
Published as a conference paper at ICLR 2024

LEARNING TO SOLVE BILEVEL PROGRAMS WITH
BINARY TENDER

Bo Zhou, Ruiwei Jiang, Siqian Shen
Department of Industrial and Operations Engineering
University of Michigan, Ann Arbor, MI 48109, USA
{bozum, ruiwei, siqian}@umich.edu

ABSTRACT

Bilevel programs (BPs) find a wide range of applications in fields such as energy,
transportation, and machine learning. As compared to BPs with continuous (lin-
ear/convex) optimization problems in both levels, the BPs with discrete decision
variables have received much less attention, largely due to the ensuing computa-
tional intractability and the incapability of gradient-based algorithms for handling
discrete optimization formulations. In this paper, we develop deep learning tech-
niques to address this challenge. Specifically, we consider a BP with binary ten-
der, wherein the upper and lower levels are linked via binary variables. We train
a neural network to approximate the optimal value of the lower-level problem, as
a function of the binary tender. Then, we obtain a single-level reformulation of
the BP through a mixed-integer representation of the value function. Furthermore,
we conduct a comparative analysis between two types of neural networks: gen-
eral neural networks and the novel input supermodular neural networks, studying
their representational capacities. To solve high-dimensional BPs, we introduce an
enhanced sampling method to generate higher-quality samples and implement an
iterative process to refine solutions. We demonstrate the performance of these ap-
proaches through extensive numerical experiments, whose lower-level problems
are linear and mixed-integer programs, respectively.

1 INTRODUCTION

Bilevel programs (BPs) are appealing for modeling problems that involve sequential decision inter-
actions from two or multiple players. Their hierarchical decision processes arise in a wide range
of real-world applications, including energy (Zhou et al., 2023), security (Bhuiyan et al., 2021),
transportation (Santos et al., 2021), and market design (Nasiri et al., 2020). Recently, BPs have also
shown strong modeling power in machine learning problems, including meta learning (Wang et al.,
2021), actor-critic reinforcement learning (Hong et al., 2020), hyperparameter optimization (Bao
et al., 2021), and deep learning (Chen et al., 2022). Next, we provide a brief introduction to BP, its
generic formulation, and solution methods.

Bilevel Program. In a BP, a leader and a follower solve their own decision making problems in an
interactive way: The leader’s decisions made in the upper level will affect the follower’s problem
solved at the lower level (e.g., the leader’s decisions are involved in the objective function and/or
constraints of the follower’s problem) and vice versa. This can be described formally as

min
x

f(x, y∗) (1a)

s.t. x ∈ X(y∗) (1b)
where y∗ ∈ arg max g(y, x) (1c)

s.t. y ∈ Y (x), (1d)

where x represents the leader’s decision and y represents the follower’s. Here, the leader’s decision
x will affect the follower’s objective function g(y, x) and feasible region Y (x) ⊆ Rm. On the other
hand, the leader’s objective function f(x, y∗) depends on both her own decision x and the follower’s
optimal decision y∗, which is a function of x defined through (1c)–(1d). Additionally, the leader’s
feasible region X(y∗) ⊆ Rn can also depend on y∗.

1

Published as a conference paper at ICLR 2024

Single-Level Reformulation. To solve the BP (1), a general approach is to incorporate the lower-
level decisions and their feasible region into the upper-level problem, giving rise to

min
x

f(x, y) (2a)

s.t. x ∈ X(y) (2b)
y ∈ Y (x). (2c)

Formulation (2) relaxes the optimality of y, and therefore, its solution only provides a lower bound
for the BP (1). To retrieve optimality, one can incorporate an optimality condition

g(y, x) ≥ φ(x), (3)

where φ(x) := maxy∈Y (x) g(y, x) represents the optimal value of the lower-level problem as a
function of x. Hence, combining (2) and (3) produces a single-level reformulation of the BP (1). In
case the lower-level problem is continuous (i.e., y consists of continuous decision variables only),
constraint (3) can be made explicit using strong duality or the KKT conditions. However, such
luxury is immediately lost if the lower-level problem involves discrete decision variables (e.g., y is
binary or mixed-binary). In that case, the closed-form expression of φ(x) is either non-existent or
highly intractable, prohibiting solving the BP effectively.

In light of this challenge, we study BPs with binary tender. Here, “tender” is defined as the linking
variables between the upper- and lower-level problems and “binary tender” means that all tender
variables are binary. Note that the problems in both levels can involve general decisions (e.g.,
continuous and/or integer variables), and we only assume that the entries of x appearing in the lower-
level formulation are binary-valued. Such BPs arise in many applications, including energy system
expansion planning (Kabirifar et al., 2022), charging station planning (Li et al., 2022), competitive
facility location (Qi et al., 2022), and network interdiction (Smith & Song, 2020). In addition, we
assume the leader’s feasible region is independent of y∗, i.e., X(y∗) ≡ X , which is a special case of
(1). In this case, we can obtain an upper bound for the BP (1) from any feasible solution x and the
corresponding follower’s optimal solution y∗ (e.g., by solving the follower’s problem using x). Our
main contributions are three-fold.

• We employ neural networks to learn and approximate the value function φ(x). Then, we
derive a closed-form representation of the learned value function. This yields a single-level,
mixed-integer formulation for the BP (1), which can be readily solved by off-the-shelf
optimization solvers.

• Motivated by the fact that φ(x) is supermodular for a large class of BPs, we design an input
supermodular neural network (ISNN) that ensures a supermodular mapping from input to
output. We analyze the representability of both general neural networks (GNN) and ISNN
to provide guidance for network architecture selection.

• To solve high-dimensional BPs, we propose an enhanced sampling method for generating
higher-quality samples and training neural networks to better approximate φ(x) around the
optimal solution. Building upon this enhanced sampling method, we execute an iteration
process to improve the accuracy of the derived solution.

The remainder of the paper is organized as follows. In Section 2, we review related works in the lit-
erature. In Section 3, we elaborate our methodology of learning to solve BPs. We conduct numerical
experiments in Section 4 and draw conclusions in Section 5.

2 RELATED WORKS

The theories and algorithms for finding optimal solutions to BPs depend on the structure and proper-
ties of the lower-level problem, as well as the coupling between the two levels (Kleinert et al., 2021;
Beck et al., 2022).

Bilevel linear/convex programs. The earlier studies on BPs focused on linear or convex lower-
level problems. Consequently, one can use the KKT conditions of the lower-level problem or strong
duality to reformulate the BP as a single-level problem with complementarity constraints (Fortuny-
Amat & McCarl, 1981) or bilinear terms (Zare et al., 2019; McCormick, 1976), respectively. In
both cases, solving BPs boils down to solving the resulting single-level, nonconvex, and nonlinear
reformulation (Colson et al., 2005; Bard, 1998).

2

Published as a conference paper at ICLR 2024

Bilevel (mixed-integer) nonconvex programs. Recently, more studies focused on more general
BPs having discrete decision variables or nonconvex objectives/constraints. In such problems, we
notice that, because of the existence of integer decision variables or nonconvexity, neither KKT
conditions nor strong duality approaches may be able to capture the (parametric) global optimal so-
lutions at the lower level. To achieve global optimum, we instead need to exploit special structures
of BPs (Qi et al., 2022) or construct the aforementioned relaxation (2) for single-level reformu-
lation. For BPs with nonconvex objectives/constraints, approximation methods were employed to
approximate the lower-level problem and reformulate the BP as a single-level formulation, such as
polyhedral approximation (Sato et al., 2021) and other gradient-based methods in machine learning
(Hong et al., 2020; Chen et al., 2022). However, when discrete decision variables are incorporated,
gradient-based methods are no longer applicable. To address this issue, integer programming tech-
niques are employed and various cutting plane-based algorithms, such as the MiBS solver, have
been developed (Ralphs et al., 2015; Zeng & An, 2014). However, learning techniques have not
been explored in solving such BPs, which is the focus of this paper.

Embedding neural networks into optimization. Due to its strong power in data analysis and fit-
ting, machine learning, such as neural networks, has drawn wide interest in function approximation
(Fujimoto et al., 2018; Liang & Srikant, 2017; Ferrari & Stengel, 2005). Furthermore, when the
adopted activation function is a piecewise linear function, such as ReLU, the output φ̃(x) of a neural
network can be reformulated as a mixed-integer linear form (Fischetti & Jo, 2018; Serra et al., 2018).
Consequently, in case φ(x) is unknown or hard to access, one can use φ̃(x) to replace φ(x) and di-
rectly incorporate the mixed-integer representation of φ̃(x) into optimization formulations. Molan
& Schmidt (2022) considered this idea in BPs with unknown lower-level problems. They utilized
a neural network to approximate the mapping from x to the optimal y∗ in the lower level, and ex-
ploited Lipschitz optimization techniques to reformulate the activation function (ReLU). Different
from Molan & Schmidt (2022), we propose to learn and approximate φ(x) in BPs.

