
Published in Transactions on Machine Learning Research (01/2023)

Optimal Convergence Rates of Deep Convolutional Neural
Networks: Additive Ridge Functions

Zhiying Fang fangzhiying@szpt.edu.cn
Institute of Applied Mathematics
Shenzhen Polytechnic1

School of Data Science
The Chinese University of Hong Kong, Shenzhen2

Guang Cheng guangcheng@stat.ucla.edu
Department of Statistics
University of California, Los Angeles

Reviewed on OpenReview: https: // openreview. net/ forum? id= Q6ZXm7VBFY

Abstract

Convolutional neural networks have shown impressive abilities in many applications, es-
pecially those related to the classification tasks. However, for the regression problem, the
abilities of convolutional structures have not been fully understood, and further investigation
is needed. In this paper, we consider the mean squared error analysis for deep convolutional
neural networks. We show that, for additive ridge functions, convolutional neural networks
followed by one fully connected layer with ReLU activation functions can reach optimal
mini-max rates (up to a log factor). The input dimension only appears in the constant of
convergence rates. This work shows the statistical optimality of convolutional neural net-
works and may shed light on why convolutional neural networks are able to behave well for
high dimensional input.

1 Introduction

Deep learning, based on deep neural networks structures and elaborate optimization techniques, has achieved
great successes and empirically outperformed classical machine learning methods such as kernel methods in
many applications in areas of science and technology (Kingma & Ba, 2014; Le et al., 2011; LeCun et al., 2015;
Schmidhuber, 2015). Especially, convolutional neural networks were considered to be the most powerful tool
for various tasks such as image classification (Goodfellow et al., 2016), speech recognition (Hinton et al.,
2006) and sequence analysis in bio-informatics (Alipanahi et al., 2015; Zhou & Troyanskaya, 2015) before
the appearance of the Transformer structures (Vaswani et al., 2017; Dosovitskiy et al., 2020). However,
compared with significant achievements and developments in practical applications, theoretical insurances
are left behind.

Recently, many researchers in various fields have done great works trying to explain the mysteries of convo-
lutional neural networks (d’Ascoli et al., 2019; Neyshabur, 2020), and most of the existing works focus on the
approximation properties of convolutional structures. For vector inputs, a universality result for convolu-
tional neural networks is first established in Zhou (2020b). Afterwards, Zhou (2020a) further illustrates that
deep convolutional neural networks are at least as good as fully connected neural networks in the sense that
any output of a fully connected neural network can be reconstructed by a deep convolutional neural network
with the same order of free parameters. It is also shown in Fang et al. (2020) that functions in Sobolev
spaces on the unit sphere or taking an additive ridge form can be approximated by deep convolutional neural
networks with optimal rates. For square matrix inputs, authors in Petersen & Voigtlaender (2020) prove

1

https://openreview.net/forum?id=Q6ZXm7VBFY

Published in Transactions on Machine Learning Research (01/2023)

that if the target function is translation equivariant, then convolutional structures are equivalent to fully
connected ones in terms of approximation rates with periodic convolution. Recently, He et al. (2021) derives
a decomposition theorem for large convolutional kernels and enables convolutional networks to duplicate one
hidden layer neural networks by deep convolutional nets including structures of ResNet and MgNet.

For approximation ability of fully connected neural networks, Yarotsky (2017) establishes upper and lower
bounds of the complexity of deep ReLU networks when approximating functions in Sobolev spaces. Petersen
& Voigtlaender (2018) also derives optimal approximation ability for piecewise smooth functions with fixed
layer ReLU networks. For functions in Besov spaces, approximation results are presented in Suzuki (2018).
Compared with numerous works concerning mean squared error analysis of fully connected neural networks
(Suzuki, 2018; Imaizumi & Fukumizu, 2019; Schmidt-Hieber et al., 2020), only very few papers attempt to
understand the convolutional structures from a statistical learning perspective. With the same spirit in Zhou
(2020a), authors in Oono & Suzuki (2019) show that any block-sparse fully connected neural network with
M blocks can be realized by a ResNet-type convolutional neural network with fixed-sized channels and filters
by adding O(M) parameters. Consequently, if a function class can be approximated by block sparse fully
connected nets with optimal rates, then it can also be achieved by ResNet-type convolutional nets. Authors
prove that ResNet-type convolutional neural networks can reach optimal convergence rates for functions
in Barron and Hölder classes by first transforming a fully connected net to a block sparse type, then to
ResNet-type convolutional nets. Authors in Mao et al. (2021) first establish approximation results for deep
convolutional neural networks with one fully connected layer when the target function takes a composite form
as f ◦ Q with a feature polynomial Q and a univariate function f . Two groups of convolutional structures
are applied to approximate functions Q and f consecutively. Then mean squared error rates are derived for
the function class f ◦ Q. Analysis shows that the estimation error decreases to a minimum as the network
depth increases to an optimal value, and then increases as the depth becomes larger. According to the mini-
max lower bound derived in our paper, the rate is sub-optimal. Universal consistency of pure convolutional
structures is recently presented by Lin et al. (2021) in the framework of empirical risk minimization.

Compared with previous works on mean squared error analysis of deep convolutional neural networks, we
show that functions possessing inherent structures ξ · x in an additive form can be directly learned by deep
convolutional networks. Formally, we consider mean squared error analysis for deep ReLU convolutional
neural networks in the estimation of additive ridge functions. The function class takes the form of

m∑
i=1

fi(ξi · x),

where for each i, fi satisfies some regularity conditions, ξi can be considered as a projection vector and ·
is the inner product in Rd. This function class is also known as the additive index models (Yuan, 2011)
in statistics and related to the projection pursuit regression introduced by Friedman & Stuetzle (1981). It
has been shown in Diaconis & Shahshahani (1984) that this function class can be used to approximate any
square-integrable function to arbitrary precision. A precise definition will be presented in Section 3.

For additive ridge functions, various investigations have been done including convergence rates, identifiability,
iterative estimation in Chen (1991); Chiou & Müller (2004); Ruan & Yuan (2010); Yuan (2011); Bach (2017).
Also, with a similar structure to the function class above, minimax convergence rates have been presented in
Klusowski & Barron (2016; 2017) when all the fi are sine functions or Hermite polynomials. However, none
of these works presents mini-max lower rate for this type of functions when fi possess different regularities.
Though optimal convergence rates are achieved in Ruan & Yuan (2010) by traditional reproducing kernels
with regularized least squares scheme, shortcomings of this method are quite obvious when comparing to
neural networks. For example, to achieve optimal convergence rates, the best regularization parameter is
usually related to the regularity of the target function which is practically unknown and is often decided by
cross validation. However, convolutional neural networks are more automatic in the sense that the function
smoothness is not required when implementing the algorithm. Also, the smoothing spline algorithm is applied
in a backfitting manner, whereas the convolutional neural network is more generic.

We show that deep convolutional neural networks followed by one fully connected layer are able to achieve the
mini-max optimal convergence rates for additive ridge functions by a careful analysis of the covering number
of deep convolutional structures. The additive index m would affect the depth of our networks in a linear

2

Published in Transactions on Machine Learning Research (01/2023)

way which indicates the importance of depth of neural networks when the target function is complicated.
The inherent structures ξi · x can represent different localized features of input x when ξis are sparse. The
input dimension only appears in the constant of the final convergence rate.

In summary, the contributions of our work are as follows:

• We conduct an in-depth covering number analysis for deep convolutional neural networks presented
in Fang et al. (2020). Thanks to the simple structure and few free parameters of convolutional neural
networks, we derive small complexity of this hypothesis space.

• We present a mini-max lower bound for additive ridge functions. As a direct consequence, the lower
bound also applies when ξ · x is generalized to any polynomial function Q(x). We show that for
these two types of functions, lower rates are dimension independent.

• By combining the approximation result in Fang et al. (2020) and our covering number analysis,
we show that deep ReLU convolutional neural networks followed by one fully connected layer can
reach optimal convergence rates for the regression problem for additive ridge functions and the input
dimension only appears in the constant of the upper bound.

2 Problem setting

We first give a brief introduction to the structure of convolutional neural networks considered in this work.

