation at the l-th layer. We
assume dlin = dlout = d in this paper. For the other full-precision models deployed on GPUs,
we count the number of MAC operations to calculate the theoretical energy consumption. In
practice, we split the message passing into two steps: embedding generation and aggregation. In the
embedding generation step, the vanilla GNN projects features into a low-dimensional embedding
space. For example, given the node features X and a weight matrix W ∈ Rdin×dout , it executes
Ndindout multiplication and Ndindout addition operations. In the aggregation step, the number of
multiplication and addition operations can be simply considered as |E|din and |E|dout. For a fair
comparison, we only consider the energy consumption of the encoder in GCL, as it is often the main
bottleneck.

19

https://github.com/EdisonLeeeee/SpikeGCL
https://github.com/EdisonLeeeee/SpikeGCL

Published as a conference paper at ICLR 2024

Table 4: Classification accuracy (%) on three citation datasets. The best result for each dataset is
highlighted in red. Darker colors indicate larger performance gaps between SPIKEGCL and the best
results. (U: unsupervised or self-supervised; S: spike-based; B: binarized)

Methods U S B Cora CiteSeer PubMed
GCN Kipf & Welling (2016) 86.1±0.2 75.9±0.4 88.2±0.5

GAT Veličković et al. (2018) 86.7±0.7 78.5±0.4 86.8±0.3

GC-SNN Xu et al. (2021) ✓ 83.8±0.4 73.4±0.5 85.3±0.4

GA-SNN Xu et al. (2021) ✓ 86.4±0.2 72.8±0.8 84.5±0.6

SpikeNet Li et al. (2023b) ✓ 83.5±0.3 71.4±0.5 83.9±0.4

SpikingGCN Zhu et al. (2022) ✓ 87.7±0.4 77.7±0.3 87.5±0.5

Bi-GCN Wang et al. (2021) ✓ 85.1±0.6 72.8±0.7 88.6±1.0

Binary GNN Bahri et al. (2021) ✓ 85.0±0.9 71.9±0.2 86.8±0.7

BANE Yang et al. (2018) ✓ ✓ 65.0±0.4 64.3±0.3 68.8±0.2

DGI Velickovic et al. (2019) ✓ 86.3±0.2 78.9±0.2 86.2±0.1

GRACE Zhu et al. (2020) ✓ 87.2±0.2 74.5±0.1 87.3±0.1

CCA-SSG Zhang et al. (2021) ✓ 84.6±0.7 75.4±1.0 88.4±0.6

BGRL Thakoor et al. (2021) ✓ 87.3±0.1 76.0±0.2 88.3±0.1

SUGRL Mo et al. (2022) ✓ 88.0±0.1 77.6±0.4 88.2±0.2

GGD Zheng et al. (2022) ✓ 86.2±0.2 75.5±0.1 84.2±0.1

SPIKEGCL ✓ ✓ ✓ 87.4±0.6 77.6±0.6 88.8±0.3

Table 5: The parameter size (KB) and theoretical energy consumption (mJ) of various methods.
Computers Photo CS Physics arXiv MAG

#Param↓ Energy↓ #Param↓ Energy↓ #Param↓ Energy↓ #Param↓ Energy↓ #Param↓ Energy↓ #Param↓ Energy↓
GC-SNN 195.9 0.53 258.9 0.29 1812.2 0.16 2221.6 0.11 - - - -
GA-SNN 265.0 0.53 258.8 0.26 1812.2 0.17 1094.4 0.11 - - - -
SpikeNet 293.6 0.71 484.1 0.62 1790.2 0.46 2197.1 0.23 194.0 0.41 - -
SpikingGCN 7.6 0.68 5.9 0.36 102.0 0.20 42.0 0.21 - - - -
Average † 190.5 0.61 251.9 0.38 1388.7 0.24 1388.7 0.16 194.0 0.41 - -

Bi-GCN 529.9 0.67 517.6 0.33 3623.9 0.83 4443.4 2 218.1 2 376.6 12.3
BinaryGNN 108.4 1 105.3 0.57 881.9 3 1086.7 11 30.5 1 - -
Average † 319.1 0.93 311.4 0.44 2252.9 1.86 2765.0 6.3 124.3 1.50 376.6 12.3