Input convex neural network (ICNN). Another related stream of literature proposed ICNNs, which
ensure that the output approximation φ̃(x) is a convex function. In this case, the target optimization
formulation remains a convex program if it was so before incorporating φ̃(x). ICNN was first pro-
posed by Amos et al. (2017), who derived sufficient conditions on the neural network architecture
and parameter settings for the convexity of φ̃(x). ICNNs were then applied to, e.g., optimal control
(Chen et al., 2019) and energy optimization (Bünning et al., 2021). Different from these works,
we study BPs with binary tender, and thus the input x of the neural network is binary-valued. Ac-
cordingly, we consider supermodularity, the counterpart of convexity in discrete optimization, and
establish ISNN that guarantees to output a supermodular φ̃(x). In Section 3, we derive a neural
network architecture for ISNN and show its representability.

3 METHODOLOGY

We use neural networks (see Fajemisin et al. (2023)) to obtain an approximate value function φ̃(x) of
φ(x) and solve the BP (1) by incorporating a closed-form expression of φ̃(x) into formulation (2)–
(3). Figure 1 illustrates the proposed method, including sampling, training, and solving.

0 0 0 … 0

1 1 1 … 1

𝑥 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛
T ො𝑥 = 0 , 1 , 0 , … , 0 T

𝜙 𝑥 = min
𝑦∈𝑌 𝑥

𝑔(𝑦, 𝑥)

𝜙 ො𝑥

Sampling (Section 3.1) Samples

Training (Section 3.2)

෨𝜙 𝑥

෨𝜙 𝑥

𝑥 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛
T

input output

min ෨𝜙 ො𝑥 − 𝜙 ො𝑥

Closed-form representation

min
𝑥

𝑓 𝑥, 𝑦

s. t. 𝑥 ∈ 𝑋
𝑦 ∈ 𝑌 𝑥
𝑔 𝑦, 𝑥 ≥ ෨𝜙 𝑥

Solving (Section 3.3)

Figure 1: The overview of the proposed method.

3

Published as a conference paper at ICLR 2024

3.1 SAMPLING

We consider a set of the upper-level decision variables x̂ and compute φ(x̂) = maxy {g(y, x̂) :
y ∈ Y (x̂)} to obtain sample-label pairs (x̂, φ(x̂)). When the dimension n of x is small, we can
enumerate all possible sample-label pairs. As n increases, the number of all sample-label pairs
increases exponentially and enumeration becomes numerically prohibitive. In this case, we can
sample a sufficiently large set of x̂ instead. However, a naı̈ve sampling may frequently produce
infeasible solutions, let alone obtaining high-quality ones. To this end, we propose an enhanced
sampling method to quickly find feasible samples and improve the quality of samples when the
number of samples is limited.

Enhanced Sampling. A basic idea in enhanced sampling is “sampling via optimization.” This
involves confining the sample selection within the feasible region of the BP with respect to a random
but tractable objective function. This is mathematically specified as

min xTQx+ hTx (4a)
s.t. x ∈ X, y ∈ Y (x), (4b)

where Q and h are randomly generated n×n positive semi-definite matrix and n×1 vector, respec-
tively. Accordingly, we can efficiently generate samples by solving (4). We note that the reason for
solving a quadratic program here is to avoid repeated samples and enhance sampling efficiency.

Another basic idea is to sample more often in the vicinity of the optimal solution to the BP. A more
accurate approximation φ̃(x) to the true φ(x) in this vicinity, even at the cost of inaccuracy for
those x far from optimum, enhances the tightness of approximating the BP (1), because most of the
effort in solving (1) is spent on comparing the near-optimal x’s. To this end, we let fub represent
a known upper bound of the BP (1), which can be obtained from any feasible solution. Then, we
strengthen (4) to be

min xTQx+ hTx (5a)
s.t. f(x, y) ≤ fub (5b)
x ∈ X, y ∈ Y (x), (5c)

where constraint (5b) restricts the search space to elevate quality of samples. Here we note that
though (5) is a mixed-integer quadratic program, we only need a feasible solution to (5) for sampling,
which does not incur too much computational burden and saves the overall computational time.
Furthermore, by sampling feasible solutions x̂ to the BP, we can compute their objective value
f(x̂, ŷ∗), ŷ∗ representing the corresponding optimal solution from the lower level, and iteratively
strengthen fub if f(x̂, ŷ∗) < fub. This allows to continuously refine the search space and obtain
higher-quality samples. Algorithm 1 summarizes the above sampling process.

Algorithm 1 Enhanced Sampling
1: INPUT: sample size Ns, initial upper bound fub, maximum number of updates Nub.
2: Initialize the set of samples Ω← ∅, count of samples ks ← 0, count of updates kub ← 0.
3: repeat
4: Randomly generate an n× n positive semi-definite matrix Q and an n× 1 vector h.
5: Solve (5a)–(5c) and store an optimal solution x̂.
6: if x̂ /∈ Ω then
7: Solve maxy∈Y (x̂) g(y, x̂), and store the optimal value φ(x̂) and an optimal solution ŷ∗.
8: Augment Ω← Ω ∪ {x̂} and ks ← ks + 1.
9: end if

10: if kub < Nub and f(x̂, ŷ∗) < fub then
11: Update fub ← f(x̂, ŷ∗).
12: kub ← kub + 1.
13: end if
14: until ks = Ns
15: OUTPUT: sample-label pairs (x, φ(x)) for all x ∈ Ω.

3.2 TRAINING

Using the sample-label pairs from Algorithm 1, we adopt supervised learning to train a neural net-
work to fit the mapping φ(x). In this step, we consider two types of neural networks, i.e., GNN and

4

Published as a conference paper at ICLR 2024

ISNN, which use the same architecture as shown in Figure 2. There areK hidden layers and one out-
put layer in the architecture and we employ passthrough to enhance the representability of the neural
network. We note that the input of the architecture, x̃, can be different from x (see Sections 3.2.1–
3.2.2 for details). In addition, φ̃ denotes the output of the neural network, zk denotes the output of
the kth hidden layer, Wk/Dk and bk are the weights and biases of the kth layer, respectively, and
σ(·) denotes the activation function.

𝜎 𝑧1 𝑧𝐾 ෩𝜙𝜎𝜎

𝜎

෥𝑥

𝑊1 𝑊2

𝐷𝐾+1

Input

Output

Output of hidden layers

Activation

Weights

𝐷2

𝜎
𝑊𝐾

𝐷𝐾

𝑊𝐾+1

𝑥

Figure 2: Neural network architecture.

Specifically, the neural network defines φ̃(x̃) through
z1 = σ(W1x̃+ b1) (6a)
zk = σ(Wkzk−1 + bk +Dkx̃), ∀k = 2, . . . ,K, (6b)

φ̃ = WK+1zK + bK+1 +DK+1x̃. (6c)

3.2.1 GENERAL NEURAL NETWORK

For a GNN, we define x̃ := x. Proposition 1 shows the representability of the GNN.
Proposition 1. Consider an arbitrary φ : {0, 1}n → R. Then, the following statements hold.
i. (Universal Approximation) there exists a GNN with the architecture in Figure 2 such that φ̃ fits
φ exactly, i.e., φ̃(x) = φ(x) for all x ∈ {0, 1}n.
ii. (Maximum Representability) Suppose that the hidden layers of the GNN consist of Nnr many
neurons, which may be distributed arbitrarily among these layers. If we measure the GNN repre-
sentability by the number of parameters it trains, then the representability is maximized when GNN
consists of two hidden layers, i.e., when K = 2. In particular, the first layer consists of Nnr/2 (if
Nnr is even) or (Nnr − 1)/2 neurons (if Nnr is odd), and the second layer consists of Nnr/2 (if
Nnr is even) or (Nnr + 1)/2 neurons (if Nnr is odd).
iii. (Sufficient Fitting) Given Ns sample-label pairs, the GNN is able to output an approximation
φ̃ that fits these pairs exactly if

Nnr ≥
⌈√

(2n+ 2)2 + 4Ns + 1− (2n+ 3)
⌉
. (7)

We give a proof of Proposition 1 in Appendix A.1. According to Proposition 1, when we adopt
a GNN for training, we incorporate two hidden layers in the GNN architecture, each with Nnr/2
neurons, where Nnr is the smallest even number that satisfies (7).

