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Abstract

A key challenge that threatens the widespread use
of neural networks in safety-critical applications
is their vulnerability to adversarial attacks. In
this paper, we study the second-order behavior of
continuously differentiable deep neural networks,
focusing on robustness against adversarial pertur-
bations. First, we provide a theoretical analysis
of robustness and attack certificates for deep clas-
sifiers by leveraging local gradients and upper
bounds on the second derivative (curvature con-
stant). Next, we introduce a novel algorithm to
analytically compute provable upper bounds on
the second derivative of neural networks. This
algorithm leverages the compositional structure
of the model to propagate the curvature bound
layer-by-layer, giving rise to a scalable and mod-
ular approach. The proposed bound can serve as
a differentiable regularizer to control the curva-
ture of neural networks during training, thereby
enhancing robustness. Finally, we demonstrate
the efficacy of our method on classification tasks
using the MNIST and CIFAR-10 datasets.

1. Introduction
Neural networks are infamously prone to adversarially de-
signed perturbations (Szegedy et al., 2013). To address this
vulnerability, many methods have been proposed to quantify
and improve the robustness of these models against adver-
sarial attacks, such as adversarial training (Zhang et al.,
2019; Madry et al., 2018), regularization (Leino et al., 2021;
Tsuzuku et al., 2018), randomized smoothing (Cohen et al.,
2019; Kumar et al., 2021), and many others. One measure of
robustness is the Lipschitz constant defined as the smallest
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Lf ≥ 0 such that

∥f(x)− f(y)∥ ≤ Lf∥x− y∥ ∀x, y.

This constant quantifies the sensitivity of the model f to
input perturbations, motivating the need to estimate Lf and
control it through architecture or the training process.

For continuously differentiable functions, Lf is a tight upper
bound on the first derivative (∥Df(x)∥ ≤ Lf ∀x). However,
one can go one step further and leverage the smoothness of
the first derivative, i.e., bounds on the second derivative to
obtain a more refined measure of the function’s sensitivity.
Indeed, the merit of second-order information in character-
izing and enhancing robustness has been established, e.g.,
(Singla & Feizi, 2020).

Our Contributions: In this work, we seek to characterize
the adversarial robustness of continuously differentiable
neural network classifiers through the Lipschitz constant of
their first derivative defined as

∥Df(x)−Df(y)∥ ≤ LDf∥x− y∥ ∀x, y

If f is twice differentiable, this constant is a tight upper
bound on the second derivative, ∥D2f(x)∥ ≤ LDf ∀x.
With a slight abuse of the formal definition, we denote
LDf as the “curvature” constant. Our contributions are as
follows.

• We provide a theoretical analysis of the interplay between
adversarial robustness and smoothness. Specifically, for
classification tasks, we derive lower bounds on the margin
of correctly classified data points using the first derivative
(the Jacobian) and its Lipschitz constant (the curvature
constant). We then show that these curvature-based certifi-
cates provably improve upon Lipschitz-based certificates,
provided the curvature is sufficiently small.

• We propose a novel algorithm to derive analytical upper
bounds on the curvature constant of neural networks. This
algorithm leverages the compositional structure of the
model to compute the bound in a scalable and modular
fashion, improving upon previous works that only con-
sider scalar-valued networks with affine-then-activation
architectures. The derived bound is differentiable and can
be used as a regularizer for training low-curvature neural
networks.
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• We introduce a relaxed notion of smoothness, the An-
chored Lipschitz constant, which significantly reduces
conservatism in terms of robustness certification. Suc-
cinctly, this definition fixes one of the two points involved
in the definition of Lipschitz continuity to the point of
interest.

• We also present empirical results demonstrating the per-
formance of our method compared to previous works on
calculating curvature bounds, and we examine the impact
of low curvatures on the robustness of deep classifiers.

To the best of our knowledge, this paper is the first to de-
velop a method for obtaining provable bounds on the second
derivative of general sequential neural networks. While we
consider adversarial robustness as an application domain,
the proposed method is also of independent interest for other
applications requiring differentiable bounds on the second
derivative of neural networks, such as learning-based control
for safety-critical applications (Robey et al., 2020).

1.1. Related Work

With respect to the large body of work in this field, here, we
focus on the works that are more relevant to our setup.

Adversarial Robustness: The robustness of deep models
against adversarial perturbations has been a topic of inter-
est in recent years (Singla & Feizi, 2021; 2022; Xu et al.,
2022; Zou et al., 2023). (Huang et al., 2021; Fazlyab et al.,
2023) use the Lipschitz constant of the network during the
training procedure to induce robustness by bounding the
worst-case logits. To achieve robustness, instead of penaliz-
ing or constraining the Lipschitz constant during training,
some methods directly construct 1-Lipschitz networks. The
use of Lipschitz bounded networks has been encouraged
by many recent works (Béthune et al., 2022) as they pro-
vide desirable properties such as robustness and improved
generalization. AOL (Prach & Lampert, 2022) provides a
rescaling of the layer weights that makes each linear layer
1-Lipschitz. To obtain Lipschitz bounded networks, many
works have utilized LipSDP (Fazlyab et al., 2019) to pa-
rameterize 1-Lipschitz layers. SLL (Araujo et al., 2022)
proposes 1-Lipschitz residual layers by satisfying LipSDP,
and (Fazlyab et al., 2023) generalizes SLL by proposing a√
ρ-Lipschitz layer. Most recently, (Wang & Manchester,

2023) satisfies the LipSDP condition using Caley Trans-
forms and proposes a non-residual 1-Lipschitz layer.

Other works look beyond the network’s first-order proper-
ties and control the network’s curvature (Moosavi-Dezfooli
et al., 2019; Singla et al., 2021). (Srinivas et al., 2022)
proposes using centered-soft plus activations and Lipschitz-
bounded batch normalizations to cap the curvature and em-
pirically improve robustness.

Lipschitz Constant Calculation: In recent years, there
has been a focus on finding accurate bounds on the Lipschitz
constant of neural networks. Here we only discuss the ones
that can handle continuously-differentiable networks. One
of the early works, (Szegedy et al., 2013), provided a bound
on the Lipschitz constant using the norm of each layer,
which is known to be a loose bound. (Fazlyab et al., 2019)
formulated the problem of finding the Lipschitz constant as
a semidefinite program (SDP), providing accurate bounds
but at the expense of limited scalability. Later, (Hashemi
et al., 2021) introduced a local version of LipSDP. Most
recently, (Fazlyab et al., 2023) proposed LipLT, an analytic
method for bounding the Lipschitz constant through loop
transformation, a control-theoretic concept. In this work, we
also leverage LipLT to derive upper bounds on the curvature
constant.

Most relevant to our setup, (Singla & Feizi, 2020) develops
a method to bound the curvature constant of scalar-valued
neural networks in the ℓ2 norm and introduces a numer-
ical optimization scheme to provide curvature-based cer-
tificates. In contrast, our method bounds the curvature of
arbitrary function compositions, in particular vector-valued
feedforward neural networks, in any ℓp norm, and provides
analytical curvature-based certificates.

1.2. Preliminaries and Notation

We denote the n-dimensional real numbers as Rn. For
a vector x ∈ Rn, xi is its i-th element. For a matrix
W ∈ Rn×m, Wi,: ∈ R1×m,W:,j ∈ Rn,Wi,j ∈ R are
the i-th row, j-th column, and the j-th element of Wi,:, re-
spectively. For a vector x, diag(x) is the diagonal matrix
with diag(x)ii = xi and zero otherwise. For an integer n
let [n] = {1, · · · , n}. Moreover, the operator norm of a
matrix A is denoted as ∥A∥p→q = sup∥x∥p≤1 ∥Ax∥q. For
a real-valued p ≥ 1, we denote its Hölder conjugate with p∗,
i.e., 1

p + 1
p∗ = 1. For any vector x ∈ Rn and norm ∥ · ∥p,

we have ∥x∥p∗ = sup∥y∥p≤1 x
⊤y.

A function f : Rn → Rm is Lipschitz continuous on C ⊆
Rn if there exists a non-negative constant Lp,q

f such that
∥f(x)− f(y)∥q ≤ Lp,q

f ∥x− y∥p ∀x, y ∈ C. The smallest
such Lp,q

f is the Lipschitz constant, in the corresponding
norms, which is given by

Lp,q
f = sup

x,y∈C,x ̸=y

∥f(x)− f(y)∥q
∥x− y∥p

.