DGI 917.5 0.5 906.2 0.21 4008.9 8 4833.3 6 590.3 5 590.3 568
GRACE 656.1 1.1 644.8 0.47 3747.5 17 4571.9 13 328.9 21 328.9 4463
CCA-SSG 262.4 17 256.7 9 1808.1 152 2220.2 352 98.8 78 98.8 340
BGRL 658.4 25 647.1 13 3749.8 163 4574.2 373 331.2 180 331.2 787
SUGRL 193.8 13 189.4 6 2131.2 147 2615.1 342 99.5 26 99.5 117
GGD 254.7 15 249.2 8 3747.3 140 4571.6 340 30.0 100 30.0 1400
Average † 490.4 11.9 482.2 7 3198.7 104.5 3906.0 237.6 246.4 68.3 246.4 1279.1

SPIKEGCL 60.9 0.03 28.43 0.01 460.7 0.04 564.4 0.06 7.3 0.2 6.6 0.18

†Averaged results of baseline methods in each section.

F ADDITIONAL EMPIRICAL RESULTS

Performance comparison. We show additional results of SPIKEGCL and baselines on three
common citation benchmarks: Cora, CiteSeer, and PubMed. We can observe from Table 4 that
SPIKEGCL obtains competitive performance compared to state-of-the-art baselines across all datasets,
including those using full-precision or binarized representations. This highlights that SPIKEGCL is
a versatile and effective method for learning node representations in citation networks. It is worth
noting that SPIKEGCL achieves these results with significantly fewer bits compared to full-precision
representations, which demonstrates its efficiency and scalability. Additionally, SPIKEGCL does not
require end-to-end supervision, which makes it more practical for real-world applications.

Parameter size and energy consumption. We calculate the parameter size and the theoretical
energy consumption of all methods on six different datasets, as shown in Table 5. Note that BANE, a
factorization-based approach, is not feasible for estimating its energy consumption, and therefore is
omitted from the comparison. Table 5 demonstrates the energy efficiency of graph SNNs and 1-bit
GNNs over conventional GCL methods, which have significantly lower energy consumption with an

20

Published as a conference paper at ICLR 2024

Figure 6: Effect of time step T on Computers, Photo, CS, and Physics datasets.

increasing graph scale. In particular, SPIKEGCL exhibits an average of ∼50x, ∼100x, and ∼1000x
less energy consumption compared to graph SNNs, 1-bit GNNs, and GCL baselines, respectively.
These results demonstrate that implementing advanced SNNs on energy-efficient hardware can
significantly reduce the energy consumption of SPIKEGCL. While we have a series of peer GNNs
in our encoders corresponding to each group of inputs, SPIKEGCL also exhibits low complexity in
parameter size due to parameter sharing among them. Compared to GCL baselines, the parameter
size of SPIKEGCL has decreased by a factor of 8 on average. Additionally, SPIKEGCL has a
smaller model size even compared to 1-bit GNNs and graph SNNs. These results demonstrate that
SPIKEGCL not only has strong representation learning abilities but also requires fewer parameters
compared to other methods.

Effect of time step T . Figure 6 shows the effect of time step T in terms of accuracy performance,
running time, memory usage, and energy consumption. The running time is measured as the training
time of SPIKEGCL until converged (with early stopping) and the memory usage refers to the
maximum GPU memory usage during the training process. We can observe that as T increases, the
accuracy performance of SPIKEGCL gradually improves until it reaches a plateau (e.g., T = 25).
With the increase of T , the running time and memory usage also slightly increase, which may lead
to longer training times and higher hardware requirements. Additionally, the energy consumption
of SPIKEGCL also increases with larger values of T , which can be a concern for energy-efficient
applications. Therefore, the choice of T should strike a balance between accuracy performance and
computational efficiency, taking into account the specific requirements of the application at hand.

