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ABSTRACT

Proximal causal learning is a powerful framework for identifying the causal effect
under the existence of unmeasured confounders. Within this framework, the dou-
bly robust (DR) estimator was derived and has shown its effectiveness in estima-
tion, especially when the model assumption is violated. However, the current form
of the DR estimator is restricted to binary treatments, while the treatments can be
continuous in many real-world applications. The primary obstacle to continuous
treatments resides in the delta function present in the original DR estimator, mak-
ing it infeasible in causal effect estimation and introducing a heavy computational
burden in nuisance function estimation. To address these challenges, we propose
a kernel-based DR estimator that can well handle continuous treatments for prox-
imal causal learning. Equipped with its smoothness, we show that its oracle form
is a consistent approximation of the influence function. Further, we propose a new
approach to efficiently solve the nuisance functions. We then provide a compre-
hensive convergence analysis in terms of the mean square error. We demonstrate
the utility of our estimator on synthetic datasets and real-world applications1.

1 INTRODUCTION

The causal effect estimation is a significant issue in many fields such as social sciences (Hedström &
Ylikoski, 2010), economics (Varian, 2016), and medicine (Yazdani & Boerwinkle, 2015). A critical
challenge in causal inference is non-compliance to randomness due to the presence of unobserved
confounders, which can induce biases in the estimation.

One approach to address this challenge is the proximal causal learning (PCL) framework (Miao
et al., 2018a; Tchetgen et al., 2020; Cui et al., 2023), which offers an opportunity to learn about
causal effects where ignorability condition fails. This framework employs two proxies - a treatment-
inducing proxy and an outcome-inducing proxy - to identify the causal effect by estimating the
bridge/nuisance functions. Particularly, Cui et al. (2023) derived the doubly robust estimator within
the PCL framework, which combines the estimator obtained from the treatment bridge function and
the estimator obtained from the outcome bridge function. The doubly robust estimator has been
widely used in causal effect estimation (Bang & Robins, 2005), as it is able to tolerate violations of
model assumptions of bridge functions.

However, current doubly robust estimators (Cui et al., 2023) within the proximal causal framework
mainly focus on binary treatments, whereas the treatments can be continuous in many real-world
scenarios, including social science, biology, and economics. For example, in therapy studies, we
are not only interested in estimating the effect of receiving the drug but also the effectiveness of
the drug dose. Another example comes from the data (Donohue III & Levitt, 2001) that focused on
policy-making, where one wishes to estimate the effect of legalized abortion on the crime rate.

∗Corresponding author
1 Code is available at https://github.com/yezichu/PCL_Continuous_Treatment.
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Previous work on causal effect for continuous treatments has focused primarily on the unconfound-
edness assumption (Kallus & Zhou, 2018; Colangelo & Lee, 2020). However, extending them within
the proximal causal farmework encounters several key challenges. Firstly, the Proximal Inverse
Probability Weighting (PIPW) part in the original doubly robust (DR) estimator relies on a delta
function centered around the treatment value being analyzed, rendering it impractical for empirically
estimating causal effects with continuous treatments. Secondly, deriving the influence function will
involve dealing with the Gateaux derivative of bridge functions, which is particularly intricate due
to its implicit nature. Lastly, the existing estimation process of bridge functions requires running an
optimization for each new treatment, rendering it computationally inefficient for practical applica-
tions. In light of these formidable challenges, our contribution lies in addressing the open question
of deriving the DR estimator for continuous treatments within the proximal causal framework.

To address these challenges, we propose a kernel-based method that can well handle continuous
treatments for PCL. Specifically, we incorporate the kernel function into the PIPW estimator, as a
smooth approximation to causal effect. We then derive the DR estimator and show its consistency
for a broad family of kernel functions. Equipped with smoothness, we show that such a DR estima-
tor coincides with the influence function. To overcome the computational issue in nuisance function
estimation, we propose to estimate the propensity score and incorporate it into a min-max optimiza-
tion problem, which is sufficient to estimate the nuisance functions for all treatments. We show that
our estimator enjoys the O(n−4/5) convergence rate in mean squared error (MSE). We demonstrate
the utility and efficiency on synthetic data and the policy-making (Donohue III & Levitt, 2001).

Contributions. To summarize, our contributions are:

1. We propose a kernel-based DR estimator that is provable to be consistent for continuous treat-
ments effect within the proximal causal framework.

2. We efficiently solve bridge functions for all treatments with only a single optimization.

3. We present the convergence analysis of our estimator in terms of MSE.

4. We demonstrated the utility of our estimator on two synthetic data and real data.

2 BACKGROUND

Proximal Causal Learning. The proximal causal learning (PCL) can be dated back to Kuroki &
Pearl (2014), which established the identification of causal effects in the presence of unobserved con-
founders under linear models. Then Miao et al. (2018a;b) and its extensions (Shi et al., 2020; Tchet-
gen et al., 2020) proposed to leverage two proxy variables for causal identification by estimating the
outcome bridge function. Building upon this foundation, Cui et al. (2023) introduced a treatment
bridge function and incorporated it into the Proximal Inverse Probability Weighting (PIPW) estima-
tor. Besides, under binary treatments, they derived the Proximal Doubly Robust (PDR) estimator
via influence functions. However, continuous treatments pose a challenge as the treatment effect is
not pathwise differentiable with respect to them, preventing the derivation of a DR estimator. In this
paper, we employ the kernel method that is provable to be consistent in treatment effect estimation.
We further show that the kernel-based DR estimator can be derived from influence functions.

Causal inference for Continuous Treatments. The most common approaches for estimating
continuous treatment effects are regression-based models (Imbens, 2004; Hill, 2011), generalized
propensity score-based models (Imbens, 2000; Hirano & Imbens, 2004; Imai & Van Dyk, 2004),
and entropy balance-based methods (Hainmueller, 2012; Imai & Ratkovic, 2014; Tübbicke, 2021).
Furthermore, Kennedy et al. (2017); Kallus & Zhou (2018) and Colangelo & Lee (2020) extended
the DR estimation to continuous treatments by combining regression-based models and the gen-
eralized propensity score-based models. However, it remains open to derive the DR estimator for
continuous treatments within the proximal causal framework. In this paper, we fill in this blank with
a new kernel-based DR estimator that is provable to derive from influence function.

Nuisance Parameters Estimation. In proximal causal learning, one should estimate nuisance pa-
rameters to obtain the causal effect. Many methods have been proposed for this goal (Tchetgen et al.,
2020; Singh, 2020; Xu et al., 2021; Kompa et al., 2022), but they primarily focus on the estimation
of the outcome bridge function. Recently, Kallus et al. (2021); Ghassami et al. (2022) have provided
non-parametric estimates of treatment bridge function, but they are restricted to binary treatments.
When it comes to continuous treatments, existing methods can be computationally inefficient since
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it has to resolve an optimization problem for each treatment. In this paper, we propose a new method
that can efficiently solve bridge functions for all treatments with only a single optimization.

3 PROXIMAL CAUSAL INFERENCE

Problem setup. We consider estimating the Average Causal Effect (ACE) of a continuous treatment
A on an outcome Y : E[Y (a)], where Y (a) for any a ∈ supp(A) denotes the potential outcome
when the treatment A = a is received. We respectively denote X and U as observed covariates and
unobserved confounders. To estimate E[Y (a)], we assume the following consistency assumptions
that are widely adopted in causal inference (Peters et al., 2017):
Assumption 3.1 (Consistency and Positivity). We assume (i) Y (A) = Y almost surely (a.s.); and
(ii) 0 < p(A = a|U = u,X = x) < 1 a.s.
Assumption 3.2 (Latent ignorability). We assume Y (a) ⊥ A|U,X .