For brevity, we denote Lp,p
f as Lp

f . In this work, we define
a new notion of Lipschitz continuity at a neighborhood of a
point.

Definition 1.1 (Anchored Lipschitz constant). For a func-
tion f , the anchored Lipschitz constant at a point x ∈ C is
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defined as

Lp,q
f (x) = sup

y∈C,x ̸=y

∥f(x)− f(y)∥q
∥x− y∥p

.

At any point x, this constant is a lower bound on the Lips-
chitz constant as one can confirm Lp,q

f = supx∈C L
p,q
f (x).

Figure 1 demonstrates this concept further for the specific
case of the tanh function.

In the following lemma, we establish the relation between
the anchored Lipschitz constant and the norm of the deriva-
tive.

Lemma 1.2. Consider a differentiable function f : Rn →
Rm and let Lp

f (x) be a corresponding anchored Lipschitz
constant. We have

∥Df(x)∥p ≤ Lp
f (x).

See Appendix A for the proof.

Given bounded numbers α ≤ β, a function ϕ : R → R is
slope restricted in [α, β] if

α ≤ ϕ(x)− ϕ(y)

x− y
≤ β, ∀x, y.

The Lipschitz constant of ϕ is then Lϕ = max(|α|, |β|).
For simplicity, and based on commonly-used differentiable
activation functions such as sigmoid and tanh, we assume
that ϕ is monotone, i.e., α ≥ 0, implying that Lϕ = β.

2. Curvature-based Robustness Analysis
Consider a continuously differentiable function f : Rn →
Rm parameterized by a neural network. In this work, our
goal is to derive provable upper bounds on the Lipschitz
constant of the Jacobian Df : Rn → Rm×n, defined as the
smallest constant Lp,q

Df such that

∥Df(x1)−Df(x2)∥q ≤ Lp,q
Df∥x1−x2∥p, ∀x1, x2.

Furthermore, we can extend this to the anchored Lipschitz
constant of the Jacobian, Lp,q

Df (x), at a given point x, as

∥Df(x+ δ)−Df(x)∥q ≤ Lp,q
Df (x)∥δ∥p, ∀δ.

While providing provable upper bounds on these constants
can be instrumental in various applications, in this work,
we primarily focus on the adversarial robustness of deep
classifiers. We develop our methods and certificates based
on the Lipschitz continuity of the classifier and its Jacobian.
We elaborate more on this in the following subsections.

2.1. Robustness Certificates for Deep Classifiers

Consider a classifier C(x) := argmax1≤i≤nK
fi(x) with

nK classes, where f : Rn0 → RnK is a neural network
that parameterizes the vector of logits. For a given input
x with correct label y ∈ [nK ], the condition for correct
classification is

fiy(x) := fi(x)− fy(x) < 0, ∀i ̸= y.

Assuming that x is correctly classified as y, the distance of
x to the closest decision boundary measures the classifier’s
local robustness against additive perturbations. We can
compute this distance by solving the following optimization
problem,

ε∗(x) = max ε

s.t. sup
∥δ∥p≤ε

fiy(x+ δ) ≤ 0, ∀i ̸= y. (1)

For ReLU networks and p ∈ {1,∞}, this optimization
problem can be encoded as a Mixed-Integer Linear program
(MILP) by exploiting the piece-wise nature of the activation
functions (Dutta et al., 2018; Fischetti & Jo, 2018; Tjeng
et al., 2018). While these MILPs can be solved globally,
they suffer from poor scalability. For neural networks with
differentiable activation functions, even this mixed-integer
structure is absent, making the exact computation of dis-
tances effectively intractable. Therefore, we must resort to
finding lower bounds on the certified radius to gain tractabil-
ity.

2.1.1. LIPSCHITZ-BASED CERTIFICATES

Suppose the fiy’s are Lipschitz continuous. We can then
write

fiy(x+ δ) ≤ fiy(x) + Lp
fiy

(x)∥δ∥p. (2)

where Lp
fiy

(x) > 0 is the anchored Lipschitz constant of
fiy. By substituting (2) in the constraints of (1), we obtain
the following optimization problem to compute a zeroth-
order (gradient-free) lower bound,

ε∗0(x) =max ε

s.t. sup
∥δ∥p≤ε

fiy(x) + Lp
fiy

(x)∥δ∥p ≤ 0,∀i ̸= y.

We note that due to constraint tightening, we have ε∗0(x) <
ε∗(x). Using similar arguments as in (Fazlyab et al., 2023),
ε∗0(x) has the closed-form expression

ε∗0(x) = min
i ̸=y

−fiy(x)
Lp
fiy

(x)
. (3)

2.1.2. CURVATURE-BASED CERTIFICATES

When the model is continuously differentiable, we can ex-
ploit its curvature to improve the certificate in (3). Specif-
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Figure 1: Depiction of anchored Lipschitz constants for
f(x) = tanh(x). The anchored Lipschitz constant at x = 2
is less than 0.582, whereas the global Lipschitz constant is
1.

ically, suppose the logit difference fiy is continuously dif-
ferentiable with Lipschitz gradients and let Lp,p∗

∇fiy
(x) be an

anchored Lipschitz constant of ∇fiy at x. Then, we can
compute an upper bound on fiy(x+ δ) as follows,

fiy(x+δ) ≤ fiy(x) +∇fiy(x)⊤δ +
Lp,p∗

∇fiy
(x)

2
∥δ∥2p︸ ︷︷ ︸

fiy(x,δ;L
p,p∗
∇fiy

(x))

. (4)

See Appendix A for a derivation of this inequality. In con-
trast to the zeroth-order bound, this upper bound uses the
local first derivative, ∇fiy(x), as well as bounds on its (an-
chored) Lipschitz constant, Lp,p∗

∇fiy
(x), to obtain a locally

more accurate approximation of fiy(x+ δ). By substituting
the upper bound (4) in (1), we obtain a first-order (gradient-
informed) lower bound on ε∗(x),

ε∗1(x) =max ε

s.t. sup
∥δ∥p≤ε

fiy(x, δ;L
p,p∗

∇fiy
(x)) ≤ 0, ∀i ̸= y (5)

As we summarize below, we can compute this lower bound
in closed form, provided that we can compute Lp,p∗

∇fiy
(x).

Proposition 2.1 (Curvature-based certified radius). Sup-
pose x is classified correctly, i.e., fiy(x) < 0 ∀i ̸= y. The
optimization problem (5) has the closed-form solution ε∗1(x)
given by

min
i ̸=y

−∥∇fiy(x)∥p∗+(∥∇fiy(x)∥2p∗−2Lp,p∗

∇fiy
(x)fiy(x))

1
2

Lp,p∗

∇fiy
(x)

.

(6)

See Appendix A for the proof of this proposition.

In the following proposition, we show that if the curvature
of the model is sufficiently small, we can certify a larger
radius than Lipschitz-based certificates.

Proposition 2.2. Suppose x is classified correctly, i.e.,
fiy(x) < 0 ∀i ̸= y. Fix a p ≥ 1, and define the zeroth-
order ε∗0(x) and first-order ε∗1(x) certified radii as in (3) and
(6). If the following condition holds,

Lp,p∗

∇fiy
(x) ≤ −2(∥∇fiy(x)∥p∗ε∗0(x) + fiy(x))

ε∗0(x)
2

, i ̸= y.

Then ε∗1(x) ≥ ε∗0(x).

See Appendix A for the proof.

2.2. Attack Certificates for Deep Classifiers

Considering the same setup as before, we now aim to obtain
the smallest perturbation by which a correctly classified data
point can provably be misclassified. This computation can
be formulated as the following optimization problem,

ε
′∗
(x) = min ε

s.t. min
i ̸=y

inf
∥δ∥p≤ε

fyi(x+ δ) < 0.
(7)

First, we note that problems (1) and (7) are equivalent.

Proposition 2.3. Suppose f correctly classifies the data
point x as y, i.e., fiy(x) < 0 for i ̸= y. Then the optimal
value of problems (1) and (7) are equal, i.e., ε∗(x) = ε

′∗
(x).