3.2.2 INPUT SUPERMODULAR NEURAL NETWORK

In light of the special class of BPs studied in this paper, we are motivated to design an ISNN ar-
chitecture that guarantees to output a supermodular approximation φ̃(x̃) of the true value function
φ(x), where we set x̃ := [x>, (1 − x)>]> in the case of ISNN. Long et al. (2023) and Chen et al.
(2021) provide some sufficient conditions for parametric optimization φ(x) to be supermodular.

First, we recall the definition of supermodularity.
Definition 2. Consider a subset D of Rn, a function f : D → R, and for x, y ∈ D define
x∨ y = [max{x1, y1}, . . . ,max{xn, yn}]> and x∧ y = [min{x1, y1}, . . . ,min{xn, yn}]>. Then,
f is called supermodular if f(x) + f(y) ≤ f(x ∨ y) + f(x ∧ y) for all x, y ∈ D. In addition, a set
S is called a lattice if x ∨ y ∈ S and x ∧ y ∈ S for all x, y ∈ S.

We remark that this definition of supermodularity applies to a mixed-integer-valued argument and
the domain D of a supermodular function f needs not to be {0, 1}n.

Then, we are ready to present the main result of this section.

5

Published as a conference paper at ICLR 2024

Proposition 3. The function φ̃(x̃) output from ISNN is supermodular in x̃ if W1:(K+1) and D2:K

are non-negative, and σ(·) is convex and non-decreasing (e.g., ReLU).

The proof is given in Appendix A.2. By Proposition 3, we simply need to add appropriate sign
constraints to some weight parameters when training the ISNN.

Next, Proposition 4 shows the representability of ISNN.
Proposition 4. Consider an arbitrary (not necessarily supermodular) φ : {0, 1}n → R. Then, the
following statements hold.
i. (Universal Approximation) there exists an ISNN with the architecture in Figure 2 such that
φ̃(x,1− x) = φ(x) for all x ∈ {0, 1}n.
ii. (Maximum Representability) With a fixed number of neurons Nnr in its hidden layers, the
ISNN’s architecture does not affect its representability (measured by the number of parameters the
ISNN trains).
iii. (Sufficient Fitting) Given Ns sample-label pairs, the ISNN is able to output an approximation
φ̃ that fits these pairs exactly if

Nnr ≥
⌈

Ns
2n+ 1

− 1

⌉
. (8)

We give a proof of Proposition 4 in Appendix A.3. Since the ISNN’s architecture does not affect its
representability, to better compare with GNN, we incorporate two hidden layers in ISNN, each with
Nnr/2 neurons, where Nnr is the smallest integer that satisfies (8).

Thanks to the supermodularity of φ̃(x̃) promised by Proposition 3, we can recast the approximate
optimality condition g(y, x) ≥ φ̃(x̃) as linear inequalities, in lieu of linearizing φ̃(x̃) using auxiliary
binary variables and big-M coefficients. We place the theoretical analysis for supermodular φ̃(x̃) in
Appendix B.

3.3 SOLVING

3.3.1 MIXED-INTEGER REPRESENTATION OF φ̃(x̃)

We represent the epigraph of φ̃(x̃) as linear inequalities using auxiliary binary variables, to be em-
bedded into the BP reformulation (2)–(3). To this end, we recall that the ReLU activation function
takes the form

σ(x) = max{x, 0} =

{
x, x ≥ 0

0, x < 0.
(9)

Then, σ(x) can be rewritten as

0 ≤ σ(x) ≤Mδ (10a)
x ≤ σ(x) ≤ x+M(1− δ) (10b)

where δ is an auxiliary binary variable andM is a sufficiently large positive number. We note that, in
computation, the value ofM does not have to be arbitrarily big and it can be iteratively strengthened
by solving relaxations of (2)–(3); see, e.g., Qiu et al. 2014. Likewise, the defition of φ̃(x̃) in (6) can
be represented layer by layer as follows:

z′1 = W1x̃+ b1

0 ≤ z1 ≤Mδ1

z′1 ≤ z1 ≤ z′1 +M(1− δ1)

(11a)


z′k = Wkzk−1 + bk +Dkx̃

0 ≤ zk ≤Mδk

z′k ≤ zk ≤ z′k +M(1− δk)

∀k = 2, ...,K (11b)

φ̃ = WK+1zK + bK+1 +DK+1x̃, (11c)

where z′k and δk are auxiliary continuous and binary variables for all 1 ≤ k ≤ K, respectively. Plug-
ging this representation into (3) yields a mixed-integer programming approximation of the BP (1):

6

Published as a conference paper at ICLR 2024

min
x,y

f(x, y) (12a)

s.t. x ∈ X, y ∈ Y (x) (12b)

g(y, x) ≥ φ̃(x̃), (11) (12c)

x̃ =

{
x if using GNN,

[x>, (1− x)>]> if using ISNN.
(12d)

Here we note that existing algorithms and highly-efficient off-the-shelf solvers can be adopted to
handle the single-level program (12), which is yet out of the scope of this paper.

3.3.2 NEURAL BILEVEL ALGORITHM

Combining the above sampling, training, and solving processes, we conclude our neural bilevel
algorithm in Algorithm 2. By iteratively conducting the enhanced sampling, we can find new and
higher-quality samples and improve the accuracy of the found solution.

Algorithm 2 Neural Bilevel Algorithm
1: INPUT: maximum number of iterations Niteration, initial upper bound fub := +∞.
2: Solve (2) and store an optimal solution x∗.
3: Store a y∗ ∈ argmaxy∈Y (x∗) g(y, x∗).
4: Update fub ← min{fub, f(x∗, y∗)}.
5: for i = 1, ..., Niteration do
6: Conduct Algorithm 1 to obtain the pairs (x̂, φ(x̂)) and their corresponding f(x̂, ŷ).
7: Train a neural network φ̃(x̃) (GNN or ISNN) using (x̂, φ(x̂)).
8: Solve (12) using the trained φ̃ and store an optimal solution x∗.
9: Store a y∗ ∈ argmaxy∈Y (x∗) g(y, x∗).

10: Update fub ← min{fub, f(x∗, y∗), f(x̂, ŷ)}.
11: end for
12: OUTPUT: Current (i.e., best) upper bound fub and its corresponding solution (x, y).

4 EXPERIMENTS

4.1 ILLUSTRATIVE EXAMPLES

We first use an illustrative example to show the effectiveness of our proposed methods. We consider
a BP with a nonconvex and nonlinear program in the lower level:

min
x

2x1 + x2 − 3y

s.t. x1, x2 ∈ {0, 1} (13a)

where y∗ ∈ arg max − (y − 2)2

s.t. 0 ≤ y ≤ 1 + 2|x1 − x2| (13b)

This BP admits the following optimality condition for the lower-level problem:

− (y − 2)2 ≥ φ(x1, x2). (14)

where φ(x1, x2) := max{−(y − 2)2 : (13b)}. In this example, φ(x1, x2) admits a closed-
form expression. Indeed, by the structure of the lower-level objective function, we notice that
y∗ = min{1 + 2|x1 − x2|, 2} and so φ(x1, x2) = −(min{1 + 2|x1 − x2|, 2} − 2)2, which is de-
picted in Figure 3(a). Incorporation of this expression yields the optimal solution (x∗1, x

∗
2) = (0, 1).

In Figure 8(a) of Appendix D.1, we illustrate the feasible region of (x1, x2, y) described by con-
straints (13a)–(13b) and why (14) ensures optimality.

On the other hand, following the steps and methods described in Section 3, we use neural networks
to approximate the value function φ(x1, x2). Thanks to the simplicity of this example, we find
closed-form expressions of these approximations: φ̃G(x1, x2) = x1 + x2 − 1 − 2σ(x1 + x2 − 1)

for GNN and φ̃IS(x1, x2) = x1 + (1 − x2) − 2 + 2σ((1 − x1) + x2 − 1)) for ISNN, which are

7

Published as a conference paper at ICLR 2024

(a) Exact φ(x1, x2). (b) GNN φ̃G(x1, x2). (c) ISNN φ̃IS(x1, x2).

Figure 3: Value function.

depicted in Figures 3(b) and 3(c), respectively. Figures 8(b) and 8(c) in Appendix D.1 visualize
their corresponding optimality cuts. Both approximations φ̃G(x1, x2) and φ̃IS(x1, x2) lead to the
(true) optimal solution x∗ = (0, 1)>. From these, we observe that incorporating the approximate
φ̃(x1, x2) from either GNN or ISNN correctly produces the optimal solution.