𝑈

𝑍 𝑊

𝐴 𝑌

𝑋

Treatment and outcome 

Proxy variables

Figure 1: Illustration of causal DAG in proximal
causal learning, where Z,W are proxy variables.

Assump. 3.2 means that the strong ignorability
condition may fail due to the presence of un-
observed confounder U . To account for such a
confounding bias, the proximal causal learning
incorporates a treatment-inducing proxy Z and
an outcome-inducing proxy W . As illustrated
in Fig. 1, these proxies should satisfy the fol-
lowing conditional independence:
Assumption 3.3 (Conditional Independence of
Proxies). The treatment-inducing proxy Z and
the outcome-inducing proxy W satisfy the fol-
lowing conditional independence: (i) Y ⊥ Z |
A,U,X; and (ii) W ⊥ (A,Z) | U,X .

Equipped with such conditional independence, previous work by Miao et al. (2018a); Cui et al.
(2023) demonstrated that we can express the causal effect, denoted as β(a), as follows:

E [Y (a)] = E [h0(a,W,X)] = E [I(A = a)q0(a, Z,X)Y ] , (1)
where h0 and q0 are two nuisance/bridge functions such that the following equations hold:

Rh(h0; y) := E[Y − h0(A,W,X)|A,Z,X] = 0, (2)
Rq(q0; p) := E [q0(A,Z,X)− 1/p(A|W,X)|A,W,X] = 0. (3)

To ensure the existence and uniqueness of solutions to the above equations, we additionally assume
that (Miao et al., 2018a; Tchetgen et al., 2020; Cui et al., 2023):
Assumption 3.4. Let ν denote any square-integrable function. For any (a, x), we have

1. (Completeness for outcome bridge functions). We assume that E[ν(U)|W,a, x] = 0 and
E[ν(Z)|W,a, x] = 0 iff ν(U) = 0 almost surely.

2. (Completeness for treatment bridge functions). We assume that E[ν(U)|Z, a, x] = 0 and
E[ν(W )|Z, a, x] = 0 iff ν(U) = 0 almost surely.

Under assump. 3.4, we can solve h0 and q0 via several optimization approaches derived from con-
ditional moment equations, including two-stage penalized regression (Singh, 2020; Mastouri et al.,
2021; Xu et al., 2021), maximum moment restriction (Zhang et al., 2020; Muandet et al., 2020a),
and minimax optimization (Dikkala et al., 2020; Muandet et al., 2020b; Kallus et al., 2021). With
solved h0, q0, we can estimate E[Y (a)] via:

En[Y (a)] =
1

n

n∑
i=1

h0(ai, wi, xi), or En[Y (a)] =
1

n

n∑
i=1

I(ai = a)q0(a, zi, xi)yi.

Furthermore, Cui et al. (2023) proposes a doubly robust estimator to improve robustness against
misspecification of bridge functions.

E [Y (a)] = E[I(A = a)q0(a, Z,X) (Y − h0(a,W,X)) + h0(a,W,X)], (4)

≈ 1

n

n∑
i=1

(I(A = a)q0(a, zi, xi)(yi − h0(a,wi, xi)) + h0(a,wi, xi)) . (5)
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Although this proximal learning method can efficiently estimate E[Y (a)] for binary treatments, it
suffers from several problems when it comes to continuous treatments. First, for any a ∈ supp(A),
it almost surely holds that there does not exist any sample i that satisfies ai = a for i = 1, ..., n,
making Eq. 5 infeasible. Besides, it is challenging to derive the influence function for continuous
treatments as it involves the derivative computation for implicit functions h0 and q0. Lastly, to
estimate q0, previous methods suffered from a large computational cost since they had to re-run the
optimization algorithm for each new treatment, making it inapplicable in real-world applications.

To resolve these problems for continuous treatment, we first introduce a kernel-based method in
Sec. 4, which can estimate E[Y (a)] in a feasible way. Then in Sec. 5, we introduce a new opti-
mization algorithm that can estimate h0, q0 for all treatments with a single optimization algorithm.
Finally, we present the theoretical results in Sec. 6.

4 PROXIMAL CONTINUOUS ESTIMATION

In this section, we introduce a kernel-based doubly robust estimator for β(a) := E[Y (a)] with
continuous treatments. We first present the estimator form in Sec. 4.1, followed by Sec. 4.2 to show
that such an estimator can well approximate the influence function for β(a).

4.1 KERNEL-BASED PROXIMAL ESTIMATION

As mentioned above, the main challenge for continuous treatments lies in the estimation infeasibility
caused by the indicator function in the proximal inverse probability weighted estimator (PIPW) with
q0: β̂(a) = 1

n

∑n
i=1 I(ai = a)q0(a, zi, xi)yi. To resolve this problem, we note that the indicator

function can be viewed as a Dirac delta function δa(ai). The average of this Dirac delta function
over n samples 1

n

∑n
i=1 δa(ai) approximates to the marginal probability P(a) (Doucet et al., 2009),

which equals to 0 when A is continuous.

To address this problem, we integrate the kernel function K(A − a) that can alleviate the unit
concentration of the Dirac delta function. We can then rewrite the PIPW estimator as follows,
dubbed as Proximal Kernel Inverse Probability Weighted (PKIPW) estimator:

β̂(a) =
1

n

n∑
i=1

Khbw
(ai − a)q0(a, zi, xi)yi, (6)

where hbw > 0 is the bandwidth such that Khbw
(ai − a) = 1

hbw
K
(

ai−a
hbw

)
. The kernel function

Khbw
(A− a) that has been widely adopted in density estimation, assigns a non-zero weight to each

sample, thus making it feasible to estimate β(a). To demonstrate its validity, we next show that it
can approximate β(a) well. This result requires that the kernel functionK is bounded differentiable,
as formally stated in the following.
Assumption 4.1. The second-order symmetric kernel function K (·) is bounded differentiable, i.e.,∫
k(u)du = 1,

∫
uk(u)du = 0, κ2(K) =

∫
u2k(u)du <∞. We define Ω

(i)
2 (K) =

∫
(k(i)(u))2du.

Assump. 4.1 adheres to the conventional norms within the domain of nonparametric kernel estima-
tion and maintains its validity across widely adopted kernel functions, including but not limited to
the Epanechnikov and Gaussian kernels. Under assump. 4.1, we have the following theorem:
Theorem 4.2. Under assump. 4.1, suppose β(a) = E[I(A = a)q0(a, Z,X)Y ] is continuous and
bounded uniformly respect to a, then we have

E[Y (a)] = E[I(A = a)q0(a, Z,X)Y ] = lim
hbw→0

E [Khbw
(A− a)q0(a, Z,X)Y ] ,

Remark 4.3. The kernel function has been widely used in machine learning applications (Kallus
& Zhou, 2018; Kallus & Uehara, 2020; Colangelo & Lee, 2020; Klosin, 2021). Different from
these works, we are the first to integrate them into the proximal estimation to handle continuous
treatments.
Remark 4.4. The choice of bandwidth hbw is a trade-off between bias and variance. When hbw is
small, the kernel estimator has less bias as shown in Thm. 4.2, however, will increase the variance.
In Sec. 6, we show that the optimal rate for hbw is O(n−1/5), which leads to the MSE converges at
a rate of O(n−4/5) for our kernel-based doubly robust estimator.
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Similar to Eq. 6, we can therefore derive the Proximal Kernel Doubly Robust (PKDR) estimator as:

β̂(a) =
1

nhbw

n∑
i=1

K

(
ai − a

hbw

)
(yi − h0(a,wi, xi)) q0(a, zi, xi) + h0(a,wi, xi). (7)

Similar to Thm. 4.2, we can also show that this estimator is unbiased as hbw → 0. In the subsequent
section, we show that this estimator in Eq. 7 can also be derived from the smooth approximation of
the influence function of β(a).