Using the curvature-based upper bound, one can tighten the
constraints of the problem and achieve a first-order (gradient-
informed) attack certificate as follows,

ε∗1(x) =min ε

s.t.min
i ̸=y

inf
∥δ∥p≤ε

fyi(x, δ;L
p,p∗

∇fyi
(x)) < 0,

(8)

We analytically acquire the optimal value of this problem in
the following proposition.

Proposition 2.4 (Curvature-based attack certificate). Sup-
pose x is classified correctly, i.e., fiy(x) < 0 ∀i ̸= y. Let
I = {i|i ̸= y, 2Lp,p∗

∇fyi
(x)fyi(x) ≤ ∥∇fyi(x)∥2p∗}. Assum-

ing that I is non-empty, the optimization problem (8) has
the closed-form solution ε∗1(x) given by

min
i∈I

∥∇fyi(x)∥p∗−(∥∇fyi(x)∥2p∗−2Lp,p∗

∇fyi
(x)fyi(x))

1
2

Lp,p∗

∇fyi
(x)

.

(9)

Given i∗ ∈ I minimizing (9), the perturbation real-
izing the attack certificate is obtained through solving
sup∥δ∥p≤ε ∇fi∗y(x)⊤δ.

We note that while problem (7) is always feasible (for a
non-trivial classifier), problem (8) can be infeasible due to
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Figure 2: Certified (ε∗) and attack (ε∗) radii estimates. The
green tangent circle denotes the certified radius ε∗.

the tightening of the constraints, which is equivalent to the
set I being empty. Figure 2 illustrates an example scenario
for ε∗ and ε∗.

The derivation of ε∗(x) and ε∗(x) is significant in two
ways. First, we established an analytical solution to the
curvature-based certified radius in Proposition 2.1. Al-
though curvature-based certificates have been studied in
(Singla & Feizi, 2020), their method involves an iterative
algorithm to solve an optimization problem numerically,
whereas our method yields closed-form solutions. Second,
we introduced curvature-based attack certificates, a novel
method for narrowing the certification gap of classifiers.
The certification gap is the (empirical) probability quantify-
ing correctly classified points that lack the desired level of
certified defense radii and lack attack certificates at a given
perturbation budget ϵ, i.e., P(x,y)∼D{ε(x) ≤ ϵ ≤ ε(x)}.
Refer to Figure 6 for an illustration.

3. Efficient Estimation of Curvature Bounds
Having established the importance of curvature in providing
robustness and attack certificates, in this section, we pro-
pose our method to derive upper bounds on the Lipschitz
constant of the Jacobian (the curvature constant) of general
sequential models. We then curate our algorithm for residual
neural networks and explore various Lipschitz estimation
techniques to calculate the curvature constant.

3.1. Curvature Bounds for Composed Functions

Let h = f ◦ g be the composition of two continuously
differentiable functions g : Rn1 → Rn2 and f : Rn2 →
Rn3 with Lipschitz Jacobians. The Lipschitz constant of
the Jacobian Dh ∈ Rn3×n1 of h is an upper bound on

the second derivative of h, assuming it exists, which is
a third-order tensor (Srinivas et al., 2022) and difficult to
characterize. Our goal is to compute the Lipschitz constant
of Dh directly without resorting to any tensor calculus.

Using the chain rule, the Jacobian of h can be written as

Dh(x) = Df(g(x))Dg(x).

The following theorem establishes a relation between the
Lipschitz constant of Dh and the Lipschitz constants of
f, g,Df , and Dg.

Theorem 3.1 (Compositional curvature estimation). Given
functions f, g, and h as described above, the following in-
equality holds,

Lp,p∗

Dh ≤ Lp,p∗

Dg L
p∗

f + Lp,p∗

Df L
p
gL

p∗

g , (10)

where Lp,q
s denotes the Lipschitz constant of the function

s(·).

Theorem 3.1 provides a basis to recursively calculate a Lip-
schitz constant for the Jacobian of the composition of mul-
tiple functions. In the following, we adapt this result to
anchored Lipschitz constants.

Theorem 3.2 (Anchored compositional curvature estima-
tion). Consider functions f, g, and h as in Theorem 3.1.
The following inequality holds for the anchored Lipschitz
constant of the Jacobian of h at x

Lp,p∗

Dh (x) ≤ Lp∗

f L
p,p∗

Dg (x) + ∥Dg(x)∥p∗Lp,p∗

Df (g(x))Lp
g(x),

where Lp,q
s (x) denotes the anchored Lipschitz constant of

the function s(·) at x.

The structure of Theorem 3.1 (and similarly Theorem 3.2)
is of particular interest for sequential neural networks that
are the composition of individual layers. In the following
section, we will instantiate our framework for such models.
Remark 3.3. We note that in Theorems 3.1 and 3.2, the
dual norm p∗ is chosen to tailor the bounds specifically for
Proposition 2.1 and Proposition 2.4. In general, the same
statements hold if we replace p∗ with a general q ≥ 1. See
Appendix A for more details.

3.2. Curvature Bounds for Sequential Neural Networks

Consider a sequential residual neural network

xk+1 = hk(xk) = Hkxk +GkΦ(W kxk), (11)

where k = 0, 1, · · ·K − 1 and W k ∈ Rn′
k×nk , Gk ∈

Rnk+1×n′
k , and Hk ∈ Rnk+1×nk are general matrices. For

x ∈ Rn, Φ(x) = [ϕ(x1), · · · , ϕ(xn)]⊤, where ϕ is a dif-
ferentiable monotone activation function slope-restricted in
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[α, β] (0 ≤ α ≤ β <∞) with its derivative slope-restricted
in [α′, β′] (−∞ < α′ ≤ β′ < ∞). By setting Hk = 0 and
Gk = I , we obtain the standard feedforward architecture.

Leveraging Theorem 3.1, we propose a recursive algorithm
to compute an upper bound on the Jacobian of the end-to-
end map x0 7→ xK . We establish this algorithm in Corol-
lary 3.4.

Corollary 3.4. Let L
p,p∗

Dk
, k = 0, · · · ,K − 1 be defined

recursively as

L
p,p∗

Dk+1
= L

p,p∗

DhkL
p

kL
p∗

k + L
p∗

hkL
p,p∗

Dk
, (12)

with L
p,p∗

D0
= 0, L

p

0 = L
p∗

0 = 1, where L
p

k, L
p∗

k are Lips-

chitz constants for the map x0 7→ xk, and L
p,p∗

Dhk is a Lip-

schitz constant for the Jacobian of hk. Then L
p,p∗

Dk
is a

Lipschitz constant for the Jacobian of the map x0 7→ xk.

Given upper bounds on the Lipschitz constants as L
p

k, L
p∗

k ,

L
p∗

hk , and L
p,p∗

Dhk , Corollary 3.4 presents an algorithm to cal-
culate an upper bound on the curvature constant of residual
neural networks in a layer-by-layer fashion.

Next, we will compute the individual constants appearing
in (12).

3.2.1. COMPUTATION OF L
p

hk

Lp
hk is the Lipschitz constant of the k-th layer hk. Starting

from (11), an analytical upper bound on this constant is

L
p,naive
hk = ∥Hk∥p + β∥Gk∥p∥W k∥p. (13)

This bound is relatively crude as it does not exploit the
monotonicity of the activations, i.e., (13) is agnostic to the
value of α. As proposed in (Fazlyab et al., 2023), this bound
can be improved by applying a loop transformation on the
activation layer Φ. Specifically, we can rewrite hk as

hk(xk) = Ĥkxk +GkΨ(W kxk), (14)

where Ĥk = Hk+ α+β
2 GkW k and ψ(z) = ϕ(z) − (α +

β)z/2 is the loop transformed activation layer. As a result of
this transformation, Ψ is now slope-restricted in β−α

2 [−1, 1],
implying that ψ is (β−α

2 )-Lipschitz. An upper bound on the
Lipschitz constant of hk, reformulated as in (14), is then

L
p,LT
hk = ∥Hk+

α+β

2
GkW k∥p +

β − α

2
∥Gk∥p∥W k∥p.

(15)

As shown in (Fazlyab et al., 2023), this bound, now in-
formed by the monotonicity constant α, is provably better
than (13). This can be proved by applying the triangle in-
equality on the first term.

3.2.2. COMPUTATION OF L
p

k .