Table 6: Classification accuracy (%) of SPIKEGCL on six datasets with different encoder architectures.
The best result for each dataset is highlighted in red.

Computers Photo CS Physics arXiv MAG
SAGE 84.4±0.9 91.4±0.3 90.8±0.9 94.6±0.1 65.7±0.7 28.2±0.1

GAT 87.9±0.6 92.4±0.5 90.5±0.8 92.6±0.3 68.0±0.1 30.8±0.8

GCN 88.9±0.3 93.0±0.1 92.8±0.1 95.2±0.6 70.9±0.1 32.0±0.3

Effect of encoder architectures. Different GNN architectures offer SPIKEGCL different capabilities
in learning graph structure data. In our experiments, we used GCN as the default architecture in the
encoder, our framework allows various choices of GNN architectures though. In order to explore
the impact of different GNN architectures on the performance of SPIKEGCL, we conduct ablation
studies on three citation graphs with different GNN encoders, including SAGE Hamilton et al. (2017),
GAT Veličković et al. (2018), and GCN Kipf & Welling (2016). Table 6 shows that GCN is the most
effective architecture for SPIKEGCL, which is consistent with prior works Velickovic et al. (2019);
Li et al. (2023a); Thakoor et al. (2021); Zhang et al. (2021). However, it is worth noting that other
GNN architectures may still provide valuable insights in different scenarios or for different types of
data. Therefore, the choice of GNN architecture should be made based on the specific requirements
of the task at hand.

Effect of spiking neurons. We provide a series of spiking neurons as building blocks for SNNs,
including IF Salinas & Sejnowski (2002), LIF Gerstner et al. (2014), and PLIF Fang et al. (2020).
The results are shown in Table 7. It is observed that a simple IF neuron is sufficient for SPIKEGCL to
achieve good performance. By introducing a more biologically plausible leaky term, LIF increases the
sparsity of output representations and achieves better performance. Additionally, the leaky term can
be a learnable parameter, which endows the network with better flexibility and biological plausibility.
Therefore, in most cases, PLIF achieves slightly better performance than LIF. Overall, the choice of

21

Published as a conference paper at ICLR 2024

Table 7: Classification accuracy (%) of SPIKEGCL on six datasets with different spiking neurons.
The best result for each dataset is highlighted in red.

Computers Photo CS Physics arXiv MAG
IF 88.1±0.6 92.9±0.2 91.2±0.6 95.0±0.5 68.2±0.6 31.0±0.5

LIF 88.6±0.1 92.9±0.1 92.1±0.3 95.3±0.1 68.7±0.8 29.8±0.5

PILF 88.9±0.3 93.0±0.1 92.8±0.1 95.2±0.6 70.9±0.1 32.0±0.3

spiking neuron should be based on the specific requirements of the task and the available hardware.
For example, IF neurons may be more suitable for tasks with lower computational requirements,
while LIF or PLIF neurons may be more suitable for tasks that require higher levels of sparsity or
greater biological plausibility.

Figure 7: Accuracy (%) and output sparsity (%) of SPIKEGCL in four datasets.

Effect of threshold Vth. The neuron threshold directly controls the firing rates of spiking neurons
and, thereby, the output sparsity. We conducted an ablation study on Vth on four datasets to investigate
its effect, as shown in Figure 7. We observed that the performance of SPIKEGCL is sensitive to the
value of Vth on two dense datasets, Computers and Photo. When Vth is too low, the output sparsity
may be too high, leading to a loss of information and compromised performance. When Vth is too
high, the firing rates of the spiking neurons may be too low, resulting in a lack of discriminative
power and reduced performance. In contrast, the performance of SPIKEGCL is stable with different
Vth on CS and Physics, two relatively sparse datasets. This suggests that a dense dataset requires a
smaller Vth to capture the underlying structure. We can also see that the output spikes become sparser
as Vth increases. Overall, our ablation study demonstrates the importance of carefully selecting the
value of Vth to achieve optimal performance with SPIKEGCL. The optimal value of Vth may depend
on the specific dataset; therefore, it should be chosen based on the empirical evaluation.