4.2 INFLUENCE FUNCTION UNDER CONTINUOUS TREATMENTS

In this section, we employ the method of Gateaux derivative (Carone et al., 2018; Ichimura & Newey,
2022) to derive the influence function of β(a). (For our non-regular parameters, we borrow the
terminology “influence function” in estimating a regular parameter. See Hampel Ichimura & Newey
(2022), for example.) Specifically, we denote PX as the distribution function for any variableX , and
rewrite β(a) as β(a;P0

O) where P0
O denotes the true distribution forO := (A,Z,W,X, Y ). Besides,

we consider the special submodel Pεhbw

O = (1 − ε)P0
O + εPhbw

O , where Phbw

O (·) maps a point o to
a distribution of O, i.e., Phbw

O (o) for a fixed o denotes the distribution of O that approximates to a
point mass at o. Different types of Phbw

O (o) lead to different forms of Gateaux derivative. In our
paper, we choose the distribution Phbw

O (o) whose corresponding probability density function (pdf)
phbw

O (o) = Khbw
(O− o)I(p0O(o) > hbw), which has limhbw→0 p

hbw

O (o) = limhbw→0Khbw
(O− o).

We can then calculate the limit of the Gateaux derivative (Ichimura & Newey, 2022) of the functional
β(a;Pεhbw

O ) with respect to a deviation Phbw

O − P0
O. The following theorem shows that our kernel-

based doubly robust estimator corresponds to the influence function:
Theorem 4.5. Under a nonparametric model, the limit of the Gateaux derivative is

lim
hbw→0

∂

∂ε
β(a;Pεhbw )

∣∣∣∣
ε=0

= (Y − h0(a,W,X)) q0(a, Z,X) lim
hbw→0

Khbw (A− a) + h0 (a,W,X)− β(a)

Remark 4.6. For binary treatments, the DR estimator with the indicator function in Eq. 4 corresponds
to the efficient influence function, as derived within the non-parametric framework (Cui et al., 2023).
Different from previous works Colangelo & Lee (2020), deriving the influence function within the
proximal causal framework is much more challenging as it involves the Gateau derivatives for nui-
sance functions h0, q0 that have implicit functional forms. By employing our estimator, even when
the unconfoundedness assumption from Colangelo & Lee (2020) is not satisfied, we can still effec-
tively obtain causal effects.

5 NUISANCE FUNCTION ESTIMATION

In this section, we propose to solve h0, q0 from integral equations Eq. 2, 3 for continuous treatments.
We first introduce the estimation of q0. Previous methods (Kallus et al., 2021; Ghassami et al., 2022)
solved q0(a, Z,X) by running an optimization algorithm for each a = 0, 1. However, it is computa-
tionally infeasible for continuous treatments. Please see Appx. D.2 for detailed comparison. Instead
of running an optimization for each a, we would like to estimate q0(A,Z,X) with a single optimiza-
tion algorithm. To achieve this goal, we propose a two-stage estimation algorithm. We first estimate
the policy function p(A|w, x) and plug into Eq. 3. To efficiently solve q0, we note that it is equivalent
to minimize the residual mean squared error denoted as Lq(q; p) = E[(Rq (q, p))

2
]. According to

the lemma shown below, such a mean squared error can be reformulated into a maximization-style
optimization, thereby converting into a min-max optimization problem.
Lemma 5.1. Denote ∥f(X)∥2L2

:= E[f2(X)]. For any parameter λm > 0, we have

Lq(q; p) = sup
m∈M

E [m(A,W,X) (q0(A,Z,X)− 1/p(A|W,X))]− λm∥m(A,W,X)∥2L2
,

where M is the space of continuous functions over (A,W,X).

We leave the proof in Appx. D. Motivated by Lemma. 5.1, we can solve q0 via the following min-
max optimization:

min
q∈Q

max
m∈M

Φn,λm
q (q,m; p) :=

1

n

∑
i

(
q(ai, zi, xi)−

1

p(ai|wi, xi)

)
m(ai, wi, xi)− λm∥m∥22,n,

(8)

5



Published as a conference paper at ICLR 2024

where λm∥m∥22,n is called stabilizer with ∥m∥22,n := 1
n

∑
im

2(ai, wi, xi). We can parameterize
q and m as reproducing kernel Hilbert space (RKHS) with kernel function to solve the min-max
problem. We derive their closed solutions in the Appendix F. Besides, we can also use Generative
Adversarial Networks (Goodfellow et al., 2014) to solve this problem.

Estimating the policy function p(A = a|w, x). To optimize Eq. 8, we should first estimate
p(a|w, x). Several methods can be used for this estimation, such as the kernel density estimation and
normalizing flows (Chen, 2017; Bishop, 1994; Ambrogioni et al., 2017; Sohn et al., 2015; Rezende
& Mohamed, 2015; Dinh et al., 2016). In this paper, we employ the kernel density function (Chen,
2017) that has been shown to be effective in low-dimension scenarios. When the dimension of
(W,X) is high, we employ the conditional normalizing flows (CNFs), which have been shown to be
universal density approximator (Durkan et al., 2019) and thus can be applied to complex scenarios.

Nuisance function h0. Since the estimation of h0 does not involve indicator functions, we can
apply many off-the-shelf optimization approaches derived from conditional moment equations, such
as two-stage penalized regression (Singh, 2020; Mastouri et al., 2021; Xu et al., 2021), maximum
moment restriction (Zhang et al., 2020; Muandet et al., 2020a), and minimax optimization (Dikkala
et al., 2020; Muandet et al., 2020b). To align well with q0, here we choose to estimate h0 via the
following min-max optimization problem that has been derived in Kallus et al. (2021):

min
h∈H

max
g∈G

Φ
n,λg

h (h, g) :=
1

n

∑
i

g(ai, zi, xi) (yi − h(ai, wi, xi))− λg∥g∥22,n, (9)

where H and G respectively denote the bridge functional class and the critic functional class.

6 THEORETICAL RESULTS

In this section, we provide convergence analysis of Eq. 8, 9 for nuisance functions h0, q0, as well as
for the causal effect β(a) with the PKDR estimator in Eq. 7.

We first provide convergence analysis for q0, while the result for h0 is similar and left to the Appx. E.
Different from previous works Dikkala et al. (2020); Ghassami et al. (2022), our analysis encounters
a significant challenge arising from the estimation error inherent in the propensity score function.
By addressing this challenge, our result can effectively account for this estimation error.

Formally speaking, we consider the projected residual mean squared error (RMSE) E[projq(q̂ −
q0)

2], where projq(·) := E [·|A,W,X]. Before presenting our results, we first introduce the as-
sumption regarding the critic functional class in M, which has been similarly made in Dikkala et al.
(2020); Ghassami et al. (2022); Qi et al. (2023).