Lp
k is the Lipschitz constant of the map x0 7→ xk defined

by the composed function (hk−1 ◦ · · · ◦ h0)(x0). A naive
bound on Lp

k is the product of the Lipschitz constant of

individual layers, i.e., L
p,naive
k =

∏k−1
i=0 L

p
hi , where we can

upper bound each Lp
hi from (15). However, this bound can

grow quickly as the depth increases. To mitigate the adverse
effect of depth, we exploit the idea of LipLT. Specifically,
we can unroll (11) after applying loop transformation to all
activation layers, resulting in

xk+1=Ĥk · · · Ĥ0x0+

k∑
j=0

Ĥk · · · Ĥj+1GjΨ(W jxj).

This representation enables us to obtain all the constants
L
p,LT
1 , · · · , Lp,LT

K recursively as follows,

L
p,LT
k+1=∥Ĥk· · ·Ĥ0∥p

+ β−α
2

k∑
j=0

∥Ĥk · · · Ĥj+1Gj∥p∥W j∥pL
p,LT
j .

(16)

As shown in (Fazlyab et al., 2023), this bound provably im-
proves the naive bound obtained by the product of Lipschitz
constants of individual layers, i.e., L

p,LT
k ≤

∏k−1
i=0 L

p,naive
hi .

3.2.3. COMPUTATION OF L
p,p∗

Dhk .

Consider the k-th residual block hk in (11). The Jacobian
of this block is given as

Dhk(xk) = Hk +Gk diag(Φ′(W kxk))W k. (17)

The following proposition provides an upper bound on the
Lipschitz constant of this differential operator.

Proposition 3.5. The Jacobian Dhk defined in (17) is Lip-
schitz continuous with L

p,p∗

Dhk being an upper bound on the
Lipschitz constant, where

L
p,p∗

Dhk = Lϕ′∥Gk∥p∗∥W k∥p∗∥W k∥p→∞,

where Lϕ′ = max{|α′|, |β′|}.

It is worth mentioning that the upper bound in Proposi-
tion 3.5 is tractable and can be calculated efficiently. In par-
ticular, for p = 2, the matrix norms ∥Gk∥p∗ and ∥W k∥p∗

can be calculated via the power iteration for fully connected
and convolutional layers. Furthermore, ∥W k∥p→∞ is sim-
ply the maximum row ℓp norm, which is straightforward for
fully connected layers and also convolutional layers with
respect to the repetitive structure of their Toeplitz matrices.
See the proof in Appendix A for more details.

For the choice p = p∗ = 2, we propose an alternative
approach to acquire better Lipschitz estimates for Dhk. To

6
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this end, we propose to rewrite Dhk as a standard network
block.

Lemma 3.6 (Vectorized Jacobian). The Jacobian matrix in
(17) can be rewritten as a standard neural network layer

dhk(xk) := vec(Dhk(xk)) = bk +AkΦ′(W kxk),

where dhk(xk) ∈ Rn̂k with n̂k = nk+1 × nk. For all
i ∈ [nk+1], j ∈ [nk], and l ∈ [n′k] letm = (j−1)×nk+1+i.
Then A ∈ Rn̂k×n′

k and bk ∈ Rn̂k are given by bkm =
Hk

ij , A
k
ml = Gk

ilW
k
lj .

The following lemma establishes the relation between the
Lipschitz constant of the Jacobian matrix (Lp

Dhk ) and its
vectorized representation (Lp

dhk ) when p = 2.

Lemma 3.7. Let p = 2, and suppose Lp
dhk is the Lipschitz

constant of the vectorized Jacobian function xk 7→ dhk(xk)
defined in Lemma 3.6. Then Lp

dhk is a valid Lipschitz
constant for the Jacobian function xk 7→ Dhk(xk).

We can improve the Lipschitz bound provided in Proposi-
tion 3.5 using the previous lemmas.

Theorem 3.8. For p = 2, L
p

dhk = Lϕ′∥Ak∥2∥W k∥2 is a
Lipcshitz constant for the Jaocbian matrix Dhk. Further-
more, L

p

dhk ≤ L
p

Dhk .

Leveraging the vectorized representation dhk of the Jaco-
bian Dhk, we can utilize more advanced techniques for
Lipschitz estimation such as LipSDP to further reduce the
conservatism. Specifically, for non-residual building blocks,
i.e., whenHk = 0 andGk = I , we can extract a feasible so-
lution (optimal when α′ = −β′) to the LipSDP formulation
for dhk(x).

Theorem 3.9. Let hk(x) = Φ(W kx). Define L
2,SDP
dhk =

Lϕ′∥TW k∥2, where T is a diagonal matrix with Tii =

∥W k
i,:∥2. Then L

2,SDP
dhk is a valid Lipschitz constant for dhk

in ℓ2 norm.

3.2.4. SUMMARY OF ALGORITHM

It now remains to combine all the components developed
thus far to obtain upper bounds on the curvature of the
whole network. This is summarized in Algorithm 1. First,
we use LipLT to calculate the Lipschitz constants of the
individual layers (L

p∗

hk ) and the subnetworks (L
p

k and L
p∗

k ).
Then, using Proposition 3.5, we provide an upper bound on
Lp,p∗

Dhk . Finally, we calculate L
p,p∗

Dk+1 using (12).

In the algorithm, we can easily swap the use of Proposi-
tion 3.5 with any Lipschitz constant acquired based on the
theoretical ground of Lemma 3.7, such as that of Theo-
rem 3.8 or Theorem 3.9 (if the network is non-residual).

Algorithm 1 Compositional Curvature Estimation of Neural
Networks

Input: K-layer neural network in the form of (11).
Initialize Lp

0 = L
p∗

0 = 1, L
p,p∗

D0
= 0.

for k = 0 to K − 1 do
Calculate L

p∗

hk using (15).

Calculate a bound on L
p,p∗

Dhk using Proposition 3.5.

Update L
p,p∗

Dk+1
= L

p,p∗

DhkL
p

kL
p∗

k + L
p∗

hkL
p,p∗

Dk
.

Calculate L
p

k+1 and L
p∗

k+1 using (16).
end for
Return Lp,p∗

DK
, the Lipschitz constant of the Jacobian of

x0 7→ xK .

3.2.5. COMPARISON WITH EXISTING APPROACHES

Unlike the previous work by Singla et al. (Singla & Feizi,
2020), which is limited to scalar-valued and non-residual
architectures, our framework accommodates vector-valued
general sequential models. Additionally, although Singla
et al. (Singla & Feizi, 2020) could theoretically handle
convolutional neural networks by expressing such layers
as equivalent fully connected layers using their Toeplitz
matrices (Chen et al., 2020), this approach would be com-
putationally prohibitive. In contrast, our method readily
applies to convolutional layers.

Moreover, our method does not require twice differentiabil-
ity. This is particularly relevant for functions with Lipschitz
continuous first derivatives but undefined second derivatives.
For instance, consider the well-known Exponential Linear
Unit (ELU):

f(z) =

{
z z ≥ 0

α(ez − 1) z ≤ 0

The ELU has a Lipschitz continuous first derivative, but
its second derivative is not defined at z = 0. Therefore,
Hessian-based analysis would fail for this function, whereas
our Jacobian Lipschitz analysis is applicable to networks
using this activation function.

In the following section, we will utilize Algorithm 1 to
bound the Lipschitz constant of the Jacobian and exploit
it during the training phase to control the curvature of the
neural network.

3.3. Curvature-Controlled Networks

As established in Section 2, models with low curvature con-
stants can elicit more robust behavior against norm-bounded
perturbations. Driven by this observation, we can design a
curvature-based regularizer that would promote robustness
during training. One approach is to reward large certified
radii in the objective similar to (Fazlyab et al., 2023; Xu
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Figure 3: Certified radius comparison on a 6-layer neural
network.

et al., 2022), giving rise to the training loss function

L(x, y; f) = LCE(f(x), uy) + λ1{C(x)=y}g(ε
∗
1(x)),

where LCE is the cross-entropy loss, uy is the one-hot vec-
tor corresponding to y, λ > 0 is the regularization con-
stant, and g : R+ → R is a convex decreasing function
(e.g., g(z) = exp(−z)). The role of the indicator function
1{C(x)=y} is to restrict the regularizer to correctly classified
points only. This regularizer is differentiable due to the
closed-form expression for ε∗1(x) given in (6). Nonetheless,
computing it for each data point in the training dataset can
be computationally costly for large-scale instances. A more
efficient approach is to regularize the bound on the global
curvature of the network during training,

L(x, y; f) = LCE(f(x), uy) + λL
p,p∗

Df ,

To further improve the efficiency, we propose to use 1-
Lipschitz layers to build the architecture. Specifically, when
p = 2, if hk in (11) is modified to be a 1-Lipschitz func-
tion (L

p

hk = 1), the concatenation of all layers will be
1-Lipschitz (L

p

k = 1), and thus (12) yields the curvature
bound L

p

Df =
∑L−1

k=0 L
p

Dhk , which can be readily com-
puted.