For a sequence w = (wk)k∈Z supported in {0, 1, · · · , S} and another one x = (xk)k∈Z supported in
{1, 2, · · · , D}, the convolution of these two sequences is given by

(w ∗ x)i =
∑
k∈Z

wi−kxk =
D∑

k=1
wi−kxk, i ∈ Z,

which is supported in {1, · · · , D + S}.

By applying this convolutional operation, we know that the matrix in each layer of convolutional neural
networks should be of the form

Tw =



w0 0 0 0 · · · · · · 0
w1 w0 0 0 · · · · · · 0
...
wS wS−1 · · · w0 0 · · · 0
0 wS · · · w1 w0 0 · · · 0
...
0 · · · 0 wS · · · w1 w0
0 · · · 0 0 wS · · · w1
...
0 0 0 0 · · · 0 wS



, (1)

with Tw ∈ R(D+S)×D. For input x = (x1, x2, · · · , xd) ∈ Rd, a deep convolutional neural network with J
hidden layers {h(j) : Rd → Rdj } and widths {dj = dj−1 +S(j)} can be defined iteratively by h(0)(x) = x and

h(j)(x) = σ
(
T (j) h(j−1)(x) − b(j)

)
, j = 1, . . . , J,

if we denote T (j) := Tw(j) with D = dj−1 and S = S(j) for j = 1, · · · , J . Throughout this paper, we take
identical filter length S(j) = S ∈ N which implies {dj = d+ jS} and take the activation function as the
ReLU,

σ(x) = max {0, x} , x ∈ R.

3

Published in Transactions on Machine Learning Research (01/2023)

Since the sums of the rows in the middle of the Toeplitz type matrix (1) are equal, we impose a restriction
for the bias vectors {b(j)}J

j=1 of the convolutional layers

b
(j)
S+1 = . . . = b

(j)
dj−S , j = 1, . . . , J. (2)

After the last convolutional layer, we add one fully connected layer h(J+1) with a restricted matrix F (J+1)

and a bias vector b(J+1). Precisely, we have

h(J+1)(x) = σ
(
F (J+1)h(J)(x) − b(J+1)

)
.

For the fully connected layer, we take F (J+1)
(j−1)(2N+3)+i = 1 for j = 1, . . . ,m, i = 1, . . . , 2N+3 and 0 otherwise.

We let 12N+3 = (1, 1, . . . , 1)T ∈ R2N+3. Specifically, the matrix in the last layer takes the form of

F (J+1) =


O 12N+3 O O2N+3 · · · O O2N+3 O
O O2N+3 O 12N+3 · · · O O2N+3 O
...

...
...

O O2N+3 O O2N+3 · · · O 12N+3 O

 , (3)

where F (J+1) ∈ R(2N+3)m×(d+JS) for some positive integer N ∈ N which can be considered as the order of
the number of free parameters in the network.

We restrict the full matrix to take a simple form as (3) to further demonstrate abilities of convolutional
structures. The hypothesis space induced by our network is given by

H := HJ,B,S,N :=
{
c · h(J+1)(x) :

∥∥∥w(j)
∥∥∥

∞
≤ B,

∥∥∥b(j)
∥∥∥

∞
≤ 2((S + 1)B)j , ∥c∥∞ ≤ NB

}
, (4)

and F (J+1) takes the form (3) with
∥∥F (J+1)

∥∥
∞ ≤ 1. Here B is a constant depending on the target function

space and the filter size S that will be given explicitly in Lemma 3.4.

2.1 Statistical learning framework

Now we formulate regression problems in the setting of statistical learning theory.

Let X be the unit ball in Rd, that is, X :=
{
x : ∥x∥2 ≤ 1, x ∈ Rd

}
and Y ⊂ R. In the non-parametric

regression model, we observe n i.i.d. vectors xi ∈ X and n responses yi ∈ R from the model

yi = f∗ (xi) + ϵi, i = 1, · · · , n,

where the noise variables ϵi are assumed to satisfy E (ϵi|xi) = 0 and it is common to assume standard normal
distribution for the noise variables. Our goal is to recover the function f∗ from the sample {(xi, yi)}n

i=1.

In statistical learning theory, the regression framework is described by some unknown probability measure
ρ on the set Z = X × Y. The target is to learn the regression function fρ(x) given by

fρ(x) =
∫

Y
ydρ(y|x), x ∈ X ,

where ρ(y|x) denotes the conditional distribution of y at point x induced by ρ. It is easy to see that these
two settings are equivalent by letting

fρ(x) = f∗(x).

For any measurable function, we define the L2 prediction error as

E(f) :=
∫

Z
(f(x) − y)2dρ,

4

Published in Transactions on Machine Learning Research (01/2023)

and clearly we know that fρ(x) is the minimizer of it among all measurable functions. We assume that
the sample D = {(xi, yi)}n

i=1 is drawn from the unknown probability measure ρ. Let ρX be the marginal
distribution of ρ on X and

(
L2

ρX
, ∥·∥ρX

)
be the space of ρX square-integrable functions on X . For any

f ∈ L2
ρX

, by a simple calculation we know that

E(f) − E(fρ) = ∥f − fρ∥2
ρX
.

Since the distribution ρ is unknown, we can not find fρ directly. We thus use

fD,H = arg min
f∈H

ED(f), (5)

to approximate fρ where H is our hypothesis space and ED(f) is defined to be the empirical risk induced
by the sample given by

ED(f) := 1
n

n∑
i=1

(f(xi) − yi)2
.

The aim of mean squared error analysis is to derive convergence rate of ∥fD,H − fρ∥2
ρX

. We assume that
|y| ≤ M almost everywhere and we have |fρ(x)| ≤ M . We project the output function f : X → R onto the
interval [−M,M] by a projection operator

πMf(x) =

 f(x), if −M ≤ f(x) ≤ M,
M, if f(x) > M,
−M, if f(x) < M,

and we consider πMfD,H as our estimator to fρ(x). This type of clipping operator has been widely used in
various statistical learning papers such as Suzuki (2018); Oono & Suzuki (2019); Mao et al. (2021).

2.2 Additive ridge functions

Additive ridge functions take the following form as

f(x) =
m∑

j=1
gj(ξj · x), (6)

where m is considered as a fixed constant. For each j, gj(·) : R → R is a univariate function and ξj · x
represents the inner product in Rd with ξj ∈ Rd and ∥ξj∥ is bounded by some constant Ξ. Since this constant
Ξ would only affect our results in a linear way, for simplicity of the proof, we take Ξ = 1. Specifically, we
require that 0 < ∥ξj∥ ≤ 1 and we take gj ∈ Wα

∞ ([−1, 1]), the space of Lipschitz-α functions on [−1, 1] with
the semi-norm |·|W α

∞
being the Lipschitz constant. We let G = maxj=1,··· ,m ∥gj∥∞. As mentioned before,

(6) is also known as additive index models (Yuan, 2011) and related to the the projection pursuit regression
(Friedman & Stuetzle, 1981). In particular, when m = d and (ξ1, · · · , ξm) is a permutation matrix, this
function class reduces to the additive model (Hastie & Tibshirani, 2017) and it reduces to single index model
(Duan & Li, 1991; Hardle et al., 1993; Ichimura, 1993) when m = 1. More precisely, we consider the function
space

Θ :=Θm,α,G,L

:={f(x) =
m∑

j=1
gj(ξj · x) : gj ∈ Wα

∞ ([−1, 1]) ,

0 < ∥ξj∥ ≤ 1, ∥gj∥∞ ≤ G, ∥gj∥W α
∞

≤ L},

(7)

and we assume that the target function fρ is in the set Θ.

5

Published in Transactions on Machine Learning Research (01/2023)

3 Main results

3.1 Covering number analysis of deep convolutional neural networks

The mean squared error analysis relies on the approximation abilities and the covering number of the hy-
pothesis space. Before presenting the covering number analysis for the hypothesis space H (4), we would
need to first state Theorem 2 in Fang et al. (2020) which presents the approximation error to functions in
the space (7) by deep convolutional neural networks.