4.2 RANDOMLY GENERATED INSTANCES

4.2.1 SETUP

We randomly generate 6 classes of instances for numerical experiments, with n =
10, 20, 30, 40, 50, 60. The details of instance generation is reported in Appendix C. We allow the
lower-level problem to be a linear program (LP) or a mixed-integer linear program (MILP). By de-
fault, we generate 1,000 samples using Algorithm 1 and use them in training neural networks. We
adopt ReLU as the activation function and design the architecture of neural networks by Propo-
sition 1 and by Propositions 3–4 for GNN and ISNN, respectively. We use the Adam algorithm
(Kingma & Ba, 2014) for training for 1000 epochs and set the learning rate as 0.001 with the decay
0.001.

4.2.2 COMPARISON WITH STATE-OF-THE-ART SOLVERS

We compare our method with the state-of-the-art solver for bilevel problems, MiBS (Tahernejad
et al., 2020) and use its solution within a 1-hour time limit as the benchmark to calculate the objective
differences (i.e., the gap between the objectives from our method and MiBS). The negative objective
difference means that our method provides a better solution than the benchmark. For each instance,
we replicate our method for 10 times, considering the randomness in sampling and training.

For the instances with a LP lower level, we report the objective difference of the best upper bound
found by Algorithm 2 in Figure 4 and the average computational time in Figure 5. In all figures,
the legend, for example, “GNN–2” means that we use GNN to fit samples and Niteration = 2. Figure
4(a) and Figure 4(b) show the average and minimum objective difference in the 10 replications. The
distribution of the objective difference of the 10 replications is provided in Figure 9 of Appendix
D.2. The computational time reported in Figure 5 is the average time of the 10 replications. The
itemized time in sampling, training, and solving is provided in Figure 10 of Appendix D.2.

0

10

20

30

40

50

10 20 30 40 50 60

o
b

je
ct

iv
e

d
if

fe
re

n
ce

 (
%

)

n

GNN - 1 GNN - 2 GNN - 3

ISNN - 1 ISNN - 2 ISNN - 3

(a) Average objective difference of 10 replications.

0

10

20

30

40

50

10 20 30 40 50 60

o
b

je
ct

iv
e

d
if

fe
re

n
ce

 (
%

)

n

GNN - 1 GNN - 2 GNN - 3

ISNN - 1 ISNN - 2 ISNN - 3

(b) Minimum objective difference in 10 replications.

Figure 4: objective difference in different instances with linear lower level.

8

Published as a conference paper at ICLR 2024

0

500

1000

1500

2000

10 20 30 40 50 60

C
o
m

p
u

ta
ti

o
n

a
l
T

im
e

(s
)

n

MiBS GNN - 1

GNN - 2 GNN - 3

ISNN - 1 ISNN - 2

ISNN - 3

Figure 5: Computational time in different in-
stances with a LP lower level.

0

500

1000

1500

2000

2500

10 20 30 40 50 60

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

(s
)

n

MiBS GNN - 1

GNN - 2 GNN - 3

ISNN - 1 ISNN - 2

ISNN - 3

Figure 6: Computational time in different in-
stances with a MILP lower level.

-40

-20

0

20

40

10 20 30 40 50 60

o
b

je
ct

iv
e

d
if

fe
re

n
ce

 (
%

)

n

GNN - 1 GNN - 2 GNN - 3

ISNN - 1 ISNN - 2 ISNN - 3

(a) Average objective difference of 10 replications.

-40

-20

0

20

40

10 20 30 40 50 60

o
b

je
ct

iv
e

d
if

fe
re

n
ce

 (
%

)

n

GNN - 1 GNN - 2 GNN - 3

ISNN - 1 ISNN - 2 ISNN - 3

(b) Minimum objective difference of 10 replications.

Figure 7: objective difference in different instances with a MILP lower level.

From the results, we can see that when n = 10, both GNN and ISNN can produce a true optimal
solution in all replications. This is because we can enumerate all feasible solutions x in sampling
for n = 10. Yet during the sampling process, there exists much repeated sampling, for which
the computational time is slightly longer than that of n = 20. When n ≥ 20, the computational
time increases as n gets larger, which mainly results from the longer sampling time, and is almost
linear with Niteration. However, the computational time is significantly shorter than that of MiBS
when n ≥ 40. In addition, the objective difference of instances with n = 30, 50, 60 is larger
than 15%. The increase of Niteration results in the decrease of average objective difference for both
GNN and ISNN. It means that the influence of sampling gets significant and validates that enhanced
sampling helps reduce average objective difference. Yet as n increases, the marginal improvement
of enhanced sampling becomes smaller, which is caused by the increasing difficulty in finding high-
quality samples. Comparing GNN and ISNN with the same Niteration, we observe that ISNN always
outperforms GNN in both average and minimum objective difference. Using ISNN can reduce
objective difference by more than 10% when n ≥ 40, which validates the effectiveness of ISNN in
improving accuracy.

For the instances with a MILP lower level, we report the objective difference of the best upper bound
found by Algorithm 2 in Figure 7 and the average computational time in Figure 6. More details
are provided in Figures 11–12 of Appendix D.2. We observe that these results produce similar
insights as those of the LP lower-level problems. Notably, our method has excellent accuracy in
most instances (achieving objective difference less than 5%, only except when n = 30) and even
outperforms MiBS when n = 20, 40, 50. This is because when the lower level is a MILP, it becomes
significantly more challenging to find high-quality feasible solutions, and in these instances even
MiBS reports incorrect optimal solutions. In contrast, the proposed method is able to produce better
feasible solutions in (dramatically) shorter computational time, validating its effectiveness.

5 CONCLUSIONS

We considered machine learning methods for solving mixed-integer, nonconvex BPs with binary
tender. We developed an enhanced sampling algorithm to find high-quality samples, designed GNN
and ISNN to approximate the lower-level value function (in terms of the upper-level decisions), and
incorporated the results as optimality cuts into a single-level reformulation of the BP. We validate the
effectiveness of the proposed approaches using an illustrative example and larger-scale, randomly
generated instances. Through these experiments, we demonstrated that the enhanced sampling helps
reduce average objective difference and ISNN always outperforms GNN. The computational time of
using either GNN or ISNN is significantly shorter than that of (a state-of-the-art solver) MiBS when
the dimension of the bianry tender exceeds 30. Notably, in most instances with a MILP lower level,
the proposed method can produce even better solutions than MiBS in shorter computational time.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for their detailed and helpful comments.
Ruiwei Jiang is supported in part by the U.S. Air Force Office of Scientific Research under the grant
FA9550-23-1-0323.

REFERENCES

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Confer-
ence on Machine Learning, pp. 146–155. PMLR, 2017.

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of
bilevel programming in hyperparameter optimization. Advances in Neural Information Process-
ing Systems, 34:4529–4541, 2021.

J. F. Bard. Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic Pub-
lishers, Norwell, MA, 1998.

Yasmine Beck, Ivana Ljubić, and Martin Schmidt. A survey on bilevel optimization under uncer-
tainty. In preparation, 2022.

Tanveer Hossain Bhuiyan, Hugh R Medal, Apurba K Nandi, and Mahantesh Halappanavar. Risk-
averse bi-level stochastic network interdiction model for cyber-security risk management. Inter-
national Journal of Critical Infrastructure Protection, 32:100408, 2021.

Felix Bünning, Adrian Schalbetter, Ahmed Aboudonia, Mathias Hudoba de Badyn, Philipp Heer,
and John Lygeros. Input convex neural networks for building MPC. In Proceedings of the 3rd
Conference on Learning for Dynamics and Control, pp. 251–262, 2021.

Can Chen, Xi Chen, Chen Ma, Zixuan Liu, and Xue Liu. Gradient-based bi-level optimization for
deep learning: A survey. arXiv preprint arXiv:2207.11719, 2022.

Xin Chen, Daniel Zhuoyu Long, and Jin Qi. Preservation of supermodularity in parametric opti-
mization: Necessary and sufficient conditions on constraint structures. Operations research, 69
(1):1–12, 2021. doi: 10.1287/opre.2020.1992.

Yize Chen, Yuanyuan Shi, and Baosen Zhang. Optimal control via neural networks: A convex
approach. In International Conference on Learning Representations, 2019.

B. Colson, P. Marcotte, and G. Savard. Bilevel programming: A survey. 4OR: A Quarterly Journal
of Operations Research, 3(2):87–107, 2005.

William Cook, Albertus MH Gerards, Alexander Schrijver, and Éva Tardos. Sensitivity theorems in
integer linear programming. Mathematical Programming, 34:251–264, 1986.

Adejuyigbe O. Fajemisin, Donato Maragno, and Dick den Hertog. Optimization with constraint
learning: A framework and survey. European Journal of Operational Research, 2023. doi:
https://doi.org/10.1016/j.ejor.2023.04.041.

S. Ferrari and R.F. Stengel. Smooth function approximation using neural networks. IEEE Transac-
tions on Neural Networks, 16(1):24–38, 2005.

Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization. Con-
straints, 23(3):296–309, 2018.

J. Fortuny-Amat and B. McCarl. A representation and economic interpretation of a two-level pro-
gramming problem. 32(9):783–792, 1981.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1587–1596, 2018.

10

Published as a conference paper at ICLR 2024

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework
for bilevel optimization: Complexity analysis and application to actor-critic. arXiv preprint
arXiv:2007.05170, 2020.

Milad Kabirifar, Mahmud Fotuhi-Firuzabad, Moein Moeini-Aghtaie, Niloofar Pourghaderi, and
Payman Dehghanian. A bi-level framework for expansion planning in active power distribution
networks. IEEE Transactions on Power Systems, 37(4):2639–2654, 2022. doi: 10.1109/TPWRS.
2021.3130339.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas Kleinert, Martine Labbé, Ivana Ljubić, and Martin Schmidt. A survey on mixed-integer
programming techniques in bilevel optimization. EURO Journal on Computational Optimization,
9:100007, 2021.

Jiale Li, Zhenbo Liu, and Xuefei Wang. Public charging station localization and route planning of
electric vehicles considering the operational strategy: A bi-level optimizing approach. Sustainable
Cities and Society, 87:104153, 2022.

Shiyu Liang and R. Srikant. Why deep neural networks for function approximation? In International
Conference on Learning Representations, 2017.

Ivana Ljubić and Eduardo Moreno. Outer approximation and submodular cuts for maximum capture
facility location problems with random utilities. European Journal of Operational Research, 266
(1):46–56, 2018.

Daniel Zhuoyu Long, Jin Qi, and Aiqi Zhang. Supermodularity in two-stage distributionally robust
optimization. MANAGEMENT SCIENCE, 2023. doi: 10.1287/mnsc.2023.4748.

Garth P McCormick. Computability of global solutions to factorable nonconvex programs: Part
iconvex underestimating problems. Mathematical programming, 10(1):147–175, 1976.

Ioana Molan and Martin Schmidt. Using neural networks to solve linear bilevel problems
with unknown lower level. Technical report, Tech. rep. url: http://www. optimizationonline.
org/DB HTML/2022/07/8972. html, 2022.

Nima Nasiri, Ahmad Sadeghi Yazdankhah, Mohammad Amin Mirzaei, Abdolah Loni, Behnam
Mohammadi-Ivatloo, Kazem Zare, and Mousa Marzband. A bi-level market-clearing for coordi-
nated regional-local multi-carrier systems in presence of energy storage technologies. Sustainable
Cities and Society, 63:102439, 2020.

George L Nemhauser and Laurence A Wolsey. Maximizing submodular set functions: formulations
and analysis of algorithms. Studies on Graphs and Discrete Programming, 11:279–301, 1981.

Mingyao Qi, Ruiwei Jiang, and Siqian Shen. Sequential competitive facility location: Exact and
approximate algorithms. To appear in Operations Research, https://doi.org/10.1287/
opre.2022.2339, 2022.

Feng Qiu, Shabbir Ahmed, Santanu S Dey, and Laurence A Wolsey. Covering linear programming
with violations. INFORMS Journal on Computing, 26(3):531–546, 2014.

Ted Ralphs, S Tahernajad, S DeNegre, M Güzelsoy, and A Hassanzadeh. Bilevel integer optimiza-
tion: Theory and algorithms. In International Symposium on Mathematical Programming, pp.
184, 2015.

Maria João Santos, Eduardo Curcio, Pedro Amorim, Margarida Carvalho, and Alexandra Marques.
A bilevel approach for the collaborative transportation planning problem. International Journal
of Production Economics, 233:108004, 2021.

Ryo Sato, Mirai Tanaka, and Akiko Takeda. A gradient method for multilevel optimiza-
tion. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 7522–7533. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf.

11

https://doi.org/10.1287/opre.2022.2339
https://doi.org/10.1287/opre.2022.2339
https://proceedings.neurips.cc/paper_files/paper/2021/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf

Published as a conference paper at ICLR 2024

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In Proceedings of the 35th International Conference on Machine
Learning, pp. 4558–4566, 2018.

David Simchi-Levi, Xin Chen, Julien Bramel, et al. The logic of logistics. Theory, algorithms, and
applications for logistics and supply chain management, 2005.

J Cole Smith and Yongjia Song. A survey of network interdiction models and algorithms. European
Journal of Operational Research, 283(3):797–811, 2020.

Sahar Tahernejad, Ted K Ralphs, and Scott T DeNegre. A branch-and-cut algorithm for mixed
integer bilevel linear optimization problems and its implementation. Mathematical Programming
Computation, 12(4):529–568, 2020.

Haoxiang Wang, Han Zhao, and Bo Li. Bridging multi-task learning and meta-learning: Towards
efficient training and effective adaptation. In Proceedings of the 38th International Conference
on Machine Learning, volume 139, pp. 10991–11002, 2021.

M Hosein Zare, Juan S Borrero, Bo Zeng, and Oleg A Prokopyev. A note on linearized reformu-
lations for a class of bilevel linear integer problems. Annals of Operations Research, 272(1):
99–117, 2019.

Bo Zeng and Yu An. Solving bilevel mixed integer program by reformulations and decomposition.
Optimization online, pp. 1–34, 2014.

Bo Zhou, Jiakun Fang, Xiaomeng Ai, Shichang Cui, Wei Yao, Zhe Chen, and Jinyu Wen. Storage
right-based hybrid discrete-time and continuous-time flexibility trading between energy storage
station and renewable power plants. IEEE Transactions on Sustainable Energy, 14(01):465–481,
2023.

12

Published as a conference paper at ICLR 2024

A PROOFS

A.1 PROOF OF PROPOSITION 1

Any arbitrary φ : {0, 1}n → R can be rewritten as

φ(x) = (1− x1)(1− x2)(1− x3) · · · (1− xn)φ(0, 0, 0, . . . , 0)

+ x1(1− x2)(1− x3) · · · (1− xn)φ(1, 0, 0, . . . , 0)

+ (1− x1)x2(1− x3) · · · (1− xn)φ(0, 1, 0, . . . , 0)

+ x1x2(1− x3) · · · (1− xn)φ(1, 1, 0, . . . , 0)

+ (1− x1)(1− x2)x3 · · · (1− xn)φ(0, 0, 1, . . . , 0)

+ · · ·
+ x1x2x3 · · ·xnφ(1, 1, 1, . . . , 1)

=
∑

z∈{0,1}n
φ(z)

n∏
i=1

[
(1− zi) + (2zi − 1)xi

]
.

This shows that φ is a polynomial of (at most) degree n. Then, φ admits the following representation:

φ(x) = a
∏
i

xi +
∑
{j}⊆[n]

bj
∏
i 6=j

xi +
∑

{k,j}⊆[n]

ck,j
∏
i 6=j,k

xi + · · · ,

where a, b, c, . . . are coefficients of the polynomial. Since x ∈ {0, 1}n, we can rewrite∏
i/∈S

xi = max
{∑
i/∈S

xi − (n− |S| − 1), 0
}

= σ
(∑
i/∈S

xi − (n− |S| − 1)
)

for all subsets S ⊆ [n]. It follows that

φ(x) = aσ

(∑
i

xi − (n− 1)

)
+

∑
{j}⊆[n]

bjσ

∑
i 6=j

xi − (n− 2)


+

∑
{k,j}⊆[n]

ck,jσ

∑
i 6=j,k

xi − (n− 3)

+ · · · .

There are 2n terms in this expression and the n first-order terms and the zeroth-order term do not
need activation. Therefore, φ(x) can be represented using a neural network with an architecture as
in Figure 2 with K = 1 and 2n − n− 1 neurons (activations). This proves claim (i).

For a GNN as shown in Figure 2, φ̃(x) admits a closed-form expression as in (6). Let zk ∈ Rnk

for all k ∈ [K], then the number of neurons in the hidden layers is Nnr =
∑K
k=1 nk and the total

number of parameters Npm GNN trains is

Npm = n1(n+ 1) +

K∑
k=2

nk(nk−1 + 1 + n) + (nK + 1 + n)

=

K∑
k=2

nknk−1 + nK + (n+ 1)
(K∑
k=1

nk + 1
)

=

K∑
k=2

nknk−1 + nK + (n+ 1)(Nnr + 1).

Then, with fixedNnr, to maximizeNpm by adjusting the GNN architecture boils down to optimizing∑K
k=2 nknk−1 + nK over (integer) variables K and n1, n2, . . . , nK . To this end, we state the

following technical lemma, whose proof is relegated to Appendix A.1.1.