4. Experiments
In this section, we evaluate the performance of our pro-
posed methods via a series of experiments. We contrast
our methods against the state-of-the-art Lipschitz constant
estimation, curvature estimation, and neural network robust-
ness certification algorithms. In our experiments we set
p = 2 for all norms and Lipschitz calculations. We defer
the discussion of hyperparameters to Appendix D.1. Our
code is available at https://github.com/o4lc/Compositional-
Curvature-Bounds-for-DNNs.

We first showcase the application and superiority of our
Jacobian Lipschitz constant estimation on MNIST (LeCun

Table 1: Comparison of certified accuracies obtained from
state-of-the-art methods SLL (Araujo et al., 2022) and CRM
(Fazlyab et al., 2023) on CIFAR-10.

Model Methods Accuracy
Certified Accuracy (ε)

Parameters
36
255

72
255

108
255

6C2F
Standard 79.95 0 0 0 0.7M

CRM 58.57 36.25 18.36 7.37 0.7M
CCRC (Ours) 61.15 49.53 33.36 16.95 0.7M

Lip-3C1F
SLL 57.2 45.0 35.0 26.5 1M

SLL + CCRC (Ours) 53.2 46.6 39.3 31.6 1M

6F
Standard 61.89 0 0 0 4M

CRM 60.63 42.73 24.75 12.6 4M
CCRC (Ours) 62.1 52.09 40.8 29.17 4M

et al., 1998). Next, to further motivate the use of anchored
Lipschitz constant estimation, we train several networks
with different depths to portray its effectiveness on both Lip-
schitz constant estimation and Jacobian Lipschitz constant
estimation. Finally, we compare our robustness certifica-
tion method with the state-of-the-art classification on the
CIFAR (Krizhevsky et al., 2009) dataset and provide attack
certificates on the same networks.

Comparison with other Curvature-based Methods In
this experiment, we compare our proposed compositional
curvature calculation method with the previous works. Con-
sequently, we train a 6-layer fully connected network on
MNIST with curvature regularization and compute the cer-
tified radii of the test data points for this network using
two curvature calculation algorithms. We denote (Singla
& Feizi, 2020) as Curvature-based Robustness Certificate
(CRC), and our method as Compositional Curvature-based
Robustness Certificate (CCRC). Next, to focus the experi-
ment on comparing the curvature bounds, we use the method
of (Singla & Feizi, 2020) to obtain the certified radius for
each point.

Figure 3 compares the certified radii of these methods and
confirms the superior performance of the compositional
curvature calculation algorithm.

Anchored Lipschitz/Curvature Estimation Next, we
study the impact of localizing the computations via the con-
cept of anchored Lipschitz constant introduced in this paper.
To achieve this, we train fully connected neural networks of
varying depths and calculate upper bounds on the Lipschitz
and curvature constants of the network, both globally and
in an anchored manner. Figure 4 illustrates the results on
the MNIST dataset. For the anchored bounds, we average
the values over the test dataset. The results demonstrate that
using the anchored counterparts significantly improves the
bounds.

Attack Certification on CIFAR-10 In this experiment,
we provide radii for provable attacks on a 6F model. Fig-
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Figure 4: Comparison of global Lipschitz and Curvature
estimation against their anchored counterparts. The shaded
areas denote the standard deviation over the whole dataset.
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Figure 5: Histogram of the certified attack radii for a 6-
layer neural network trained via curvature regularization on
CIFAR-10.

ure 5 shows the results. This model has an accuracy of
56.19%. Furthermore, with the perturbation budget 36

255
the model has certified and PGD accuracy of 47.16% and
48.46%, respectively. By analyzing the attack certificates
we find that our method is able to provide an attack cer-
tificate for a total of 808 samples, of which 645 require
a perturbation budget of at most 36

255 . Using this informa-
tion, the robust accuracy of the model with this perturbation
budget is at most 56.19− 645

10000 × 100 = 49.74%. This is
illustrated in Figure 6, where Ac is the clean accuracy, A∗

v is
the verified accuracy, and Av and Av, are lower and upper
bounds on the verified accuracy, respectively.

This has two main implications. First, having attack certifi-
cates for any data eliminates the need to perform an attack
on that data as the existence of an attack was verified by our
proposition. Second, the attack certificates further narrow
down the uncertainty of the model accuracy. As the certified
accuracy is a lower bound on the actual certified robustness
of the model, we conclude that the actual certified accuracy
of this model is in the range [47.16, 49.74], regardless of
the certification method.

Robustness Certification on CIFAR-10 The final exper-
iment aims to compare the certified accuracy of models

Figure 6: Illustration of the certificates provided by our
method. Ac and Av are the clean and verified accuracies,
respectively. The certification radius is ε = 36

255 .

with different architectures on CIFAR-10 with the state-
of-the-art. We train two 6C2F and 6F non-residual and a
1-Lipschitz neural network with Lip-3C1F architecture on
the CIFAR-10 dataset with the following loss function

L(x, y; f) = Lτ,ν
CE (f(x), y) + λL

p

Df , (18)

where Lτ,ν
CE is a modified variant of the cross entropy loss

function (Prach & Lampert, 2022) and L
p

Df is the curvature
bound acquired through Algorithm 1. Refer to Appendix D.1
for more on the loss function details. Table 1 shows the com-
parison between these models. We find that incorporating
the additional regularization term leads to higher certified ac-
curacies, smaller certification gaps, and often, higher clean
accuracies.

5. Conclusion
In this work, we proposed a novel method to calculate prov-
able upper bounds on the curvature constant of smooth deep
neural networks, i.e., the Lipschitz constant of their first
derivative. Our method leverages the compositional struc-
ture of the model to compute the curvature bound in a scal-
able and modular fashion. The generality of our curvature
estimation algorithm can enable its use for compositional
functions beyond neural networks. Furthermore, we pro-
vided analytical robustness certificates for deep classifiers
based on the curvature of the model. In the future, we aim
to further tighten the estimated gap of the curvature bound,
enabling the algorithm to produce tighter bounds on the
curvature of even deeper neural networks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. We do not foresee any societal impli-
cations arising solely from our work.
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A. Theorems and Proofs
Proof of Lemma 1.2

Proof. For any direction d ∈ Rn, let gd(t) = f(x + td). Evidently, we have g′d(t) = d
dtgd(t) = Df(x + td)d, where

Df(x) ∈ Rm×n. Moreover, we have

∥Df(x)d∥p = ∥g′d(0)∥p = ∥ lim
t→0

gd(t)− gd(0)

t− 0
∥p = lim

t→0

∥f(x+ td)− f(x)∥p
t

≤ Lp
f (x)∥d∥p,

where the third equality follows from continuity of ∥ · ∥p. Consequently,

∥Df(x)∥p = sup
∥d∥p≤1

∥Df(x)d∥p = sup
∥d∥p≤1

∥g′d(0)∥p ≤ Lp
f (x).

Corollary A.1. Consider a differentiable function f : Rn → R and let Lp
f (x) be a corresponding anchored Lipschitz

constant in some p-norm. We have
∥∇f(x)∥p∗ ≤ Lp

f (x).

Proof. The proof follows from the fact that Df(x) = ∇f(x)⊤ and that for matrix A and norm ∥ · ∥p, we have ∥A⊤∥p =
∥A∥p∗ .

Derivation of equation (4)

Proof. To prove the quadratic upper bound on the logit gap with the anchored Lipschitz constant we utilize the mean value
theorem. For any x and δ, we can write

fiy(x+ δ) = fiy(x) +∇fiy(x)⊤δ +
∫ 1

0

(∇fiy(x+ tδ)−∇fiy(x))⊤δ dt.

