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Abstract
Despite the great interest in the bandit problem,
designing efficient algorithms for complex models
remains challenging, as there is typically no ana-
lytical way to quantify uncertainty. We propose
Multiplier Bootstrap-based Exploration (MBE), a
novel exploration strategy that is applicable to
any reward model amenable to weighted loss min-
imization. We prove both instance-dependent and
instance-independent rate-optimal regret bounds
for MBE in sub-Gaussian multi-armed bandits.
With extensive simulation and real-data experi-
ments, we show the generality and adaptivity of
MBE.

1. Introduction
The bandit problem has found wide applications in various
areas such as clinical trials (Durand et al., 2018), finance
(Shen et al., 2015), recommendation systems (Zhou et al.,
2017), among others. Accurate uncertainty quantification
is the key to address the exploration-exploitation trade-off.
Most existing bandit algorithms critically rely on certain an-
alytical property of the imposed model (e.g., linear bandits)
to quantify the uncertainty and derive the exploration strat-
egy. Thompson Sampling (TS, Thompson, 1933) and Upper
Confidence Bound (UCB, Auer et al., 2002) are two promi-
nent examples, which are typically based on explicit-form
posterior distributions or confidence sets, respectively.

However, in many real problems, the reward model is
fairly complex: e.g., a general graphical model (Chapelle &
Zhang, 2009) or a pipeline with multiple prediction modules
and manual rules. In these cases, it is typically impossible
to quantify the uncertainty in an analytical way, and frame-
works such as TS or UCB are either methodologically not
applicable or computationally infeasible.
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Motivated by the real needs, we are concerned with the
following question:

Can we design a practical bandit algorithm framework that
is general, adaptive, and computationally tractable, with
certain theoretical guarantee?

A straightforward idea is to apply the bootstrap method
(Efron, 1992), a widely applicable data-driven approach for
measuring uncertainty. However, as discussed in Section 2,
most existing bootstrap-based bandit algorithms are either
heuristic without a theoretical guarantee, computationally
intensive, or only applicable in limited scenarios.

Contribution. Our contributions are three-fold. First,
to address the aforementioned limitations, we propose a
general-purpose bandit algorithm framework, Multiplier
Bootstrap-based Exploration (MBE). MBE is based on multi-
plier bootstrap (Van Der Vaart & Wellner, 1996), an easy-
to-adapt bootstrap framework that only requires randomly
weighted data points. We further show that a naive applica-
tion of multiplier bootstrap may result in linear regret, and
we introduce a suitable way to add additional perturbations
for sufficient exploration. The main advantage of MBE is that
it is general: it is applicable to any reward model amenable
to weighted loss minimization, without need of analytical-
form uncertainty quantification or case-by-case algorithm
design. As a data-driven exploration strategy, MBE is also
adaptive to different environments.

Second, theoretically, we prove near-optimal regret bounds
for MBE under sub-Gaussian multi-armed bandits (MAB), in
both the instance-dependent and the instance-independent
sense. Compared with all existing results for bootstrap-
based bandit algorithms, our result is strictly more general
(see Table 1), since existing results only apply to some
special cases of sub-Gaussian distributions. To overcome
the technical challenges, we proved a novel concentration
inequality for some function of sub-exponential variables,
and also developed the first finite-sample concentration and
anti-concentration analysis for multiplier bootstrap, to the
best of our knowledge. Given the broad applications of
multiplier bootstrap in statistics and machine learning, our
theoretical analysis is of independent interest.

This work does not relate to the positions of Runzhe Wan,
Branislav Kveton and Rui Song at Amazon.
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Table 1: Comparisons between several bootstrap- and perturbation-based bandit algorithms. All papers derive near-optimal regret bounds
in MAB, with different reward distribution requirements. To compare the computational cost, we focus on MAB to illustrate, and consider
Algorithm 2 for MBE. See Section 2 for more details of discussions in this table.

Exploration
Source

Methodology
Generality

Theory
Requirement

Computation
Cost

MBE (this paper)
intrinsic
& extrinsic general sub-Gaussian O(KT )

GIRO (Kveton et al., 2019b)
intrinsic
& extrinsic general Bernoulli O(T 2)

ReBoot (Wang et al., 2020; Wu et al., 2022)
intrinsic
& extrinsic

fixed & finite
set of arms Gaussian O(KT )

PHE (Kveton et al., 2019a; 2020a;b) only extrinsic general bounded O(KT )

Third, with extensive simulation and real-data experiments,
we demonstrate that MBE yields comparable performance
with existing algorithms in different MAB settings and three
real-world problems (online learning to rank, online combi-
natorial optimization, and dynamic slate optimization). This
supports that MBE is easily generalizable, as it requires mini-
mal modifications and derivations to match the performance
of those near-optimal algorithms specifically designed for
each problem. Moreover, we also show that MBE adapts to
different environments and is relatively robust, due to its
data-driven nature.

2. Related Work
The most popular bandit algorithms, arguably, include ε-
greedy (Watkins, 1989), TS, and UCB. ε-greedy is simple
and thus widely used. However, its exploration strategy is
not aware of the uncertainty in data and thus is known to
be statistically sub-optimal. TS and UCB rely on posteriors
and confidence sets, respectively. Yet, their closed forms
only exist in limited cases, such as MAB or linear bandits.
For a few other models (such as generalized linear model
or neural nets), we know how to construct the approximate
posteriors or confidence sets (Filippi et al., 2010; Li et al.,
2017; Phan et al., 2019; Kveton et al., 2020a;b) with the-
oretical guarantees, though the corresponding algorithms
are usually costly or conservative. In more general cases,
it is often not clear how to adapt UCB and TS in a valid
and efficient way. Although approximate TS can be done
via approximate posterior inference methods (e.g., particle
filtering, Markov chain Monte Carlo, or variational infer-
ence) (Gopalan et al., 2014; Kawale et al., 2015; Wan et al.,
2021; Urteaga & Wiggins, 2018; Yu et al., 2020), they do
not come with guarantees. Moreover, the dependency on
the probabilistic model assumptions (e.g., the reward dis-
tribution family or the noise level) also pose challenges to
being robust.

To enable wider applications of bandit algorithms, several
bootstrap-based (and related perturbation-based) methods

have been proposed in the literature. Most algorithms are
TS-type, by replacing the posterior with a bootstrap distri-
bution. We next review the related papers, and summarize
those with near-optimal asymptotic regret bounds in Table
1. We divide the sources of exploration into (i) leveraging
the intrinsic randomness in the observed data (e.g., by ran-
domizing the subset of history used for training) and (ii)
manually adding extrinsic perturbations that are indepen-
dent of the observed data (e.g., adding additive Gaussian
noise to observed rewards).

Arguably, the non-parametric bootstrap is the most well-
known bootstrap method, which works by re-sampling data
with replacement. Vaswani et al. (2018) propose a version of
non-parametric bootstrap with forced exploration to achieve
a O(T 2/3) regret bound in Bernoulli MAB. GIRO proposed
in Kveton et al. (2019b) successfully achieves a rate-optimal
regret bound in Bernoulli MAB, by adding Bernoulli pertur-
bations to non-parametric bootstrap. However, due to the
re-sampling nature of non-parametric bootstrap, it is chal-
lenging to implement it efficiently beyond Bernoulli MAB
(see Section 4.3). Specifically, the computational cost of
re-sampling scales quadratically in T . Riou & Honda (2020)
apply Bayesian bootstrap (Rubin, 1981), which is a smooth
version of non-parametric Bootstrap. An asymptotically op-
timal regret bound is proved for MAB with bounded rewards.
However, only MAB is studied and similar computational
challenge exists in general cases.

Another line of research is the residual bootstrap-based ap-
proach (ReBoot) (Hao et al., 2019; Wang et al., 2020; Tang
et al., 2021; Wu et al., 2022). For each arm, ReBoot ran-
domly perturbs the residuals of the corresponding observed
rewards with respect to the estimated model to quantify the
uncertainty for its mean reward. Although these methods
also use random weights, they are applied to residuals, and
thus are fundamentally different from our work. The lim-
itation is that, by design, this approach is only applicable
to problems with a fixed and finite set of arms, since the
residuals are attached closely to each arm (see Appendix
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A.4 for more details).

The perturbed history exploration (PHE) algorithm (Kveton
et al., 2019a; 2020a;b) is also related. PHE works by adding
additive noise to the observed rewards. Osband et al. (2019)
apply similar ideas to reinforcement learning. However, PHE
has two main limitations. First, for models where adding
additive noise is not feasible (e.g., decision trees), PHE is
not applicable. Second, as demonstrated in both Wang et al.
(2020) and our experiments, the fact that PHE relies on only
the extrinsically injected noise for exploration makes it less
robust. For a complex structured problem, it may not be
clear how to add the noise in a sound way (Wang et al.,
2020). In contrast, it is typically more natural (and hence
easier to be accepted) to leverage the intrinsic randomness
in the observed data.

Finally, we note that multiplier bootstrap has been consid-
ered in the bandit literature, mostly as a computationally
efficient approximation to non-parametric bootstrap studied
in those papers. Eckles & Kaptein (2014) study the direct
adaption of multiplier bootstrap (see Section 4.1) in simu-
lation, and its empirical performance in contextual bandits
is studied later (Tang et al., 2015; Elmachtoub et al., 2017;
Riquelme et al., 2018; Bietti et al., 2021). However, no
theoretical guarantee is provided in these works. In fact,
as demonstrated in Section 4.1, such a naive adaptation
may have a linear regret. Osband & Van Roy (2015) show
that, in Bernoulli MAB, a variant of multiplier bootstrap is
mathematically equivalent to TS. No further theoretical or
numerical results are provided except for this special case.
Our work is the first systematic study of multiplier bootstrap
in bandits. Our unique contributions include: we identify
the potential failure of naively applying multiplier bootstrap,
highlight the importance of additional perturbations, design
a general algorithm framework to make this heuristic idea
concrete, provide the first theoretical guarantee in general
MAB settings, and conduct extensive numerical experiments
to study its generality and adaptivity.

3. Preliminary
Setup. We consider a general stochastic bandit problem.
For any positive integer M , let [M ] = {1, . . . ,M}. At each
round t ∈ [T ], the agent observes a context vector xt (it
is empty in non-contextual problems) and an action set At,
then chooses an action At ∈ At, and finally receives the
corresponding reward Rt = f(xt, At) + εt, Here, f is an
unknown function and εt is the noise term. Without loss of
generality, we assume f(xt, At) ∈ [0, 1]. We note that the
realized reward Rt does not need to be bounded. The goal
is to minimize the cumulative regret

RegT =

T∑
t=1

E
[

max
a∈At

f(xt, a)− f(xt, At)
]
.

At the end of round t, with an existing dataset Dt =
{(xl, Al, Rl)}l∈[t], to decide the action At+1, most algo-
rithms typically first estimate f in some function class F by
solving a weighted loss minimization problem (also called
weighted empirical risk minimization or cost-sensitive train-
ing)

f̂ = arg min
f∈F

1

t

t∑
l=1

ωlL
(
f(xl, Al), Rl

)
+ J(f). (1)

Here, L is a loss function (e.g., `2 loss or negative log-
likelihood), ωl is the weight of the lth data point, and J
is an optional penalty function. We consider the weighted
problem as it is general and related to our proposal be-
low. One can just set ωl ≡ 1 to get the unweighted prob-
lem. As the simplest example, consider the K-armed ban-
dit problem where xl is empty and Al = [K]. Let L
be the `2 loss, J ≡ 0, and f(xl, Al) ≡ rAl where rk is
the mean reward of the k-th arm. Then, (1) reduces to
arg min{r1,...,rK}

∑t
l=1 ωl(Rl − rAl)2, which gives the es-

timator r̂k = (
∑
l:Al=k

ωl)
−1
∑
l:Al=k

ωlRl, i.e., the arm-
wise weighted average. Similarly, in linear bandits, (1)
reduces to the weighted least-square problem (see Appendix
A.2 for details).

Challenges. The estimation of f , together with the related
uncertainty quantification, forms the foundation of most
bandit algorithms. In the literature, F is typically a class of
models that permit closed-form uncertainty quantification
(e.g., linear models, Gaussian processes, etc.). However, in
many real applications, the reward model can yield a fairly
complicated structure, e.g., a hierarchical pipeline with both
classification and regression modules. Manually specified
rules are also common part of the model. It is challenging
to quantify the uncertainty of these complicated models in
analytical forms. Even when feasible, the dependency on
the probabilistic model assumptions also pose challenges to
being robust.

Therefore, in this paper, we focus on the bootstrap-based
approach due to its generality and data-driven nature. Boot-
strapping, as a general approach to quantify the model uncer-
tainty, has many variants. The most popular one, arguably, is
non-parametric bootstrap (used in GIRO), which constructs
bootstrap samples by re-sampling the dataset with replace-
ment. However, due to the re-sampling nature, it is com-
putationally intense (see Section 4.3 for more discussions).
In contrast, multiplier bootstrap (Van Der Vaart & Wellner,
1996), as an efficient and easy-to-implement alternative, is
popular in statistics and machine learning.

Multiplier bootstrap. The main idea of multiplier boot-
strap is to learn the model using randomly weighted data
points. Specifically, given a multiplier weight distribu-
tion ρ(ω), for every bootstrap sample, we first randomly
sample {ωMB

l }tl=1 ∼ ρ(ω) at round t, and then solve (1)
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with ωl = ωMB
l to obtain f̂MB . Repeat the procedure

and the distribution of f̂MB forms the bootstrap distribu-
tion that quantifies our uncertainty over f . The popular
choices of ρ(ω) includeN (1, σ2

ω), Exp(1), Poisson(1), and
the double-or-nothing distribution 2× Bernoulli(0.5).

4. Multiplier Bootstrap-based Exploration
4.1. Failure of the Naive Adaption of Multiplier

Bootstrap

To design an exploration strategy based on multiplier boot-
strap, a natural idea is to replace the posterior distribution
in TS with the bootstrap distribution. Specifically, at every
time point, we sample a function f̂ following the multiplier
bootstrap procedure as described in Section 3, and then take
the greedy action arg maxa∈At f̂(xt, a). However, perhaps
surprisingly, such an adaptation may not be valid. The main
reason is that the intrinsic randomness in a finite dataset
is, in some cases, not enough to guarantee sufficient explo-
ration. For example, the support of the bootstrap distribution
cannot go outside the convex hull of the observed rewards.
We illustrate this further with the following toy example.
Example 1. Consider a two-armed Bernoulli bandit. Let
the mean rewards of the two arms be p1 and p2, respectively.
Without loss of generality, assume 1 > p1 > p2 > 0. Let
P(ω = 0) = 0. Then, with non-zero probability, an agent
following the naive adaption of multiplier bootstrap (break-
ing ties randomly and initializing in an optimistic way; see
Algorithm 5 in Appendix A.3 for details) pulls arm 1 only
once. Therefore, the agent suffers a linear regret.

Proof. We first define two events

E1 = {At = 1, R1 = 0}, E2 = {A2 = 2, R2 = 1}.

By design, at time t = 1, the agent randomly choose an arm
and hence will pull arm 1 with probability 0.5. Then the
observed reward R1 is 0 with probability 1− p1. Therefore,
P(E1) = 0.5(1 − p1). Conditioned on E1, at t = 2, the
agent will pull arm 2 (since multiplying R1 = 0 with any
weight always gives 0), then it will observe reward R2 = 1
with probability p2. Conditioned on E1 ∩ E2, by induction,
the agent will pull arm 2 for any t > 2. This is because
the only reward record for arm 1 is R1 = 0 and hence its
weighted average is always 0, which is smaller than the
weighted average for arm 2, which is at least positive. In
conclusion, with probability at least 0.5×(1−p1)×p2 > 0,
the algorithm takes the optimal arm 1 only once.

4.2. Main Algorithm

The failure of the naive application of multiplier bootstrap
implies that some additional randomness is needed to ensure
sufficient exploration. In this paper, we consider achieving
that by adding pseudo-rewards, an approach that proves its

effectiveness in a few other setups (Kveton et al., 2019b;
Wang et al., 2020). The intuition is as follows. The under-
exploration issue happens when, by randomness, the ob-
served rewards are in the low-value region (compared with
the expected reward). Therefore, if we can blend in some
data points with rewards that have a relatively wide cover-
age, then the agent would have a higher chance to explore.

These discussions motivate the design of our main algo-
rithm, Multiplier Bootstrap-based Exploration (MBE), as in
Algorithm 1. Specifically, at every round, in addition to the
observed reward, we additionally add two pseudo-rewards
with value 0 and 1. The pseudo-rewards are associated with
the pulled arm and the context (if exists). Then, we solve
a weighted loss minimization problem to update the model
estimation (line 8). The weights are first sampled from a
multiplier distribution (line 7), and then those of pseudo-
rewards are additionally multiplied by a tuning parameter
λ. In MAB, the estimates are arm-wise weighted average of
all (observed or pseudo-) rewards

Y k =

∑
`:A`=k

(ω`Rk,` + λω′` × 1 + λω′′` × 0)∑
`:A`=k

(ω` + λω′` + λω′′` )
(2)

for k ∈ [K], where multiplier weights {ω`, ω′`, ω′′` }tl=1 ∼
ρ(ω). See Appendix A.1 for details.

We make three remarks on the algorithm design. First, we
choose to add pseudo-rewards at the boundaries of the mean
reward range (i.e., [0, 1]), since such a design naturally in-
duces a high variance (and hence more exploration). Adding
pseudo-rewards in other manners is also possible. Second,
the tuning parameter λ controls the amount of extrinsic per-
turbation and determines the degree of exploration (together
with the dispersion of ρ(ω)). In Section 5, we give a theoret-
ically valid range for λ. Finally and critically, besides guar-
anteeing sufficient exploration, we need to make sure the op-
timal arm can still be identified (asymptotically) after adding
the pseudo-rewards. Intuitively, this is guaranteed, since we
shift and scale the (asymptotic) mean reward from f(x, a)
to
(
f(x, a)+λ

)
/(1+2λ) = f(x, a)/(1+2λ)+λ/(1+2λ),

which preserves the order between arms. A detailed analysis
for MAB can be found in Appendix A.1.