Assumption 6.1. (1) (Boundness) ∥Q∥∞ <∞ and p̂ is uniformly bounded; (2) (Symmetric) M is
a symmetric class, i.e, if m ∈ M, then −m ∈ M; (3) (Star-shaped) M is star-shaped class, that is
for each function m in the class, αm for any α ∈ [0, 1] also belongs to the class; (4) (Realizability)
q0 ∈ Q; (5) (Closedness) 1

2λm
projq(q − q0) ∈ M.

Under assumption 6.1, we have the following convergence result in terms of ∥ projq(q̂ − q0)∥L2 .

Theorem 6.2. Let δqn respectively be the upper bound on the Rademacher complexity of M. For

any η ∈ (0, 1), define δq := δqn + cq0

√
log(cq1/η)

n for some constants cq0, c
q
1; then under assump. 6.1,

we have with probability 1− η that∥∥projq(q̂ − q0)
∥∥
2
= O

(
δq
√
λ2m + λm + 1 +

∥∥∥∥1p − 1

p̂

∥∥∥∥
2

)
, p stands for p(a|w, x).

Remark 6.3. Inspired by Chen & Pouzo (2012); Dikkala et al. (2020); Kallus et al. (2021), we can
obtain the same upper bound for the RMSE ∥q̂ − q0∥2, up to a measure of ill-posedness denoted as
τq := supq∈Q ∥q − q0∥2/∥projq(q − q0)∥2 <∞.

The bound mentioned above comprises two components. The first part pertains to the estimation
of q, while the second part concerns the estimation of 1/p. The first part is mainly occupied by
the Rademacher complexity δqn, which can attain O(n−1/4) if we parameterize M as bounded met-
ric entropy such as Holder balls, Sobolev balls, and RKHSs. For the second part, we can also
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achieve O(n−1/4) for ∥1/p − 1/p̂∥2 under some conditions (Chernozhukov et al., 2022; Klosin,
2021; Colangelo & Lee, 2020).

Now we are ready to present the convergence result for β(a) within the proximal causal framework.

Theorem 6.4. Under assump. 3.1-3.4 and 4.1, suppose ∥ĥ − h∥2 = o(1), ∥q̂ − q∥2 = o(1) and
∥ĥ − h∥2∥q̂ − q∥2 = o((nhbw)

−1/2), nh5bw = O(1), nhbw → ∞, h0(a,w, x), p(a, z|w, x) and
p(a,w|z, x) are twice continuously differentiable wrt a as well as h0, q0, ĥ, q̂ are uniformly bounded.
Then for any a, we have the following for the bias and variance of the PKDR estimator given Eq. 7:

Bias(β̂(a)) := E[β̂(a)]−β(a) = h2bw
2
κ2(K)B+o((nhbw)

−1/2),Var[β̂(a)] =
Ω2(K)

nhbw
(V +o(1)),

where B = E[q0(a, Z,X)[2 ∂
∂Ah0(a,W,X) ∂

∂Ap(a,W | Z,X) + ∂2

∂A2h0(a,W,X)]], V = E[I(A =

a)q0(a, Z,X)2(Y − h0(a,W,X))2].

Remark 6.5. The smoothness condition can hold for a broad family of distributions and be thus
similarly made for kernel-based methods (Kallus & Zhou, 2018; Kallus & Uehara, 2020). According
to Thm. 6.2, we have ∥ĥ − h0∥2 = O(n−1/4) and ∥q̂ − q0∥2 = O(n−1/4), thus can satisfy the
consistency condition required as long as hbw = o(1). Besides, we show in Thm. E.9 in Appx. E.5
that this estimator is n2/5-consistent.

From Thm. 6.4, we know that the optimal bandwidth is hbw = O(n−1/5) in terms of MES that
converges at the rate of O(n−4/5). Note that this rate is slower than the optimal rate O(n−1), which
is a reasonable sacrifice to handle continuous treatment within the proximal causal framework and
agrees with existing studies (Kennedy et al., 2017; Colangelo & Lee, 2020).

7 EXPERIMENTS

In this section, we evaluate the effectiveness of our method using two sets of synthetic data — one
in a low-dimensional context and the other in a high-dimensional context — as well as the legalized
abortion and crime dataset (Donohue III & Levitt, 2001). In Appx. G, we conduct experiments on
more benchmark datasets, including time-series forecasting.

Compared baselines. We compare our method with the following baselines that use only h0 for es-
timation, i.e., β̂(a) = 1

n

∑n
i=1 h0(ai, wi, xi): (i) Proximal Outcome Regression (POR) that solved

Eq. 9 for estimation; ii) PMMR (Mastouri et al., 2021) that employed the Maximal Moment Re-
striction (MMR) framework to estimate the bridge function via kernel learning; iii) KPV (Mastouri
et al., 2021) that used two-stage kernel regression; iv) DFPV (Xu et al., 2021) that used deep neu-
ral networks to model high-dimensional nonlinear relationships between proxies and outcomes; v)
MINMAX (Dikkala et al., 2020) that used Generate adversarial networks to solve Eq. 9; vi) NMMR
(Kompa et al., 2022) that introduced data-adaptive kernel functions derived from neural networks.

For our method, we implement the Inverse probability weighting (IPW) estimator PKIPW that uses
q0 for estimation via Eq. 6, and the doubly robust estimator PKDR that used both the nuisance
function h0 and q0 to estimate causal effects through Eq. 7. For simplicity, we only present the
result of PKDR that uses POR to estimate h0.

Implementation Details. In the PKIPW and PKDR estimators, we choose the second-order
Epanechnikov kernel, with bandwidth hbw = cσ̂An

−1/5 with estimated std σ̂A and the hyperpa-
rameter c > 0. In our paper, we vary c over the range {0.5, 1, 1.5, · · · , 4.0} and report the optimal
c in terms of cMSE. To estimate nuisance functions, we parameterize Q and M (resp., H and G)
via RKHS for q0 (resp., h0), where we use Gaussian kernels with the bandwidth parameters be-
ing initialized using the median distance heuristic. For policy estimation, we employ the KDE in
the low-dimensional synthetic dataset and the real-world data, while opting for CNFs in the high-
dimensional synthetic dataset. We leave more details about hyperparameters in the Appx. H.

Evaluation metrics. We report the causal Mean Squared Error (cMSE) across 100 equally spaced
points in the range of supp(A): cMSE := 1

100

∑100
i=1(E[Y ai ] − Ê[Y ai ])2. Here, we respectively

take supp(A) := [−1, 2], [0, 1], [0, 2] in low-dimensional synthetic data, high-dimensional synthetic
data, and real-world data. The truth E[Y a] is derived through Monte Carlo simulations comprising
10,000 replicates of data generation for each a.
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Figure 2: ATE comparison of different methods across various methods on three datasets; Left:
ATE comparison using 1000 samples in the first experiment; Middle: ATE comparison using 2000
samples in the second experiment; Right: ATE comparison for the abortion and crime dataset.

7.1 SYNTHETIC STUDY

We consider two distinct scenarios. The first scenario demonstrates the effectiveness of the kernel
method in the context of the doubly robust estimator under model misspecification, while the second
scenario evaluates the utility in high-dimensional settings. For both scenarios, we report the mean
cMSE of each method across 20 times.