Theorem 3.1. Let m ∈ N, d ≥ 3, 2 ≤ S ≤ d, J =
⌈

md−1
S−1

⌉
, and N ∈ N. If f ∈ Θ, then there exists a

deep neural network consisting of J layers of CNNs with filters of length S and bias vectors satisfying (2)
followed by one fully connected layer h(J+1) with width m(2N + 3) and connection matrix F (J+1) defined as
(3) such that for some coefficient vector c ∈ Rm(2N+3) there holds∥∥∥f − c(J+1) · h(J+1)

∥∥∥
∞

≤
m∑

j=1
|gj |W α

∞
N−α.

The total number of free parameters N in the network can be bounded as

N ≤ (3S + 2)
⌈
md− 1
S − 1

⌉
+m(2N + 2).

Remark 3.2. In this convolutional neural network, each layer only contains one filter and padding is not con-
sidered. If we use multiple convolutional filters, then the target function can be more complicated. As a simple
extension of the additive ridge functions, we can take the target function in the form of

∑m
i=1 gi(

∑t
j=1 ζi,j ·x)

if we consider t filters in each layer. In this paper, the convolutional layers are used to learn the features ξj ·x
and the last fully connected layer is used to approximate functions gj. Thus, the same approximation rate
can also be achieved for this type of function by a two-layer fully connected networks with the same order of
numbers of free parameters.

To calculate the covering number of our target space, we first need Cauchy bound for polynomials and Vietas
Formula to bound the infinity norm of filters in each layer. Proofs will be given in supplementary materials.
Lemma 3.3. If W = {Wj}j∈Z is a real sequence supported in {0, · · · ,K} with WK = 1, then all the complex
roots of its symbol W̃ (z) =

∑K
j=0 Wjz

j are bounded by 1 + maxj=0,··· ,K−1 |Wj |, the Cauchy Bound of W̃ . If
we factorize W̃ into polynomials of degree at most S, then all the coefficients of these factor polynomials are
bounded by 2S (1 + maxj=0,··· ,K−1 |Wj |)S

.

By applying the previous lemma, we are able to bound the magnitude of filters in each layer.
Lemma 3.4. Let 2 ≤ S ≤ d. For the deep convolutional neural networks constructed in this paper with J
convolutional layers and 1 fully connected layer satisfying Theorem 3.1, there exists a constant B = Bξ,S,G

depending on ξ, S and G such that
∥∥w(j)

∥∥
∞ ≤ B, j = 1, · · · , J1, and ∥F∥∞ ≤ 1,

∥∥c(J+1)
∥∥

∞ ≤ NB,

where B is given by B = max
{

2S
(

1 +
∣∣∣ 1

(ξm)l

∣∣∣)S

, 4G
}
.

After bounding the filters, we can bound bias vectors and output functions in each layer.
Lemma 3.5. Let 2 ≤ S ≤ d. For the deep convolutional neural networks constructed in this paper with J
convolutional layers and 1 fully connected layer satisfying Theorem 3.1, we have for j = 1, · · · , J + 1 that∥∥b(j)

∥∥
∞ ≤ 2 ((S + 1)B)j

, and ∥∥∥h(j)(x)
∥∥∥

∞
≤ (2j + 1)((S + 1)B)j . (8)

After bounding all the filters, bias vectors and output functions in each layer, we can derive a bound for
covering number of our hypothesis space H (4) as stated in the lemma below. The covering number N (η,H)
of a subset H of C(X) is defined for η > 0 to be the smallest integer l such that H is contained in the union
of l balls in C(X) of radius η. The notation of covering number can also be extended to N (η,H, ⋆) where ⋆
denote some specific metric. C(X) denotes the space of continuous functions on X .

6

Published in Transactions on Machine Learning Research (01/2023)

Lemma 3.6. For N ∈ N and H given in (4), with two constants CS,d,m,B and C ′′
S,d,m,B depending on

S, d,m,B, there holds
log N (δ,H) ≤ CS,d,m,BN log 1

δ
+ C ′′

S,d,m,BN logN,

for any 0 < δ ≤ 1.

Constants CS,d,m and C ′′
S,d,m,B depend on m, S and d at most in a cubic way. Since we treat m, S and d

as fixed constants in our setting, the covering number is affected by N in a linear way which is the order of
free parameters in the last layer. The above lemma shows that the hypothesis space H has a relatively small
covering number. Consequently, we are able to derive optimal convergence rates for convolutional neural
networks.

3.2 Oracle inequality for empirical risk minimization

With the bound of the covering number of the hypothesis space, we are able to prove the oracle inequality
which leads to the estimation error bound combining with approximation error. The following theorem
presents the oracle inequality for empirical risk minimizers based on covering number estimates.
Theorem 3.7. Suppose that |y| ≤ M almost everywhere and there exist constants C1, C2 > 0 and some real
numbers n1, n2 > 0, such that

log N (δ,H) ≤ C1n1 log 1
δ

+ C2n2 logn2, ∀δ > 0. (9)

Then for any h ∈ H and δ > 0, we have

∥πMfD,H − fρ∥2
ρX

≤ δ + 2 ∥h− fρ∥2
ρX
,

holds with probability at least 1 − exp
{
C1n1 log 16M

δ − C2n2 logn2 − 3nδ
512M2

}
−

exp
{

−3nδ2

16(3M+∥h∥∞)2(
6∥h−fρ∥2

ρX
+δ

)}
.

3.3 Mean squared error

By applying Theorem 3.1 and Theorem 3.7 we can obtain our main result on the upper bound of mean
squared error.
Theorem 3.8. Let 2 ≤ S ≤ d, 0 < α ≤ 1 and H, Θ be defined as (4) and (7). If |y| ≤ M almost everywhere
and fρ ∈ Θ, then for N ∈ N, we have

E
{

∥πMfD,H − fρ∥2
ρX

}
≤ C max

{
N−2α,

N logN
n

}
,

where the constant C = CS,d,m,M,α,B is independent of the sample size n and the N . In particular, if we
choose N =

⌈
n

1
1+2α

⌉
, then we can get

E
{

∥πMfD,H − fρ∥2
ρX

}
≤ Cn

−2α
1+2α logn.

Remark 3.9. The assumption of |y| ≤ M excludes the case of Gaussian noise and can be avoided by
applying the oracle inequality Lemma 4 in Schmidt-Hieber et al. (2020). However, the above mentioned
Lemma requires that the output functions of the neural network model are bounded by some constant F . This
constant F is usually related to the model complexity and thus may affect convergence rate if stated explicitly.

Proof of Theorem 3.8. We know from Theorem 3.1 that there exists some h ∈ H such that ∥h− fρ∥ρX
≤

∥h− fρ∥∞ ≤ Cα,mN
−α, where Cα,m =

∑m
j=1 |gj |W α

∞
. We further know that ∥h∥∞ ≤ M+Cα,m. By applying

Theorem 3.7, we have
E (πMfD,H) − E (fρ) ≤ 2 ∥h− fρ∥2

ρX
+ ϵ,

7

Published in Transactions on Machine Learning Research (01/2023)

holds with probability at least 1 − exp
{
C1N log 16M

ϵ + C2N logN − 3nϵ
512M2

}
−

exp
{

−3nϵ2

16(4M+Cα,m)2(6C2
α,mN−2α+ϵ)

}
where C1 = CS,d,m,B and C2 = C ′′

S,d,m.

If we let
ϵ ≥ 6C2

α,mN
−2α,

then we have
E (πMfD,H) − E (fρ) ≤ 2ϵ,

hold with probability at least 1 − exp
{
C3N logN − 3nϵ

512M2

}
− exp

{
− 3nϵ

32(4M+Cα,m)2

}
, where C3 =

(C1 log 8M
3C2

α,m
+ 2αC1 + C2).