We conclude this section by re-visiting Example 1 to provide
some insights into how the pseudo-rewards help.

Example 1 (Continued). Even under the event E1 ∩ E2,
Algorithm 1 explores. To see this, consider an example with
multiplier distribution is 2× Bernoulli(0.5). Then

P(A3 = 1) ≥ P(Y 1 > Y 0)

= P
(

λω′1
ω1 + λω′1 + λω′′1

>
ω2 + λω′2

ω2 + λω′2 + λω′′2

)
≥ P(ω′1 = 2, ω1 = ω′′1 = ω2 = ω′2 = ω′′2 = 0)

= (1/2)6.
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Therefore, the agent can still choose the optimal arm.

Algorithm 1: General Template for MBE
Data: Function class F , loss function L, (optional)

penalty function J , multiplier weight
distribution ρ(ω), tuning parameter λ

2 Initialize f̂
3 for t = 1, . . . , T do
4 Observe context xt and action set At
5 Take action At = arg maxa∈At f̂(xt, A) (break

ties randomly)
6 Observe reward Rt
7 Sample the multiplier weights

{ωl, ω′l, ω′′l }tl=1 ∼ ρ(ω)
8 Solve the weighted loss minimization problem

f̂ = arg min
f∈F

t∑
l=1

[
ωlL

(
f(xl, Al), Rl

)
+ λω′lL

(
f(xl, Al), 0

)
+ λω′′l L

(
f(xl, Al), 1

)]
+ J(f).9

10 end

4.3. Computationally-Efficient Implementation

Efficient computation is critical for real applications of ban-
dit algorithms. One potential limitation of Algorithm 1 is
the computational burden: at every decision point, we need
to re-sample the weights for all historical observations (line
8). This leads to a total computational cost of order O(T 2),
similar to GIRO.

Fortunately, one prominent advantage of multiplier boot-
strap over other bootstrap methods (such as non-parametric
bootstrap or residual bootstrap) is that the (approximate)
bootstrap distribution can be efficiently updated in an online
manner, so that the per-round computation cost does not
grow over time. Suppose we have a datasetDt at time t, and
denote B(Dt) as the corresponding bootstrap distribution
for f . With multiplier bootstrap, it is feasible to update
B(Dt+1) approximately based on B(Dt). We detail the
procedure below and elaborate more in Algorithm 2.

Specifically, we maintain B different models {f̂b,t}Bb=1 and
the corresponding observed history

Hb = {(xl, Al, Rl, ωl,b)}tl=1

and pseudo-history

H′b = {(xl, Al, 0, ω′l,b)}tl=1 ∪ {(xl, Al, 1, ω′′l,b)}tl=1

for every b ∈ [B]. {f̂b,t}Bb=1 can be regarded as sampled
from B(Dt) and hence the empirical distribution over them

is an approximation to the bootstrap distribution. At every
time point t, for each replicate b, we only need to sample
one weight for the new data point and then update f̂b,t as
f̂b,t+1. Then, {f̂b,t+1}Bb=1 are still B valid samples from
B(Dt+1) and hence still a valid approximation. We note
that, since we only have one new data point, the updating of
f can typically be done efficiently (e.g., with closed-form
updating or via online gradient descent). The per-round
computational cost is hence independent of t.

Such an approximation is a common practice in the online
bootstrap literature and can be regarded as an ensemble
sampling-type algorithm (Lu & Van Roy, 2017; Qin et al.,
2022). The hyper-parameter B is typically not treated as a
tuning parameter but depends on the available computational
resource (Hao et al., 2019). In our numerical experiments,
this practical variant shows desired performance with B =
50. Moreover, the algorithm is embarrassingly parallel and
also easy to implement: given an existing implementation
for estimating f (i.e., solving (1)), the major requirement is
to replicate it for B times and use random weights for each.
This feature is attactive in real applications.

Algorithm 2: Practical Implementation of MBE
Data: Number of bootstrap replicates B, function class

F , loss function L, (optional) penalty function J ,
weight distribution ρ(ω), tuning parameter λ

2 LetHb = {} be the history andH′b = {} be the
pseudo-history, for any b ∈ [B]

3 Initialize f̂b,0 for any b ∈ [B]
4 for t = 1, . . . , T do
5 Observe context xt and action set At
6 Sample an index bt uniformly from {1, . . . , B}
7 Offer At = arg maxA∈At f̂bt,t−1(xt, A) (break ties

randomly)
8 Observe reward Rt
9 for b = 1, . . . , B do

10 Sample the weights ωt,b, ω′t,b, ω
′′
t,b ∼ ρ(ω).

11 UpdateHb = Hb ∪
{

(xt, At, Rt, ωt,b)
}

and
H′b = H′b∪

{
(xt, At, 0, ω

′
t,b), (xt, At, 1, ω

′′
t,b)
}

12 Solve the weighted loss minimization problem

f̂b,t = arg min
f∈F

t∑
l=1

[
ωl,bL

(
f(xl, Al), Rl

)
+ λω′l,bL

(
f(xl, Al), 0

)
+ λω′′l,bL

(
f(xl, Al), 1

)]
+ J(f).

13 end
14 end
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5. Regret Analysis
In this section, we provide the regret bound for Algorithm 1
under MAB with sub-Gaussian rewards. We regard this as
the first step towards the theoretical understanding of MBE,
and leave the analysis of more general settings for future
work. We call a random variable X as σ-sub-Gaussian if
E exp{t(X − EX)} ≤ exp{t2σ2/2} for any t ∈ R. The
instantiation of Algorithm 1 under MAB is presented as
Algorithm 3 in the appendix.

Theorem 5.1. Consider a K-armed bandit, where the re-
ward distribution of arm k is 1-sub-Gaussian with mean µk.
Suppose arm 1 is the unique best arm that has the highest
mean reward and ∆k = µ1−µk. Take the multiplier weight
distribution as N (1, σ2

ω). Let the tuning parameters satisfy

λ ≥
(
1 + σ2

ω/4 + 4/σω
)

+
√

4 (1 + 4/σω) /σω.

Then, the problem-dependent regret is upper bounded by

RegT ≤
K∑
k=2

{
7∆k+

55
[
C∗1 (λ, σω) + C∗2 (λ, σω)

]
∆k

log T
}
,

and the problem-independent regret is bounded by

RegT ≤ 7Kµ1 + C∗1 (λ, σω)K log T

+ 2
√
C∗2 (λ, σω)KT log T ,

where

C∗1 (λ, σω) = 8
√

2C∗3 (λ, σω) + 38σ2
ω,

C∗2 (λ, σω) = 6λ2 +
[
45(3 + σ2

ω)λ4C∗3 (λ, σω) + 38σ2
ω

]
,

C∗3 (λ, σω) =
log
[
(1 + 15σ−2

ω + 3σω + 10σ2
ω)λ2

]
3 log 2

+ 1.

The two regret bounds are known as near-optimal (up to a
logarithm term) in both the problem-dependent and problem-
independent sense (Lattimore & Szepesvári, 2020). Notably,
recall that the Gaussian distribution and all bounded distri-
butions belong to the sub-Gaussian class. Therefore, as
reviewed in Table 1, our theory is strictly more general than
all existing results for bootstrap-based MAB algorithms.

Technical challenges. It is particularly challenging to
analyze MBE for two reasons. First, the probabilistic analy-
sis of multiplier bootstrap itself is technically challenging,
since the same random weights appear in both the denomi-
nator and the numerator (recall that MBE uses the weighted
averages (2) to select actions in MAB). It is notoriously
complicated to analyze the ratio of random variables, espe-
cially when they are correlated. Besides, existing bootstrap-
based papers rely on the properties of specific parametric
reward classes (e.g., Bernoulli in Kveton et al. (2019b) and
Gaussian in Wang et al. (2020)), while we lose these nice
structures when considering sub-Gaussian rewards.

To overcome these challenges, we denote the first
s rewards from pulling arm k as Hk,s with the i-th
observation denoted as Rk,i, and start with carefully
defining two good events Gk,s and Ak,s. Here, Gk,s
denotes the event that the weighted average Y k,s =∑s
i=1 [ωiRk,i + ω′i(1× λ) + ω′′i (0× λ)] /

∑s
i=1(ωi +

λω′i + λω′′i ) is close to the unweighted average (with
pseudo-rewards) R

∗
k,s =

∑s
i=1(Rk,i + 1 × λ + 0 ×

λ)/
∑s
i=1(1 + λ + λ), and Ak,s represents the event that

R
∗
k,s is close to its population mean (µk + λ)/(1 + 2λ).

It is worthy to note that {ωi, ω′i, ω′′i }si=1 are resampled
from ρ(ω) at each round. To bound the probability of
and the regret conditioned on the bad event, we face two
major technical challenges. First, when transforming the
ratio into an analyzable form, a summation of correlated
sub-Gaussian and sub-exponential variables appears and is
hard to analyze. We carefully design and analyze a novel
event to remove the correlation and the sub-Gaussian terms
(see proof of Lemma D.3). Second, the proof needs a new
concentration inequality for functions of sub-exponential
variables that does not exist in the literature. We obtain such
a new concentration inequality (Lemma E.4) via careful
analysis of sub-exponential distributions.

To the best of our knowledge, our proof provides the first
finite-sample concentration and anti-concentration analysis
for multiplier bootstrap, which has broad applications in
statistics and machine learning.

Extension. Theorem 5.1 is proved with Gaussian weights
to simplify analysis. Indeed, to analyze multiplier Boot-
strap, we need to analyze

∑
`:A`=k

ω`Rk,` conditioned on
the reward history, which is the sum of scaled i.i.d. vari-
ables, and Gaussian distribution has nice analytical prop-
erties for us to derive the bound. We hypothesize our re-
sult can be extended to other weight distributions that sat-
isfy similar anti-concentration and concentration proper-
ties, such as C exp{−t2/(2σ2)} ≤ P(|ωi − 1| > t) ≤
C exp{−t2/(2σ2)} with positive C,C, σ, σ. However, we
expect some analytical challenges.

Tuning parameters. In Theorem 5.1, MBE has two tuning
parameters, λ and σω. Intuitively, λ controls the amount
of external perturbation and σω controls the magnitude of
exploration from bootstrap. In general, higher values of
these two parameters facilitate exploration but also lead to
a slower convergence. The condition on λ in Theorem 5.1
requires that (i) λ is not too small and (ii) the joint effect of
λ and σω is not too small. Both are intuitive. In practice,
this could be loose: e.g., it requires λ ≥ 5.25 + 2

√
5 when

σω = 1. As we observe in Section 6, MBE with a smaller λ
(e.g., 0.5) still empirically performs well.
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6. Experiments
In this section, we empirically evaluate MBE with both simu-
lation (Section 6.1) and real datasets (Section 6.2).

6.1. MAB Simulation

We first experiment with simulated MAB instances. The
goal is to (i) further validate our theoretical findings, (ii)
check whether MBE can yield comparable performance with
standard methods, and (iii) study the robustness and adap-
tivity of MBE. We also experimented with linear bandits and
the main findings are similar. To save space, we defer these
results to Appendix B.1.

We compare MBE with TS (Thompson, 1933), PHE (Kveton
et al., 2019a), ReBoot (Wang et al., 2020), and GIRO (Kve-
ton et al., 2019b). The last three algorithms are the existing
bootstrap- or perturbation-type algorithms reviewed in Sec-
tion 2. Specifically, PHE explores by perturbing observed
rewards with additive noise, without leveraging the intrinsic
uncertainly in the data, ReBoot explores by perturbing the
residuals of the rewards observed for each arm, and GIRO

re-samples observed data points with replacement. In all
experiments below, the weights of MBE are sampled from
N (1, σ2

ω) 1. We fix λ = 0.5 and run MBE with three dif-
ferent values of σ2

ω: 0.5, 1 and 1.5. We also compare with
the naive adaption of multiplier bootstrap (i.e., no pseudo-
rewards; denoted as Naive MB). We run Algorithm 2 with
B = 50 replicates.

We first study 10-armed bandits, where the mean reward
of each arm is independently sampled from Beta(1, 8). We
consider three reward distributions, including Bernoulli,
Gaussian, and exponential. For Gaussian MAB, the reward
noise is sampled from N (0, 1). The other two distributions
are determined by their means. For TS, we always use the
correct reward distribution class and its conjugate prior. The
prior mean and variance are calibrated using the true model.
Therefore, TS is a strong baseline. For GIRO and ReBoot,
we use the default implementations as they work well. For
PHE, the original paper adds Bernoulli perturbation since it
only studies bounded reward distributions. We extend PHE

by sampling additive noise from the same distribution fam-
ily as the true rewards, as done in Wu et al. (2022). GIRO,
ReBoot, and PHE all have one tuning parameter to con-
trol the degree of exploration. We tune it over {2k−4}6k=0

and report the best performance for each method. Without
tuning, these algorithms generally do not perform well as
originally proposed, due to differences in the settings. We
tuned Naive MB as well.

Results. Results over 100 runs are reported in Figure 1.

1We also experimented with other weight distributions with
similar main conclusions. Using Gaussian weights allows us to
study impact of different multiplier magnitudes more clearly.

Our findings can be summarized as follows. First, with-
out knowledge of the problem settings (e.g., the reward
distribution family and its parameters, and the prior distribu-
tion) and without heavy tuning, MBE performs favorably and
close to TS. Second, pseudo-rewards are indeed important
in exploration, otherwise the algorithm suffers a linear re-
gret. Third, MBE has a stable performance with different σω
while the other methods are tuned for their best performance.
This is thanks to the data-driven nature of MBE. Finally, the
other three general-purpose exploration strategies perform
reasonably after tuning, as expected. However, GIRO is
computationally intense. For example, in Gaussian bandits,
the time cost of GIRO is 2 minutes while all the other algo-
rithms can complete within 10 seconds. The computational
burden is due to the limitation of non-parametric bootstrap
(see Section 4.3). ReBoot also performs reasonably, yet by
design it is not easy to extend to more complex problems
(e.g., problems in Section 6.2).

Adaptivity. PHE relies on sampling additive noise from an
appropriate distribution, and TS can be viewed similarly. In
the results above, we provide auxiliary information about
the environment to them and need to modify their imple-
mentation in different setups. In contrast, MBE automatically
adapts to these problems. As argued in Section 2, one main
advantage of MBE over them is its adaptiveness. To see this,
we consider the following procedure: we run the Gaussian
versions of TS and PHE in Bernoulli MAB, and run their
Bernoulli versions in Gaussian MAB. We also run MBE with
σ2
ω = 0.5. MBE does not require any modifications across

the two problems. The results presented in Figure 2 clearly
demonstrate that MBE adapts to reward distributions.

Similarly, in Figure 3, we also studied the adaptivity of these
methods against the reward distribution scale (the standard
deviation of the Gaussian noise, σ) and the task distribution
(we sample the mean rewards from Beta(α, 8) and vary
the parameter α). For all settings, we use the algorithms
tuned for Figure 1. MBE shows impressive adaptivity, while
PHE and TS may not perform well when the environment
is not close to the one they are tuned for. Recall that, in
real applications, heavy tuning is not possible without the
ground truth. This demonstrates the adaptivity of MBE, as a
data-driven exploration strategy.

Additional results. In Appendix B.2, we also try different
values of λ and B for MBE. We also repeat the main experi-
ment with K = 25. Our main observations still hold, and
MBE is relatively robust to its tuning parameters.

6.2. Real-Data Applications

The main benefit of MBE is that it easily generalizes to com-
plex models. In this section, we use real datasets to demon-
strate this property. Specifically, we test if MBE can achieve
comparable performance with strong problem-specific base-
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Figure 1: Simulation results under MAB. The error bars indicate the standard errors, which may not be visible when the width is small.
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Figure 2: Robustness results, to the reward distribution class.
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Figure 3: Results with different reward variances and task distri-
butions. For the x-axis in both figures and the y-axis in the second
one, we plot at the logarithmic scale for better visualization.

lines proposed in the literature, without problem-specific
algorithm design and heavy tuning.

Domain-specific models. We study the three problems con-
sidered in Wan et al. (2022), including cascading bandits for
online learning to rank (Kveton et al., 2015), combinatorial
semi-bandits for online combinatorial optimization (Chen
et al., 2013), and multinomial logit (MNL) bandits for dy-
namic slate optimization (Agrawal et al., 2017; 2019). All
these are practical and important problems in real life. Yet,
these domain models all have unique structures and require
a case-by-case algorithm design. For example, the rewards
in MNL bandits follow multinomial distributions that have
complex dependency with the pulled arms. To derive the
posterior or confidence bound, one has to use a delicately
designed epoch-type procedure (Agrawal et al., 2019).

Datasets. We use the three datasets studied in Wan et al.
(2022). Specifically, we use the Yelp rating dataset (Zong

et al., 2016) to recommend and rank K restaurants, use the
Adult dataset (Dua & Graff, 2017) to send advertisements
to K/2 men and K/2 women (a combinatorial semi-bandit
problem with continuous rewards), and use the MovieLens
dataset (Harper & Konstan, 2015) to display K movies.
In our experiments, we fix K = 4 and randomly sample
30 items from the dataset to choose from. We provide
a summary of these datasets and problems in Appendix
B.3, and refer interested readers to Wan et al. (2022) and
references therein for more details.

Baselines. We compared MBE with state-of-the-art baselines
in the literature, including TS-Cascade (Zhong et al., 2021)
and CascadeKL-UCB (Kveton et al., 2015) for cascading
bandits, CUCB (Chen et al., 2016) and CTS (Wang & Chen,
2018) for semi-bandits, and MNL-TS (Agrawal et al., 2017)
and MNL-UCB (Agrawal et al., 2019) for MNL bandits. To
save space, we denote the TS-type algorithms by TS and the
UCB-type ones by UCB. We also study PHE and ε-greedy
(EG) as two other general-purpose exploration strategies.

Tuning. For the baseline methods, as in Section 6.1, we
either use the default hyperparameters in Wan et al. (2022)
or tune them extensively via grid search and present their
best performance. For EG, we choose the exploration rate
as εt = min(1, a/2

√
t) with tuning parameter a, following

Kveton et al. (2020a). For MBE, with every bootstrap sam-
ple, we estimate the reward model via maximum weighted
likelihood estimation, which yields closed-form solution
that allows online updating in all three problems. The other
implementation details are similar to Section 6.1.