7.1.1 DOUBLY ROBUSTNESS STUDY

Data generation. We follow the generative process in Mastouri et al. (2021) and leave details
in the Appx. H. Similar to Kang & Schafer (2007); Cui et al. (2023), we consider four scenarios
where either or both confounding bridge functions are misspecified by considering a model using a
transformation of observed variables:

• Scenario 1. We follow Mastouri et al. (2021) to generate data;
• Scenario 2. The outcome confounding bridge function is misspecified with W ∗ = |W |1/2 + 1;
• Scenario 3. The treatment confounding bridge function is misspecified with Z∗ = |Z|1/2 + 1;
• Scenario 4. Both confounding bridge functions are mis-specified.

Table 1: cMSE of all methods on two synthetic data and the real-world data.

Dataset Size PMMR KPV DFPV MINMAX NMMR POR PKIPW PKDR

Doubly
Robust

Scenario 1 500 0.16±0.05 0.37±0.26 0.30±0.13 0.20±0.15 0.26±0.11 0.19±0.11 0.11±0.06 0.11±0.06

1000 0.14±0.03 0.21±0.09 0.26±0.06 0.10±0.05 0.25±0.09 0.16±0.10 0.11±0.08 0.08±0.04

Scenario 2 500 3.32±0.06 3.50±0.16 1.03±0.19 7.48±2.05 4.72±1.38 3.47±0.08 0.16±0.11 0.16±0.09

1000 3.32±0.06 3.49±0.19 0.97±0.18 5.27±0.96 5.71±1.10 3.48±0.07 0.20±0.14 0.24±0.19

Scenario 3 500 0.15±0.05 0.29±0.18 0.28±0.13 0.33±0.26 0.38±0.15 0.20±0.12 2.38±0.60 0.20±0.15

1000 0.14±0.03 0.20±0.08 0.30±0.10 0.27±0.13 0.47±0.37 0.22±0.14 2.15±0.90 0.19±0.10

Scenario 4 500 3.32±0.05 3.51±0.21 1.00±0.22 6.69±1.03 5.60±1.26 3.46±0.08 2.91±5.58 3.38±5.03

1000 3.29±0.03 3.46±0.14 1.02±0.23 5.10±0.90 5.65±1.51 3.44±0.07 1.87±0.91 3.56±3.67

High Dimension 1000 0.74±0.09 0.34±0.06 0.22±0.11 0.12±0.07 0.14±0.05 0.31±0.07 0.20±0.03 0.08±0.04

2000 0.69±0.05 0.36±0.02 0.24±0.09 0.07±0.03 0.05±0.04 0.30±0.08 0.19±0.03 0.09±0.04

Abort. & Crim 1500 0.02±0.00 0.03±0.01 0.07±0.05 0.05±0.00 0.01±0.01 0.01±0.00 0.04±0.02 0.02±0.00

Results. We present the mean and the standard deviation (std) of cMSE over 20 times across four
scenarios, as depicted in Fig. 2 and Tab. 1. For each scenario, we consider two sample sizes, 500
and 1,000. In the first scenario, our PKDR is comparable and even better than the estimator based
on h. For scenarios with misspecification, the PKIPW estimator and the baselines with only h0
respectively perform well in scenario 2 and scenario 3. Notably, the PKDR can constantly perform
well in these scenarios, due to its doubly robustness against model mis-specifications. In scenario
4 where both models of h0 and q0 are misspecified, all methods suffer from a large error. Besides,
we can see that the PKIPW method has a large variance in scenario 4, where both estimations of the
policy function and q0 can be inaccurate due to mis-specifications (Robins et al., 2007; Jiang et al.,
2022). It is worth mentioning that compared to others, DFPV exhibits minimal errors in scenario
4. This could be attributed to their approach of individually fitting each variable’s kernel function
using different neural networks, thereby enhancing flexibility in their models.

Sensitivity Analysis. According to Thm. 6.4, hbw is the trade-off between bias and variance. To
show this, we report the cMSE as c in hbw := cσ̂An

−1/5 varies in {0.5, 1.0, 1.5, ..., 4.0}. As c (i.e.,
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hbw) increases, the cMSE first decreases, then rises, and reaches its optimum at c = 1.5, which is
consistent with the optimal value derived in Kallus et al. (2021).
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Figure 3: Sensitive analysis of c in hbw = cσ̂An
−1/5 in PKIPW (left) and PKDR (right) estimators.

7.1.2 HIGH DIMENSIONAL STUDY

Data generation. We follow Colangelo & Lee (2020); Singh (2020) to generate data, in which we
set dim(X) = 100, dim(Z) = 10, and dim(W ) = 10. Specifically, we set X ∼ N(0,Σ) with
Σ ∈ R100×100 has Σii = 1 for i ∈ [dim(X)] and Σij = 1

2 · I|i− j| = 1 for i ̸= j. The outcome Y
is generated from Y = A2 + 1.2A+ 1.2(X⊤βx +W⊤βw) +AX1 + 0.25U , where βx, βw exhibit
quadratic decay, i.e., [βx]j = j−2. More details can be found in the Appx. H.

Results. We report the mean and std of cMSE over 20 times with sample sizes set to 1,000 and 2,000,
as depicted in Fig. 2 and Tab. 1. As shown, we find that the ATE curve fitted by PKDR estimator is
closest to the real curve, and its cMSE is also the lowest. This result suggests the robustness of our
methods against high-dimensional covariates.

7.2 LEGALIZED ABORTION AND CRIME

We obtain the data from Donohue III & Levitt (2001); Mastouri et al. (2021) that explores the rela-
tionship between legalized abortion and crime. In this study, we take the treatment as the effective
abortion rate, the outcome variable Y as the murder rate, the treatment-inducing proxy Z as the
generosity towards families with dependent children, and the outcome-inducing proxies W as beer
consumption per capita, log-prisoner population per capita, and concealed weapons laws. We follow
the protocol Woody et al. (2020) to preprocess data. We take the remaining variables as the unob-
served confounding variables U . Following Mastouri et al. (2021), the ground-truth value of β(a) is
taken from the generative model fitted to the data.

Results. The results are presented in Fig. 2 and Tab. 1. It is evident that all three methods effectively
estimate β(a), which suggests the utility of our method in real-world scenarios. However, when a
falls within the range of [1.5, 2], deviations become apparent in the fitted curve. We attribute these
deviations to an inadequate sample size as Fig. 2. It’s worth noting that the DFPV method employing
Neural Networks (NN) exhibits higher variances. This suggests potential numerical instability in
certain experiments, a phenomenon in line with observations made in Kompa et al. (2022).

8 CONCLUSION

In this paper, we propose a kernel-based doubly robust estimator for continuous treatments within
the proximal causal framework, where we replace the conventional indicator function with a kernel
function. Additionally, we propose a more efficient approach to estimating the nuisance function q0
by estimating the policy function and incorporating it into a min-max optimization. Our analysis
reveals that the MSE converges at a rate of O(n−4/5) when we select the optimal bandwidth to
balance bias and variance. We demonstrate the utility of our PKDR estimator in synthetic as well as
the legalized abortion and crime dataset.

Limitation and future works. Our estimator is required to estimate the policy function, which may
lead to a large variance especially when the policy function is mis-specified. Potential solutions
include the variance reduction method including the stabilized IPW estimator, whose estimation
forms and theoretical analysis will be explored in the future.
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A PRELIMINARIES

A.1 NOTATION

In this section, we will define some notations used throughout the proof in the appendix. Moreover,
we will introduce other notations in the corresponding subsection.