We can then write

|fiy(x+ δ)− fiy(x)−∇fiy(x)⊤δ| ≤
∫ 1

0

|(∇fiy(x+ tδ)−∇fiy(x))⊤δ|dt

Hölder’s Inequality−−−−−−−−−−→
1
p∗ + 1

p=1
≤

∫ 1

0

∥(∇fiy(x+ tδ)−∇fiy(x)∥p∗∥δ∥pdt

≤
∫ 1

0

Lp,p∗

∇fiy
(x)∥δ∥2p t dt

=
Lp,p∗

∇fiy
(x)

2
∥δ∥2p.

Thus, we have

fiy(x+ δ) ≤ fiy(x) +∇fiy(x)⊤δ +
Lp,p∗

∇fiy
(x)

2
∥δ∥2p.

Proof of Proposition 2.1

Proof. Define ∆ = {δ | fiy(x + δ) ≤ 0} and ∆ = {δ | fiy(x, δ;Lp,p∗

∇fiy
(x)) ≤ 0}. It is clear that ∆ ⊆ ∆. Consequently,

{ε | sup∥δ∥p≤ε fiy(x, δ;L
p,p∗

∇fiy
(x)) ≤ 0} ⊆ {ε | sup∥δ∥p≤ε fiy(x + δ) ≤ 0}, and thus, (5) yields a valid lower bound on

the original radius (1).
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Now, to acquire the analytical result we have

sup
∥δ∥p≤ε

fiy(x) +∇fiy(x)⊤δ +
Lp,p∗

∇fiy
(x)

2
∥δ∥2p = fiy(x) + ε∥∇fiy(x)∥p∗ +

Lp,p∗

∇fiy
(x)

2
ε2.

This equality holds due to the fact that for the δ∗ achieving sup∥δ∥p≤ε ∇fiy(x)⊤δ we have ∥δ∗∥p = ε, implying that δ∗ is

also a maximizer of the other term
Lp,p∗

∇fiy
(x)

2 ∥δ∥2p.

As a result, we obtain the following optimization problem that is equivalent to (5)

max ε

s.t.
Lp,p∗

∇fiy
(x)

2
ε2 + ∥∇fiy(x)∥p∗ε+ fiy(x) ≤ 0,∀i ̸= y.

Using elementary calculations, we obtain the optimal solution

min
i ̸=y

−∥∇fiy(x)∥p∗+(∥∇fiy(x)∥2p∗−2Lp,p∗

∇fiy
(x)fiy(x))

1
2

Lp,p∗

∇fiy
(x)

.

Proof of Proposition 2.2

Proof. Suppose x is correctly classified, i.e., fiy(x) < 0 for i ̸= y. To enforce the condition ε∗0(x) ≤ ε∗1(x) we must have

ε∗0(x) ≤
−∥∇fiy(x)∥p∗+(∥∇fiy(x)∥2p∗−2Lp,p∗

∇fiy
(x)fiy(x))

1
2

Lp,p∗

∇fiy
(x)

, ∀i ̸= y.

Or equivalently,

Lp,p∗

∇fiy
(x)ε∗0(x)

2 + 2∥∇fiy(x)∥p∗ε∗0(x) + 2fiy(x) ≤ 0.

The above inequality holds if and only if

Lp,p∗

∇fiy
(x) ≤ −2(∥∇fiy(x)∥p∗ε∗0(x) + fiy(x))

ε∗0(x)
2

. (19)

Utilizing Corollary A.1, we note that ε∗0(x) = mini ̸=y
−fiy(x)
Lp

fiy
(x)

≤ −fiy(x)
Lp

fiy
(x)

≤ −fiy(x)
∥∇fiy(x)∥p∗

. This ensures that the R.H.S. of

(19) is positive.

Proof of Proposition 2.3

Proof. We prove this in two steps:

1. ε∗(x) ≤ ε
′∗
(x): Suppose this does not hold. Then ε∗(x) > ε

′∗
(x). However, having a solution for (7) implies that

there exists a pair δ and j with ∥δ∥p ≤ ε
′∗
(x) < ε∗(x) such that fyj(x+ δ) < 0. This perturbation-index pair is then

a violation for the constraint of problem (1). Thus, we must have ε∗(x) ≤ ε
′∗
(x).

2. ε∗(x) ≥ ε
′∗
(x): Similarly, if this does not hold, then ∀i ̸= y, δ, ∥δ∥p ≤ ε∗(x) < ε

′∗
(x) we have sup∥δ∥p≤ε∗(x) fiy(x+

δ) ≤ 0. But having a solution for (7) asserts that there exists one such index that fyi(x+ δ) < 0. Thus, ε∗(x) ≥ ε
′∗
(x)

must hold.

As a result, we must have ε∗(x) = ε
′∗
(x).

13
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Proof of Proposition 2.4

Proof. To prove this proposition, we first find the analytical solution to the inner optimization problems, namely

inf
∥δ∥p≤ε

fyi(x, δ;L
p,p∗

∇fiy
(x)) = inf

0≤λ≤1
inf

∥δ∥p=λε
fyi(x) +∇fyi(x)⊤δ +

Lp,p∗

∇fyi
(x)

2
∥δ∥2p. (20)

Let δ∗ = argmin∥δ∥p≤1 ∇fyi(x)⊤δ, which yields ∇fyi(x)⊤δ∗ = −∥∇fyi(x)∥p∗ . The inner optimization problem is
minimized at δ = λεδ∗. Consequently, we can frame problem (20) equivalently as

g∗i (ε) = gi(ε, λ
∗) = min

0≤λ≤1
fyi(x)− ε∥∇fyi(x)∥p∗λ+

Lp,p∗

∇fyi
(x)

2
ε2λ2︸ ︷︷ ︸

gi(ε,λ)

. (21)

There are three possible solutions

1. λ̂ = 0. In this scenario
gi(ε, λ̂) = fyi(x).

2. λ̂ =
∥∇fyi(x)∥p∗

Lp,p∗

∇fyi
(x)ε

. In this scenario

gi(ε, λ̂) = fyi(x)−
∥∇fyi(x)∥2p∗

2Lp,p∗

∇fyi
(x)

.

For this solution we must have λ̂ ≤ 1. This imposes the condition
∥∇fyi(x)∥p∗

Lp,p∗

∇fyi
(x)

≤ ε.

3. λ̂ = 1. In this scenario we have

gi(ε, λ̂) = fyi(x)− ε∥∇fyi(x)∥p∗ +
Lp,p∗

∇fyi
(x)

2
ε2.

Putting together the different conditions, we find that

g∗i (ε) =


fyi(x)−

∥∇fyi(x)∥2p∗

2Lp,p∗

∇fyi
(x)

,
∥∇fyi(x)∥p∗

Lp,p∗

∇fyi
(x)

≤ ε

fyi(x)− ε∥∇fyi(x)∥p∗ +
Lp,p∗

∇fyi
(x)

2
ε2 ,

∥∇fyi(x)∥p∗

Lp,p∗

∇fyi
(x)

> ε

The next step is solving

min ε

s.t. min
i ̸=y

g∗i (ε) < 0.

For each i ̸= y, if
∥∇fyi(x)∥p∗

Lp,p∗

∇fyi
(x)

≤ ε then g∗i (ε) ≤ 0 requires 2Lp,p∗

∇fyi
(x)fyi(x) ≤ ∥∇fyi(x)∥2p∗ , and if

∥∇fyi(x)∥p∗

Lp,p∗

∇fyi
(x)

> ε

the smallest value of ε yielding g∗i (ε) ≤ 0 is

∥∇fyi(x)∥p∗ −
√

∥∇fyi(x)∥2p∗ − 2Lp,p∗

∇fyi
(x)fyi(x)

Lp,p∗

∇fyi
(x)

, (22)

14
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which similarly requires the condition 2Lp,p∗

∇fyi
(x)fyi(x) ≤ ∥∇fyi(x)∥2p∗ for realizability. Consequently, if

2Lp,p∗

∇fyi
(x)fyi(x) ≤ ∥∇fyi(x)∥2p∗ holds for some i ̸= y, the smallest valid ε is given as in (22). Thus, we conclude

that

ε∗1(x) = min
i∈I

∥∇fyi(x)∥p∗ −
√
∥∇fyi(x)∥2p∗ − 2Lp,p∗

∇fyi
(x)fyi(x)

Lp,p∗

∇fyi
(x)

, (23)

where I = {i|i ̸= y, 2Lp,p∗

∇fyi
(x)fyi(x) ≤ ∥∇fyi(x)∥2p∗}. If I = ∅, the problem is infeasible.