13

Published as a conference paper at ICLR 2024

Lemma 5. Consider the following (non-convex) quadratic program with continuous decision vari-
ables:

max
n1,...,nK

K∑
k=2

nknk−1 + nK (15a)

s.t.
K∑
k=1

nk = Nnr, (15b)

nk ≥ 0 ∀n ∈ [K]. (15c)
Then, an optimal solution to this program is nk = 0 for all k ∈ [K − 2], nK−1 = (Nnr − 1)/2, and
nK = (Nnr + 1)/2. Additionally, the corresponding optimal value is (Nnr + 1)2/4.

By Lemma 5, the optimal solution to formulation (15) remains the same ifNnr is odd and we restrict
each nk to take integer values only, because (Nnr − 1)/2, (Nnr + 1)/2 ∈ N.

In case thatNnr is even, consider the (integer) solution nk = 0 for all k ∈ [K−2], nK−1 = Nnr/2,
and nK = Nnr/2. The objective value of this solution is (N2 + 2N)/4, that is, 1/4 less than
the optimal value of (15). Since all coefficients of the objective function (15a) are integer-valued,
the objective value of any (integer) solution must be integer-valued, too. It follows that there does
not exist any other (integer) solution, whose objective value is strictly larger than (N2 + 2N)/4.
Therefore, the solution nk = 0 for all k ∈ [K − 2], nK−1 = Nnr/2, and NK = Nnr/2 is optimal
when Nnr is even. This proves claim (ii).

To fit the Ns sample-label pairs exactly, we need the number of parameters Npm of the GNN to be
at least as large as Ns, i.e., Npm ≥ Ns. But claim (ii) implies that, when choosing nK−1 = nK =
Nnr/2,

Npm =
1

4
(N2

nr + 2Nnr) + (n+ 1)(Nnr + 1) ≥ Ns.

It follows that
Nnr ≥

√
(2n+ 2)2 + 4Ns + 1− (2n+ 3),

proving claim (iii).

A.1.1 PROOF OF LEMMA 5

For each local optimal solution n to formulation (15), the KKT condition states that there exist
Lagrangian multipliers µ ∈ RK+ and λ ∈ R, such that

µknk = 0 ∀k ∈ [K], (16a)
µk − λ+ nk−1 + nk+1 = 0 ∀k ∈ [K], (16b)

where n0 := 0 and nK+1 := 1. For example, for the solution n∗ with n∗k = 0 for all k ∈ [K − 2],
n∗K−1 = (Nnr − 1)/2, and n∗K = (Nnr + 1)/2, we pair it with the Lagrangian multipliers λ∗ =
(Nnr + 1)/2 and

µ∗k =


1
2 (Nnr + 1) if k ∈ [K − 3]

1 if k = K − 2

0 if k = K − 1,K

∀k ∈ [K].

Since (n∗, µ∗, λ∗) satisfies (16a)–(16b) as well as (15b)–(15c), n∗ is a local optimal solution to (15)
with objective value (Nnr + 1)2/4. In what follows, we shall show that any other local optimal
solution to (15) does not achieve a strictly larger objective value, establishing the global optimality
of n∗.

To this end, we multiply both sides of (16b) by nk and then sum them up for all k ∈ [K] to yield
K∑
k=1

µknk − λ
K∑
k=1

nk + 2

K∑
k=2

nknk−1 + nK = 0

=⇒
K∑
k=2

nknk−1 + nK =
1

2
(Nnrλ+ nK),

14

Published as a conference paper at ICLR 2024

which follows from (16a) and (15b). This rewrites the quadratic program (15) as

max
n≥0,λ≥0,µ∈R

1

2
(Nnrλ+ nK)

s.t. (15b)–(15c), (16a)–(16b).

For any local optimal solution n, together with its corresponding Lagrangian multipliers (µ, λ) sat-
isfying (15b)–(15c) and (16a)–(16b), we discuss the following three cases.

1. If µK = 0, then (16b) with k = K implies that

0 = nK−1 + 1 + µK − λ = nK−1 + 1− λ =⇒ λ = nK−1 + 1.

We denote m :=
∑K−2
k=1 nk with 0 ≤ m ≤ Nnr. The following two sub-cases show that n

cannot be better than n∗.
(a) If nK−1 = 0, then λ = 1 and nK = Nnr−

∑K−1
k=1 nk = Nnr−m. It follows that the

obejctive value of n is

1

2
(Nnrλ+ nK) = Nnr −

1

2
m ≤ Nnr ≤

(Nnr + 1)2

4
,

that is, smaller than that of n∗. This finishes the proof.
(b) If nK−1 > 0, then µK−1 = 0 by (16a). It follows from (16b) with k = K − 1 that

0 = nK−2+nK−µK−1−λ = nK−2+nK−nK−1−1 =⇒ nK−1−nK = nK−2−1.

But nK−1 + nK = N −m by definition of m. This implies that

nK−1 =
1

2
(Nnr −m+ nK−2 − 1) and nK =

1

2
(Nnr −m− nK−2 + 1).

Then, the objective value of n is

1

2
(Nnrλ+ nK) =

1

2
Nnr(nK−1 + 1) +

1

2
nK

=
1

4

[
N2
nr + (nK−2 + 2−m)Nnr + (1− nK−2 −m)

]
≤ 1

4

[
N2
nr + 2Nnr + (1− 2m)

]
≤ 1

4
(Nnr + 1)2,

where the first inequality is because, with fixed m, setting nK−2 = m maximizes the
objective value. Hence, the objective value of n is smaller than that of n∗, finishing
the proof.

2. If µK > 0 and µK−1 = 0, then nK = 0 by (16a) and so (16b) implies that, with k = K−1,

0 = µK−1 − λ+ nK−2 + nK = −λ+ nK−2,

that is, λ = nK−2. The following two sub-cases show that n cannot be better than n∗.
(a) If µK−2 > 0, then λ = nK−2 = 0 by (16a). Hence, the objective value of n is

(Nnrλ+ nK)/2 = 0, smaller than that of n∗. This finishes the proof.
(b) If µK−2 = 0, then (16b) with k = K − 2 implies that

0 = µK−2 + nK−3 + nK−1 + λ = nK−3 + nK−1 + λ,

that is, λ = nK−3 + nK−1. But (15b) implies that

Nnr ≥ nK−3 + nK−2 + nK−1 = 2λ =⇒ λ ≤ Nnr
2
.

It follows that the objective value of n is

1

2
(Nnrλ+ nK) ≤ N2

nr

4
≤ (Nnr + 1)2

4
,

that is, smaller than that of n∗. This finishes the proof.

15

Published as a conference paper at ICLR 2024

3. If µK > 0 and µK−1 > 0, then nK = nK−1 = 0 by (16a). Let j ∈ [K − 2] denote the
largest index such that nj > 0. Then, µj = 0 by (16a). We discuss the following three
sub-cases about j to show that n cannot be better than n∗.

(a) If j = 1, then µ1 = 0 and n2 = 0 by definition of j. It follows from (16b) with k = 1
that

0 = n2 + µ1 − λ = −λ =⇒ λ = 0.

Hence, the objective value of n is (Nnrλ+ nK)/2 = 0, smaller than that of n∗. This
finishes the proof.

(b) If j ≥ 2 and nj−1 > 0, then µj−1 = µj = 0 by definition of j. It follows from (16b)
with k = j − 1 and k = j that

µj−1 − λ+ nj−2 + nj = 0 =⇒ λ = nj−2 + nj ,

µj − λ+ nj−1 + nj+1 = 0 =⇒ λ = nj−1 + nj+1.

But (15b) implies that

Nnr ≥ nj−2 + nj−1 + nj + nj+1 = 2λ =⇒ λ ≤ Nnr
2
.

It follows that the objective value of n is

1

2
(Nnrλ+ nK) ≤ N2

nr

4
≤ (Nnr + 1)2

4
,

that is, smaller than that of n∗. This finishes the proof.

(c) If j ≥ 2 and nj−1 = 0, then (16b) with k = j implies that

0 = µj − λ+ nj−1 + nj+1 = −λ =⇒ λ = 0,

where the second equality follows from the definition of j. Hence, the objective value
of n is (Nnrλ+ nK)/2 = 0, smaller than that of n∗. This finishes the proof.

A.2 PROOF OF PROPOSITION 3.

Consider functions f : R → R, g : Rn → R, and their composite f(g(x)). It can be shown that
f(g(x)) is supermodular in x if one of the following is satisfied (see, e.g., Proposition 2.2.5(c) in
Simchi-Levi et al. (2005)):

1. f is increasing and convex, and g is increasing and supermodular;

2. f is decreasing and convex, and g is increasing and submodular.

Here, a function g is called increasing if g(x) ≤ g(x′) whenever x ≤ x′, decreasing if −g is
increasing, and submodular if −g is supermodular.