Table 2: Table of Notations

Notation Meaning

Z,W Treatment-inducing proxy and outcome-inducing proxy

X,U Covariates and unobserved confounders

Y (a) The potential outcome with A = a

do(a) do(A = a), intervention variable AS with a value of aS

β(a)
ATE at point a obtained by Eq. 1 or 4

Average causal effect at point a

β̂(a) Estimate of β(a)

h0 := h0(a,w, x) The nuisance/bridge function that satisfies Eq. 2

q0 := h0(a, z, x) The nuisance/bridge function that satisfies Eq. 3

K(·) Kernel function

κ2(K)
∫
u2k(u)du

Ω
(i)
2 (K) Second moment of K, i.e.

∫
(k(i)(u))2du

Khbw
(a) Kernel function with bw, i.e. Khbw

(u) = h−1
bwk(u/hbw)

Phbw

O (·) The distribution approach a point mass at O at hbw → 0

Pεhbw

O (·) The special submodel, i.e. Pεhbw

O = (1− ε)P0
O + εPhbw

O

P0
O(·) The true distribution

β(·;Pεhbw) A statistical functional that map the distribution Pεhbw to a real

Q,H (resp. M,G) The bridge functional class (resp. The dual functional class)

projq(·) Projection operator, i.e. E [·|A,W,X]

R̂n(δ;G) The empirical Rademacher complexity of the function class G
Rn(δ;G) The population Rademacher complexity of the function class G

δn The upper bound on the Rademacher complexity of the function class G
N(ε,G, ∥ · ∥∞) The size of the smallest empirical cover of G
H(ϵ,G, ∥ · ∥) The empirical metric entropy of G

Φq,Φh Moment restriction, defined by Eq. 14

Φλm
q ,Φ

λg

h Moment restriction with regularization , defined by Eq. 12

Φn
q ,Φ

n
h The empirical version of Φq,Φh

Φn,λm
q ,Φ

n,λg

h The empirical version of Φλm
q ,Φ

λg

h

E[·],P[·] The expectation and the probability distribution of a random variable

||f ||L2

√∫
|f (x)|2 dP (x)

||x||2
√∑

i |xi|
2
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A.2 CRITICAL RADIUS

The bound we provide is based on the critical radii of the function classes involved, as described
in Sec. 6. These critical radius are defined in terms of the empirical localized Rademacher critical
radius, which characterizes the critical radius of a function class up to a constant factor. Specifically,
the empirical Rademacher complexity and population Rademacher complexity of a function class
G : V → [−1, 1] is defined as follows:

R̂n(δ;G) = E{ϵi}n
i=1

[
sup

g∈G,∥g∥2≤δ

∣∣∣∣∣ 1n
n∑

i=1

ϵig (vi)

∣∣∣∣∣
]

Rn(δ;G) = E{ϵi}n
i=1,{vi}

n
i=1

[
sup

g∈G,∥g∥2≤δ

∣∣∣∣∣ 1n
n∑

i=1

ϵig (vi)

∣∣∣∣∣
]

where {vi}ni=1 are i.i.d. samples from some distribution D on V and {ϵi}ni=1 are i.i.d. Rademacher
random variables taking values equiprobably in {−1, 1}. The empirical critical radius is defined as
any solution δ̂n to R̂n(δ;G) ≤ δ2 and the critical radius of a function class G is the smallest solution
δ∗n to the inequality Rn(δ;G) ≤ δ2. Proposition 14.1 of Wainwright (2019) shows that w.p. 1− ζ,

δn = O

(
δ̂n +

√
log(1/ζ)

n

)
.

Thus we can choose δn based on the empirical critical radius δ̂n. Moreover, Dikkala et al. (2020)
suggests using the covering number to obtain an upper bound on the empirical Rademacher com-
plexity and thus the critical radius. We denote withN(ϵ,G, ∥·∥) as the size of the smallest empirical-
cover of G. The empirical metric entropy of G is defined as H(ϵ,G, ∥ · ∥) = log(N(ϵ,G, ∥ · ∥)). An
empirical δ-slice of G is defined as Gδ = {g ∈ G : ∥g∥2,n ≤ δ}. Then the empirical critical radius
of G is upper bounded by any solution to the inequality:∫ δ

δ2/8

√
H(ϵ,Gδ, ∥ · ∥)

n
dϵ ≤ δ2

20
(10)
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B RELATED WORKS

Regarding the proximal causal inference framework, there is a growing literature on using proxy
variables for causal inference from observational data, due to its ability to account for unmeasured U
through two confounding proxy variables: a treatment-inducing proxy Z and an outcome-inducing
proxy W , which are respectively independent to the outcome and the treatment.

The proximal causal learning (PCL) can be dated back to Kuroki & Pearl (2014), which established
the identification of causal effects in the presence of unobserved confounders under linear mod-
els. Then Miao et al. (2018b) and its extensions (Shi et al., 2020; Tchetgen et al., 2020) proposed
to leverage two proxy variables (Z,W ) for causal identification by estimating the outcome bridge
function (Eq. 2). Building upon this foundation, Cui et al. (2023); Ying et al. (2023) introduced a
treatment bridge function (Eq. 3) and incorporated it into the Proximal Inverse Probability Weight-
ing (PIPW) estimator. Besides, under binary treatments, they derived the Proximal Doubly Robust
(PDR) estimator via influence functions. However, their methods cannot handle continuous treat-
ments, whereas the treatments can be continuous in many real-world scenarios, including social
science, biology, and economics. The main challenge for continuous treatments lies in the estima-
tion infeasibility caused by the indicator function in two estimators. To the best of our knowledge,
we are the first to generalize the PIPW estimator and PDR estimator to the continuous case by
replacing the conventional indicator function with a kernel function. The advantage of using the
kernel function is that we do not need to discretize the continuous data, but use the kernel function
to incorporate local information about the similar treatments. Besides,we derive the corresponding
influence function, a process that involves handling the Gateaux derivative of bridge functions.

Most existing work focuses on how to estimate the outcome bridge function. Singh (2020) and
Mastouri et al. (2021) propose to use a two-stage kernel estimator for the outcome bridge function
(KPV), and Xu et al. (2021) further improved upon this with an adaptive features derived from
neural networks (DFPV). Besides, an alternative approach based on maximum moment restriction
(MMR) uses single-stage estimators of the bridge function. The masterpiece in this regard is that
Mastouri et al. (2021) extends the MMR framework to the proximal setting through the use of
kernel functions (PMMR). Kompa et al. (2022) introducex data-adaptive kernel functions derived
from neural networks. Another traditional method is to transform the conditional moment equation
into an unconditional moment equation, and then solve a minimax optimization problem (Dikkala
et al., 2020; Ghassami et al., 2022; Qi et al., 2023) (MINIMAX, POR). However, these methods
that estimate only the outcome bridge function, rather than also estimating the treatment bridge
function, which would permit us to construct a doubly robust estimator. For the treatment bridge
function, (Kallus et al., 2021; Ghassami et al., 2022) solved q0(a, Z,X) by running an optimization
algorithm for each a = 0, 1. However, it is computationally infeasible for continuous treatments.
Instead of running an optimization for each a, we would like to estimate q0(A,Z,X) with a single
optimization algorithm. To achieve this goal, we propose a two-stage estimation algorithm. We
first estimate the policy function and then convert the conditional moments into equivalent
forms, which can lead to a min-max optimization problem.
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C REGULARITY CONDITION

One conventional approach to studying their solutions is through singular value decomposition, as
discussed by Carrasco et al. (2007). We first introduce the singular value decomposition of the
operator:

Given Hilbert spaces H1 and H2, a compact operator K : H1 7−→ H2 and its adjoint operator
K ′ : H2 7−→ H1, there exists a singular system (λn, φn, ψn)

+∞
n=1 of K with nonzero singular values

{λn} and orthogonal sequences {φn ∈ H1} and {ψn ∈ H2} such that

Kφn = λnψn,K
′ψn = λnφn.