Results. We present the results in Figure 4. The overall
findings are consistent with Section 6.1. First, without any
additional derivations or algorithm design, MBE matches
the performance of problem-specific algorithms. Second,
pseudo-rewards are important to guarantee sufficient explo-
ration, and naively applying multiplier bootstrap may fail.
Third, MBE has relatively stable performance with varying
σω, since its exploration is mostly data-driven. In contrast,
the hyper-parameters of PHE and EG have to be carefully
tuned, since they rely on externally added perturbation or
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Figure 4: Real-data results for three structured bandit problems that need domain-specific models.

forced exploration. For example, the best parameters for
EG in the three problems are a = 5, 0.1 and 0.5. Finally,
PHE does not perform well in MNL and cascading bandits,
where the outcomes are binary. We investigated this trend
and found that the response rates (i.e., the probabilities for
the binary outcome to be 1) in the two datasets are low. In
this case, PHE introduces too much noise to explore, which
slows down the estimation convergence.

7. Conclusion
In this paper, we propose a new bandit exploration strategy,
Multiplier Bootstrap-based Exploration (MBE). The main
advantage of MBE is its generality: for any reward model that
can be estimated via weighted loss minimization, the idea of
MBE is applicable, and requires minimal efforts on derivation
or implementation of the exploration mechanism. As a data-
driven method, MBE also shows nice adaptivity. We prove
near-optimal regret bounds for MBE in the sub-Gaussian
MAB setup, which is more general than in other bootstrap-
based bandit papers. Numerical experiments demonstrate
that MBE is general, efficient, and adaptive.

There are a few meaningful future extensions. First, the
regret analysis for MBE (and more generally, other bootstrap-
based bandit methods) in more complicated setups would
be valuable. The main challenge comes from analyzing the
finite-sample property of multiplier bootstrap.

Second, adding pseudo-rewards at every round is needed
for the analysis. We hypothesize that there exists a more
adaptive and efficient way of introducing extrinsic perturba-
tion, such that we have sufficient exploration while avoiding
over-exploration.

Third, the practical implementation of MBE relies on an en-
semble of models to approximate the bootstrap distribution
and the online regression oracle to update the model estima-
tion. Both parts lead to approximation and also correlation
over time. Our numerical experiments show that such an
approach works well empirically, but it would be still mean-

ingful to have more theoretical understanding.

Lastly, in this paper, we present MBE assuming the knowl-
edge of a generative model of the rewards (i.e., assuming the
existence of a regression oracle). The idea can be naturally
generalized to the policy-based setting, where we assume
the existence of a classification oracle that can compute the
optimal policy within a pre-specified policy class (see, e.g.,
Agarwal et al. (2014)). We leave this to future study.
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A. Additional Method Details
A.1. MBE for MAB

In this section, we present the concrete form of MBE when being applied to MAB. Recall that xt is null, At ∈ [K], and rk is
the mean reward of the k-th arm. We define f(xt, At; r) = rAt , where the parameter vector r = (r1, . . . , rK)>. We define
the loss function as

1

t′

t′∑
t=1

ωt(rAt −Rt)2.

The solution is then (r̂1, . . . , r̂K)> with r̂k = (
∑
t:At=k

ωt)
−1
∑
t:At=k

ωtRt, i.e., the arm-wise weighted average. After
adding the pseudo rewards, we can give algorithm for MAB in Algorithm 3.

Next, we provide intuitive explanation on why Algorithm 3 works. Indeed, denote s := |Hk,T |, whereHk,T is the set of
observed rewards for the k-th arm up to round T . Let Rk,l be the l-th element inHk,T . Then

Y k,s =

∑s
i=1 ωiRk,i + λ

∑s
i=1 ω

′
i∑s

i=1 ωi + λ
∑s
i=1 ω

′
i + λ

∑s
i=1 ω

′′
i

=
s−1

∑s
i=1 ωi(Rk,i − µk) + s−1

∑s
i=1(ωi − 1) + λs−1

∑s
i=1(ω′i − 1) + µk + λ

s−1
∑s
i=1(ωi − 1) + λs−1

∑s
i=1(ω′i − 1) + λs−1

∑s
i=1(ω′′i − 1) + 1 + 2λ

P−−→ µk + λ

1 + 2λ

by using the law of large numbers. Then, by Slutsky’s theorem,

√
s

[
Y k,s −

µk + λ

1 + 2λ

]
=

1

1 + 2λ

[
1√
s

s∑
i=1

ωi(Rk,i − µk) +
1√
s

s∑
i=1

(ωi − 1) +
λ√
s

s∑
i=1

(ω′i − 1)

]
+ op(1)

will weakly converge to a mean-zero Gaussian distribution N
(

0,
σ2
k+2

(1+2λ)2σ
2
ω

)
. Therefore, our algorithm preserves the order

of the arms for any λ > 0.

Algorithm 3: MBE for MAB with sub-Gaussian rewards with mean bounded in [0, 1]

Data: number of arms K, multiplier weight distribution ρ(ω), tuning parameter λ
2 SetHk = {} be the history of the arm k and Y k = +∞,∀k ∈ [K]
3 for t = 1, . . . , T do
4 Pull At = arg maxk∈[K] Y k (break tie randomly),
5 Observe reward Rt
6 SetHk = Hk ∪ {Rt}
7 for k = 1, . . . ,K do
8 if |Hk| > 0 then
9 Sample the multiplier weights {ωl, ω′l, ω′′l }

|Hk|
l=1 ∼ ρ(ω).

10 Update the mean reward

Y k =

|Hk|∑
`=1

(ω` ·Rk,` + ω′` · 1× λ+ ω′′` · 0× λ)

 /

|Hk|∑
`=1

(ω` + λω′` + λω′′` )

 ,

where Rk,l is the l-th element inHk.
11 end
12 end
13 end

A.2. MBE for stochastic linear bandits

In this section, we derive the form of MBE when applied to stochastic linear bandits. We focus on the setup where xt is
empty and At ∈ Rp is a linear feature vector, and other setups of linear bandits can be formulated similarly. In this case,
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Algorithm 4: MBE for linear bandits.
Data: number of arms K, multiplier weight distribution ρ(ω), tuning parameter λ

2 SetHk = {} be the history of the arm k, set A0 = 0, θ̂0 = 0 with b0 = 0, and V0 = (1 + ξ)Ip.
3 if t = 1, . . . , p then
4 Offer At = t.
5 end
6 for t = p+ 1, . . . , T do
7 Offer At = arg maxa∈At a

>θt (break tie randomly)
8 Observe reward Rt
9 SetHk = Hk ∪ {Rt}

10 for k = 1, . . . ,K do
11 if |Hk| > 0 then
12 Sample the multiplier weights {ωl, ω′l, ω′′l }

|Hk|
l=1 ∼ ρ(ω).

13 Update the following quantities:

• Vt+1 = Vt + ωtAtA
>
t + λω′t0Id + λω′′t Id;

• bt+1 = bt +At
(
ωtRt + λω′t0 + λω′′t 1

)
;

• Refresh the parameter as θ̂t+1 = V −1
t+1bt+1.

14 end
15 end
16 end

f(xt, At;θ) = A>t θ where the parameter vector is θ ∈ Rp. Then, the weighted loss function is

T∑
t=1

ωt
(
A>t θ −Rt

)2
+
ξ

2
‖θ‖22,

where ξ ≥ 0 is a penalty tuning parameter. The solution is the standard weighted ridge regression estimator and can be
updated in the following way:

0. Initialization: A0 = 0, θ̂0 = 0 with b0 = 0, and V0 = (ξ + 1)Idim(At).

1. θ̂t = V −1
t At;

2. Vt+1 = Vt + ωtAtA
>
t , bt+1 = bt + ωtRtAt, and hence update

θ̂t+1 = V −1
t+1bt+1 =

(
Vt + ωtAtA

>
t

)−1(
bt + ωtRtAt

)
= V −1

t − V −1
t At(ω

−1
t +A>t V

−1
t At)

−1A>t V
−1
t

3. Take the action At+1 = arg maxa∈At a
>θt+1.

The MBE algorithm for linear bandits is presented in Algorithm 4.

A.3. Naive Adaptation of the Multiplier Bootstrap

We present the naive multiplier bootstrap-based exploration algorithm in Algorithm 5. Specifically, there is no pseudo-
rewards added.

A.4. ReBoot

For completeness, we introduce the details of ReBoot in this section and discuss its generalizability. More details can be
found in the original papers (Wang et al., 2020; Wu et al., 2022).

13
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Algorithm 5: A Naive Design of MBE
Data: Function class F , loss function L, (optional) penalty function J , multiplier weight distribution ρ(ω), tuning

parameter λ
2 SetH = {} be the history be the pseudo-history
3 Initialize f̂ in an optimistic way
4 for t = 1, . . . , T do
5 Observe context xt and action set At
6 Offer At = arg maxa∈At f̂(xt, a) (break tie randomly)
7 Observe reward Rt
8 UpdateH = H ∪ {(xt, At, Rt)}
9 Sample the multiplier weights {ωl}tl=1 ∼ ρ(ω)

10 Solve the weighted loss minimization problem to update f̂ as

f̂ = arg min
f∈F

1

t

t∑
l=1

ωlL
(
f(xl, Al), Rl

)
+ J(f).

11 end
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Figure 5: Performance of MBE in three linear bandit problems.

Consider a stochastic bandit problem with a fixed and finite set of arm A. Every arm a ∈ A may have a fixed feature
vector (which with slight overload of notation, we also denote as a). The mean reward of arm a is f(a). At each round t′,
ReBoot first fit the model f as f̂ using all data. Then for each arm a, ReBoot first computes the corresponding residuals
using rewards related to that arm as {εt = Rt − f̂(a)}t:At=a,t≤t′ , then perturbs these residuals with random weights as
{ωtεt = Rt − f̂(a)}t:At=a,t≤t′ (ReBoot also adds pseudo-residuals, which we omit for ease of notations), and finally use
f̂(a) + |{t : At = a, t ≤ t′}|−1

∑
t:At=a,t≤t′ ωtεt as the perturbed estimation of the mean reward of arm a. By design, it

can be seen that ReBoot critically relies on the reward history of each fixed arm. Therefore, to the best of our understanding,
it is not easy to extend ReBoot to problems with either changing (e.g., contextual problems) or infinite arms.
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Figure 6: Performance of MBE with different values of λ in MAB.

B. More Experiment Results and Details
B.1. Results for linear bandits

We also consider the linear bandit problem. The linear bandit version of MBE is presented in Appendix A.2. We experiment
with several dimensions p = 10, 15, 20. The number of arms is K = 100. The feature vector xk ∈ Rp of arm k is generated
as follows. For the last 10 arms, the features are drawn uniformly at random from (0, 1). For the first 90 arms, we consider a
practical setup where they are low-rank: we first generate a loading metric A = (aij) ∈ Rp×5 from Uniform(0, 1), then
sample b ∈ R5 from Uniform(0, 1), and finally constructs xk = Ab. The parameter vector θ ∈ Rp is uniformly sampled
from [0, 1]p. We normalize the feature vectors such that the mean reward µk = x>k θ falls within the interval [0, 1]. The
rewards of arm k are drawn i.i.d. from Bernoulli(x>k θ).

We still compare MBE with the method for linear bandit version of GIRO, PHE, and ReBoot with tuning to their best
performance over the hyper-parameter set {2k−4}6k=0 and report the best performance of each method. For TS, we use
Gaussian for both its reward and prior distribution, and calibrate their parameters using the true model. The total rounds are
T = 20000 and our results are averaged over 50 randomly chosen problems. Most other details are similar to our MAB
experiments.

We present the results in Figure 5, where we vary either σω or λ in the two subplots. We can see that naive MB leads to a
linear regret. Hence, the pseudo-reward also matters in this problem. MBE achieves comparable performance with strong
baselines such as TS. Another finding is that MBE is robust to its tuning parameters. Finally, Reboot needs to pull K times
to initialize (the linear regret part in the first K rounds) due to the nature of its design. In contrast, most other linear bandit
algorithms typically only need p rounds of forced exploration. This shows the limitation of the ReBoot framework (See
Appendix A.4).

B.2. Additional results

In this section, we study the performance of MBE with respect to a few other hyper-parameters.

We first study the robustness to another tuning parameter λ. Recall that λ controls the amount of external perturbation.
Specifically, we repeat the experiment in 6.1 with σ2

ω fixed as 0.5 and with different values of λ (0.25, 0.5, 0.75). From
Figure 6, it can be seen that a small amount of pseudo-rewards (λ = 0.25) seems sufficient in these settings, and the results
are fairly stable. We believe this is because the exploration of MBE is main driven by the internal randomness in the data.

In Figure 7, we repeat our main experiments with K changed to 25. We can see that our main conclusions still hold.

Finally, in Figure 8, we implement MBE with different number of replicates B. As expected, more replicates does help
exploration due to a better approximation to the whole bootstrapping distribution. Yet, we find that B = 50 suffices to
generate comparable performance with TS and the performance of MBE becomes relatively stable for larger values of B.

B.3. Details of the real-data experiments

Our real-data experiments closely follow Wan et al. (2022). For completeness, we provide information of the three problems
here, and refer interested readers to Wan et al. (2022) and references therein.

In an online learning to rank problem, we aim to select and rank K items from a pool of L ones. We iteratively interacts
with users to learn about their preferences. The cascading model is popular in learning to rank (Kveton et al., 2015), which
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Figure 7: Performance of MBE with K = 25.
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Figure 8: Performance of MBE with different number of replicates B.

models the user behaviour as glancing from top to bottom (like a cascade) and choose to click an item following a Bernoulli
distribution when she looks at that item. Therefore, we will binary outcomes for all items that the user has examined, and
there are complex dependency between them.

In a slate optimization (or called assortment optimization) problem, we aim to offer K items from a pool of L ones,
especially when there exist substitution effects. The Multinomial Logit (MNL) model characterizes the choice behaviour
as a multinomial distribution based on the attractiveness of each item. Since the offer subset changes over rounds, the
joint likelihood is actually complex. To get the posterior or confidence bounds, one has to resort to an epoch-type offering
schedule (Agrawal et al., 2017).

Online combinatorial optimization also has numerous applications (Wen et al., 2015), including maximum weighted
matching, ads allocation, webpage optimization, etc. It is common that every chosen item will generate a separate
observation, known as the semi-bandit problem. We consider a special problem in our experiments, where we need to
choose K persons from a pool under constraints.

The three datasets we used (and related problem setups) are studied in corresponding TS papers in the literature. To general
random rewards, we need to either generate from a real-data-calibrated model or by directly sampling from the dataset. We
follow Wan et al. (2022) and references therein. For cascading or MNL bandits, we split the dataset into a training and a
testing set, use the training to estimate the reward model, and compare on the testing set. For semi-bandits, we sample
rewards from the dataset.

C. Main Proof
This section gives the proof of the main regret bound (Theorem 5.1). Section D gives the major lemmas required to bound
the regret components used in this section. Section E lists all supporting technical lemmas, including the lower bound of the
Gaussian tail and some novel results on the concentration property of sub-Gaussian and sub-exponential distributions.

Before beginning our proof, we first provide the definition of sub-Gaussian and sub-exponential variables: A mean-zero
random variable X is called sub-Gaussian with variance proxy σ2 if E exp{tX} ≤ exp{t2σ2/2} for any t ∈ R, and we
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denote it as X ∼ subG(σ2). A mean-zero variable X is called sub-exponential with parameters λ and α if

E exp{tX} ≤ exp

{
t2λ2

2

}
, |t| ≤ 1

α
.

We denote as X ∼ subE(λ, α) if sub-exponential X has parameters λ and α. For simplicity, we denote subE(λ) :=
subE(λ, λ). Sub-Gaussian and sub-exponential variables play important roles in bandit problems and exhibit various
concentration properties. For more details, please refer to Zhang & Chen (2021) and Zhang & Wei (2022).

Notations: Let Pξ(A) =
∫
A

dFξ(x) denote the probability of eventA, where Fξ(x) is the distribution function of the random
variable ξ. Similarly, let Eξf(ξ) =

∫
f(x) dFξ(x) represent the expectation. We write two functions a(s, T ) . b(s, T ) if

a(s, T ) ≤ c × b(s, T ) for some constant c independent of s and T . We write a(s, T ) � b(s, T ) if both a(s, T ) . b(s, T )
and a(s, T ) & b(s, T ). Furthermore, we define a ∨ b = max{a, b} and a ∧ b = min{a, b} for any real numbers a and b.
Similarly, we define a ∨ b ∨ c = max{a, b, c} and a ∧ b ∧ c = min{a, b, c} for any a, b, c ∈ R.

We will present a comprehensive version of the MBE theory under MAB, as stated in Theorem C.1, along with its proof. In
this version, we allow for arbitrary variance proxies σ2

k instead of constraining them to be equal to one in Theorem 5.1.

Theorem C.1. Consider a K-armed bandit, where the reward distribution of arm k is subG(σ2
k) with mean µk. Suppose

µ1 = maxk∈[K] µk and ∆k = µ1 − µk. Take the multiplier weight distribution as N (1, σ2
ω) in Algorithm 3. Let the tuning

parameters satisfy λ ≥
(

1 +
σ2
ω

4 + 4σ1

σω

)
+

√
4σ1

σω

(
4σ1

σω
+ 1
)

, Then the problem-dependent regret is upper bounded by

RegT ≤
K∑
k=2

∆k

[
7 +

{
C1(σ1, σk, λ, σω) +

C2(σ1, σk, λ, σω)

∆2
k

}
log T

]
,

where

C1(σ1, σk, λ, σω) = 55

[
8
√

2 max
k∈[K]

σ2
k

(
logD2(σ1, σk, λ, σω)

3 log 2
+ 1

)
+ 38σ2

ω

]
,

and

C2(σ1, σk, λ, σω) = 310λ2σ2
k + 55

[
D1(σ1, σk, λ, σω)

(
logD2(σ1, σk, λ, σω)

3 log 2
+ 1

)
+ 38σ2

ω

]
,

with

D1(σ1, σk, λ, σω) =

[(
1 + 8

√
2 max
k∈[K]

σ2
k

)(
16 +

σ2
ω

σ2
1

)
+ 16σ4

1 + 3
σ2
ω

σ2
1

+ 3σ2
ω + 1

]
σ2
ωλ

4,

and

D2(σ1, σk, λ, σω) = 3

[
1 +

3
√
πσ2

ω

2σ1

(
σ1

σω
+ 3λ

)
+ 16
√
π max
k∈[K]

σ2
k

(
σ2
ω

16σ4
1

+
1

σ2
ω

)
+
λ2σ2

ω

4σ4
1

]
.