We further let

ϵ ≥ 1024C3M
2N logN

3n ,

then we have
E (πMfD,H) − E (fρ) ≤ 2ϵ,

holds with probability at least 1 − exp
{

− 3nϵ
1024M2

}
− exp

{
− 3nϵ

32(4M+Cα,m)2

}
. By taking

C4 = max
{

12C2
α,m,

2048
3 M2C3,

64
3 (4M + Cα,m)2

}
,

and ϵ̃ = 2ϵ, we have

P {E (πMfD,H) − E (fρ) ≤ ϵ̃} ≥ 1 − 2 exp
{

− nϵ̃

C4

}
,

for any ϵ̃ ≥ C4 max
{
N−2α, N log N

n

}
. Then by letting δ = 2 exp

{
− nϵ̃

C4

}
, we know that

E (πMfD,H) − E (fρ) ≤ C9 max
{
N logN

n
,N−2α,

log 2
δ

n

}
,

holds with probability at least 1 − δ.

Now we apply E {ξ} =
∫ ∞

0 P {ξ ≥ t} dt with ξ = E (πMfD,H) − E (fρ) = ∥πMfD,H − fρ∥2
ρX

. We have

E
[
∥πMfD,H − fρ∥2

ρX

]
≤

∫ T

0
1dt+

∫ ∞

T

2 exp
{

−nt
C4

}
dt ≤ T + 2C4

n
≤ 3T,

with T = C4 max
{
N−2α, N log N

n

}
. This finishes the proof with the constant CS,d,m,M,α,B independent of n

or N given by

CS,d,m,M,α,B = 3 max
{

12C2
α,m,

2048
3 M2C3,

64
3 (4M + Cα,m)2

}
,

where C3 = (C1 log 8M
3C2

α,m
+ 2αC1 + C2), C1 = C ′′

S,d,m,B and C2 = C ′
S,d,m.

3.4 Lower bound for additive ridge functions

In this subsection, we will present the mini-max lower rate for estimating additive ridge functions. We let
M(ρ,Θ) be the class of all Borel measures ρ on X ×Y such that fρ ∈ Θ. This class M(ρ,Θ) is related to the
set of distributions ρ where data {xi, yi}n

i=1 is drawn from and Θ representing the set of target functions.
Now we state our mini-max lower bound for the class M(ρ,Θ).

8

Published in Transactions on Machine Learning Research (01/2023)

Theorem 3.10. Assume m ≥ 1, G > 0 and M ≥ 4mG. Let f̂n(x) be the output of any learning algorithm
based on the sample {xi, yi}n

i=1, then we have

inf
f̂n

sup
ρ∈M(ρ,Θ)

E
∥∥∥f̂n(x) − fρ(x)

∥∥∥2

L2
ρX

≥ cm,Gn
− 2α

2α+1 ,

where the constant cm,G only depends on m and G. For more discussion about this constant, please refer to
the proof of Theorem 3.9 in Appendix.

Since ξ · x is essentially a polynomial of x, we can obtain a mini-max lower bound for the function in the
type of f ◦Q as a direct consequence, where Q(x) can be any polynomial of x. Formally, we define

Θ′ :=Θ′(m,α,G,L)

:={f(x) =
m∑

j=1
gj(Q(x)) : gj ∈ Wα

∞ ([−1, 1]) ,

0 < ∥ξj∥ ≤ 1, ∥gj∥∞ ≤ G, ∥gj∥W α
∞

≤ L},

(10)

where Q(x) denote any polynomial of x.
Corollary 3.11. Assume m ≥ 1, G > 0 and M ≥ 4mG. Let f̂n(x) be the output of any learning algorithm
based on the sample {xi, yi}n

i=1, then we have

inf
f̂n

sup
ρ∈M(ρ,Θ′)

E
∥∥∥f̂n(x) − fρ(x)

∥∥∥2

L2
ρX

≥ cm,Gn
− 2α

2α+1 ,

where the constant cm,G only depends on m and G.

Combining this lower bound with the upper bound in the last section, we know that deep convolutional
neural networks followed by one fully connected layer can reach optimal convergence rates for additive ridge
functions up to a log factor. In other words, for estimating fρ ∈ Θ, no other methods could achieve a better
rate than the estimator by deep convolutional neural networks. Furthermore, due to the special form of
ridge functions, we can observe that this rate is dimension independent. Thanks to the simple structure of
convolutional neural networks, we are able to derive small complexity bound and reach this rate with the
input dimension appearing in the constant.

4 Conclusion and discussion

In this paper, we consider the regression problem in statistical learning theory by using deep convolutional
neural networks. By a careful analysis of covering number of deep convolutional neural networks, we show
that for additive ridge functions, deep convolutional neural networks followed by one fully connected layer
can reach optimal convergence rates (up to a log factor). With the simple structure and few free parameters
of convolutional neural networks, we obtain suitable complexity bound for the hypothesis space and are able
to achieve this dimension independent convergence rate with the input dimension appearing in the constant,
which shows the superiority of convolutional structure.

In the future we would like to address in what situation convolutional neural networks outperform usual fully
connected neural networks concerning approximation abilities. Or can we derive optimal approximation rate
for larger function classes when considering convolutional neural networks. Convolutional structures have
been widely applied to various types of neural networks and have performed outstandingly in the classification
problems. However, only few papers consider classification problems from a statistical perspective by using
fully connected neural networks (Hu et al., 2020; Kim et al., 2021; Bos & Schmidt-Hieber, 2021). Also, there
is currently no paper that directly approximates a specific function class (such as Sobolev space) through a
two-dimensional convolutional neural network which is critical for the analysis of statistical learning theory. It
would be significant if we can theoretically show the superiority of convolutional structures when considering
classification problems with two dimensional convolution in the future.

9

Published in Transactions on Machine Learning Research (01/2023)

Acknowledgements

The authors would like to thank the referees for their encouraging comments and constructive suggestions.
The first author is supported by the National Natural Science Foundation of China [NSFC-72150002]. The
second author is supported by the Office of Naval Research [ONR N00014-22-1-2680] and National Science
Foundation [NSF–SCALE MoDL (2134209)].

References
Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the sequence

specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 33(8):831–838, 2015.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of Machine
Learning Research, 18(1):629–681, 2017.

Thijs Bos and Johannes Schmidt-Hieber. Convergence rates of deep relu networks for multiclass classification.
arXiv preprint arXiv:2108.00969, 2021.

Hung Chen. Estimation of a projection-pursuit type regression model. The Annals of Statistics, pp. 142–157,
1991.

Jeng-Min Chiou and Hans-Georg Müller. Quasi-likelihood regression with multiple indices and smooth link
and variance functions. Scandinavian journal of statistics, 31(3):367–386, 2004.

Felipe Cucker and Ding Xuan Zhou. Learning theory: an approximation theory viewpoint, volume 24.
Cambridge University Press, 2007.

Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Joan Bruna. Finding the needle in the haystack with
convolutions: on the benefits of architectural bias. Advances in Neural Information Processing Systems,
32, 2019.

Persi Diaconis and Mehrdad Shahshahani. On nonlinear functions of linear combinations. SIAM Journal on
Scientific and Statistical Computing, 5(1):175–191, 1984.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Naihua Duan and Ker-Chau Li. Slicing regression: a link-free regression method. The Annals of Statistics,
pp. 505–530, 1991.

Zhiying Fang, Han Feng, Shuo Huang, and Ding-Xuan Zhou. Theory of deep convolutional neural networks
ii: Spherical analysis. Neural Networks, 131:154–162, 2020.

Jerome H Friedman and Werner Stuetzle. Projection pursuit regression. Journal of the American statistical
Association, 76(376):817–823, 1981.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

Wolfgang Hardle, Peter Hall, and Hidehiko Ichimura. Optimal smoothing in single-index models. The annals
of Statistics, pp. 157–178, 1993.

Trevor J Hastie and Robert J Tibshirani. Generalized additive models. Routledge, 2017.

Juncai He, Lin Li, and Jinchao Xu. Approximation properties of deep relu cnns. arXiv preprint
arXiv:2109.00190, 2021.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554, 2006.

10

Published in Transactions on Machine Learning Research (01/2023)

Tianyang Hu, Zuofeng Shang, and Guang Cheng. Sharp rate of convergence for deep neural network classifiers
under the teacher-student setting. arXiv preprint arXiv:2001.06892, 2020.

Hidehiko Ichimura. Semiparametric least squares (sls) and weighted sls estimation of single-index models.
Journal of econometrics, 58(1-2):71–120, 1993.