Figure 8: Convergence
speed comparison among
SPIKEGCL and full-precision
methods. Blue: negative-
sample-based methods; green:
negative-sample-free methods

Convergence. We compared the convergence speed of SPIKEGCL
with full-precision GCL baselines on Computers, which is shown in
Figure 8. It is observed that negative-sample-free methods generally
converged faster than negative-sample-based ones. However, they
still required sufficient epochs to gradually improve their perfor-
mance. In contrast, SPIKEGCL that trained in a blockwise training
paradigm demonstrates a significantly faster convergence speed over
full-precision methods. In particular, 1-2 epochs are sufficient for
SPIKEGCL to learn good representations. Overall, our experiments
demonstrate the effectiveness of SPIKEGCL in improving the con-
vergence speed of SNNs and provide insights into the benefits of the
blockwise training paradigm.

Connections between original input features and output spikes.
To gain a deeper understanding of SPIKEGCL, we assess the sim-
ilarity between input features (partitioned by T groups) and the
corresponding output spikes using the Centered Kernel Alignment
metric. Centered Kernel Alignment (CKA) Nguyen et al. (2021) serves as a representation similarity
metric extensively utilized for comprehending the representations learned by neural networks. CKA
takes two representations X and Y as input and calculates their normalized similarity, measured in

22

Published as a conference paper at ICLR 2024

(a) Photo

(b) CS

(c) Physics

Figure 9: Comparison of SpikeGCL and other graph SNNs in terms of accuracy (%), training time
(s), memory usage (GB), and energy consumption (mJ), respectively.

terms of the Hilbert-Schmidt Independence Criterion (HSIC):

CKA(K,L) =
HSIC0(K,L)√

HSIC0(K,K)HSIC0(L,L)
(33)

Where K and L are similarity matrices of X and Y respectively. The results on Computers and
Photo are presented in Figure 10. As evident from the results, each group of features exhibits a
strong correlation with the corresponding output spikes while demonstrating minimal correlation
with spikes in other time steps. This is reflected in the CKA similarity matrices, with values along the
diagonal being notably larger than those elsewhere. The results have also suggested that the learned
binary representations are disentangled from each other, thereby providing improved expressiveness
in representing the input features.

Figure 10: CKA similarity between different input feature groups and output spike groups.

Effect of reset mechanisms. We additionally include the ablation results on reset mechanisms of
different spiking neurons, as shown in Table 8. As can be observed, the performance of SPIKEGCL

23

Published as a conference paper at ICLR 2024

Table 8: Classification accuracy (%) of SPIKEGCL on four datasets with different reset mechanisms
and spiking neurons. The best result for each dataset is highlighted in red.

Computers Photo CS Physics

zero-reset + IF 88.0±0.2 92.7±0.3 91.2±0.1 95.0±0.2

subtract-reset + IF 88.1±0.1 92.9±0.2 91.2±0.1 95.0±0.1

zero-reset + LIF 88.5±0.1 92.9±0.3 92.0±0.2 95.2±0.1

subtract-reset + LIF 88.6±0.1 92.9±0.1 92.1±0.1 95.3±0.2

zero-reset + PLIF 89.0±0.3 92.5±0.3 92.1±0.1 95.2±0.1

SPIKEGCL (subtract-reset + PLIF) 88.9±0.3 93.0±0.1 92.8±0.1 95.2±0.6

does not necessarily depend on the specific implementation details of the reset mechanisms. The
performance gap between the best architecture and the worst is not significant. Even a simple IF
neuron with a zero-reset mechanism can achieve satisfactory performance.

24

	Introduction
	Related Work
	Preliminaries
	Spiking Graph Contrastive Learning (SpikeGCL)
	Grouping node features
	Binarizing graph representations
	Overall framework
	Blockwise surrogate gradient learning

	Theoretical guarantees
	Experiments
	Conclusion
	Theory and proof
	Vanishing gradients in surrogate learning
	Algorithm
	Discussion
	Discussion on complexity
	Limitation

	Detailed experimental settings
	Additional empirical results