Proof of Theorem 3.1

Proof. Writing the definition of Lipschitz continuity, we have

∥Dh(x)−Dh(y)∥q = ∥Df(g(x))Dg(x)−Df(g(y))Dg(y)∥q
= ∥Df(g(x))Dg(x)−Df(g(x))Dg(y) +Df(g(x))Dg(y)−Df(g(y))Dg(y)∥q
≤ ∥Df(g(x))Dg(x)−Df(g(x))Dg(y)∥q + ∥Df(g(x))Dg(y)−Df(g(y))Dg(y)∥q
≤ ∥Df(g(x))∥q∥Dg(x)−Dg(y)∥q + ∥Df(g(x))−Df(g(y))∥q∥Dg(y)∥q
≤ Lp,q

Dg∥Df(g(x))∥q∥x− y∥p + Lq′,q
Df ∥g(x)− g(y)∥q′∥Dg(y)∥q

≤ Lp,q
Dg∥Df(g(x))∥q∥x− y∥p + Lq′,q

Df L
p,q′

g ∥Dg(y)∥q∥x− y∥p.

Based on Lemma 1.2, we note that Lq
f is an upper bound on ∥Df(·)∥q and that Lq

g is an upper bound on ∥Dg(·)∥q. Thus,
we arrive at

∥Dh(x)−Dh(y)∥q ≤
(
Lp,q
DgL

q
f + Lq′,q

Df L
p,q′

g Lq
g

)
∥x− y∥p.

Finally, by setting q = p∗ and q′ = p, we obtain Lp,p∗

Dh ≤ Lp,p∗

Dg L
p∗

f + Lp,p∗

Df L
p
gL

p∗

g .

Proof of Theorem 3.2

Proof. Taking the same steps as the proof of Theorem 3.1, we have

∥Dh(x+ δ)−Dh(x)∥q ≤ ∥Df(g(x+ δ))∥q∥Dg(x+ δ)−Dg(x)∥q + ∥Df(g(x+ δ))−Df(g(x))∥q∥Dg(x)∥q
≤ Lp,q

Dg(x)∥Df(g(x+ δ))∥q∥δ∥p + Lq′,q
Df (g(x))L

p,q′

g (x)∥Dg(x)∥q∥δ∥p

≤
(
Lq
fL

p,q
Dg(x) + ∥Dg(x)∥qLq′,q

Df (g(x))L
p,q′

g (x)
)
∥δ∥p.

Setting q = p∗ and q′ = p yields the result.

Proof of Proposition 3.5

Proof. We drop the superscript k for simplicity here. Writing out the definition of Lipschitz continuity we have

∥Dh(x)−Dh(y)∥q = ∥G diag(Φ′(Wx))W −G diag(Φ′(Wy))W∥q
≤ ∥G∥q∥W∥q∥diag(Φ′(Wx))− diag(Φ′(Wy))∥q
= ∥G∥q∥W∥q max

i
|Φ′(Wx)i − Φ′(Wy)i|

≤ Lϕ′∥G∥q∥W∥q max
i

|Wi,:(x− y)|,

(24)

where Lϕ′ = max{|α′|, |β′|} is the Lipschitz constant of ϕ′. Next, we can write

max
i

|Wi,:(x− y)| = ∥W (x− y)∥∞ ≤ ∥W∥p→∞∥x− y∥p,

Setting q = p∗ yields the desired result.
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Proof of Lemma 3.6

Proof. To perform the conversion to a standard layer, we consider individual entries of the output:

Dhk(x)ij = Hk
ij +

n′
k∑

l=1

Gk
ilW

k
ljΦ

′(W kx)l.

Thus, by flattening the matrix Dhk(x) into a vector dhk(x), where the ij-th element of Dhk(x) is mapped to the
(
(j −

1) × nk+1 + i
)
-th element of dhk(x), ∀i ∈ [nk+1], j ∈ [nk], we obtain the desired result. The vector bk and matrix Ak

defined in the lemma yield the correct map. Importantly, we have the identity Ak = ĜkW̃ k, where

Ĝk =


Gk 0 · · · 0
0 Gk · · · 0
...

...
. . .

...
0 0 · · · Gk

 , W̃ k =


diag(W k

:,1)
diag(W k

:,2)
...

diag(W k
:,nk

)

 .
Evidently, we have Ak

ml =
(
Gkdiag(W k

:,j)
)
il
= Gk

ilW
k
lj .

Proof of Lemma 3.7

Proof. By vectorization, we have ∥dhk(x)− dhk(y)∥2 = ∥Dhk(x)−Dhk(y)∥F , where ∥ · ∥F is the Frobenius norm. We
can write

∥Dhk(x)−Dhk(y)∥2 ≤ ∥Dhk(x)−Dhk(y)∥F = ∥dhk(x)− dhk(y)∥2 ≤ Lp
dhk∥x− y∥2,

where we have used the fact that for a given matrix A, ∥A∥2 = σmax(A) ≤
√∑

i σ
2
i (A) = ∥A∥F .

Proof of Theorem 3.8

Proof. Using identity Ak = ĜkW̃ k from the proof of Lemma 3.6, we have

∥Ak∥2 ≤ ∥Ĝk∥2∥W̃ k∥2 = ∥Gk∥2∥W̃ k∥2.

For ∥W̃ k∥2 we have (W̃ k⊤W̃ k)ij =
∑

l W̃
k
liW̃

k
lj . With respect to the sparsity pattern of the matrix W̃ k, W̃ k⊤W̃ k is only

non-zero on its diagonal with (W̃ k⊤W̃ k)ii = ∥Wi,:∥22. Thus ∥W̃ k∥2 = maxi ∥Wi,:∥2 = ∥W∥2→∞. This concludes the
proof.

Proof of Theorem 3.9

Proof. Using Lemma 3.6 to vectorize the Jacobian of the layer hk(x) = Φ(W kx), we obtain Ak = W̃ k (see proof of
Lemma 3.6). As stated in the proof of Theorem 3.8, Ak⊤Ak is diagonal with (Ak⊤Ak)ii = ∥Wi,:∥2. Next, we state the
semidefinite program of (Fazlyab et al., 2019) for calculating the Lipschitz constant of dhk = Akϕ′(Wx). Define

M(ρ, T ) =

[
−α′β′W k⊤TW k − ρI (α′+β′)

2 W k⊤T
(α′+β′)

2 TW k −T +Ak⊤Ak

]
,

where T is a diagonal non-negative matrix of appropriate dimensions. We have the following optimization problem.

min
ρ,T

ρ

s.t. M(ρ, T ) ⪯ 0.

As stated in (Fazlyab et al., 2019), for any given feasible pair (ρ, T ),
√
ρ is an upper bound on the Lipschitz constant of the

desired map.
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We first assume that α′ = −β′, implying that the off-diagonal terms of M(ρ, T ) will be zero. As a result, the linear matrix
inequality constraint M(ρ, T ) ⪯ 0 simplifies to satisfying two semidefinite conditions as follows,{

β
′2W k⊤TW k ⪯ ρI,

Ak⊤Ak ⪯ T.

We claim that the optimal solution for this system of constraints is given by{
T ∗ = Ak⊤Ak,

ρ∗ = β
′2∥W k⊤T ∗W k∥2.

The choice of ρ∗ is trivial. Next, it is easy to see that if we instead use T ′ = T ∗ + E, where E is another non-negative
diagonal matrix, we will have W k⊤T ′W k =W k⊤(T ∗ + E)W k =W k⊤T ∗W k +W k⊤EW k ⪰W k⊤T ∗W k, where the
last inequality follows as W k⊤EW k is a real symmetric positive semidefnite matrix.This concludes the proof of optimality
of the proposed solution for the case in which α′ = −β′.

Next, we consider the scenario in which |α′| < β′, we observe that a function that is slope-restricted in [α′, β′] is also
slope-restricted in [−β′, β′]. Consequently, the proposed ρ∗ is a feasible point in this case, although it may not be optimal.
The case in which |β′| < |α′| follows the same argument, yielding a feasible solution ρ∗ = |α′|∥W kT ∗W k∥2.
Thus, we always have Lp

dhk ≤ Lϕ′∥
√
T ∗W k∥2 = L

p,SDP
dhk .