Masaaki Imaizumi and Kenji Fukumizu. Deep neural networks learn non-smooth functions effectively. In
The 22nd international conference on artificial intelligence and statistics, pp. 869–878. PMLR, 2019.

Yongdai Kim, Ilsang Ohn, and Dongha Kim. Fast convergence rates of deep neural networks for classification.
Neural Networks, 138:179–197, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jason M Klusowski and Andrew R Barron. Risk bounds for high-dimensional ridge function combinations
including neural networks. arXiv preprint arXiv:1607.01434, 2016.

Jason M Klusowski and Andrew R Barron. Minimax lower bounds for ridge combinations including neural
nets. In 2017 IEEE International Symposium on Information Theory (ISIT), pp. 1376–1380. IEEE, 2017.

Quoc V Le, Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, and Andrew Y Ng. On optimiza-
tion methods for deep learning. In ICML, 2011.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

Shao-Bo Lin, Kaidong Wang, Yao Wang, and Ding-Xuan Zhou. Universal consistency of deep convolutional
neural networks. arXiv preprint arXiv:2106.12498, 2021.

Tong Mao, Zhongjie Shi, and Ding-Xuan Zhou. Theory of deep convolutional neural networks iii: Approxi-
mating radial functions. Neural Networks, 2021.

Behnam Neyshabur. Towards learning convolutions from scratch. Advances in Neural Information Processing
Systems, 33:8078–8088, 2020.

Kenta Oono and Taiji Suzuki. Approximation and non-parametric estimation of resnet-type convolutional
neural networks. In International Conference on Machine Learning, pp. 4922–4931. PMLR, 2019.

Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions using deep
relu neural networks. Neural Networks, 108:296–330, 2018.

Philipp Petersen and Felix Voigtlaender. Equivalence of approximation by convolutional neural networks
and fully-connected networks. Proceedings of the American Mathematical Society, 148(4):1567–1581, 2020.

Lingyan Ruan and Ming Yuan. Dimension reduction and parameter estimation for additive index models.
Statistics and its Interface, 3(4):493–499, 2010.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117, 2015.

Johannes Schmidt-Hieber et al. Nonparametric regression using deep neural networks with relu activation
function. Annals of Statistics, 48(4):1875–1897, 2020.

Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces: optimal
rate and curse of dimensionality. arXiv preprint arXiv:1810.08033, 2018.

Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer Science & Business Media, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

11

Published in Transactions on Machine Learning Research (01/2023)

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–114,
2017.

Ming Yuan. On the identifiability of additive index models. Statistica Sinica, pp. 1901–1911, 2011.

Ding-Xuan Zhou. Theory of deep convolutional neural networks: Downsampling. Neural Networks, 124:
319–327, 2020a.

Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied and computational harmonic
analysis, 48(2):787–794, 2020b.

Ding-Xuan Zhou and Kurt Jetter. Approximation with polynomial kernels and svm classifiers. Advances in
Computational Mathematics, 25(1):323–344, 2006.

Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning–based
sequence model. Nature methods, 12(10):931–934, 2015.

A Appendix: Proof of Main Results

Proof of Theorem 3.1

Proof of Theorem 3.1. The proof of this theorem is a combination of proofs of Lemma 3 and Theorem 2 in
Fang et al. (2020) with minor modification. For the completeness of our following results, we present the
proof here.

For m ∈ N and {ξ1, . . . , ξm} with 0 < ∥ξj∥2 ≤ 1, we take W to be a sequence supported in {0, · · · ,md− 1}
given by W(j−1)d+(d−i) = (ξj)i where j ∈ {1, · · · ,m} and i ∈ {1, · · · , d}. By Lemma A.2 with M = md− 1,
there exists a sequence of filters w =

{
w(j)}J

j=1 supported in {0, · · · , S} with J ≥ ⌈ M
S−1 ⌉ satisfying the

convolutional factorization W = w(J) ∗ w(J−1) ∗ · · · ∗ w(2) ∗ w(1). Here for j = p + 1, . . . , J , we have taken
w(j) to be the delta sequence δ0 given by (δ0)0 = 1 and (δ0)k = 0 for k ∈ Z \ {0}. By Lemma A.3, we know
that

T (J)T (J−1) · · ·T (1) = T (J,1) = (Wi−k)i=1,...,d+JS,k=1,...,d ∈ R(d+JS)×d,

where T (j) is the Toeplitz matrix with filter w(j) for j = 1, 2, . . . , J .

Now we construct bias vectors for convolutional layers. We denote ∥w∥1 =
∑∞

k=−∞ |wk|. We take b(1) =
−

∥∥w(1)
∥∥

1 1d1 and
b(j) =

(
Πj−1

p=1

∥∥∥w(p)
∥∥∥

1

)
T (j)1dj−1 −

(
Πj

p=1

∥∥∥w(p)
∥∥∥

1

)
1dj−1+S , (11)

for j = 2, · · · , J . The bias vectors satisfy b
(j)
S+1 = . . . = b

(j)
dj−S . Observe that ∥x∥∞ ≤ 1 for x ∈ X . Denote

∥h∥∞ = max{∥hj∥∞ : j = 1, . . . , q} for a vector of functions h : X → Rq. We know that for h : X → Rdj−1 ,∥∥∥T (j)h
∥∥∥

∞
≤

∥∥∥w(j)
∥∥∥

1
∥h∥∞ .

Hence the components of h(J)(x) satisfy(
h(J)(x)

)
kd

= ⟨ξk, x⟩ +B(J), k = 1, . . . ,m,

where B(J) = ΠJ
p=1

∥∥w(p)
∥∥

1.

For the last fully connected layer, we have

h(J+1)(x) = σ(F (J+1)h(J)(x) − b(J+1)),

12

Published in Transactions on Machine Learning Research (01/2023)

with the full matrix F (J+1) stated in (3). The bias vector in the last layer is given by b(J+1)
(j−1)(2N+3)+i = B(J)+ti

for j = 1, . . . ,m, i = 1, . . . , 2N + 3 where t := {t1 < · · · < t2N+3} is given in Lemma A.1. Then the fully-
connected layer h(J+1)(x) ∈ Rm(2N+3) of the deep network is

h
(J+1)
(j−1)(2N+3)+i = σ (⟨ξj , ·⟩ − ti) , for 1 ≤ j ≤ m, 1 ≤ i ≤ 2N + 3. (12)

We choose the coefficient vector c ∈ Rm(2N+3) by means of the linear operator LN (17) as{
(c)(j−1)(2N+3)+i

}2N+3

i=1
= NLN

(
{gj(ti)}2N+2

i=2

)
, j = 1, . . . ,m.

Then by the identity (18), we have

c · h(J+1)(x) = N

m∑
j=1

2N+3∑
i=1

(c)(j−1)(2N+3)+i σ (⟨ξj , x⟩ − ti)

=
m∑

j=1
Lt (gj) (⟨ξj , x⟩) .

Combining this with the additive ridge form (6) of f and Lemma A.1, we know that for x ∈ X ,

∣∣∣f(x) − c · h(J+1)(x)
∣∣∣ =

∣∣∣∣∣∣
m∑

j=1
gj(⟨ξj , x⟩) −

m∑
j=1

Lt (gj) (⟨ξj , x⟩)

∣∣∣∣∣∣
≤

m∑
j=1

∥gj − Lt(gj)∥C[−1,1] ≤
m∑

j=1
|gj |W α

∞
N−α.

Then the desired error bound is verified.

Proof of Lemma 3.4

Proof of Lemma 3.4. Since 0 < ∥ξj∥2 ≤ 1, there exists some l ∈ {1, · · · , d} such that (ξm)l ̸= 0 and (ξm)i = 0
for any i < l. Then we know that the sequence W constructed in the proof of Theorem 3.1 is supported
in {0, · · · ,md− l} with Wmd−l = (ξm)l ̸= 0. Now we set a sequence W ′ = 1

|(ξm)l|
W , then W ′ satisfies the

condition in Lemma 3.3 with K = md − l. By Lemma 3.3, all the complex roots of W ′ are located in the
disk of radius 1 + maxj=0,··· ,md−1

∣∣∣ Wj

(ξm)l

∣∣∣ ≤ 1 +
∣∣∣ 1

(ξm)l

∣∣∣, and the filters
{
w(j)}J

j=1 constructed in our networks
satisfying Lemma A.2 can be bounded as

∥∥∥w(j)
∥∥∥

∞
≤ 2S

(
1 +

∣∣∣∣ 1
(ξm)l

∣∣∣∣)S

, j = 1, · · · , J.