We proceed to prove by induction. For each k ≤ K, suppose that zk−1 is increasing and supermod-
ular in x. Then, Wkzk−1 + bk + Dkx is increasing and supermodular in x because Wk ≥ 0 and
Dk ≥ 0. It follows that zk is increasing and supermodular in x because σ is increasing and convex.
In particular, zK is increasing and supermodular in x.

Finally, φ̃ is supermodular in x by (6c) because WK+1 ≥ 0 and DK+1x is supermodular (actually
linear) in x. This finishes the proof.

16

Published as a conference paper at ICLR 2024

A.3 PROOF OF PROPOSITION 4.

Define x′i := 1− xi for all i ∈ [n] and mφ := minz∈{0,1}n φ(z). Then, any arbitrary φ : {0, 1}n →
R can be rewritten as

φ(x) =
∑

z∈{0,1}n
φ(z)

n∏
i=1

[
zixi + (1− zi)x′i

]

=
∑

z∈{0,1}n
φ(z) max

{
n∑
i=1

[
zixi + (1− zi)x′i

]
− (n− 1), 0

}

=
∑

z∈{0,1}n
φ(z) σ

(
n∑
i=1

[
zixi + (1− zi)x′i

]
− (n− 1)

)

= mφ +
∑

z∈{0,1}n

(
φ(z)−mφ

)
σ

(
n∑
i=1

[
zixi + (1− zi)x′i

]
− (n− 1)

)
,

where the second equality is because all xi and x′i in the product are binary, the third
equality is by the definition of the activation function, and the last equality is because
σ
(∑n

i=1

[
zixi + (1− zi)x′i

]
− (n− 1)

)
= 1 if and only if z = x. Then, the coefficients of all

xi and x′i are nonnegative (because zi ≥ 0 and 1 − zi ≥ 0), and the coefficients of all activation
functions are φ(z) −mφ ≥ 0. It follows that φ(x) can be represented using an ISNN with an ar-
chitecture as in Figure 2 with K = 1 hidden layer, which consists of 2n neurons and nonnegative
coefficients only. This proves claim (i).

For an ISNN as shown in Figure 2, φ̃(x̃) admits a closed form expression as in (6). Since W1:K+1

and D2:K are nonnegative, the expression of zk,i, the ith entry of zk, in ISNN can be rewritten as

zk,i = σ

∑
j

Wk,ijzk−1,j + bk,i +Dk,ix̃


= σ

∑
j

Wk,ijσ(Wk−1,jzk−2 + bk−1,j +Dk−1,j x̃) + bk,i +Dk,ix̃


= σ

∑
j

σ(Wk,ijWk−1,jzk−2 +Wk,ijbk−1,j +Wk,ijDk−1,j x̃) + bk,i +Dk,ix̃


= σ

∑
j

σ(W ′k−1,jzk−2 + b′k−1,j +D′k−1,j x̃) + bk,i +Dk,ix̃

 ,

where Wk,ij denotes the entry of Wk in row i and column j, Wk−1,j denotes the jth row of Wk−1,
and

W ′k−1,j := Wk,ijWk−1,j ≥ 0, b′k−1,j := Wk,ijbk−1,j , D′k−1,j := Wk,ijDk−1,j ≥ 0.

That is, the same zk,i can be represented by an ISNN with Wk,ij = 1 for all i, j, i.e., Wk is an
all-one matrix. In light of this, the ISNN admits the following equivalent expression:

z1 = σ(W1x̃+ b1)

zk = σ(1zk−1 + bk +Dkx̃), k = 2, ...,K

φ̃ = 1>zK + bK+1 +DK+1x̃,

17

Published as a conference paper at ICLR 2024

where 1 denotes an all-one vector or all-one matrix. Hence, the total number of parameters Npm to
be trained in the ISNN is

Npm = n1(2n+ 1) +

K∑
k=2

nk(2n+ 1) + (2n+ 1)

=

(
K∑
k=1

nk + 1

)
(2n+ 1)

= (Nnr + 1)(2n+ 1),

where zk ∈ Rnk for all k ∈ [K] and so the number of neurons in the ISNN is Nnr =
∑K
k=1 nk.

Therefore, for fixed Nnr, Npm is independent of W and K. This proves claim (ii).

To fit the Ns sample-label pairs exactly, we need the number of parameters Npm of the ISNN to be
at least as large as Ns, i.e.,

Npm = (Nnr + 1)(2n+ 1) ≥ Ns.

It follows that

Nnr ≥
Ns

2n+ 1
− 1,

proving claim (iii).

A.4 APPROXIMATION ERROR OF φ̃

We evaluate the error of using the φ̃ obtained from neural networks (GNN or ISNN) to approximate
the true (but unknown) value function φ, defined as ‖φ − φ̃‖∞ := maxx∈X |φ(x) − φ̃(x)|. The
following proposition provides an upper bound of the approximation error, as a function of the
lower-level problem and the neural network.
Proposition 6. Consider a mixed-integer and linear lower-level problem, i.e., g(y, x) := g>y and
Y (x) := {y ∈ Rn−p+ × Zp+ : Gy = Tx+ h}, where g ∈ Rm, G ∈ Rq×m, T ∈ Rq×n, and h ∈ Rq .
Then, it holds that

‖φ− φ̃‖∞ ≤ (C‖g‖2 + L)d,

where C is a constant depending only on n and G, L is a constant depending only on the neural
network coefficients {Wk}K+1

k=1 and {Dk}K+1
k=2 , and d is the Hausdorff distance between the sets of

sampled and unsampled points in X , i.e.,

d := max
x∈X\Ω

min
z∈Ω
‖x− z‖2.

Proof: Pick any x, x′ ∈ X . First, using the representation (6) of the neural network, we have
‖z1 − z′1‖2 ≤ ‖W1‖2(x− x′), and

‖zk − z′k‖2 ≤ ‖Wk‖2 ‖zk−1 − z′k−1‖2 + ‖Dk|‖2 ‖x− x′‖2
for all k = 2, . . . ,K. A mathematical induction on k yields that

|φ̃(x)− φ̃(x′)| ≤ L‖x− x′‖2,

where L =
∏K+1
k=1 ‖Wk‖2 +

∑K+1
k=2 ‖Dk‖2(

∏K+1
`=k+1 ‖W`‖2).

Second, since φ(x) represents the optimal value of a mixed-integer linear program parameterized by
x, by Cook et al. (1986) we have

|φ(x)− φ(x′)| ≤ C1‖g‖2 ‖x− x′‖2 + C2‖g‖2,
where C1, C2 are constants that depend only on n and G. But since x, x′ ∈ {0, 1}n, φ(x)−φ(x′) =
0 when x = x′ and ‖x− x′‖2 ≥ 1 when x 6= x′. It follows that

|φ(x)− φ(x′)| ≤ C1‖g‖2 ‖x− x′‖2 + C2‖g‖2 ‖x− x′‖2
= C ‖g‖2 ‖x− x′‖2,

18

Published as a conference paper at ICLR 2024

where C = C1 + C2.

Third, pick a z ∈ argminz∈Ω‖x− z‖2. Then,

|φ(x)− φ̃(x)| = |φ(x)− φ(z) + φ̃(z)− φ̃(x)|
≤ |φ(x)− φ(z)|+ |φ̃(z)− φ̃(x)|
≤ C ‖g‖2 ‖x− z‖2 + L ‖x− z‖2
= (C‖g‖2 + L)‖x− z‖2,

where the first equality is because z ∈ Ω. Since x is arbitrary, taking the maximum over all x ∈ X
of both sides of the inequality finishes the proof.

B EFFICIENT CALCULATION FOR ISNN

Although Section 3 provides a framework to solve general BPs through value function approxi-
mation, if there are total Nnr neurons in the neural network, we need to introduce Nnr auxiliary
binary variables δ, Nnr auxiliary continuous variables z′, and 4Nnr big-M constraints (see (11)) to
represent φ̃(x̃), which weakens its scalability.

Thanks to the supermodularity of φ̃(x̃) promised by Proposition 3, we can replace (12c) with linear
inequalities without introducing auxiliary binary variables or big-M constraints as in (11). To this
end, we define set [2n] := {1, 2, . . . , 2n} and the indicator set of a binary vector x̃ as S(x̃) := {1 ≤
k ≤ 2n : x̃k = 1}. In addition, we define a set function ϕ : 2[2n] → R such that ϕ(S(x̃)) := φ̃(x̃)
for all x̃ ∈ {0, 1}2n. Then, the following proposition recasts the (nonlinear) constraint g(y, x) ≥
φ̃(x̃) as linear inequalities.