Corollary A.2. Let p = 2, and consider the map hk(x) = Φ(W kx) where the derivative of the ith activation function is
slope-restricted in [α′

i, β
′
i]. Then Lp

dhk(x) ≤ ∥D
√
T ∗W k∥2, where D is a diagonal matrix with Dii = max{|α′

i|, |β′
i|}.

B. Calculation of Anchored Lipschitz
In this section, we elaborate on some aspects of the anchored Lipschitz calculation that we introduced in the main text.

Consider a continuously differentiable function ϕ : R 7→ R. The anchored Lipschitz constant of ϕ at a x is given by

Lϕ(x) = max
y ̸=x

|ϕ(y)− ϕ(x)|
|y − x|

. (25)

This optimization problem can be solved on a case-by-case basis. For example, for the case of the tanh function, the
maximizer of (25) is the point from which the tangent passes through (x, ϕ(x)). This is given by solving the nonlinear
equation

|ϕ′(y)| = lim
t→y

|ϕ(t)− ϕ(x)|
|t− x|

. (26)

See Figure 1 for reference. A similar idea follows for other bounded activation functions. We note that (26) is in general a
nonlinear equation without a closed-form solution. In practice, we use a numerical method (like bisection) to solve this
nonlinear equation at initiation for a grid of points of the real line and then query these values whenever they are needed for
Lipschitz calculation.

Next, consider a single residual block as in (11)

h(x) = Hx+GΦ(Wx).

With the definition of anchored Lipschitz, one can use the local naive bound for the Lipschitz constant to obtain the following
bound on the Lipschitz constant of h,

L
p,naive
h (x) = ∥H∥p + ∥G∥p∥diag(LΦ(x))W∥p,

where LΦ(x) = [Lϕ1(x), · · · , Lϕn1
(x)]. Then L

p,naive
h (x) would be an upper bound on the anchored Lipschitz of h. This

can be adapted to LipSDP (Fazlyab et al., 2019) or LipLT (Fazlyab et al., 2023).

The above analysis can extended to multi-layer residual neural networks. For example, multiplying the layer-wise anchored
Lipschitz bounds will yield the anchored naive Lipschitz bound for the whole network.
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C. Time Complexity
We analyze the time complexity of Algorithm 1 when the ℓ2 norm is used (p = 2). We utilize the power method to calculate
the matrix norms. We assume that we perform only a single loop of power iteration to calculate the matrix norms. This
assumption is justified in previous work (Fazlyab et al., 2023; Huang et al., 2021). We provide the complexity in terms of
the number of multiplications. For a general neural network of the form of equation (11) we have the following calculations:

• Lipschitz constant of each residual block, i.e. L
p

hk : O(nk+1nk + nk+1n
′
k + n′knk).

• Lipschitz constant of the Jacobian of each residual block, i.e., L
p

Dhk : O(nk+1n
′
k + 2n′knk) or L

p

dhk : O(nk+1n
′
k +

nk+1n
′
knk).

• Lipschitz constant of the subnetwork from the first layer to the (k + 1)-th layer, i.e.,

L
p

k+1 : O(

k∑
j=0

[
nj+1nj + n′jnj +

k∑
i=j+1

(ni+1ni + ni+1n
′
i + n′ini)

]
+

k∑
i=0

(ni+1ni + ni+1n
′
i + n′ini)).

However, it is worth mentioning that the computational complexity of a forward pass through the network is also a sum of
quadratic terms, i.e., O(

∑K
k=0 nk+1nk + nk+1n

′
k + n′knk). Thus, the main bottleneck would be the calculation of L

p

k+1

and L
p

dhk . We leverage the specialized GPU implementation of LipLT (Fazlyab et al., 2023), which substantially reduces the
time complexity of calculating L

p

k, k = 0, · · ·K.

Furthermore, by using 1-Lipschitz networks as done in some of the experiments, the time complexity of L
p

k+1 and L
p

hk

would be O(1).

D. Experiments
In this section, we provide the details of our methods and provide further supporting experiments.

D.1. Implementation Details

We used three different architectures in our experiments. We show convolutional layers in the form C(c, k, s, p), where
c is the number of filters, k is the size of the square kernel, s is the stride length, and p is the symmetric padding. Fully
connected layers are of the form L(n), where n is the number of output neurons of this layer. Furthermore, residual layers
of the form (11) is denoted by an extra character ‘R’, i.e., CR and LR for residual convolutional and fully-connected layers,
respectively. The details of our architectures are as follows:

• 6C2F: C(32, 3, 1, 1), C(32, 4, 2, 1), C(64, 3, 1, 1), C(64, 4, 2, 1), C(64, 3, 1, 1) C(64, 4, 2, 1), L(512), L(10).

• 6F: L(1024), L(512), L(256), L(256), L(128), L(10).

• Lip-3C1F: CR(15, 3, 1, 1), CR(15, 3, 1, 1), CR(15, 3, 1, 1), LR(1024).

For the hyperparameter λ used in the loss (18), we employ a primal-dual approach. That is, after each mini-batch we update

λ+ = min{λ+ η(Ac − ε), λmin},

where λ is the current value of the regularizer, η is a step size, Ac is a moving average of the training accuracy of the
mini-batches, ε is the minimum train accuracy that we expect from the model, and λmin is the smallest value for the
regularizer. For training on CIFAR-10, we choose (η, ϵ, λmin) = (0.05, 0.6, 0.01).

The rest of the training details are as follows. We use the modified cross-entropy loss function from (Prach & Lampert,
2022),

Lτ,ν
CE (f(x), y) = τ · CE(

f(x)− ν
√
2 Luy

τ
, y), (27)

where τ is a temperature constant, uy is the one-hot encoding of the value of y, and L is an ℓ2 Lipschitz constant of the
model. ν is a zero-one variable based on the architecture and mode of training. For the 6C2F and 6F models, as we want
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Figure 7: Comparison of certified radii acquired via CRC/CCRC on a 6-layer neural network trained via curvature
regularization on MNIST. (Left) Histogram of per-sample radius improvement of our method over (Singla & Feizi, 2020).
(Right) Plot of certified radii for correctly classified data. The data are sorted according to the CRC radii.
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Figure 8: Comparison of certified radii calculated through Curvature Certificates versus Lipschitz Certificates for a 6-layer
neural network trained via curvature regularization on CIFAR-10. (Left) Histogram of the per-sample radii improvements.
(Right) Histogram of certified radii.

regularization directly through the curvature constant, we set ν = 0. For the Lip-3C1F model, we set ν = 1 as the original
(Araujo et al., 2022) work. We use τ = 0.25. Furthermore, we train our models for 1000 epochs with a batch size of 256
with a cosine annealing strategy with an initial learning rate of 10−4 and a final learning rate 10−5, and report the average
results on two seed in Table 1.

D.2. Per-sample Improvement

Expanding on the “Comparison with other Curvature-based Methods” experiment in Section 4, we provide the per-sample
improvements of the certified radii in Figure 7, corresponding to Figure 3.

D.3. Training with Direct Curvature Regularization

We observed that for the models that are trained with direct regularization of the curvature, first-order certificates are
significantly better than zeroth-order certificates, i.e., by regularizing the model’s curvature, Proposition 2.2 would hold for
all points of the test dataset. This is shown in Figure 8 for the 6F model.

D.4. Attack Certificates on 1-Lipschitz models

In this experiment, we provide radii for provable attacks on a 1-Lipschitz model trained on the CIFAR-10 dataset. The
curvature required for this certificate was calculated using Algorithm 1 and utilizing the 1-Lipschitz structure. Figure 9
shows the budget required for a subset of the correctly classified data points that can certifiably be attacked. We consider the
test samples of the CIFAR-10 dataset, which includes 10,000 samples. The model’s accuracy on the test set is approximately
50%, resulting in about 5,000 correctly labeled samples. Of these 5,000 samples, we can provide an attack certificate for
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Figure 9: Attack radii certificates for a 1-Lipschitz structure.

approximately 150 of them. This translates to a 3% success rate (150/5000) for the attack certificate among the correctly
classified test samples. It is worth noting that these samples can all be provably misclassified with an attack budget of less
than 0.07, even on 1-Lipschitz networks.
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