For the matrix F (J+1), we have
∥∥F (J+1)

∥∥
∞ ≤ 1. For the vector c in the hypothesis space, we know that

from the construction in the proof of Theorem 3.1 we have ∥c∥∞ ≤ 4NG. Then we can take B as

B = max
{

2S

(
1 +

∣∣∣∣ 1
(ξm)l

∣∣∣∣)S

, 4G
}
.

13

Published in Transactions on Machine Learning Research (01/2023)

Proof of Lemma 3.5

Proof of Lemma 3.5. The bias vectors
{
b(j)}J

j=1 of CNNs are chosen in the proof of Theorem 3.1 as b(1) =
−

∥∥w(1)
∥∥

1 1d1 and clearly we have
∥∥b(1)

∥∥
∞ ≤ (S + 1)B ≤ 2 (S + 1)B. For j = 2, · · · , J, we have b(j) =(

Πj−1
p=1

∥∥w(p)
∥∥

1

)
T (j)1dj−1 −

(
Πj

p=1
∥∥w(p)

∥∥
1

)
1dj−1+S . Thus, we know that

∥∥∥b(j)
∥∥∥

∞
≤ ((S + 1)B)j−1

∥∥∥T (j)1dj−1

∥∥∥
∞

+ ((S + 1)B)j ≤ 2((S + 1)B)j .

For b(J+1) constructed in Theorem 3.1, clearly we have
∥∥b(J+1)

∥∥
∞ ≤ 2 ((S + 1)B)J + 2 ≤ 2 ((S + 1)B)J+1

.
If w, b in each layer and F , c satisfy the restrictions in (4), then by Lipschitz condition of ReLU and the
special form of Toeplitz matrix T , we have∥∥∥h(j)(x)

∥∥∥
∞

≤ (S + 1)B
∥∥∥h(j−1)(x)

∥∥∥
∞

+ 2((S + 1)B)j ,

for j = 1, · · · , J . Combining this with
∥∥h(0)

∥∥
∞ ≤ 1, we can obtain by induction∥∥∥h(j)(x)
∥∥∥

∞
≤ (2j + 1)((S + 1)B)j .

It can be checked easily that the above inequality holds when j = J + 1 by the special form of F (J+1).

Proof of Lemma 3.6

Proof of Lemma 3.6. If ĉ · ĥ(J+1)(x) is another function from the hypothesis space H induced by
ŵ, b̂, F̂ (J+1), ĉ satisfying the restrictions in (4) and∥∥∥w(j) − ŵ(j)

∥∥∥
∞

≤ δ,
∥∥∥b(j) − b̂(j)

∥∥∥
∞

≤ δ,

∥c− ĉ∥∞ ≤ δ,
∥∥∥F (J+1) − F̂ (J+1)

∥∥∥
∞

≤ δ,

then by the Lipschitz property of ReLU, we have

∥∥∥h(j) − ĥ(j)
∥∥∥

∞
≤

∥∥∥(
Tw(j)

h(j−1)(x) − b(j)
)

−
(
T ŵ(j)

ĥ(j−1)(x) − b̂(j)
)∥∥∥

∞

≤
∥∥∥Tw(j)

(
h(j−1)(x) − ĥ(j−1)(x)

)∥∥∥
∞

+
∥∥∥(
Tw(j)

− T ŵ(j)
)
ĥ(j−1)(x)

∥∥∥
∞

+ δ,

for j = 1, · · · , J . Combining the above equation with (8) and the special form of the Toeplitz matrix
Tw(j) − T ŵ(j) = Tw(j)−ŵ(j) , we know that∥∥∥h(j) − ĥ(j)

∥∥∥
∞

≤ (S + 1)B
∥∥∥h(j−1) − ĥ(j−1)

∥∥∥
∞

+ (S + 1)δ(2j − 1)((S + 1)B)j−1 + δ.

Further by induction and h(0) − ĥ(0) = 0, we have∥∥∥h(j) − ĥ(j)
∥∥∥

∞
≤ (j2 + j)((S + 1)B)jδ,

≤ 2j2((S + 1)B)jδ, j = 1, · · · , J.

14

Published in Transactions on Machine Learning Research (01/2023)

For the last fully connected layer and we know that∥∥∥h(J+1) − ĥ(J+1)
∥∥∥

∞

≤
∥∥∥(
F J+1h(J)(x) − b(J+1)

)
−

(
F̂ J+1ĥ(J)(x) − b̂(J+1)

)∥∥∥
∞

≤
∥∥∥F J+1

(
h(J)(x) − ĥ(J)(x)

)∥∥∥
∞

+
∥∥∥(
F J+1 − F̂ J+1

)
ĥJ(x)

∥∥∥
∞

+ δ

≤2J2((S + 1)B)Jδ + δ(2J + 1)((S + 1)B)J + δ

≤5J2((S + 1)B)Jδ.

Finally for the output function, we have∥∥∥c · h(J+1) − ĉ · ĥ(J+1)
∥∥∥

∞

≤
∥∥∥c ·

(
h(J+1)(x) − ĥ(J+1)(x)

)∥∥∥
∞

+
∥∥∥(c− ĉ) · ĥ(J+1)(x)

∥∥∥
∞

≤(2N + 3)mNB5J2((S + 1)B)Jδ + (2N + 3)mδ(2J + 3)((S + 1)B)J+1

≤6(J2 + 4)m(2N2 + 3N)((S + 1)B)J+1δ.

Since J = ⌈ md−1
S−1 ⌉ ≤ md− 1, for the output function, we have∥∥∥c · h(J+1) − ĉ · ĥ(J+1)

∥∥∥
∞

≤ 150m3d2N2((S + 1)B)mdδ := δ̂.

Then, by taking an δ-net for each of w(j), b(j), c and F (J+1), we know that the covering number of the
hypothesis space H with radius δ̂ ∈ (0, 1] can be bounded as

N
(
δ̂,H

)
≤

⌈
2B
δ

⌉(S+1)J

ΠJ
j=1

⌈
(2(S + 1)B)j

δ

⌉2S+1 ⌈
(2(S + 1)B)J+1

δ

⌉m(2N+3)

⌈
2NB
δ

⌉m(2N+3) ⌈
2
δ

⌉m(2N+3)

≤
(

1
δ

)(S+1)J+J(2S+1)+3m(2N+3)
Nm(2N+3)(3(S + 1)B)(S+1)J+ J2+J

2 (2S+1)+m(2N+3)(J+3)

≤
(

1
δ̂

)CS,d,mN

NC′
S,d,mN (153md(S + 1)B)3mdCS,d,mN ,

where CS,d,m = 5(m2d+ 2m) + (md− 1)(mds+md+ s+ 1), C ′
S,d,m = 2CS,d,m + 5m. Thus we have

log
{

N
(
δ̂,H

)}
≤ CS,d,m,BN log

{
1
δ̂

}
+ C ′′

S,d,m,BN log{N},

where C ′′
S,d,m,B = 3mdCS,d,m log (153md(S + 1)B) + C ′

S,d,m.

Proof of Theorem 3.7

Proof of Theorem 3.7. Since fD,H is the empirical minimizer from (2.1), we have ED (fD,H) ≤ ED (h) for any
h ∈ H and ED (πMfD,H) ≤ ED (fD,H). Then we can derive

E (πMfD,H) − E (fρ) =E (πMfD,H) − ED (πMfD,H)
+ED (πMfD,H) − ED (h)
+ED (h) − E (h) + E (h) − E (fρ)
≤E (πMfD,H) − ED (πMfD,H)
+ED (h) − E (h) + E (h) − E (fρ) .