By means of singular value decomposition, Picard’s theorem characterizes the conditions for the
existence of solutions of the corresponding Fredholm integral equations of the first type. We apply
Picard’s theorem to the setting of proxy variables.

Let L2{P(x)} denote the space of all square integrable functions of x with respect to a cu-
mulative distribution function P(x), which is a Hilbert space with inner product ⟨g1, g2⟩ =∫
g1(x)g2(x)dP(x). For brevity, we replace Wij and Zij with W and Z below. Let

Ta,x denote the operator: L2{P(w|a, x)} → L2{P(z|a, x)}, Ta,xh = E[h(W )|z, a, x] and
let (λa,x,n, φa,x,n, ϕa,x,n)

∞
n=1 denote a singular value decomposition of Ta,x. Also let T ′

a,x

denote the operator: L2{P(z|a, x)} → L2{P(w|a, x)}, T ′
a,xq = E[q(Z)|w, a, x] and let

(λ′a,x,n, φ
′
a,x,n, ϕ

′
a,x,n)

∞
n=1 denote a singular value decomposition of T ′

a,x. We assume the following
regularity conditions:
Assumption C.1. (Regularity conditions)

1. (Existence of compact operator Ta,x and T ′
a,x)∫ ∫

p(w|z, a, x)p(z|w, a, x)dwdz <∞;

2. (Existence of solutions) ∫
E2[Y |z, a, x]p(z|a, x)dz <∞;

3. (Eigenvalue structure of compact operator Ta,x)
∞∑

n=1

λ−2
a,x,n|⟨E[Y |z, x, x], ϕa,x,n⟩|2 <∞;

4. (Existence of solutions) ∫
p−2(a|w, x)p(w|a, x)dw <∞;

5. (Eigenvalue structure of compact operator T ′
a,x)

∞∑
n=1

λ
′−2
a,x,n|⟨p−1(a|w, x), ϕ′a,x,n⟩|2 <∞.

Theorem C.2 (Cui et al. (2023)). Under Assumption C.1(1,2,3) and Assumption 3.4(1), there exist
functions h(w, a, x) such that

E[Y |Z,A, x] =
∫
h(w,A, x)dP(w|Z,A, x),

almost surely.

Theorem C.3 (Cui et al. (2023)). Under Assumption C.1(1,4,5) and Assumption 3.4(2), there exist
functions q(z, a, x) such that

E[q(Z, a, x)|W,A = a, x] =
1

p(A = a|W,x)

almost surely.
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D ESTIMATING NUISANCE FUNCTION

We next return to how to solve the nuisance function q. For simplicity, define

Rq(q; p) = E
[(

1

p (A |W,X)
− q (A,Z,X)

)
| A,W,X

]

Notice that Rq(q, p) being zero almost surely is actually a conditional moment equation, which is
equivalent to finding q such that the following residual mean squared error (RMSE) is minimized
for all q:

min
q∈Q

Lq(q; p) := E
[
(Rq (q, p))

2
]

(11)

D.1 PROOF OF LEMMA 5.1

In the following steps, we will utilize the technique of minimax estimation. To begin with, we will
introduce Interchangeability:

Definition D.1 (Fenchel duality). Let ℓ : R × R → R+ be a proper, convex, and lower semi-
continuous loss function for any value in its first argument and ℓ⋆y := ℓ⋆(y, ·) a convex conjugate of
ℓy := ℓ(y, ·) which is also proper, convex, and lower semi-continuous w.r.t. the second argument.
Then, ℓy(v) = maxu{uv − ℓ⋆y(u)}. The maximum is achieved at v ∈ ∂ℓ⋆(u), or equivalently
u ∈ ∂ℓ(v).

Theorem D.2 (Interchangeability). Let ω be a random variable on Ω and, for any ω ∈ Ω, the
function f(·, ω) : R → (−∞,∞) is proper and upper semi-continuous concave function. Then,

Eω

[
max
u∈R

f(u, ω)

]
= max

u(·)∈U(Ω)
Eω[f(u(ω), ω)],

where U(Ω) := {u(·) : Ω → R} is the entire space of functions defined on the support Ω.

Lemma 5.1. Denote ∥f(X)∥2L2
:= E[f2(X)]. For any parameter λm > 0, we have

Lq(q; p) = sup
m∈M

E [m(A,W,X) (q0(A,Z,X)− 1/p(A|W,X))]− λm∥m(A,W,X)∥2L2
,

where M is the space of continuous functions over (A,W,X).

Proof. Notice that the squared loss function ℓy(v) = 1
4λ (y− v)

2, we have ℓ⋆y(u) = uy+λu2. Then
by Fenchel duality, we have

ℓy(v) =
1

4λ
(y − v)2 = max

u∈R

{
vu− ℓ⋆y(u)

}
= max

u∈R

{
vu− uy − λu2

}
= max

u∈R

{
(v − y)u− λu2

}
Let y = E

[
1

p(A|W,X) | A,W,X
]
, v = E [q (A,Z,X) | A,W,X] , u = m, we have

1

4λm

(
E
[

1

p (A |W,X)
| A,W,X

]
− E [q (A,Z,X) | A,W,X]

)2

= max
m∈R

{(
E [q (A,Z,X) | A,W,X]− E

[
1

p (A |W,X)
| A,W,X

])
m− λmm

2

}
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Therefore, applying the interchangeability, we have

Lq(q; p) = 4λmE

[
1

4λm

(
E
[(

1

p (A |W,X)
− q (A,Z,X)

)
| A,W,X

])2
]

=4λmE
[
max
m∈R

{(
E [q (A,Z,X) | A,W,X]− E

[
1

p (A |W,X)
| A,W,X

])
m− λmm

2

}]
=4λmE

[
max
m∈R

{
EZ

[
q (A,Z,X)− 1

p (A |W,X)
| A,W,X

]
m− λmm

2

}]
=4λm max

m∈M
E
[
E
[
q (A,Z,X)− 1

p (A |W,X)
| A,W,X

]
m (A,W,X)− λmm

2 (A,W,X)

]
=4λm max

m∈M
E
[(
q (A,Z,X)− 1

p (A |W,X)

)
m (A,W,X)− λmm

2 (A,W,X)

]
We define

Φλm
q (q,m; p) = E

[(
q (A,Z,X)− 1

p (A |W,X)

)
m (A,W,X)

]
− λm ∥m∥22 . (12)

As long as the dual function class M is expressive enough such that 1
2λm

Rq (q, p) ∈ M, we have

Lq(q; p) = max
m∈M

Φn,λm
q (q,m; p)

we can express Eq. 11 in an alternative form:

min
q∈Q

max
m∈M

Φλm
q (q,m; p). (13)

We denote the empirical version

Φn,λm
q (q,m; p) =

1

n

∑
i

(
q (zi, ai, xi)−

1

p (ai | wi, xi)

)
m (ai, wi, xi)− λm ∥m∥22,n .