Proposition 7. (Adapted from Theorem 6 of Nemhauser & Wolsey (1981)). If φ̃(x̃) is supermodular
in x̃, then for all x̃ ∈ {0, 1}2n, g(·) ≥ φ̃(x̃) if and only if

g(·) ≥ ϕ(S)−
∑
k∈S

ρ([2n]\{k}, k)(1− x̃k)

+
∑

k∈[2n]\S

ρ(S, k)x̃k, ∀S ⊆ [2n]
(17)

where ρ(S, k) := ϕ(S ∪ {k})− ϕ(S) for all S ⊆ [2n] and k ∈ [2n]\S.

As compared to the reformulation (11), (17) does not introduce any new auxiliary variables. Yet, it
involves an exponential number of linear inequalities which can nevertheless increase the formula-
tion size. Fortunately, the inequalities (17) can be easily separated, that is, given fixed x̂ and other
variables, in polynomial time one can certify that g(·) ≥ φ̃(x̂) or find an violated inequality (17)
with respect to some S. This is because a worst-case S∗ on the right-hand side of (17), i.e.,

S∗ ∈ argmax
S⊆[2n]

{
ϕ(S)−

∑
k∈S

ρ([2n]\{k}, k)(1− x̂k)

+
∑

k∈[2n]\S

ρ(S, k)x̂k

}
admits a closed-form solution S∗ = S(x̂) (see Ljubić and Moreno (2018) and Qi et al. (2022)).
Consequently, there is no need to incorporate the exponentially many inequalities (17) up front, and
we only need to incorporate the violated ones on-the-fly, e.g., in a branch-and-bound algorithm for
solving the BP.

C INSTANCE GENERATION

Following the instance generation rules of (Tahernejad et al., 2020), all instances are generated in
the following forms:

19

Published as a conference paper at ICLR 2024

min
x

cTx+ dT
1y

s.t. A1x ≤ b1
x ∈ {0, 1}n

y ∈ arg max
y

dT
2y

s.t. A2x+B2y ≤ b2
0 ≤ y ≤ y
y ∈ Rm (or y ∈ Zm),

where c is a n× 1 vector, d1 and d2 are m× 1 vectors. The constraint number is set to be the same
as the variable number of each level, and hence, A1 is a n × n matrix, b1 is a n × 1 vector, A2

is a m × n matrix, B2 is a m × m matrix, and b2 is a m × 1 vector. For instances with a linear
lower-level problem, y is continuous variables; for instances with a mixed-integer linear lower-level
problem, y is integer variables. In our numerical experiments, we setm = 20, y = 1, and generate 6
instances with n = 10, 20, 30, 40, 50, 60. The coefficients are randomly generated in a range given
in the following table, where δ = 200/(m+ n) and d1 = d2.

Table 1: Range of randomly generated coefficients.

COEFFICIENT RANGE COEFFICIENT RANGE
c, d1, d2 [−50, 50] A2 [−10δ, 10δ]
A1 [−2δ, 2δ] B2 [−δ, δ]
b1 [30, 130] b2 [10, 110]

D SUPPLEMENTARY RESULTS

D.1 OPTIMALITY CUT IN ILLUSTRATIVE EXAMPLE

(a) Exact.

(b) GNN. (c) ISNN.

Figure 8: Optimality cut.

20

Published as a conference paper at ICLR 2024

D.2 DETAILS IN GENERATED INSTANCES

(a) n = 10. (b) n = 20.

(c) n = 30. (d) n = 40.

(e) n = 50. (f) n = 60.

Figure 9: Distribution of objective difference in different instances with linear lower level.

0

300

600

900

1200

1500

1800

n=10 n=20 n=30 n=40 n=50 n=60 n=10 n=20 n=30 n=40 n=50 n=60 n=10 n=20 n=30 n=40 n=50 n=60

Niteration=1 Niteration=2 Niteration=3

T
im

e
(s

)

Sampling Training Solving

(a) GNN.

0

300

600

900

1200

1500

1800

n=10 n=20 n=30 n=40 n=50 n=60 n=10 n=20 n=30 n=40 n=50 n=60 n=10 n=20 n=30 n=40 n=50 n=60

Niteration=1 Niteration=2 Niteration=3

T
im

e
(s

)

Sampling Training Solving

(b) ISNN.

Figure 10: Itemized time in different instances with linear lower level.

21

Published as a conference paper at ICLR 2024

(a) n = 10. (b) n = 20.

(c) n = 30. (d) n = 40.

(e) n = 50. (f) n = 60.

Figure 11: Distribution of objective difference in different instances with mixed-integer linear lower
level.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

n=10 n=20 n=30 n=40 n=50 n=60 n=10 n=20 n=30 n=40 n=50 n=60 n=10 n=20 n=30 n=40 n=50 n=60

Niteration=1 Niteration=2 Niteration=3

T
im

e
(s

)

Sampling Training Solving

(a) GNN.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

n=10 n=20 n=30 n=40 n=50 n=60 n=10 n=20 n=30 n=40 n=50 n=60 n=10 n=20 n=30 n=40 n=50 n=60

Niteration=1 Niteration=2 Niteration=3

T
im

e
(s

)

Sampling Training Solving

(b) ISNN.

Figure 12: Itemized time in different instances with mixed-integer linear lower level.

22

Published as a conference paper at ICLR 2024

D.3 COMPARISON OF SAMPLING METHODS

We compare the efficiency of three sampling methods, including random sampling, Latin hypercube
sampling (LHS), and the proposed enhanced sampling. We set a fixed sampling time of 30 minutes
and adopt the generated MILP instances for numerical experiments. We report the number of ob-
tained samples in Figure 13. We note that when n = 10, the maximum possible number of samples
is 1024, for which enumeration can be adopted to find all feasible x. Yet when n ≥ 20, enumeration
becomes impractical and sampling is required.

From Figure 13, we see that the performance of random sampling is unstable and strongly depends
on the lower-level problem. When the lower-level problem has a relatively large feasible region,
such as the instance n = 20 or n = 60, it is easy for random sampling to find a feasible x, for which
sampling efficiency is high. Yet if the lower-level problem has a relatively small feasible region,
such as the instance n = 30 or n = 40, the sampling efficiency of random sampling gets quite low
and can not find enough samples for training. In addition, because we do not have probability infor-
mation, LHS has a similar performance to random sampling in most instances. However, through the
proposed enhanced sampling, we guarantee to find a feasible x in each sampling, and from Figure
13, the number of obtained samples is almost linearly decreasing with n. It is reasonable because a
larger n causes a longer time consumption for each sampling and thus fewer samples under a fixed
sampling time. Therefore, to avoid the unstable performance of naive random sampling or other
non-trivial sampling, we adopt the proposed enhanced sampling for all instances.

0

5

10

15

20

25

30

10 20 30 40 50 60

S
a
m

p
le

 n
u

m
b

er
 (
×

1
0

3
)

n

Random LHS Proposed

Figure 13: Neural network architecture.

D.4 HIGHER DIMENSIONAL INSTANCES

We generate some larger instances with n up to 120. We consider a MILP lower level and conduct
experiments with a similar setup to Section 4.2.1. Figure 14 shows the numerical results.

From Figure 14(a), the average objective difference tends to increase as n gets larger. When
n ≥ 100, the average objective difference gets higher than 5%. The results are reasonable be-
cause more samples are required to approximate φ(x) when n gets larger yet our sample number is
fixed. From Figure 14(b), the computational time increases as n gets larger, and when n ≥ 100, the
computational time is longer than the set time limit of MiBS. Similar to Figure 12, sampling con-
sumes the most computational time, for which more advanced sampling is required in future works.

-5

0

5

10

15

20

20 40 60 80 100 120

O
b

je
ct

iv
e

d
if

fe
re

n
ce

 (
%

)

n

GNN ISNN

(a) Average objective difference.

0

1800

3600

5400

7200

9000

20 40 60 80 100 120

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

(s
)

n

MiBS GNN ISNN

(b) Computational time.

Figure 14: Instances with a MILP lower level.

23

	Introduction
	Related Works
	Methodology
	Sampling
	Training
	General neural network
	Input supermodular neural network

	Solving
	Mixed-Integer Representation of ()
	Neural Bilevel Algorithm

	Experiments
	Illustrative Examples
	Randomly Generated Instances
	Setup
	Comparison with State-of-the-Art Solvers

	Conclusions
	Proofs
	Proof of Proposition 1
	Proof of Lemma 5

	Proof of Proposition 3.
	Proof of Proposition 4.
	Approximation Error of

	Efficient Calculation for ISNN
	Instance Generation
	Supplementary Results
	Optimality Cut in Illustrative Example
	Details in generated instances
	Comparison of Sampling Methods
	Higher Dimensional Instances