15

Published in Transactions on Machine Learning Research (01/2023)

For simplicity, we denote
D (H) = E (h) − E (fρ) = ∥h− fρ∥2

ρX
,

S1 (n,H) = {ED (h) − ED (fρ)} − {E (h) − E (fρ)} ,
and

S2 (n,H) = {E (πMfD,H) − E (fρ)} − {ED (πMfD,H) − ED (fρ)} .
Thus we have

E (πMfD,H) − E (fρ) ≤ D (H) + S1 (n,H) + S2 (n,H) .

Now we define the random variable η on Z to be

η(z) = (y − h(x))2 − (y − fρ(x))2
,

and σ2(η) is the variance. Then it can be easily derived that |η(z)| ≤ (3M + ∥h∥∞)2, |η − E (η)| ≤
2 (3M + ∥h∥∞)2 and σ2(η) ≤ E

(
η2)

≤ (3M + ∥h∥∞)2 D (H). Then we can apply Lemma A.4 to get

P {S1 (n,H) < ϵ} ≥ 1 − exp
{

− nϵ2

2 (3M + ∥h∥∞)2 (
D (H) + 2ϵ

3
)}

.

Now we consider a function set

G :=
{
f̃ = (πMf(x) − y)2 − (fρ(x) − y)2 : f ∈ H

}
,

and for any fixed f̃ ∈ G, there exists an f ∈ H such that f̃(z) = (πMf(x) − y)2 − (fρ(x) − y)2. Then we
know that E

(
f̃

)
= ∥πMf − fρ∥2

ρX
and 1

n

∑n
i=1 f̃ (zi) = ED (πMf) − ED (fρ) . It can be easily derived that∣∣f̃(z)

∣∣ ≤ 8M2,
∣∣f̃(z) − E

(
f̃

)∣∣ ≤ 16M2 and E
(
f̃2)

≤ 16M2E
(
f̃

)
. Then we can apply Lemma A.5 to G with

B′ = c̃ = 16M2 to get
sup
f∈H

E (πMf) − E (fρ) − (ED (πMf) − ED (fρ))√
E (πMf) − E (fρ) + ϵ

≤
√
ϵ, (13)

holds with probability at least 1 − N (ϵ,G, L∞ (X × Y)) exp
{

− 3nϵ
512M2

}
. Since for any f1, f2 ∈ H, we have∣∣f̃1 − f̃2

∣∣ ≤ 4M |f1(x) − f2(x)| .

Thus, an ϵ
4M covering of H provides an ϵ covering of G for any ϵ > 0 which implies that

N (ϵ,G, L∞ (X × Y)) ≤ N
(ϵ

4M ,H, L∞ (X)
)
.

Combining this with (9), we have

N (ϵ,G, L∞ (X × Y)) ≤ exp
{
C1n1 log 4M

ϵ
+ C2n2 logn2

}
.

This together with (13) implies that

S2 (n,H) ≤ 1
2 (E (πMfD,H) − E (fρ)) + ϵ,

holds with confidence at least 1 − exp
{
C1n1 log 4M

ϵ + C2n2 logn2 − 3nϵ
128M2

}
. Combing all these inequalities,

we have
E (πMfD,H) − E (fρ) ≤ 2D (H) + 4ϵ,

holds with probability at least 1 − exp
{
C1n1 log 4M

ϵ + C2n2 logn2 − 3nϵ
128M2

}
−

exp
{

− nϵ2

2(3M+∥h∥∞)2(D(H)+ 2ϵ
3)

}
. We finish the proof by letting δ = 4ϵ.

16

Published in Transactions on Machine Learning Research (01/2023)

Proof of Theorem 3.10

Proof of Theorem 3.10. First, we associate a probability measure ρf ∈ M(ρ,Θ) to a pair (µ, f) where µ is
a measure on X and f ∈ Θ. We assume that µ is upper and lower bounded by constants τ1 and τ2. Now we
define a probability measure ρf by

dρf (x, y) =
[
T + f(x)

2T dδT (y) + T − f(x)
2T dδ−T (y)

]
dµ(x), (14)

where T = 4mG and dδT denotes the Dirac delta with unit mass at T . It can be verified that ρf is a
probability measure on X × Y with µ being the marginal distribution ρX and f the regression function.
Moreover, M ≥ 4mG ensures |y| ≤ M almost surely. Hence for any f ∈ Θ, ρf ∈ M(ρ,Θ).

Now we would apply Theorem 2.7 in Tsybakov (2008) to prove our conclusion. It states that if for some
Ñ ≥ 1 and κ > 0, f0, · · · , f

Ñ
∈ Θ are such that

1. ∥fi − fj∥2
L2

ρX
≥ κn− 2α

2α+1 for all 0 ≤ i < j ≤ Ñ ,

2. 1
Ñ

∑Ñ
j=1 KL

(
ρn

j ∥ρn
0
)

≤ log Ñ
9 ,

then there exists a positive constant cκ,τ1,τ2 such that

inf
f̂n

sup
ρ∈M(ρ,Θ)

E
∥∥∥f̂n(x) − fρ(x)

∥∥∥2

L2
ρX

≥ cκ,τ1,τ2n
− 2α

2α+1 . (15)

Now we construct a finite sequence f0, · · · , fN̂n
in the space Θ. First, we let function K ∈ L2(R) ∩ Lipα(R)

be supported on [− 1
2 ,

1
2] with Lipschitz constant 1

2L and ∥K∥∞ ≤ G. Clearly this function exists. We
partition the set [−1, 1] into N̂n = ⌊cτn

1
2α+1 ⌋ interval {An,k}N̂n

k=1 with equivalent length 2
N̂n

, centers {uk}N̂n

k=1

and cτ = 2304τ1
15T 2 ∥K∥2

2 + 1. Now we define function as

ψuk
(x) = 1

N̂α
n

K

(
1
2N̂n(x− uk)

)
, for k = 1, · · · , N̂n.

It is clear that ψuk
(x) are Lipschitz-α functions with Lipschitz constant 1

21+αL for 0 < α ≤ 1 for k = 1, · · · , N̂n

and ∥ψuk
(x)∥∞ ≤ G. From the definition above, we can also see that for ui ̸= uj , ψui

(x) and ψuj
(x) have

different supports. Now we consider the set of all binary sequences of length N̂n,

Ω =
{
ω =

(
ω1, · · · , ωN̂n

)
, ωi ∈ {0, 1}

}
= {0, 1}N̂n ,

and define functions ϕω(x) as

ϕω(x) =
N̂n∑
k=1

ωkψuk
(x).

Now we are going to show that ϕω(x) is a Lipschitz-α function with Lipschitz constant L and ∥ϕω(x)∥∞ ≤ G
for any ω. The sup-norm can be check easily by noticing that this is a summation on different supports and
|ωk| ≤ 1. Now we are going to check the Lipchitz constant. If x, y ∈ An,i, then we have

|ϕω(x) − ϕω(y)| = |ψui(x) − ψui(y)| ≤ L |x− y|α .

17

Published in Transactions on Machine Learning Research (01/2023)

If x ∈ An,i and y ∈ An,j for i ̸= j, and we let x̄ and ȳ be the boundary points of An,i and An,j between x
and y, then we have,

|ϕω(x) − ϕω(y)|
=

∣∣ωiψui(x) − ωjψuj (y)
∣∣

≤ |ψui(x)| +
∣∣ψuj (y)

∣∣
= |ψui(x) − ψui(x̄)| +

∣∣ψuj (y) − ψuj (ȳ)
∣∣

≤2−1−αL (|x− x̄|α + |y − ȳ|α)

=2−αL

(
1
2 |x− x̄|α + 1

2 |y − ȳ|α
)

≤L
(

|x− x̄| + |y − ȳ|
2

)α

≤L |x− y|α ,
where we have applied Jensen’s inequality. Then ϕω(x) is a Lipschitz-α function with Lipschitz constant
L. Since for any f ∈ Θ, it can be written in the form of

∑m
i=1 gi(ξi · x) with gi ∈ Wα

∞[−1, 1]. Now we can
simply take m = 1, ξ1 = [1, 0, · · · , 0] and g1(x) = ϕω(x1). Then we denote fω(x) = ϕω(x1) where x1 is the
first component of x ∈ Rd and clearly we know that fω ∈ Θ.