Furthermore, the problem-independent regret is upper bounded by

RegT ≤ 7Kµ1 + max
k∈[K]\{1}

C1(σ1, σk, λ)K log T + 2
√

max
k∈[K]\{1}

C2(σ1, σk, λ)KT log T .

Proof. We denote the first s rewards from pulling arm k asHk,s, with the i-th observations denoted as Rk,i. Let Qk,s(τ) =
P
(
Y k,s > τ | Hk,s

)
be the tail probability that Y k,s, conditioned on history Hk,s is at least τ . Further, let Nk,s(τ) =

1/Qk,s(τ)− 1 represent the expected number of rounds in which the arm k is underestimated, given s sample rewards. Here

Y k,s =

∑s
i=1 [ωiRk,i + ω′i · (1× λ) + ω′′i · (0× λ)]∑s

i=1(ωi + λω′i + λω′′i )

is the objective function defined in Algorithm 3.

Step 0: Decomposition of the regret bound. Our proof relies on the following decomposition of the cumulative regret.
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Lemma C.2 (Theorem 1, Kveton et al. (2019b)). Suppose in MAB we select arms according to the rule At =
arg maxk∈[K] Y k,t with Y k,t defined in Algorithm 3. Then for any {τk}Kk=2 ⊆ R, the expected T -round regret can
be bounded above as

RegT ≤
K∑
k=2

∆k

(
ak + bk

)
,

where ak =
∑T−1
s=0 ak,s and bk =

∑T−1
s=0 bk,s + 1, and ak,s = E

[
N1,s(τk) ∧ T

]
and bk,s = P

(
Qk,s(τk) > T−1

)
.

Recall the summation index s is the number of times we pull the k-th arm. In the proof, we will fix τk ∈
(
µk+λ
1+2λ ,

µ1+λ
1+2λ

)
.

The definitions of ak and bk have important meanings: ak represents the expected number of rounds that optimal arm 1 has
been being underestimated, whereas bk is the probability that the suboptimal arm k is being overestimated. Here we only
need to consider the lower bound of the tail of the distribution of the rewards from the optimal arm. The intuition behind
this is twofold: (i) we only need the rewards from the optimal arm taking a relatively large value with a probability that is
not too small; (ii) we do not care about the negligible probability of receiving a large reward from suboptimal arms.

Therefore, our target is then to bound ak and bk for any k ≥ 2. These are completed in Step 1 and Step 2 below, respectively.

Step 1: Bounding ak.

We first provide a roadmap for proving ak is bounded by a term of O(log T ) order: For a given constant level τk, the
probability of the optimal arm 1 being underestimated given s rewards is 1− Q1,s (τk). If we pick the level to satisfy
τk <

µ1+λ
1+2λ , the theory of large deviation gives

lim
s→∞

Q1,s(τk) = 1.

Hence the expected number of rounds to observe a not-underestimated case N1,s(τk) = 1
Q1,s(τk) − 1 has the property

lims→∞Ns(τk) = 0 as the number of pulls s grows to infinity. Thus, given the round T , there exists a constant sa,k(T )
such that Ns (τk) ≤ T−1 for all s over sa,k(T ). Consequently, the quantity ak in regret bound will be bounded by

ak ≤
sa,k(T )∑
s=0

E [N1,s(τk) ∧ T ] + 1.

The fact that the constant sa,k(T ) is at the order of log T will be shown in Lemma D.2, Lemma D.3, and Lemma D.4. For
small number of pulls s ≤ sa,k(T ), we show in Lemma D.1 that E [N1,s(τk) ∧ T ] ≤ 4 + 16e9/8 for any s ∈ N. Thus, it is
enough to conclude that ak can be bounded by a term of O(log T ) order.

To formally bound ak in the non-asymptotic sense following the intuition above, we need to decompose ak. For the
decomposition, a common approach is to use indicators on good events. Denote the shifted (sample-) mean reward as

R
∗
k,s =

∑s
i=1Rk,i + λs

s(1 + 2λ)
=

λ

1 + 2λ
+

1

1 + 2λ
Rk,s.

where Rk,s = 1
s

∑s
i=1Rk,i is the mean reward of the k-th arm. Then we can define the following good events for l-th arm

as

Al,s =

{
−C1∆k < R

∗
l,s −

µl + λ

1 + 2λ
< C1∆k

}
,

and
Gl,s =

{
−C2∆k ≤ Y l,s −R

∗
l,s ≤ C2∆k

}
.

The definitions of Al,s and Gl,s are intuitive: Al,s represents the sample mean does not deviate excessively from the true
mean, and events on Gl,s means Y l,s is not too far away from the scaled-shifted sample mean R

∗
l,s. Here C1, C2 are

constants belonging to the interval (0, 1).

Therefore, by using these good events, we decompose ak,s into the following three parts:

ak,s,1 = E
[(
N1,s(τk) ∧ T

)
I(Ac1,s)

]
, (3)

18



Multiplier Bootstrap-Based Exploration

ak,s,2 = E
[(
N1,s(τk) ∧ T

)
I(A1,s)I(Gc1,s)

]
, (4)

and
ak,s,3 = E

[(
N1,s(τk) ∧ T

)
I(A1,s)I(G1,s)

]
. (5)

Let C1 = 1
6λ and C2 = 1

12λ with fixed λ > 1, then C1, C2 ∈ (0, 1). Consider the case when T ≥ 2. Define

sa,k,j(T ) := max{s : ak,s,j ≥ T−1}, k = 2, . . . ,K, j = 1, 2, 3.

Lemma D.2 in Appendix D demonstrates that by taking

s ≥ sa,k,1(T ) :=
144λ2σ2

1

(1 + 2λ)2∆2
k

log T,

we will have ak,s,1 ≤ T−1. Lemma D.3 and Lemma D.4 in Appendix D say that: if we choose

s ≥ sa,k,2(T ) :=

{[(
Ω1 + a1 + b1 + Ω1a1

)(1

3
log−1 2× log

{
3

[
1 +

√
πb1

2
+

√
2πΩ1a1

2b2
1

+
2a1

b1

]}
+ 1

)]

∨ 18σ2
ω(2µ1 − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T

and

s ≥ sa,k,3(T ) :=

{[(
Ω1 + a2 + b2 + Ω1a2

)(1

3
log−1 2× log

{
3

[
1 +

√
πb1

2
+

√
2πΩ1a2

2b2
2

+
2a2

b2

]}
+ 1

)]

∨ 18σ2
ω(2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T,

then we have ak,s,2 ≤ T−1 and ak,s,3 ≤ T−1, respectively, where

a1 =
192σ2

ωλ
4

3(1 + 2λ)2∆2
k

, b1 =
2σ2

ω

[
96λ4σ2

1 + (1 + 2λ)2C2
2∆2

k

]
3(1 + 2λ)2∆2

k

,

a2 =
36σ2

ωλ
4

3(λ− 1)2∆2
k

, b2 =
σ2
ω

[
72λ4σ2

1 + 25(1 + 2λ)2∆2
k

]
6(λ− 1)2∆2

k

, and Ωk = 8
√

2σ2
k, k ∈ [K].

Let Ωmax = maxk∈[K] Ωk. Then, for any

s ≥ sa,k(T ) =
144λ2σ2

1

(1 + 2λ)2∆2
k

log T +

{[(
Ωmax + (a1 + a2) + (b1 + b2) + Ωmax(a1 + a2)

)
(

1

3
log−1 2× log

{
3

[
1 +

√
π

2

(√
b1 +

√
b2

)
+

√
2πΩmax

2

(
a1

b2
1

+
a2

b2
2

)
+ 2

(
a1

b1
+

a2

b2

)]}
+ 1

)]

∨ 18σ2
ω(2µ1 − 1)2 ∨ (2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T,

it holds that s ≥ maxj=1,2,3 sa,k,j(T ) because

sa,k(T ) = sa,k,1(T ) + max
j=2,3

sa,k,j(T ) ≥ max
j=1,2,3

sa,k,j(T ).

Hence, for any s ≥ sa,k(T ), we have

ak,s = ak,s,1 + ak,s,2 + ak,s,3 ≤ 3T−1.
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Finally, Lemma D.1 in Appendix D guarantees that if we choose λ ≥
(

1 +
σ2
ω

4 + 4σ1

σω

)
+

√
4σ1

σω

(
4σ1

σω
+ 1
)

, the component

ak,s ≤ 4 + 16e9/8 for any s ≥ 0. Thus, by setting λ ≥
(

1 +
σ2
ω

4 + 4σ1

σω

)
+

√
4σ1

σω

(
4σ1

σω
+ 1
)

, we have

ak =

T−1∑
s=0

ak,s

≤
∑

s<sa,k(T )

max
s∈{0,1,...,T−1}

ak,s +
∑

sa,k(T )≤s<T

3T−1

= max
s∈{0,1,...,T−1}

ak,s × sa,k(T ) + 3T−1 ×
(
T − sa,k(T )

)
≤ 4(1 + 4e9/8)

{
144λ2σ2

1

(1 + 2λ)2∆2
k

log T +

[([
Ωmax + (a1 + a2) + (b1 + b2) + Ωmax(a1 + a2)

]
 log

{
3
[
1 +

√
π

2

(√
b1 +

√
b2

)
+
√

2πΩmax

2

(
a1

b2
1

+ a2

b2
2

)
+ 2

(
a1

b1
+ a2

b2

)]}
3 log 2

+ 1

)

∨ 18σ2
ω(2µ1 − 1)2 ∨ (2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

]}
log T + 3

for any k ∈ {2, . . . ,K} and T ≥ 2.

Step 2: Bounding bk.

Again, we will provide a roadmap for proving that bk is bounded by a term of order O(log T ). Similar to Step 1, we set a
fixed level τk such that τk > µk+λ

1+2λ . Then, according to the theory of large deviations, we have

lim
s→∞

Qk,s(τk) = 0.

Thus, given the time horizon T , there exists a constant sb,k(T ) such that Qk,s(τk) ≤ T−1 for all s beyond sb,k(T ). As a
result, the event

{
Qk,s(τk) > T−1

}
is empty if the number of pulls s exceeds sb,k(T ). Consequently,

bk ≤
sb,k(T )∑
s=0

P
(
Qk,s (τk) > T−1

)
.

We will demonstrate that the constant sb,k(T ) is of order O(log T ) in Lemma D.5, Lemma D.6, and Lemma D.7. For a
small number of pulls, s ≤ sb,k(T ), we apply a trivial bound P

(
Qk,s (τk) > T−1

)
≤ 1 that holds for any s. Therefore, it is

sufficient to conclude that bk can be bounded by a term of order O(log T ).

It should be noted that bk,s is naturally bounded by the constant 1. Similar to Step 1, we decompose bk,s = P
(
Qk,s(τk) >

T−1
)

into bk = bk,s,1 + bk,s,2 + bk,s,3, with

bk,s,1 = E
[
I(Qk,s(τk) > T−1)I(Ack,s)

]
, (6)

bk,s,2 = E
[
I(Qk,s(τk) > T−1)I(Ak,s)I(Gck,s)

]
, (7)

and
bk,s,3 = E

[
I(Qk,s(τk) > T−1)I(Ak,s)I(Gk,s)

]
. (8)

Again, we define sb,k,j := max{s : bk,s,j ≥ T−1} for j = 1, 2, 3. Lemma D.5 in Appendix D guarantees that when
s ≥ sb,k,1(T ), with

sb,k,1(T ) =
72λ2σ2

k

(1 + 2λ)2∆2
k

log T,
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we have bk,s,1 ≤ T−1. Considering T ≥ 2 and letting C1 = 1
6λ and C2 = 1

12λ with fixed λ > 1 as in Step 1, Lemma D.6
and Lemma D.7 proves that: if we take

s ≥ sb,k,2(T ) =

{[(
Ωk + a1 + b1 + Ωka1

)(1

3
log−1 2× log

{
3

[
1 +

√
πb1

2
+

√
2πΩka1

2b2
1

+
2a1

b1

]}
+ 1

)]

∨ 18σ2
ω(2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T,

and

s ≥ sb,k,3(T ) =

{[(
Ωk + a2 + b2 + Ωka2

)(1

3
log−1 2× log

{
3

[
1 +

√
πb2

2
+

√
2πΩka2

2b2
2

+
2a2

b2

]}
+ 1

)]

∨ 18σ2
ω(2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T,

then we have bk,s,2 ≤ T−1 and bk,s,3 ≤ T−1, respectively, where a1, a2, b1, b2, and Ωk are already defined in Step 1. Let

sb,k(T ) :=
72λ2σ2

k

(1 + 2λ)2∆2
k

log T +

{[(
Ωmax + (a1 + a2) + (b1 + b2) + Ωmax(a1 + a2)

)
(

1

3
log−1 2× log

{
3

[
1 +

√
π

2

(√
b1 +

√
b2

)
+

√
2πΩmax

2

(
a1

b2
1

+
a2

b2
2

)
+ 2

(
a1

b1
+

a2

b2

)]}
+ 1

)]

∨ 18σ2
ω(2µ1 − 1)2 ∨ (2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T.

So for any s ≥ sb,k(T ), we have s ≥ maxj=1,2,3 sb,k,j(T ) since sb,k(T ) = sb,k,1(T ) + maxj=2,3 sb,k,j(T ). Therefore,
bk,s,1 + bk,s,2 + bk,s,3 ≤ 3T−1 for any s ≥ sb,k(T ). Note that bk,s = P

(
Qk,s(τk) > T−1

)
≤ 1 for any s ≥ 0, then

bk = 1 +

T−1∑
s=0

bk,s,1

≤ 1 + 1× sb,k(T ) + 3T−1 ×
(
T − sb,k(T )

)
≤

{
72λ2σ2

k

(1 + 2λ)2∆2
k

+

[([
Ωmax + (a1 + a2) + (b1 + b2) + Ωmax(a1 + a2)

]
(

1

3
log−1 2× log

{
3

[
1 +

√
π

2

(√
b1 +

√
b2

)
+

√
2πΩmax

2

(
a1

b2
1

+
a2

b2
2

)
+ 2

(
a1

b1
+

a2

b2

)]}
+ 1

))

∨ 18σ2
ω(2µ1 − 1)2 ∨ (2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

]}
log T + 4

for any k ∈ {2, . . . ,K} and T ≥ 2.

Step 3: Aggregating results.

Let us define
d1 = ∆2

k

{
(a1 + a2) + (b1 + b2) + Ωmax(a1 + a2)

}
and

d2 = 3

[
1 +

√
π

2

(√
b1 +

√
b2

)
+

√
2πΩmax

2

(
a1

b2
1

+
a2

b2
2

)
+ 2

(
a1

b1
+

a2

b2

)]
,
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so the bounds in Step 1 and Step 2 yield

ak ≤ 4(1 + 4e9/8)

{
144λσ2

1

(1 + 2λ)2∆2
k

+

[
(Ωmax + d1)

(
1

3

log d2

log 2
+ 1

)
∨ 18σ2

ω(2µ1 − 1)2 ∨ (2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

]}
log T + 3.

and

bk ≤

{
72λ2σ2

k

(1 + 2λ)2∆2
k

+

[
(Ωmax + d1)

(
1

3

log d2

log 2
+ 1

)
∨ 18σ2

ω(2µ1 − 1)2 ∨ (2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

]}
log T + 4

for any k ∈ {2, . . . ,K} and T ≥ 2. Therefore, by applying Lemma C.2, we obtain the following inequality

RegT ≤
K∑
k=2

∆k

(
ak + bk

)
≤

K∑
k=2

∆k

[
7 +

{
c1(µ1, σ1, µk, σk, λ, σω) + c2(µ1, σ1, µk, σk, λ, σω)∆−2

k

}
log T

] (9)

for any T ≥ 2, where

c1(µ1, σ1, µk, σk, λ)

= (5 + 16e9/8)

[(
Ωmax

(
log d2

3 log 2
+ 1

))
∨ 18σ2

ω{(2µ1 − 1)2 ∨ (2µk − 1)2}
(λ2 + λ+ 1/4)2

∨ 2σ2
ω(1 + 2λ2)

(1 + 2λ)2

]
,

(10)

and
c2(µ1, σ1, µk, σk, λ)

=
72λ2σ2

k

(1 + 2λ)2
(9 + 32e9/8)

+ (5 + 16e9/8)

[(
d1

(
log d2

3 log 2
+ 1

))
∨ 18σ2

ω{(2µ1 − 1)2 ∨ (2µk − 1)2}
(λ2 + λ+ 1/4)2

∨ 2σ2
ω(1 + 2λ2)

(1 + 2λ)2

]
,

(11)

for k = 2, . . . ,K. When the total round T = 1, the bound (9) still holds because RegT ≤ maxk=2,...K ∆k ≤
7
∑K
k=2 ∆k. Finally, by utilizing the bound in (9) and the bounds for c1(µ1, σ1, µk, σk, λ, σω) and c2(µ1, σ1, µk, σk, λ, σω)

in Lemma D.8, the following inequality holds for the problem-dependent case:

RegT ≤
K∑
k=2

∆k

[
7 +

{
c1(µ1, σ1, µk, σk, λ, σω) + c2(µ1, σ1, µk, σk, λ, σω)∆−2

k

}
log T

]

≤
K∑
k=2

∆k

[
7 +

{
C1(σ1, σk, λ, σω) + C2(σ1, σk, λ, σω)∆−2

k

}
log T

]
.

For proving the problem-independent case in Theorem C.1, let us denote

Jk,T :=

T∑
t=1

I(It = k) =

K∑
k=2

(ak + bk),
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and then we have

RegT =
∑

∆k:∆k<∆

∆kEJk,T +
∑

∆k:∆k≥∆

∆kEJk,T

by the bounds of ak,bk
≤ T∆ +

∑
∆k:∆k≥∆

∆k

[
7 +

{
C1(σ1, σk, λ, σω) + C2(σ1, σk, λ, σω)∆−2

k

}
log T

]
= T∆ + 7

∑
∆k:∆k≥∆

∆k +
∑

∆k:∆k≥∆

C1(σ1, σk, λ, σω)∆k log T +
∑

∆k:∆k≥∆

C2(σ1, σk, λ, σω)

∆k
log T

by ∆k≤µ1

≤ T∆ + 7Kµ1 + max
k∈[K]\{1}

C1(σ1, σk, λ, σω)K log T + max
k∈[K]\{1}

C2(σ1, σk, λ, σω)
K log T

∆
,

(12)

for any previously specified ∆ ∈ (0, 1). Taking ∆ =
√

maxk∈[K]\{1} C2(σ1, σk, λ, σω)K log T/T , we obtain

RegT ≤ 7Kµ1 + max
k∈[K]\{1}

C1(σ1, σk, λ, σω)K log T + 2
√

max
k∈[K]\{1}

C2(σ1, σk, λ, σω)KT log T .

Thus, we complete the proof of Theorem C.1.

Lastly, to prove Theorem 5.1, we set σk ≡ 1 for k ∈ [K] and utilize the fact

C1(1, 1, λ, σω) + C2(1, 1, λ, σω)∆−2
k ≤

C1(1, 1, λ, σω) + C2(1, 1, λ, σω)

∆2
k

.

Then applying the bounds for C1(1, 1, λ, σω) and C2(1, 1, λ, σω) from Lemma D.9, we obtain the first result in Theorem
5.1. By employing the same technique as in (12), we obtain the problem-independent regret we sought in Theorem 5.1.

D. Lemmas on Bounding Regret Components
D.1. Lemmas on bounding ak.

Lemma D.1 (Bounding ak,s for any s > 0). Set

λ ≥
(

1 +
σ2
ω

4
+

4σ1

σω

)
+

√
4σ1

σω

(
4σ1

σω
+ 1

)
,

then
ak,s ≤ 4 + 16e9/8

for any k ∈ {2, . . . ,K} and s ≥ 0.

Proof. Note that if we take

τk ≤
µ1 + λ

1 + 2λ
, (13)

then we can ensure that the bound

ak,s = E
[(

1

Q1,s(τk)
− 1

)
∧ T

]
≤E

[
1

Q1,s(τk)

]
byQ1,s(·) is decreasing

≤ EQ−1
1,s

(
µ1 + λ

1 + 2λ

)
,

(14)

holds. Hence, we need to find a lower bound of the tail probability Q1,s

(
µ1+λ
1+2λ

)
= P

(
Y 1,s >

µ1+λ
1+2λ | H1,s

)
. Throughout

the proof, we will use the choice of (13) for τk, and we can take advantage of the bound (14).
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For further analyze (14), we will express it as the probability with respect to the weighted random summation of the Gaussian
random variables {ωi, ω′i, ω′′i }. Let xi := (2λ+ 1)R1,i − (µ1 + λ), yi := λ(µ1 − 1− λ), zi := λ(λ+ µ1) for i ∈ [s], then

Sx =

s∑
i=1

xi = s
(
(2λ+ 1)R1,s − (µ1 + λ)

)
, Sy =

s∑
i=1

yi = sλ(µ1 − 1− λ), Sz =

s∑
i=1

zi = sλ(λ+ µ1),

with Sx − Sy − Sz = s(2λ+ 1)(R1,s − µ1) and

Tx =

s∑
i=1

x2
i =

s∑
i=1

[
(2λ+ 1)R1,i − (µ1 + λ)

]2
, Ty =

s∑
i=1

y2
i = sλ2(µ1 − 1− λ)2, Tz =

s∑
i=1

z2
i = sλ2(λ+ µ1)2,

with Tx + Ty + Tz =
∑s
i=1

[
(2λ+ 1)R1,s − (µ1 + λ)

]2
+ s
[
λ2(µ1 − 1− λ)2 + λ2(λ+ µ1)2

]
. Denote

Z1 :=

∑s
i=1 xiωi −

∑s
i=1 yiω

′
i −
∑s
i=1 ziω

′′
i − (Sx − Sy − Sz)

σω
√
Tx + Ty + Tz

and

Z2 :=

∑s
i=1 ωi + λ

∑s
i=1 ω

′
i + λ

∑s
i=1 ω

′′
i − (1 + 2λ)s

σω
√

(1 + 2λ2)s
.

Then

Q1,s

(
µ1 + λ

1 + 2λ

)
=P
(
Y 1,s >

µ1 + λ

1 + 2λ
| H1,s

)
≥Pω,ω′,ω′′

({
s∑
i=1

xiωi −
s∑
i=1

yiω
′
i −

s∑
i=1

ziω
′′
i > 0

}
∩

{
s∑
i=1

ωi + λ

s∑
i=1

ω′i + λ

s∑
i=1

ω′′i > 0

})

=PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})

=PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 ≥ 0

)
+ PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
.

(15)

Note that (Z1, Z2)> ∈ R2 is the mean-zero bivariate Gaussian distribution with covariance
(

1 ρ
ρ 1

)
, where

ρ = Eω,ω′,ω′′ [Z1Z2]− 0

=
Eω,ω′,ω′′

{
[
∑s
i=1 xiωi−

∑s
i=1 yiω

′
i−
∑s
i=1 ziω

′′
i −(Sx−Sy−Sz)] [

∑s
i=1 ωi+λ

∑s
i=1 ω

′
i+λ

∑s
i=1 ω

′′
i −(1 + 2λ)s]

}
σ2
ω

√
s(1 + 2λ2)(Tx+Ty+Tz)

=
σ2
ω(Sx − λSy − λSz)− (Sx − Sy − Sz)(1 + 2λ)s

σ2
ω

√
s(1 + 2λ2)(Tx + Ty + Tz)

.

The sign of ρ depends on the sign of ρ̌, where ρ̌ is defined as

ρ̌ :=
1

s

[
σ2
ω(Sx − λSy − λSz)− (Sx − Sy − Sz)(1 + 2λ)s

]
= σ2

ω

[
(2λ+ 1)R1,s − µ1(2λ2 + 1) + λ2 − λ

]
− 2(1 + 2λ)2s(R1,s − µ1)

= (1 + 2λ)
[
− (R1,s − µ1)

][
2(1 + 2λ)s− σ2

ω

]
+ σ2

ωλ(λ− 1)(1− 2µ1).
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Thus, for the event {ρ < 0}, if we take λ > σ2
ω

4 −
1
2 , we will have

{ρ < 0} = {ρ̌ < 0}

=

{
−(R1,s − µ1) <

σ2
ωλ(λ− 1)(2µ1 − 1)

(1 + 2λ)
[
2(1 + 2λ)s− σ2

ω

] : s ≥ 1

}

=

{
R1,s − µ1 > −

σ2
ωλ(λ− 1)(2µ1 − 1)

(1 + 2λ)
[
2(1 + 2λ)s− σ2

ω

] : s ≥ 1

}
.

This furthermore implies

{ρ < 0} ∩ {R1,s − µ1 < 0}

=

{
(R1,s − µ1) > − σ2

ωλ(λ− 1)(2µ1 − 1)

(1 + 2λ)
[
2(1 + 2λ)s− σ2

ω

] : s ≥ 1

}
∩ {R1,s − µ1 < 0}

=


∅, if 2µ1 − 1 ≤ 0{
− σ2

ωλ(λ−1)(2µ1−1)

(1+2λ)
[
2(1+2λ)s−σ2

ω

] < R1,s − µ1 < 0 : s ≥ 1

}
, if 2µ1 − 1 > 0.

⊆

{
∅, if 2µ1 − 1 ≤ 0

As =:
{
−σ

2
ωλ(λ−1)(2µ1−1)

2(1+2λ)2s < R1,s − µ1 < 0 : s ≥ 1
}
, if 2µ1 − 1 > 0.

Now, we can decompose the second probability in (15) as

PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
=PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
I (ρ ≥ 0)

+ PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
I (ρ < 0)

=PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
I (ρ ≥ 0)

+ PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
−Z2 <

(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
I (−ρ > 0)

=PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
I (ρ ≥ 0)

+ PZ1,Z3

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z3 <

(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
I (% > 0) ,

where Z3 = −Z2 and % = −ρ is the correlation coefficient between Z1 and Z3. We will utilize the lower bound of the tail
probability for bivariate Gaussian distribution with a positive correlation coefficient.
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First,

PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 ≤ 0

)
I (ρ ≥ 0)

≥ PZ1,Z2

(
Z1 > max

{
−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

,
−(1 + 2λ)

√
s

σω
√

1 + 2λ2

}
,

Z2 > max

{
−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

,
−(1 + 2λ)

√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 ≤ 0

)
I (ρ ≥ 0)

=PZ1,Z2

(
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

, Z2 >
−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

)
I
(
R1,s − µ1 ≤ 0

)
I (ρ ≥ 0)

≥ PZ1

(
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

)
× PZ2

(
Z2 >

√
1− ρ
1 + ρ

· −(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

)
I
(
R1,s − µ1 ≤ 0

)
I (ρ ≥ 0)

by
√

1−ρ
1+ρ ≤ 1

≥

[
PZ

(
Z >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

)]2

I
(
R1,s − µ1 ≤ 0

)
=

[
PZ

(
Z >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

)
I
(
R1,s − µ1 ≤ 0

)]2

,

where Z is the standard Gaussian distribution. Throughout the appendix, we will always use Z to represent the standard
Gaussian distribution. The first equality is due to−(Sx−Sy−Sz) = s(1+2λ)

[
− (R1,s−µ1)

]
≥ 0 ≥ −(1+2λ)

√
s when

R1,s − µ1 ≤ 0, and the second inequality is by (11.44) of (Lai & Balakrishnan, 2009) for bivariate Gaussian distributions.
By applying the first inequality in Lemma E.1 and using the fact that Tx + Ty + Tz ≥ Tz ≥ sλ4, we can get that

PZ

(
Z >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

)
I
(
R1,s − µ1 ≤ 0

)
≥ 1

4
exp

{
−s(2λ+ 1)2(R1,s − µ1)2

σ2
ωλ

4

}
I
(
R1,s − µ1 ≤ 0

)
,

then

PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 ≤ 0

)
I (ρ ≥ 0)

≥ 1

16
exp

{
−2s(2λ+ 1)2(R1,s − µ1)2

σ2
ωλ

4

}
I
(
R1,s − µ1 ≤ 0

)
I (ρ ≥ 0) .

(16)

Second, we also have

PZ1,Z3

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z3 <

(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
I (% > 0)

≥PZ1,Z3

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z3 <

(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
I (% > 0)

=PZ1,Z3

(
Z1 > h(s), Z3 < k(s)

)
I
(
R1,s − µ1 < 0

)
I (% > 0)

=PZ1,Z3

(
Z1 > h(s), Z3 < k(s)

)
I
(
R1,s − µ1 < 0

)
I (% > 0) I(2µ1 − 1 > 0)

where

h(s) :=
−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

, k(s) :=
(1 + 2λ)

√
s

σω
√

1 + 2λ2

are positive when R1,s − µ1 < 0. Note that

PZ1,Z3

(
Z1 > h(s), Z3 < k(s)

)
= PZ1

(
Z1 > h(s)

)
− PZ1,Z3

(
Z1 > h(s), Z3 > k(s)

)
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and
PZ1,Z3

(
Z1 > h(s), Z3 > k(s)

)
I
(
% > 0

)
≤

{
Φ
(
− k(s)

)
−

[
Φ

(
%k(s)− h(s)√

1− %2

)
+ % exp

[
k2(s)− h2(s)

2

]
Φ

(
%h(s)− k(s)√

1− %2

)]}
I
(
% > 0

)
by (11.42) in Lai & Balakrishnan (2009). Next, by combining the above two inequalities, we have

PZ1,Z3

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z3 <

(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
I (% > 0)

≥

{[
Φ
(
− h(s)

)
− Φ

(
− k(s)

)]
+

[
Φ

(
%k(s)− h(s)√

1− %2

)
+ % exp

[
k2(s)− h2(s)

2

]
Φ

(
%h(s)− k(s)√

1− %2

)]}
I
(
R1,s − µ1 < 0

)
I
(
% > 0

)
=

{[
Φ
(
− h(s)

)
− Φ

(
− k(s)

)]
+

[
Φ

(
%k(s)− h(s)√

1− %2

)
+ % exp

[
k2(s)− h2(s)

2

]
Φ

(
%h(s)− k(s)√

1− %2

)]}
I
({

R1,s − µ1 < 0
}
∩ {% > 0}

)
.

Note that
{
R1,s − µ1 < 0

}
∩ {% > 0} ⊆ As always hold, we have

0 < −s(1 + 2λ)(R1,s − µ1) <
σ2
ωλ(λ− 1)(2µ1 − 1)

2(1 + 2λ)
. (17)

Then using the inequality Tx + Ty + Tz ≥ sλ4, we have

h(s) =
−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

by (17)
<

σωλ(λ− 1)(2µ1 − 1)√
sλ2(1 + 2λ)

by µ1 ≤ 1

≤ σω(λ− 1)

λ(1 + 2λ)

≤ σω
1 + 2λ

by (19)
≤ (1 + 2λ)

2σωλ
by λ > 1

≤ (1 + 2λ)

σω
√

1 + 2λ2
≤ (1 + 2λ)

√
s

σω
√

1 + 2λ2
= k(s),

(18)

where fourth inequality follows from the fact that

2σ2
ωλ < (1 + 2λ)2 (19)

provided that

λ

{
∈ R if σω < 2,

>
2−σω+σω

√
σ2
ω−4

4 , if σω ≥ 2
.

Note that when σω > 2, the expression
2−σω+σω

√
σ2
ω−4

4 is negative. Thus, the inequality (18) will hold for any λ > 1. This
implies that [

Φ
(
− h(s)

)
− Φ

(
− k(s)

)]
I(As) > 0.
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whenever λ > σ2
ω

4 −
1
2 . On the other hand, note that −ρ̌ ≥ σ2

ωλ(λ− 1)(2µ1 − 1), then on the event As, we know that

% =
−sρ̌

σ2
ω

√
s(1 + 2λ2)(Tx + Ty + Tz)

≥ sσ2
ωλ(λ− 1)(2µ1 − 1)

σ2
ω

√
s(1 + 2λ2)(Tx + Ty + Tz)

and thus
%k(s)

h(s)
=

(1 + 2λ)
√
s

σω
√

1 + 2λ2
× %

h(s)

by the bound of %
≥ (1 + 2λ)

√
s

σω
√

1 + 2λ2
× sσ2

ωλ(λ− 1)(2µ1 − 1)

s(2λ+ 1)
[
−(R1,s − µ1)

]
by the bound in (17)

≥ (1 + 2λ)
√
s

σω
√

1 + 2λ2
×
[
sσ2
ωλ(λ− 1)(2µ1 − 1)

]
× 2(1 + 2λ)

σωλ(λ− 1)(2µ1 − 1)

=
2(1 + 2λ)2

√
1 + 2λ2

√
ss > 1,

i.e., %k(s) > h(s). Combining the above analysis, we have

PZ1,Z3

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z3 <

(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 < 0

)
I (% > 0)

≥
[
Φ
(
− h(s)

)
− Φ

(
− k(s)

)]
I
(
R1,s − µ1 < 0

)
I (% > 0)

+ Φ

(
%k(s)− h(s)√

1− %2

)
I
(
R1,s − µ1 < 0

)
I (% > 0)

>0I
(
R1,s − µ1 < 0

)
I (% > 0) + Φ(0)I

(
R1,s − µ1 < 0

)
I (% > 0)

=
1

2
I
(
R1,s − µ1 < 0

)
I (% > 0) .

(20)

Besides, note that when R1,s − µ1 > 0, we have −(Sx − Sy − Sz) < 0, and then

PZ1,Z2

({
Z1 >

−(Sx − Sy − Sz)
σω
√
Tx + Ty + Tz

}
∩
{
Z2 >

−(1 + 2λ)
√
s

σω
√

1 + 2λ2

})
I
(
R1,s − µ1 > 0

)
≥1

2
× I
(
R1,s − µ1 > 0

)
.

(21)

Plugging (16), (20), and (21) into (15), we obtain that

Q1,s

(
µ1 + λ

1 + 2λ

)
≥ 1

16
exp

{
−2s(2λ+ 1)2(R1,s − µ1)2

σ2
ωλ

4

}
I
(
R1,s − µ1 ≤ 0

)
I(ρ ≥ 0)

+
1

2
× I
(
R1,s − µ1 ≤ 0

)
I(ρ < 0) +

1

2
× I
(
R1,s − µ1 > 0

)
.

As a result, with the fact (14), the upper bound for ak,s now is

ak,s = EQ−1
1,s

(
µ1 + λ

1 + 2λ

)
≤ 16E exp

{
2s(2λ+ 1)2(R1,s − µ1)2

σ2
ωλ

4

}
I
(
R1,s − µ1 ≤ 0

)
I(ρ ≥ 0)

+ 2EI
(
R1,s − µ1 ≤ 0

)
I(ρ < 0) + 2EI

(
R1,s − µ1 > 0

)
≤ 16E exp

{
2s(2λ+ 1)2(R1,s − µ1)2

σ2
ωλ

4

}
+ 4.
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where the first inequality is due to that the several indicators are based on mutually exclusive events.

From the above expression, to prove that ak,s is bounded by a constant independent of s, it remains to show that the
expectation

E exp

{
2s(2λ+ 1)2(R1,s − µ1)2

σ2
ωλ

4

}
(22)

can be bounded below some constants free of s.