For any uk, we have ∥ψuk
∥2

2 = 2
N̂1+2α

n
∥K∥2

2. We use Ham(ω, ω′) =
∑N̂n

k=1 I (ωk ̸= ω′
k) to denote the Hamming

distance between the binary sequences ω and ω′. We know that

∥fω − fω′∥2
2 = Ham(ω, ω′) 2

N̂1+2α
n

∥K∥2
2 .

By the Varshamov-Gilbert bound (Lemma 2.9 in Tsybakov (2008)), we conclude that there exists a subset
W ⊂ Ω of cardinality |W| ≥ 2 N̂n

8 such that Ham(ω, ω′) ≥ N̂n

8 for all ω, ω′ ∈ W, ω ̸= ω′. Then we have

∥fω − fω′∥2
2 ≥ 1

4N̂
−2α
n ∥K∥2

2 , for ω, ω′ ∈ W, ω ̸= ω′.

Further, we know that
∥fω − fω′∥2

L2
ρX

≥ κn− 2α
2α+1 , for ω, ω′ ∈ W, ω ̸= ω′,

by taking κ = 1
4τ2c

2
τ ∥K∥2

2. The above inequality verifies the condition 1 in Theorem 2.7 in Tsybakov
(2008).

For simplicity, we use fi to denote fωi . Now we consider the KL-divergence KL
(
ρfi

|ρfj

)
. By the euation

(14), we have dρfi
(x, y) = g(x, y)dρfj

(x, y) with

g(x, y) = T + sign(y)fi(x)
T + sign(y)fj(x) = 1 + sign(y)(fi − fj)

T + sign(y)fj
.

Then we know that
KL

(
ρfi

|ρfj

)
=

∫
X

T + fi(x)
2T ln

(
1 + fi(x) − fj(x)

T + fj(x)

)
+

T − fi(x)
2T ln

(
1 + fi(x) − fj(x)

T − fj(x)

)
dµ(x)

≤
∫

X

fi(x) − fj(x)
2T

(
T + fi(x)
T + fj(x) − T − fi(x)

T − fj(x)

)
dµ(x)

≤ 16
15T 2 ∥fi − fj∥2

L2
ρX
.

Since KL
(
ρn

fi
|ρn

fj

)
≤ 16

15T 2n ∥fi − fj∥2
L2

ρX
, we have

18

Published in Transactions on Machine Learning Research (01/2023)

KL
(
ρn

fi
|ρn

fj

)
≤ 16τ1

15T 2n ∥fi − fj∥2
2

≤ 16τ1

15T 2nHam(ω, ω′) 2
N̂1+2α

n

∥K∥2
2

≤ 2304τ1

15T 2 ∥K∥2
2

n

N̂1+2α
n

N̂n

72 .

By cτ = 2304τ1
15T 2 ∥K∥2

2 + 1, we know that

KL
(
ρn

fi
|ρn

fj

)
≤ N̂n

72 ≤ log |W|
9 .

Then two conditions of inequality (15) are satisfied by taking |W| = Ñ . Then we have

inf
f̂n

sup
ρ∈M(ρ,Θ)

E
∥∥∥f̂n(x) − fρ(x)

∥∥∥2

L2
ρX

≥ cκ,τ1,τ2n
− 2α

2α+1 .

The proof can be applied directly to Corollary 3.11 by noticing that x1 is a polynomial of input x. For
simplicity, ∥K∥2 can be chosen to be 1. We know that τ1 and τ2 are actually upper and lower bounds of
marginal density of x1, the first component of x, thus we can simply take τ1 = 1 and τ2 = 1

100 . Since κ is a
constant depending on τ1, τ2, m and G, the constant cκ,τ1,τ2 essentially depends on m and G.

This finishes the proof.

Auxiliary Lemmas

Lemma A.1. [Fang et al. (2020)] Given an integer N , let t = {ti}2N+3
i=1 be the uniform mesh on[

−1 − 1
N , 1 + 1

N

]
with ti = −1 + i−2

N . Construct a linear operator Lt on C[−1, 1] by

Lt(f)(u) =
2N+2∑

i=2
f(ti)δi(u), u ∈ [−1, 1], f ∈ C[−1, 1],

where δi ∈ C(R), i = 2, . . . , 2N + 2, is given by

δi(u) = N(σ (u− ti−1) − 2σ (u− ti) + σ (u− ti+1)). (16)

Then for g ∈ C[−1, 1], ∥Lt(g)∥C[−1,1] ≤ ∥g∥C[−1,1] and

∥Lt(g) − g∥C[−1,1] ≤ 2ω (g, 1/N) ,

where ω(g, µ) is the modulus of continuity of g given by

ω(g, µ) = sup
|t|≤µ

{|g(v) − g(v + t)| : v, v + t ∈ [−1, 1]|} .

For the convenience of counting free parameter numbers, we introduce a linear operator LN : R2N+1 →
R2N+3 given for ζ = (ζi)2N+1

i=1 ∈ R2N+1 by

(LN (ζ))i =



ζ2, for i = 1,
ζ3 − 2ζ2, for i = 2,
ζi−1 − 2ζi + ζi+1, for 3 ≤ i ≤ 2N + 1,
ζ2N+1 − 2ζ2N+2, for i = 2N + 2,
ζ2N+2, for i = 2N + 3.

(17)

19

Published in Transactions on Machine Learning Research (01/2023)

An important property of the operator LN is to express the approximation operator Lt on C[−1, 1] in terms
of {σ (· − tj)}2N+3

j=1 as

Lt(f) = N

2N+3∑
i=1

(
LN

(
{f(tk)}2N+2

k=2

))
i
σ (· − ti) , ∀f ∈ C[−1, 1]. (18)

Lemma A.2. [Zhou (2020b)] Let S ≥ 2 and W = (Wk)∞
k=−∞ be a sequence supported in {0, · · · ,M} with

M ≥ 0. Then there exists a finite sequence of filters
{
w(j)}p

j=1 each supported in {0, · · · , S} with p ≤ ⌈ M
S−1 ⌉

such that the following convolutional factorization holds true

W = w(p) ∗ w(p−1) ∗ · · · ∗ w(2) ∗ w(1).

Lemma A.3. [Zhou (2020b)] Let {w(k)}J
k=1 be a set of sequences supported in {0, 1, . . . , S}. Then

T (J) · · ·T (2)T (1) = T (J,1) := (Wi−k)i=1,...,d+JS,k=1,...,d ∈ R(d+JS)×d, (19)

is a Toeplitz matrix associated with the filter W = w(J) ∗ · · · ∗ w(2) ∗ w(1) supported in {0, 1, · · · , JS}.

Lemma A.4. [Cucker & Zhou (2007)] Let η be a random variable on a probability space Z with mean
E(η) = µ, variance σ2(η) = σ2, and satisfying |η(z) − E (η)| ≤ Bη for almost z ∈ Z. Then for any ϵ > 0,

P

{
1
m

m∑
i=1

η(zi) − µ < ϵ

}
≥ 1 − exp

{
− mϵ2

2
(
σ2 + 1

3Bηϵ
)}

.

Lemma A.5. [Zhou & Jetter (2006)] Let G be a set of continuous functions on Z such that for some B′ > 0,
c̃ > 0,

∣∣f̃ − E
(
f̃

)∣∣ ≤ B′ almost surely and E
(
f̃2)

≤ c̃E
(
f̃

)
for all f̃ ∈ G. Then for any ϵ > 0,

P

sup
f̃∈G

E
(
f̃

)
− 1

m

∑m
i=1 f̃ (zi)√

E
(
f̃

)
+ ϵ

>
√
ϵ

 ≤ N (ϵ,G, L∞ (X)) exp
{

− mϵ

2c̃+ 2B′

3

}
.

20

	Introduction
	Problem setting
	Statistical learning framework
	Additive ridge functions

	Main results
	Covering number analysis of deep convolutional neural networks
	Oracle inequality for empirical risk minimization
	Mean squared error
	Lower bound for additive ridge functions

	Conclusion and discussion
	Appendix: Proof of Main Results