Applying Lemma E.2, we know that if we take

2s(2λ+ 1)2

σ2
ωλ

4
≤ s

8σ2
1

,

then (22) can be upper bounded by e9/8. A sufficient condition for the above inequality is

(2λ+ 1)2

σ2
ωλ

4
≤ 1

16σ2
1

, i.e. λ2 − 8σ1

σω
λ− 4σ1

σω
≥ 0,

in other words, this can be expressed as:

λ ≥ 4σ1

σω
+

√
4σ1

σω

(
4σ1

σω
+ 1

)
. (23)

Therefore, if we take the tuning parameters λ and σω as specified in (23), then ak,s will be bounded by a constant such that

ak,s ≤ 4 + 16e9/8. (24)

It is important to note that this lemma establishes the tuning conditions for the tuning parameters in Theorem C.1.

Lemma D.2 (Bounding ak,s,1 at (3)). Take

sa,k,1(T ) :=
4σ2

1

C2
1 (1 + 2λ)2∆2

k

× log T.

Then for any k ∈ {2, . . . ,K} and s ≥ sa,k,1(T ),
ak,s,1 ≤ T−1,

when T ≥ 2.

Proof. We will bound ak,s,1 by bounding the probability of the event Ack,s. Write

ak,s,1 = E
[(
N1,s(τk) ∧ T

)
I(Ac1,s)

]
≤ E

[
T I(Ac1,s)

]
= TP(Ac1,s). (25)

Since the summation of independent sub-Gaussian variables is still sub-Gaussian, (40) in Lemma E.2 gives R1,s − µ1 ∼
subG(σ2

1/s). By applying the concentration inequality of the sub-Gaussian variable, we have

P(Ac1,s) = P
(∣∣R1,s − µ1

∣∣ ≥ (1 + 2λ)C1∆k

)
≤ 2 exp

{
− (1 + 2λ)2C2

1∆2
ks

2σ2
1

}
take s≥sa,1(T )≥ 2σ2

1

C2
1 (1+2λ)2∆2

k
× log(

√
2T )

≤ 1

T 2
.

Hence, we obtain that
ak,s,1 ≤ TP(Ac1,s) ≤ T−1, for any s ≥ sa,1(T ).
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Lemma D.3 (Bounding ak,s,2 at (4)). Take

sa,k,2(T ) :=

{[(
Ω1 + a1 + b1 + Ω1a1

)(1

3
log−1 2× log

{
3

[
1 +

√
πb1

2
+

√
2πΩ1σ

2
1a1

2b2
1

+
2a1

b1

]}
+ 1

)]

∨ 18σ2
ω(2µ1 − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T,

where

a1 =
4σ2

ωλ
2

3C2
2 (1 + 2λ)2∆2

k

, b1 =
2σ2

ω

[
2λ2σ2

1 + (1 + 2λ)2C2
2∆2

k

]
3C2

2 (1 + 2λ)2∆2
k

, and Ω1 = 8
√

2σ2
1 .

Then for any s ≥ sa,k,2(T ),

ak,s,2 ≤ T−1,

for any k ∈ {2, . . . ,K} and T ≥ 2.

Proof. We will bound the probability of Gc1,s conditioning onH1,s to prove this lemma. Note that

Eω,ω′,ω′′
[

s∑
i=1

[
(1 + 2λ)R1,i − (R1,s + λ)

]
ωi +

s∑
i=1

λ(1 + λ−R1,s)ω
′
i −

s∑
i=1

λ(R1,s + λ)ω′′i

]
=s
(
(1 + 2λ)R1,s − (R1,s + λ) + λ(1 + λ−R1,s)− λ(R1,s + λ)

)
= 0,

we can bound the tail probability P(Gc1,s | H1,s) by

P(Gc1,s | H1,s)

=P
(
|Y 1,s −R

∗
1,s| > C2∆k | H1,s

)
=2Pω,ω′,ω′′

{∣∣∣∣∣
∑s
i=1

[
(1 + 2λ)R1,i − (R1,s + λ)

]
ωi +

∑s
i=1 λ(1 + λ−R1,s)ω

′
i −
∑s
i=1 λ(R1,s + λ)ω′′i

(1 + 2λ)(
∑s
i=1 ωi + λ

∑s
i=1 ω

′
i + λ

∑s
i=1 ω

′′
i )

∣∣∣∣∣ > C2∆k

}
by Lemma E.3
≤ 2Pω,ω′,ω′′

{
s∑
i=1

[
(1 + 2λ)R1,i − (R1,s + λ)

]
ωi +

s∑
i=1

λ(1 + λ−R1,s)ω
′
i

−
s∑
i=1

λ(R1,s + λ)ω′′i − C2(1 + 2λ)∆k

[ s∑
i=1

ωi + λ

s∑
i=1

ω′i + λ

s∑
i=1

ω′′i

]
> 0

}

+ Pω,ω′,ω′′
{

s∑
i=1

ωi + λ

s∑
i=1

ω′i + λ

s∑
i=1

ω′′i < 0

}
= 2I + II,

(26)
where

I = Pω,ω′,ω′′
{

s∑
i=1

[
(1 + 2λ)R1,i − (R1,s + λ)

]
ωi +

s∑
i=1

λ(1 + λ−R1,s)ω
′
i

−
s∑
i=1

λ(R1,s + λ)ω′′i − C2(1 + 2λ)∆k

[ s∑
i=1

ωi + λ

s∑
i=1

ω′i + λ

s∑
i=1

ω′′i

]
> 0

}
,

and

II = Pω,ω′,ω′′
{

s∑
i=1

ωi + λ

s∑
i=1

ω′i + λ

s∑
i=1

ω′′i < 0

}
.
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To bound P(Gc1,s | H1,s), it is sufficient to bound I and II separately. We first examine II . Write

II = Pω,ω′,ω′′
(

s∑
i=1

ωi + λ

s∑
i=1

ω′i + λ

s∑
i=1

ω′′i < 0

)

= Pω,ω′,ω′′
(∑s

i=1(ωi − 1) + λ
∑s
i=1(ω′i − 1) + λ

∑s
i=1(ω′′i − 1)√

sσ2
ω(1 + 2λ2)

< − (1 + 2λ)s√
sσ2
ω(1 + 2λ2)

)

= Pω,ω′,ω′′
(
Z < − (1 + 2λ)

σω
√

1 + 2λ2
×
√
s

)
by Lemma E.1
≤ 1

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
.

For studying I , we define the following functions of {R1,i}si=1:

f
(
{R1,i}si=1

)
= f1

(
{R1,i}si=1

)
+ f2

(
{R1,i}si=1

)
− f3

(
{R1,i}si=1

)
,

where

f1

(
{R1,i}si=1

)
=

s∑
i=1

[
(R1,i −R1,s) + λ(2R1,i − 1)− (1 + 2λ)C2∆k

]
ωi,

f2

(
{R1,i}si=1

)
=

s∑
i=1

[
λ(λ+ 1−R1,s)− (1 + 2λ)C2∆k

]
ω′i,

and

f3

(
{R1,i}si=1

)
=

s∑
i=1

[
λ(R1,s + λ) + (1 + 2λ)C2∆k

]
ω′′i .

Then we can write I = Pω,ω′,ω′(f1 + f2 − f3 > 0). Given that f1, f2, and f3 are mutually independent conditioning on
H1,s, the expectation is

E
[
f1 + f2 − f3 | H1,s

]
= −3C2(1 + 2λ)∆ks,

and the variance is

var
(
f1 + f2 − f3 | H1,s

)
=σ2

ω

[
s∑
i=1

[
(R1,i −R1,s) + λ(2R1,i − 1)− (1 + 2λ)C2∆k

]2
+

s∑
i=1

[
λ(λ+ 1−R1,s)− (1 + 2λ)C2∆k

]2
+

s∑
i=1

[
λ(R1,s + λ) + (1 + 2λ)C2∆k

]2]
=σ2

ω

[
V1 + V2 + V3

]
,

(27)

where

V1 =

s∑
i=1

{[
(R1,i −R1,s) + λ(2R1,s − 1)

]2
+ λ2(λ+ 1−R1,s)

2 + λ2(R1,s + λ)2
}
,

V2 =

s∑
i=1

{
−2(1+2λ)C2∆k

[
(R1,i−R1,s)+λ(2R1,s−1)

]
−2(1+2λ)C2∆kλ(λ+1−R1,s)+2(1+2λ)C2∆k(R1,s+λ)

}
,

and

V3 =

s∑
i=1

[
(1 + 2λ)2C2

2∆2
k + (1 + 2λ)C2

2∆2
k + (1 + 2λ)C2

2∆2
k

]
.
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For bounding the conditional variance above, we will calculate its components as follows.

V1 =

s∑
i=1

[
(R1,i −R1,s) + λ(2R1,i − 1)

]2
+ sλ2(λ+ 1−R1,s)

2 + sλ2(R1,s + λ)2

=

s∑
i=1

(R1,i −R1,s)
2 + 2sλ2

(
3R

2

1,s − 3R1,s + λ2 + λ+ 1
)

=

s∑
i=1

(R1,i − µ1)2 + (6λ2 − 1)s(R1,s − µ1)2 + 6sλ2(2µ1 − 3)(R1,s − µ1) + 2sλ2
[
λ2 + λ+ 1 + 3µ1(µ1 − 1)

]
Cauchy inequality

≤ 6λ2
s∑
i=1

(R1,i − µ1)2 + 6sλ2(2µ1 − 1)(R1,s − µ1) + 2sλ2
(
λ2 + λ+ 1− µ1(1− µ1)

)
= 6λ2

s∑
i=1

(R1,i − µ1)2 + 6sλ2(2µ1 − 1)(R1,s − µ1) + 2sλ2
(
λ2 + λ+ 1− µ1(1− µ1)

)
,

(28)

V2 = −2(1 + 2λ)C2∆k

[ s∑
i=1

(
(R1,i −R1,s) + λ(2R1,i − 1)

)
+ sλ(λ+ 1−R1,s)− sλ(R1,s + λ)

]
= −2s(1 + 2λ)C2∆k

[(
R1,s −R1,s) + λ(2R1,i − 1) + λ(λ+ 1−R1,s)

)
− λ(R1,s + λ)

]
= 0,

and
V3 = 3s(1 + 2λ)2C2

2∆2
k.

Therefore, the conditional variance in (27) is bounded by

σ−2
ω var

(
f1 + f2 − f3 | H1,s

)
= V1 + V2 + V3

≤ 6λ2
s∑
i=1

(R1,i − µ1)2 + 6sλ2(2µ1 − 1)
(
R1,s − µ1

)
︸ ︷︷ ︸

the random part

+ 2sλ2
(
λ2 + λ+ 1− 3µ1(1− µ1)

)
+ 3s(1 + 2λ)2C2

2∆2
k︸ ︷︷ ︸

the determined part

= R1 + R2 + D,

(29)

where

R1 = 6λ2
s∑
i=1

(R1,i − µ1)2, R2 = 6sλ2(2µ1 − 1)
(
R1,s − µ1

)
+ 2sλ2

(
λ2 + λ+ 1− 3µ1(1− µ1)

)
,

and
D = 3s(1 + 2λ)2C2

2∆2
k.

It is clear that both R1 and R2 are strictly positive. Additionally, it can be shown with high probability that R2 is non-positive.
Indeed, note that 0 ≤ 3µ1(1− µ1) ≤ 3

4 , we have

P(R2 > 0) = P
(
3(2µ1 − 1)

(
R1,s − µ1

)
> λ2 + λ+ 1− 3µ1(1− µ1)

)
≤ P

(∣∣∣3(2µ1 − 1)
(
R1,s − µ1

) ∣∣∣ > ∣∣∣λ2 + λ+ 1− 3µ1(1− µ1)
∣∣∣) I(µ1 6=

1

2

)
+ P(∅)× I

(
µ1 =

1

2

)
0≤3µ1(1−µ1)≤ 3

4

≤ P
(∣∣∣R1,s − µ1

∣∣∣ > λ2 + λ+ 1/4

|3(2µ1 − 1)|

)
I
(
µ1 6=

1

2

)
+ 0× I

(
µ1 =

1

2

)
by sub-Gaussian inequality

≤ exp

{
− (λ2 + λ+ 1/4)2s

18σ2
ω(2µ1 − 1)2

}
× I
(
µ1 6=

1

2

)
+ 0× I

(
µ1 =

1

2

)
.

(30)
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Then by applying Lemma E.1 again,

P(Gc1,s | H1,s) = 2I + II

= 2P

f1 + f2 − f3 − E
(
f1 + f2 − f3 | H1,s

)√
var
(
f1 + f2 − f3 | H1,s

) > −
E
(
f1 + f2 − f3 | H1,s

)√
var
(
f1 + f2 − f3 | H1,s

)


+
1

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
≤ 2 exp

{
−

E2
(
f1 + f2 − f3 | H1,s

)
2 var

(
f1 + f2 − f3 | H1,s

)}+
1

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
.

Therefore, combining with (29), ak,s,2 will be bounded by

ak,s,2 ≤ E
[
T I(Gc1,s)

]
= TE

[
P(Gc1,s | H1,s)

]
by (26)
≤ ≤ T

[
2I + II

]
≤ 2TE exp

{
−

E2
(
f1 + f2 − f3 | H1,s

)
2 var

(
f1 + f2 − f3 | H1,s

)}+
T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}

= TE exp

{
−

E2
(
f1 + f2 − f3 | H1,s

)
2 var

(
f1 + f2 − f3 | H1,s

)} (I(R2 ≤ 0) + I(R2 > 0)
)

+
T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
by the decomposition (29)

≤ TE exp

{
−
E2
(
f1 + f2 − f3 | H1,s

)
2σ2

ω

(
R1 + R2 + D

) }
I(R2 ≤ 0) + TP(R2 > 0) +

T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}

≤ TE exp

{
−
E2
(
f1 + f2 − f3 | H1,s

)
2σ2

ω

(
R1 + D

) }
+ TP(R2 > 0) +

T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
.

Recall R1,i − µ1 ∼ subG(σ2
1), and then ξi := (R1,i − µ1)2 − var(R1,i) ∼ subE(8

√
2σ2

1). Therefore, for furthermore
bounding R1 + D, we have

R1 + D = 6λ2

[
s∑
i=1

(R1,i − µ1)2 − s var(R1,i)

]
+
[
s var(R1,i) + 3s(1 + 2λ)2C2

2∆2
k

]
= 6λ2

s∑
i=1

ξi + s
[
6λ2 var(R1,i) + 3(1 + 2λ)2C2

2∆2
k

]
by var(R1,i) ≤ σ2

1

≤ 6λ2
s∑
i=1

ξi + 3s
[
2λ2σ2

1 + (1 + 2λ)2C2
2∆2

k

]
= 3s

[
2λ2ξ + 2λ2σ2

1 + (1 + 2λ)2C2
2∆2

k

]
,

(31)
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where ξ = 1
s

∑s
i=1 ξi. Then

ak,s,2 ≤ TE exp

{
−
E2
(
f1 + f2 − f3 | H1,s

)
2σ2

ω

(
R1 + D

) }
+ TP(R2 > 0) +

T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
by (31) and (30)
≤ TE exp

{
− 9C2

2 (1 + 2λ)2∆2
ks

2

6σ2
ωs
[
2λ2ξ + 2λ2σ2

1 + (1 + 2λ)2C2
2∆2

k

]}

+ T

[
exp

{
− (λ2 + λ+ 1/4)2s

18σ2
ω(2µ1 − 1)2

}
× I
(
µ1 6=

1

2

)
+ 0× I

(
µ1 =

1

2

)]
+
T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
= TE exp

{
− 3C2

2 (1 + 2λ)2∆2
ks

2σ2
ω

[
2λ2ξ + 2λ2σ2

1 + (1 + 2λ)2C2
2∆2

k

]}

+ T

[
exp

{
− (λ2 + λ+ 1/4)2s

18σ2
ω(2µ1 − 1)2

}
× I
(
µ1 6=

1

2

)
+ 0× I

(
µ1 =

1

2

)]
+
T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
.

(32)

The next step is to apply Lemma E.4. Let

a1 =
4σ2

ωλ
2

3C2
2 (1 + 2λ)2∆2

k

, b1 =
2σ2

ω

[
2λ2σ2

1 + (1 + 2λ)2C2
2∆2

k

]
3C2

2 (1 + 2λ)2∆2
k

, λi ≡ 8
√

2σ2
1 , i ∈ [s],

and Ω1 = (s−1
∑s
i=1 λ

2
i )

1/2 = 8
√

2σ2
1 , then Lemma E.4 gives

E exp

{
− 3C2

2 (1 + 2λ)2∆2
ks

2σ2
ω

[
2λ2ξ + 2λ2σ2

1 + (1 + 2λ)2C2
2∆2

k

]}

= E exp

− s

4σ2
ωλ

2

3C2
2 (1+2λ)2∆2

k
ξ +

2σ2
ω[2λ2σ2

1+(1+2λ)2C2
2∆2

k]
3C2

2 (1+2λ)2∆2
k

 = E exp

{
− s

a1ξ + b1

}

≤

[
1 +

√
πb1

2
+

√
2πΩ1a1

2b2
1

+
2a1

b1

]
exp

{
− s√

2Ω1a1 ∨ (b1 + Ω1a1)

}
by
√

2Ω1a1∨(b1+Ω1a1)≤b1+Ω1a1+Ω1+a1

≤

[
1 +

√
πb1

2
+

√
2πΩ1a1

2b2
1

+
2a1

b1

]
s exp

{
− s

Ω1 + a1 + b1 + Ω1a1

}
.

(33)

Hence, by taking

s ≥
[
Ω1 + a1 + b1 + Ω1a1

](
log−1 2× log

{
3

[
1 +

√
πb1

2
+

√
2πΩ1a1

2b2
1

+
2a1

b1

]}
+ 3

)
log T

≥
[
Ω1 + a1 + b1 + Ω1a1

]
log

{
3

[
1 +

√
πb1

2
+

√
2πΩ1a1

2b2
1

+
2a1

b1

]
T 3

}
,

we have

E exp

{
− 3C2

2 (1 + 2λ)2∆2
ks

2σ2
ω

[
2λ2ξ + 2λ2σ2

1 + (1 + 2λ)2C2
2∆2

k

]} ≤ s

3T 3
≤ 1

3T 2
.

Similarly, the inequality

T

[
exp

{
− (λ2 + λ+ 1/4)2s

18σ2
ω(2µ1 − 1)2

}
× I
(
µ1 6=

1

2

)
+ 0× I

(
µ1 =

1

2

)]
≤ 1

3T
,
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and
T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
≤ 1

3T

have the solution

s ≥ 18σ2
ω(2µ1 − 1)2

(λ2 + λ+ 1/4)2
[log 3 + 2 log T ] .

and

s ≥ 2σ2
ω(1 + 2λ2)

(1 + 2λ)2
[log(3/2) + 2 log T ] ,

respectively. Therefore, we have ak,s,2 ≤ T−1 for any s ≥ sa,k,2(T ) by taking

sa,k,2(T ) =

[[
Ω1 + a1 + b1 + Ω1a1

](1

3
log−1 2× log

{
3

[
1 +

√
πb1

2
+

√
2πΩ1a1

2b2
1

+
2a1

b1

]}
+ 1

)

∨ 18σ2
ω(2µ1 − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

]
× 3 log T

for any T ≥ 2.

Lemma D.4 (Bounding ak,s,3 at (5)). Take

sa,k,3(T ) =

{[(
Ω1 + a2 + b2 + Ω1a2

)(1

3
log−1 2× log

{
3

[
1 +

√
πb2

2
+

√
2πΩ1a2

2b2
2

+
2a2

b2

]}
+ 1

)]

∨ 18σ2
ω(2µ1 − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T

where

a2 =
σ2
ωλ

2

3(λ− 1)2C2
1∆2

k

, b2 =
σ2
ω

[
2λ2σ2

1 + 25(1 + 2λ)2C2
1∆2

k

]
6(λ− 1)2C2

1∆2
k

, and Ω1 = 8
√

2σ2
1 .

Then for any s ≥ sa,k,3(T ) and λ > 1,
ak,s,3 ≤ T−1.

for any k ∈ {2, . . . ,K} and T ≥ 2.

Proof. Unlike the proofs for bounding ak,s,1 and ak,s,2, which involve controlling the probability of bad events, the
definition of ak,s,3 is based on good events instead. Therefore, we require a different technique to handle ak,s,3. Observe
that

{N1,s(τk) < T−1} ⊇ {N1,s(τk) < (T 2 − 1)−1}
by (T 2−1)−1≤T−1

=
{
Q1,s (τk)

−1
< 1 +

(
T 2 − 1

)−1 }
=
{
Q1,s(τk)−1 < (1− T−2)−1

}
=
{

[1−Q1,s(τk)] < T−2
}
,

(34)

and ak,s,3 ≤ E
[
N1,s(τk)I(A1,s ∩ G1,s)

]
. Thus, as suggested by Wang et al. (2020), we can bound ak,s,3 ≤ T−1 for

s ≥ sa,k,3 by finding s ≥ sa,k,3 such that
{

[1−Q1,s(τk)] < T−2
}

holds on the event {A1,s ∩G1,s}.

We can express the term[
1−Q1,s(τk)

]
I(A1,s)I(G1,s) = P

(
Y 1,s −R

∗
1,s ≤ Γ1 |H1,s

)
I(A1,s ∩ G1,s),

where we define Γ1 := Γ1(τ1) = τ1 −R
∗
1,s as the difference between Y 1,s and R

∗
1,s. On the event {A1,s ∩ G1,s}, Γ1 can

be bounded within an interval. To see this,

A1,s =

{
R
∗
1,s −

µ1 + λ

1 + 2λ
> −C1∆k

}
∩
{
R
∗
k,s −

µk + λ

1 + 2λ
< C1∆k

}
=

{
Γ1 < C1∆k −

µ1 + λ

1 + 2λ
+ τ1

}
∩
{

Γ1 > −C2∆k −
µ1 + λ

1 + 2λ
+ τ1

}
=

{
τ1 − C1∆k −

µ1 + λ

1 + 2λ
< Γ1 < τ1 + C1∆k −

µ1 + λ

1 + 2λ

}
,
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and
G1,s =

{
− C2∆k ≤ Y 1,s −R

∗
1,s ≤ C2∆k

}
=
{
τ1 − C2∆k ≤ Y 1,s + Γ1 ≤ τ1 + C2∆k

}
=
{
τ1 − C2∆k − Y 1,s ≤ Γ1 ≤ τ1 + C2∆k − Y 1,s

}
by−C2∆k+R

∗
1,s≤Y 1,s≤C2∆k+R

∗
1,s

⊆
{
τ1 − 2C2∆k −R

∗
1,s ≤ Γ1 ≤ τ1 + 2C2∆k −R

∗
1,s

}
.

Let us combine the previous two results, given by
C1 = 2C2, (35)

which yields

A1,s ∩ G1,s

⊆
{
τ1 − C1∆k −R

∗
1,s ∧

µ1 + λ

1 + 2λ
≤ Γ1 ≤ τ1 + C1∆k −R

∗
1,s ∨

µ1 + λ

1 + 2λ

}
byµ1+λ

1+2λ−C1∆k<R
∗
1,s<

µ1+λ
1+2λ +C1∆k

⊆
{
τ1 − 2C1∆k −

µ1 + λ

1 + 2λ
≤ Γ1 ≤ τ1 + 2C1∆k −

µ1 + λ

1 + 2λ

}
.

(36)

Now let

τ1 :=
µ1 + λ

1 + 2λ
− 6λC1∆k

1 + 2λ
.

This choice of τ1 satisfies (13) as τ1 ≤ µ1+λ
1+2λ . We can furthermore reduce on A1,s ∩ G1,s that

Γ1 ≤ τ1 + 2C1∆k −
µ1 + λ

1 + 2λ

= 2C1∆k −
6λC1∆k

1 + 2λ
= −2C1∆k

λ− 1

2λ+ 1
by λ≥1

≤ −2C1(λ− 1)∆k

2λ+ 1
< 0,

and

0 > Γ1 ≥ τ1 − 2C1∆k −
µ1 + λ

1 + 2λ

= −2C1∆k −
6λC1∆k

1 + 2λ
= −2C1∆k

[
1 +

3λ

1 + 2λ

]
by 3λ

1+2λ≤
3
2

≥ −2C1∆k ×
5

2
= −5C1∆k.

Thus, we obtain −Γ1 ∈
(

2C1(λ−1)∆k

2λ+1 , 5C1∆k

)
⊆ (0,+∞). Return to the quantity we are interested in,

[
1 −

Q1,s(τk)
]
I(A1,s)I(G1,s). We can express it as follows:[

1−Q1,s(τk)
]
I(A1,s)I(G1,s)

=P
(
Y 1,s −R

∗
1,s ≤ Γ1 |H1,s

)
I(A1,s ∩ G1,s)

=E

[
Pω,ω′,ω′′

{
s∑
i=1

(R1,i −R1,s)ωi + λ

s∑
i=1

(2R1,iωi −R1,sω
′
i −R1,sω

′′
i )

+ λ

s∑
i=1

(ω′i − ωi) + λ2
s∑
i=1

(ω′i − ω′′i )

− Γ1(1 + 2λ)

[ s∑
i=1

ωi + λ

s∑
i=1

ω′i + λ

s∑
i=1

ω′′i

]
< 0

}
I(A1,s ∩ G1,s)

]
.
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Similar to the technique we used to bound the conditional probability P(Gc1,s | H1,s), we just need to replace C2∆k by −Γ1

in (32) and obtain that[
1−Q1,s(τk)

]
I(A1,s)I(G1,s)

apply steps in (26)
≤ TE

[
exp

{
− 9(−Γ1)2(1 + 2λ)2s2

6σ2
ωs
[
2λ2ξ + 2λ2σ2

1 + (−Γ1)2(1 + 2λ)2
]} I(A1,s ∩ G1,s)

]

+ T

[
exp

{
− (λ2 + λ+ 1/4)2s

18σ2
ω(2µ1 − 1)2

}
× I
(
µ1 6=

1

2

)
+ 0× I

(
µ1 =

1

2

)]
+
T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
by the bound of−Γ1

≤ TE exp

{
− 36(λ− 1)2C2

1∆2
ks

2

6σ2
ωs
[
2λ2ξ + 2λ2σ2

1 + 25(1 + 2λ)2C2
1∆2

k

]}

+ T

[
exp

{
− (λ2 + λ+ 1/4)2s

18σ2
ω(2µ1 − 1)2

}
× I
(
µ1 6=

1

2

)
+ 0× I

(
µ1 =

1

2

)]
+
T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
.

(37)

Similarly, we define the following expressions

a2 =
σ2
ωλ

2

3(λ− 1)2C2
1∆2

k

, and b2 =
σ2
ω

[
2λ2σ2

1 + 25(1 + 2λ)2C2
1∆2

k

]
6(λ− 1)2C2

1∆2
k

.

Consider the value of s such that

s ≥
[
Ω1 + a2 + b2 + Ω1a2

](
log−1 2× log

{
3

[
1 +

√
πb2

2
+

√
2πΩ1a2

2b2
2

+
2a2

b2

]}
+ 3

)
log T.

By applying Lemma E.4 and following the steps in (33) again, we obtain

TE exp

{
− 36(λ− 1)2C2

1∆2
ks

2

6σ2
ωs
[
2λ2ξ + 2λ2σ2

1 + 25(1 + 2λ)2C2
1∆2

k

]}

= TE exp

{
− 6(λ− 1)2C2

1∆2
ks

σ2
ω

[
2λ2ξ + 2λ2σ2

1 + 25(1 + 2λ)2C2
1∆2

k

]}

= TE exp

− s

σ2
ωλ

2

3(λ−1)2C2
1∆2

k
ξ +

σ2
ω[2λ2σ2

1+25(1+2λ)2C2
1∆2

k]
6(λ−1)2C2

1∆2
k


= TE exp

{
− s

a2ξ + b2

}
by applying steps in (33)

≤ 1

3T
.

Therefore, to determine the value of s such that [1−Q1,s(τk)] < T−2 on {A1,s ∩ G1,s}, we can define

s ≥ sa,k,3(T ) =

[[
Ω1 + a2 + b2 + Ω1a2

](1

3
log−1 2× log

{
3

[
1 +

√
πb2

2
+

√
2πΩ1a2

2b2
2

+
2a2

b2

]}
+ 1

)

∨ 18σ2
ω(2µ1 − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

]
× 3 log T.

By choosing this value for sa,k,3 then we get that as,k,3 ≤ T−1 whenever s ≥ sa,k,3.

37



Multiplier Bootstrap-Based Exploration

D.2. Lemmas on bounding bk.

Lemma D.5 (Bounding bk,s,1 at (6)). Consider

sb,k,1(T ) =
2σ2

k

C2
1 (1 + 2λ)2∆2

k

× log T.

For any s ≥ sb,k,1(T ), we have
bk,s,1 ≤ T−1, ∀ k ∈ {2, . . . ,K}

provided that T ≥ 2.

Proof. Similar to Lemma D.5 and noting

sb,k,1(T ) ≥ σ2
k

C2
1 (1 + 2λ)2∆2

k

× log(2T ),

we apply the Hoeffding inequality, which gives

bk,s,1 = E
[
I(Qk,s(τk) > T−1)I(Ack,s)

]
≤ P(Ack,s)

= P
(
|Rk,s − µk| ≥ (1 + 2λ)C1∆k

)
by Hoeffding inequality

≤ T−1.

Lemma D.6 (Bounding bk,s,2 at (7)). Consider

sb,k,2(T ) =

{[(
Ωk + a1 + b1 + Ωka1

)(1

3
log−1 2× log

{
3

[
1 +

√
πb1

2
+

√
2πΩka1

2b2
1

+
2a1

b1

]}
+ 1

)]

∨ 18σ2
ω(2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T,

where

a1 =
4σ2

ωλ
2

3C2
2 (1 + 2λ)2∆2

k

, b1 =
2σ2

ω

[
2λ2σ2

1 + (1 + 2λ)2C2
2∆2

k

]
3C2

2 (1 + 2λ)2∆2
k

, and Ωk = 8
√

2σ2
k.

For any s ≥ sb,k,2(T ), we have
bk,s,2 ≤ T−1, ∀ k ∈ {2, . . . ,K}

provided that T ≥ 2.

Proof. Similar to bounding ak,s,2 in Lemma D.3, we can show that if we take

sb,k,2(T ) =

{[(
Ωk + a1 + b1 + Ωka1

)(1

3
log−1 2× log

{
3

[
1 +

√
πb1

2
+

√
2πΩka1

2b2
1

+
2a1

b1

]}
+ 1

)]

∨ 18σ2
ω(2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T,

with Ωk = 8
√

2σ2
k, we have

bk,s,2 ≤ E
[
I(Gck,s)

]
≤ E exp

− 3C2
2 (1 + 2λ)2∆2

ks

2σ2
ω

[
2λ2ζ(k) + 2λ2σ2

k + (1 + 2λ)2C2
2∆2

k

]


+

[
exp

{
− (λ2 + λ+ 1/4)2s

18σ2
ω(2µk − 1)2

}
× I
(
µk 6=

1

2

)
+ 0× I

(
µk =

1

2

)]
+
T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
≤ T−2,
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where ζ(k) = 1
s

∑s
i=1 ζ

(k)
i , with {ζ(k)

i }si=1 being i.i.d independent sub-Exponential variables such that ζ(k)
i ∼

subE(8
√

2σ2
k). Then bk,s,2 ≤ T−2 ≤ T−1 for any s ≥ sb,k,2 and k ∈ {2, . . . ,K}.

Lemma D.7 (Bounding bk,s,3 at (8)). Consider

sb,k,3(T ) =

{[(
Ωk + a2 + b2 + Ωka2

)(1

3
log−1 2× log

{
3

[
1 +

√
πb2

2
+

√
2πΩka2

2b2
2

+
2a2

b2

]}
+ 1

)]

∨ 18σ2
ω(2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T,

where

a2 =
σ2
ωλ

2

3(λ− 1)2C2
1∆2

k

, b2 =
σ2
ω

[
2λ2σ2

1 + 25(1 + 2λ)2C2
1∆2

k

]
6(λ− 1)2C2

1∆2
k

, and Ωk = 8
√

2σ2
k.

For any s ≥ sb,k,3(T ) and λ > 1,

bk,s,3 ≤ T−1, ∀ k ∈ {2, . . . ,K}

provided that T ≥ 2.

Proof. The basic idea is the same as bounding ak,s,3. The only difference is that we replace
[
1−Qk,s(τk)

]
with Qk,s(τk).

Again, we will first bound Γk = Y k,s −R
∗
k,s on the event Ak,s ∩ Gk,s. Exactly as before, we let

τk =
µk + λ

1 + 2λ
+

6λC1∆k

1 + 2λ

which satisfies τk ≥ µk+λ
1+2λ . To ensure τk ≤ µ1+λ

1+2λ , one just needs to take C1 = 1
6λ , and then C2 = 1

2C1 = 1
12λ by (35).

Next, we will obtain the range for Γk on the event Ak,s ∩ Gk,s as

Γk ≥ τk − 2C1∆k −
µk + λ

1 + 2λ

= 2C1∆k
λ− 1

2λ+ 1
by λ>1
> 0,

and

Γk ≤ τk + 2C1∆k −
µk + λ

1 + 2λ

= 2C1∆k

(
1 +

3λ

1 + 2λ

)
by 3λ

1+2λ≥
3
2

≤ 2C1∆k

(
1 +

3

2

)
= 5C1∆k,
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i.e., Γk ∈
(

2C1(λ−1)∆k

2λ+1 , 5C1∆k

)
⊆ (0,∞). Therefore,

Qk,s(τk)I(Ak,s)I(Gk,s)

= P
(
Y k,s −R

∗
k,s ≥ Γk | Hk,s

)
I(Ak,s ∩ Gk,s)

apply steps in (26)
≤ TE

[
exp

− 9Γ2
k(1 + 2λ)2s2

6σ2
ωs
[
2λ2ζ(k) + 2λ2σ2

1 + Γ2
k(1 + 2λ)2

]
 I(Ak,s ∩ Gk,s)

]

+ T

[
exp

{
− (λ2 + λ+ 1/4)2s

18σ2
ω(2µk − 1)2

}
× I
(
µk 6=

1

2

)
+ 0× I

(
µk =

1

2

)]
+
T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
by the bound of Γk

≤ TE exp

− 36(λ− 1)2C2
1∆2

ks
2

6σ2
ωs
[
2λ2ζ(k) + 2λ2σ2

1 + 25(1 + 2λ)2C2
1∆2

k

]


+ T

[
exp

{
− (λ2 + λ+ 1/4)2s

18σ2
ω(2µk − 1)2

}
× I
(
µk 6=

1

2

)
+ 0× I

(
µk =

1

2

)]
+
T

2
exp

{
− s(1 + 2λ)2

2σ2
ω(1 + 2λ2)

}
,

where ζ(k) = 1
s

∑s
i=1 ζ

(k)
i with {ζ(k)

i }si=1 are i.i.d. independent sub-Exponential variables such that ζ(k)
i ∼ subE(8

√
2σ2

k).
Let

s ≥
[
Ωk + a2 + b2 + Ωka2

](1

3
log−1 2× log

{
3

[
1 +

√
πb2

2
+

√
2πΩka2

2b2
2

+
2a2

b2

]}
+ 1

)
.

By applying Lemma E.4 again, we have

TE exp

− 36(λ− 1)2C2
1∆2

ks
2

6σ2
ωs
[
2λ2ζ(k) + 2λ2σ2

1 + 25(1 + 2λ)2C2
1∆2

k

]


=TE exp

{
− s

a2ζ(k) + b2

}
≤ 1

3T
.

Therefore, we have bk,s,3 ≤ T−1 for any k ∈ {2, . . . ,K} if we choose

sb,k,3(T ) =

{[(
Ωk + a2 + b2 + Ωka2

)(1

3
log−1 2× log

{
3

[
1 +

√
πb2

2
+

√
2πΩka2

2b2
2

+
2a2

b2

]}
+ 1

)]

∨ 18σ2
ω(2µk − 1)2

(λ2 + λ+ 1/4)2
∨ 2σ2

ω(1 + 2λ2)

(1 + 2λ)2

}
× 3 log T,

D.3. Lemmas on simplifying bounds.

Lemma D.8. Assuming the conditions are identical to those in Theorem C.1, the constants c1(µ1, σ1, µk, σk, λ) and
c2(µ1, σ1, µk, σk, λ), as defined in (10) and (11), can be upper-bounded by C1(σ1, σk, λ, σω) and C2(σ1, σk, λ, σω)
specified in Theorem C.1, respectively.

Proof. First, we establish bounds for the components d1 and d2 in c1(µ1, σ1, µk, σk, λ) and c2(µ1, σ1, µk, σk, λ). Observe
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that
d1 =∆2

k

{
(a1 + a2) + (b1 + b2) + Ωmax(a1 + a2)

}
by ∆k≤1

≤ 1 + Ωmax

3
σ2
ω

[
192λ4

(1 + 2λ)2
+

36λ4

(λ− 1)2

]
+ σ2

ω

[
2
[
96λ4σ2

1 + (1 + 2λ)2/(36λ2)
]

3(1 + 2λ)2
+

72λ4σ2
1 + 25(1 + 2λ)2

6(λ− 1)2

]
.

Given λ ≥
(

1 +
σ2
ω

4 + 4σ1

σω

)
+

√
4σ1

σω

(
4σ1

σω
+ 1
)
> 4σ1

σω
+ 1, we can infer that (λ− 1)2 ≥ 16σ2

1/σ
2
ω , and consequently,

192λ4

(1 + 2λ)2
+

36λ4

(λ− 1)2
≤ 192λ4

4λ2
+

36λ4

16σ2
1/σ

2
ω

= 48λ2 + 3
σ2
ω

σ2
1

λ4.

Similarly,
2
[
96λ4σ2

1 + (1 + 2λ)2/(36λ2)
]

3(1 + 2λ)2
+

72λ4σ2
1 + 25(1 + 2λ)2

6(λ− 1)2

≤2× 96λ4σ2
1

3× 4λ2
+

2

3× 36λ2
+

72λ4σ2
1 + 25(1 + 2λ)2

6× 16σ2
1/σ

2
ω

≤16λ2σ2
1 +

1

48
+ λ4σ2

ω +
25× 9λ2

6× 16σ2
1/σ

2
ω

≤ 16λ2σ2
1 +

1

48
+ 3λ4σ2

ω + 3λ2σ2
ω/σ

2
1 .

Thus,
d1 =∆2

k

{
(a1 + a2) + (b1 + b2) + Ωmax(a1 + a2)

}
≤ (1 + Ωmax)σ2

ω

3

[
48λ2 + 3

σ2
ω

σ2
1

λ4

]
+ σ2

ω

[
16λ2σ2

1 +
1

48
+ 3λ4σ2

ω + 3
σ2
ω

σ2
1

λ2

]
=σ2

ω

{[
16(1 + Ωmax) + 16σ4

1 + 3
σ2
ω

σ2
1

]
λ2 +

[
(1 + Ωmax)

σ2
ω

σ2
1

+ 3σ2
ω

]
λ4 +

1

48

}
≤σ2

ω

[
16(1 + Ωmax) + 16σ4

1 + 3
σ2
ω

σ2
1

+ (1 + Ωmax)
σ2
ω

σ2
1

+ 3σ2
ω + 1

]
λ4

≤
[
(1 + Ωmax)

(
16 +

σ2
ω

σ2
1

)
+ 16σ4

1 + 3
σ2
ω

σ2
1

+ 3σ2
ω + 1

]
σ2
ωλ

4.

(38)

Define

D1(σ1, σk, λ, σω) :=

[
(1 + Ωmax)

(
16 +

σ2
ω

σ2
1

)
+ 16σ4

1 + 3
σ2
ω

σ2
1

+ 3σ2
ω + 1

]
σ2
ωλ

4,

then d1 ≤ D1(σ1, σk, λ, σω). On the other hand, regarding d2, we have the following:

d2 =3

[
1 +

√
π

2

(√
b1 +

√
b2

)
+

√
2πΩmax

2

(
a1

b2
1

+
a2

b2
2

)
+ 2

(
a1

b1
+

a2

b2

)]

≤3

[
1 +

√
π

2

(√
2σ2

ω(1 + 2λ)2∆2
k/(144λ2)

3(1 + 2λ)2∆2
k

+

√
25σ2

ω(1 + 2λ)2∆2
k

6(λ− 1)2∆2
k

)

+

√
2πΩmax

2

(
(1 + 2λ)2

64λ4σ4
1

+
(λ− 1)2

12λ4σ2
1σ

2
ω

)
+ 2

(
96λ4

96λ4σ2
1 + (1 + 2λ)2/(36λ2)

+
72λ4

72λ4σ2
1 + 25(1 + 2λ)2

) ]
.

To simply the bound above, we can use the fact λ > 1 to derive the following inequalities:√
2σ2

ω(1 + 2λ)2∆2
k/(144λ2)

3(1 + 2λ)2∆2
k

+

√
25σ2

ω(1 + 2λ)2∆2
k

6(λ− 1)2∆2
k

≤ σω
12λ

+
5σω(1 + 2λ)

2(λ− 1)

≤ σω + 3
σ2
ω

σ1
(1 + 2λ) ≤ 3σ2

ω

σ1

[
σ1

σω
+ 3λ

]
,
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(1 + 2λ)2

64λ4σ4
1

+
(λ− 1)2

12λ4σ2
1σ

2
ω

≤ 9λ2

64λ4σ4
1

+
16σ2

1/σ
2
ω

12λ4σ2
1σ

2
ω

≤ 9λ2

64λ4σ4
1

+
16σ2

1/σ
2
ω

12λ2σ2
1σ

2
ω

≤ 2

[
1

σ2
1λ

2
+

1

σ2
ωλ

2

]
≤ 2

[
σ2
ω

16σ4
1

+
1

σ2
ω

]
,

and
96λ4

96λ4σ2
1 + (1 + 2λ)2/(36λ2)

+
72λ4

72λ4σ2
1 + 25(1 + 2λ)2

≤ 96λ4

96λ4σ2
1

+
72λ4

72λ4σ2
1

=
2λ2

λ2σ2
1

≤ 2λ2

16σ4
1/σ

2
ω

=
λ2σ2

ω

8σ4
1

.

Thus, d2 is upper-bound by

d2 = 3

[
1 +

√
π

2

(√
b1 +

√
b2

)
+

√
2πΩmax

2

(
a1

b2
1

+
a2

b2
2

)
+ 2

(
a1

b1
+

a2

b2

)]

≤ 3

[
1 +

3
√
πσ2

ω

2σ1

(
σ1

σω
+ 3λ

)
+
√

2πΩmax

(
σ2
ω

16σ4
1

+
1

σ2
ω

)
+
λ2σ2

ω

4σ4
1

]
.

(39)

Once again, we define

D2(σ1, σk, λ, σω) := 3

[
1 +

3
√
πσ2

ω

2σ1

(
σ1

σω
+ 3λ

)
+
√

2πΩmax

(
σ2
ω

16σ4
1

+
1

σ2
ω

)
+
λ2σ2

ω

4σ4
1

]
,

then d2 ≤ D2(σ1, σk, λ, σω).

Next, we can provide simple bounds for c1(µ1, σ1, µk, σk, λ, σω) and c2(µ1, σ1, µk, σk, λ, σω). Using the fact that a ∨ b ≤
a+ b and a ∨ b ∨ c = [(a ∨ b) ∨ c], we obtain that(

Ωmax

(
log d2

3 log 2
+ 1

))
∨ 18σ2

ω{(2µ1 − 1)2 ∨ (2µk − 1)2}
(λ2 + λ+ 1/4)2

∨ 2σ2
ω(1 + 2λ2)

(1 + 2λ)2

≤
(

Ωmax

(
log d2

3 log 2
+ 1

))
∨ 72σ2

ω{(2µ1 − 1)2 + (2µk − 1)2}
(1 + 2λ)2

∨ 2σ2
ω(1 + 2λ2)

(1 + 2λ)2

≤
(

Ωmax

(
log d2

3 log 2
+ 1

))
∨ 72σ2

ω × 2 + 2σ2
ω(1 + 2λ2)

(1 + 2λ)2

≤
(

Ωmax

(
log d2

3 log 2
+ 1

))
∨ 144σ2

ω + 2σ2
ω + 4λ2σ2

ω

4λ2

≤
[
Ωmax

(
log d2

3 log 2
+ 1

)]
+ 38σ2

ω ≤ Ωmax

(
logD2(σ1, σk, λ, σω)

3 log 2
+ 1

)
+ 38σ2

ω.

and (
d1

(
log d2

3 log 2
+ 1

))
∨ 18σ2

ω{(2µ1 − 1)2 ∨ (2µk − 1)2}
(λ2 + λ+ 1/4)2

∨ 2σ2
ω(1 + 2λ2)

(1 + 2λ)2

≤D1(σ1, σk, λ, σω)

(
logD2(σ1, σk, λ, σω)

3 log 2
+ 1

)
+ 38σ2

ω,

where the last steps in two inequalities above are by (38) and (39). Finally, note that

5 + 16e9/8 ≤ 55,
72λ2σ2

k

(1 + 2λ)2
(9 + 32e9/8) ≤ 72λ2σ2

k

25
(9 + 32e9/8) ≤ 310λ2σ2

k,
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which implies c1(µ1, σ1, µk, σk, λ, σω) ≤ C1(σ1, σk, λ, σω) and c2(µ1, σ1, µk, σk, λ, σω) ≤ C2(σ1, σk, λ, σω).

Lemma D.9. Assuming the conditions the same as in Lemma D.8, we have

C1(1, 1, λ, σω) ≤ 55

[
8
√

2

(
log
[
(1 + 15σ−2

ω + 3σω + 10σ2
ω)λ2

]
3 log 2

+ 1

)
+ 38σ2

ω

]
and

C2(1, 1, λ, σω) ≤ 330λ2 + 55

[
45(3 + σ2

ω)

(
log
[
(1 + 15σ−2

ω + 3σω + 10σ2
ω)λ2

]
3 log 2

+ 1

)
λ4 + 38σ2

ω

]
.

Proof. We have

D1(1, 1, λ, σω) =

[(
1 + 8

√
2
)(

16 + σ2
ω

)
+ 16 + 3σ2

ω + 3σ2
ω + 1

]
σ2
ωλ

4

≤
[
13
(
16 + 3σ2

ω

)
+ 6σ2

ω + 17

]
σ2
ωλ

4 = 45(3 + σ2
ω)λ4

and

D2(1, 1, λ, σω) = 3

[
1 +

3
√
πσ2

ω

2

(
1

σω
+ 3λ

)
+ 8
√
π

(
σ2
ω

16
+

1

σ2
ω

)
+
λ2σ2

ω

4

]
≤ 3

[
1 +

3
√
πσ2

ω

2

(
1

σω
+ 3

)
+ 8
√
π

(
σ2
ω

16
+

1

σ2
ω

)
+
σ2
ω

4

]
λ2 ≤

(
1 + 15σ−2

ω + 3σω + 10σ2
ω

)
λ2.

Therefore, we have

C1(1, 1, λ, σω) = 55

[
8
√

2

(
logD2(1, 1, λ, σω)

3 log 2
+ 1

)
+ 55σ2

ω

]
≤ 55

[
8
√

2

(
log
[
(1 + 15σ−2

ω + 3σω + 10σ2
ω)λ2

]
3 log 2

+ 1

)
+ 38σ2

ω

]
,

and

C2(1, 1, λ, σω) = 310λ2 + 55

[
D1(1, 1, λ, σω)

(
logD2(1, , 1, λ, σω)

3 log 2
+ 1

)
+ 38σ2

ω

]
< 330λ2 + 55

[
45(3 + σ2

ω)

(
log
[
(1 + 15σ−2

ω + 3σω + 10σ2
ω)λ2

]
3 log 2

+ 1

)
λ4 + 38σ2

ω

]
.

E. Technical Lemmas
Lemma E.1. Let Z be a standard Gaussian variable, then the tail probability P(Z > x) satisfies

1

4
exp(−x2) < P(Z > x) ≤ 1

2
exp(−x2/2)

for any x ≥ 0.

Proof. Let Q(x) := P(Z > x) for x > 0 represent the tail probability for a standard Gaussian variable Z. Let Z1 and Z2

are two independent standard Gaussian random variables. Then

P(Z1 ≤ x, Z2 ≤ x) =

∫ x

−x

∫ x

−x

1

2π
exp

[(
−z2

1 − z2
2

)
/2
]

dz1dz2

≤
∫ √2x

0

∫ 2π

0

1

2π
exp

(
−r2/2

)
r dθ dr

= 1− exp(−x2),
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which implies that [1 − 2Q(x)]2 ≤ 1 − exp(−x2) for x ≥ 0, or, equivalently, exp(−x2) ≤ 4Q(x) − 4Q2(x). However,
since 4Q2(x) > 0 for all x, we obtain that

Q(x) >
1

4
exp(−x2)

which provides the lower bound in the lemma. For the upper bound, we observe that

exp
(
x2/2

)
Q(x) = exp

(
x2/2

) ∫ ∞
x

(2π)−1/2 exp
(
−t2/2

)
dt

=

∫ ∞
x

(2π)−1/2 exp
(
−
(
t2 − x2

)
/2
)

dt

<

∫ ∞
x

(2π)−1/2 exp
(
−(t− x)2/2

)
dt =

1

2
,

which establishes the upper bound.

Lemma E.2. Let {Xi}ni=1 be a sequence of i.i.d. mean-zero sub-Gaussian random variables with variance proxy σ2, and
let X = 1

n

∑n
i=1Xi. Then

E exp
(
λX

2) ≤ e9/8

holds for any |λ| ≤ n
8σ2 .

Proof. Note that if X − µ ∼ subG(σ2), then

X − µ ∼ subG(σ2/n) (40)

follows from the fact that

E exp
{
s(X − µ)

}
=

n∏
i=1

exp
{ s
n

(Xi − µ)
}

(by Xi − µ is sub-Gaussian) ≤
n∏
i=1

exp

{
s2

n2

σ2

2

}
= exp

{
s2(σ2/n)

2

}
.

Then, by Proposition 4.3 in Zhang & Chen (2021), (X − µ)2 − n−1 var(X) ∼ subE(8
√

2σ2/n, 8σ2/n). Therefore,

E exp
{
λ(X − µ)2

}
= E exp

{
λ
(
(X − µ)2 − n−1 var(X)

)}
E exp{λn−1 var(X)}

≤ exp

{
(8
√

2σ2/n)2λ2

2

}
· exp

{
λn−1σ2

}
= exp

{
64λ2σ4

n2
+
λσ2

n

}
≤ e9/8

for any λ ≤ n
8σ2 .

Lemma E.3. Suppose X and Y are Gaussian variables with EX = 0 and EY > 0. Then

P
(
|X|
|Y |

> c

)
≤ 2P(X > cY ) + P (Y < 0)

for any c > 0.

Proof. We have

P
(
|X|
|Y |

> c

)
= P (|X| > c|Y |)

= P ({X > cY } ∩ {X > 0} ∩ {Y > 0}) + P ({−X > cY } ∩ {X ≤ 0} ∩ {Y > 0})
+ P ({X > −cY } ∩ {X > 0} ∩ {Y ≤ 0}) + P ({−X > −cY } ∩ {X ≤ 0} ∩ {Y ≤ 0})

≤ P ({X > cY } ∩ {X > 0} ∩ {Y > 0}) + P ({−X > cY } ∩ {−X ≥ 0} ∩ {Y > 0}) + P(Y ≤ 0)

by usingX is symmetric about 0.
≤ 2P(X > cY ) + P(Y ≤ 0)
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for any c > 0.

Lemma E.4 (sub-Exponential concentration). Consider mean-zero independent random variables Xi ∼ subE(λi), and
positive constants a and b such that aX + b > 0, where the sample mean X := 1

s

∑s
i=1Xi. Then,

E exp

{
− s

aX + b

}
≤

[
1 +

√
πb

2
+

√
2πλa

2b2
+

2a

b

]
s exp

{
− s√

2λa ∨ (b+ λa)

}
,

for s ∈ N such that 2λas/b ≥ 1, where λ :=
(

1
s

∑s
i=1 λ

2
i

)1/2
. Specifically, we have logE exp

{
− s
aX+b

}
. −s.

Proof. Denote Y := aX + b as a strictly positive random variable. For any non-negative strictly increasing function f(·),
we have

Ef(Y ) =

∫ ∞
0

P (f(Y ) > r) dr =

∫ ∞
0

P
(
Y > f−1(r)

)
dr.

Then for any fixed s ∈ N,

E exp

{
− s

aX + b

}
= E exp

{
− s

Y

}
=

∫ ∞
0

P
(

exp
{
− s

Y

}
> r
)

dr

=

∫ 1

0

P
(
Y >

s

log r−1

)
dr

=

∫ 1

0

P
(
X >

1

a

[
s

log r−1
− b
])

dr

=

∫ exp{− sb}

0

P

X >
1

a

[
s

log r−1
− b
]

︸ ︷︷ ︸
≤0

 dr +

∫ 1

exp{− sb}
P

X >
1

a

[
s

log r−1
− b
]

︸ ︷︷ ︸
>0

 dr

≤ exp
{
−s
b

}
× 1 +

∫ 1

exp{− sb}
P

X >
1

a

[
s

log r−1
− b
]

︸ ︷︷ ︸
>0

 dr

by letting u = s

log r−1

= exp
{
−s
b

}
+

∫ ∞
b

P

X >
u− b
a︸ ︷︷ ︸
>0

 exp
{
− s
u

} s

u2
dr.

Recall that X is the average of independent mean-zero sub-exponential variables, and λ =
(

1
s

∑s
i=1 λ

2
i

)1/2
. Then, we have

P
(
X > t

)
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{
−1

2

(
st2

λ2
∧ st
λ

)}
for any t > 0 by Corollary 4.2.(c) in Zhang & Chen (2021). Therefore, we can further bound the expectation as
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}
by sub-Exponential inequality
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The next step is bounding both I and II . For I , we have

I =
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For II , we decompose it as
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For II1, we have
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By Combining the results obtained for I , II1, and II2, we can derive the following bound:
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which gives the result we need.

Lemma E.5. For any x ≥ 0,
2ex
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