Furthermore, for simplicity, we define Φq(q,m; p) as the non regularized version of Φλm
q .

Φq(q,m; p) = E
[(
q (A,Z,X)− 1

p (A |W,X)

)
m (A,W,X)

]
(14)

In fact, due to the fact that we need to estimate the density function p, we consider the following
min-max optimization problem:

min
q∈Q

max
m∈M

Φn,λm
q (q,m; p̂) (15)

Similarly, for the nuisance function h, we consider the following min-max optimization problem:

min
h∈H

max
g∈G

Φ
n,λg

h (h, g) =
1

n

∑
i

(yi − h (wi, ai, xi)) g (ai, zi, xi)− λg ∥g∥22,n . (16)

D.2 COMPARISON OF EXISTING METHODS

Closely related to us is the estimation of the general treatments proposed by Kallus et al. (2021).
They hope to estimate the generalized average causal effect (GACE):

J = E
[∫

Y (a)π(a | X)dµ(a)

]
.

where π(a | X) is contrast function. Based on the idea, they propose the method for solve the
nuisance function q

min
q∈Q

max
m∈M

En[π(A | X)q(A,Z,X)m(A,W,X)− (Tm)(W,X)]− λm ∥m∥22,n
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where (Tm)(w, x) =
∫
m(a,w, x)π(a|x)dµ(a).

However, consider the continuous treatments a ∈ supp(A), then in this case, π(a | X) = I(A = a).
Correspondingly, the conditional moment equation for the action bridge function q is equivalent to

min
q∈Q

max
m∈M

En[I (A = a) q(A,Z,X)m(A,W,X)− (Tm)(W,X)]− λm ∥m∥22,n

As mentioned above, the main challenge for continuous treatments lies in the estimation infeasibility
caused by the indicator function. Therefore we cannot estimate the nuisance function q when the
treatment is continuous.

The second paper to solve q is from Ghassami et al. (2022). They estimate the causal effects of
binary treatments and illustrate how the double robustness property of these influence functions can
be used to formulate estimating equations for the nuisance functions. Specifically,

min
q∈Q

max
m∈M

En

[
{−I(A = a)q(Z,X) + 1}m (W,X)−m2 (W,X)

]
Then functions q̂(a, z, x) = I(a = 0)q̂0(z, x)+I(a = 1)q̂1(z, x). Note that since the indicator func-
tion appears in their optimization equation, we still cannot solve the case of continuous treatments.

Instead of running an optimization for each a, we would like to estimate q0(A,Z,X) with a single
optimization algorithm. To achieve this goal, we propose a two-stage estimation algorithm. We first
estimate the policy function and then convert the conditional moments into equivalent forms, which
can lead to a min-max optimization problem.

min
q∈Q

max
m∈M

1

n

∑
i

(
q(ai, zi, xi)−

1

p(ai|wi, xi)

)
m(ai, wi, xi)− λm∥m∥22,n.

Since the treatment is continuous, we have to estimate the policy function before solving the moment
equation. However, when the treatment is binary, we can transform the moment equation so that the
policy function disappears. This is the cost of estimating the causal effects of continuous treatments.
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E PROOFS AND DERIVATION

E.1 PROOF OF THEOREM 4.2

Theorem 4.2. Under assump. 4.1, suppose β(a) = E[I(A = a)q0(a, Z,X)Y ] is continuous and
bounded uniformly respect to a, then we have

E[Y (a)] = E[I(A = a)q0(a, Z,X)Y ] = lim
hbw→0

E [Khbw
(A− a)q0(a, Z,X)Y ] ,

Proof. By definition we have

E[I(A = a0)q0(a0, Z,X)Y ] =

∫
O\A

yq(a0, z, x)dP (a0, z, x, y)

=

∫
O

δa0
(a) yq0(a, z, x)dP (a, z, x, y)

=

∫
A

δa0 (a)

∫
O\A

yq0(a, z, x)p (a, z, x, y) dµ(z, x, y)da

=

∫
A

δa0
(a)β (a) da = ⟨δa0

, β⟩ = β (a0)

where the last equation uses the properties of the Dirac function. Similarly for the kernel function,
we also have

⟨Khbw
, β⟩ =

∫
A

Khbw
(a− a0)β (a) da

a=hbws+a0=========

∫
S

K(s)β (hbws+ a0) ds

As β is continous and bounded uniformly, this integral is dominated by CK(s). Moreover, be-
cause β is continuous, the integral converges point-wise to K(s)β(a0). Applying the dominated
convergence theorem and Assumption 4.1(The kernel function integral is 1.) yields

lim
hbw→0

⟨Khbw
, β⟩ =

∫
S

lim
hbw→0

K(s)β (hbws+ a0) ds =

∫
S

K(s)β (a0) ds = β (a0)

which finally shows
E[Y (a)] = lim

hbw→0
E [Khbw

(A− a)q0(A,Z,X)Y ]

E.2 PROOF OF THEOREM 4.5

We denote PX as the distribution function for any variable X , and rewrite β(a) as β(a;P0
O) where

P0
O denotes the true distribution for O := (A,Z,W,X, Y ). Besides, we consider the special sub-

model Pεhbw

O = (1−ε)P0
O+εPhbw

O , where Phbw

O (·) maps a point o to a distribution ofO, i.e., Phbw

O (o)
for any o denotes the distribution of O that approach a point mass at o as hbw → 0.
Theorem 4.5. Under a nonparametric model, the limit of the Gateaux derivative is

lim
hbw→0

∂

∂ε
β(a;Pεhbw )

∣∣∣∣
ε=0

= (Y − h0(a,W,X)) q0(a, Z,X) lim
hbw→0

Khbw (A− a) + h0 (a,W,X)− β(a)

Proof. Similar to β(a) rewritten as β(a;P0
O), we can rewrite h0 (a,w, x) as h0

(
a,w, x;P0

AWX

)
.

For simplicity, we omit the subscript of the distribution. Please identify according to context.

∂

∂ε
β(a;Pεhbw)

∣∣∣∣
ε=0

=
∂

∂ε

∫
h0
(
a,w, x;Pεhbw

)
dPεhbw (w, x)

=

∫
∂

∂ε
h0
(
a,w, x;Pεhbw

)∣∣
ε=0

dP0 (w, x)︸ ︷︷ ︸
(I)

+

∫
h0 (a,w, x)

∂

∂ε
pεhbw (w, x)

∣∣
ε=0

dµ (w, x)︸ ︷︷ ︸
(II)
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Since Pεhbw

O = (1− ε)P0
O + εPhbw

O , we have

∂

∂ε
Pεhbw

O

∣∣∣
ε=0

= Phbw

O − P0
O.

For term (II)

(II) =

∫
h0 (a,w, x)

∂

∂ε
pεhbw (w, x)

∣∣
ε=0

dµ (w, x)

=

∫
h0 (a,w, x)

(
phbw (w, x)− p0 (w, x)

)
dµ (w, x)

hbw→0
====== h0 (a,W,X)− β (a)

For term (I)

(I) =

∫
∂

∂ε
h0
(
a,w, x;Pεhbw

)∣∣
ε=0

dP0 (w, x)

=

∫
∂

∂ε
h0
(
a,w, x;Pεhbw

)∣∣
ε=0

p0 (a,w, x)

p0 (a | w, x)
dµ (w, x)

=

∫
∂

∂ε
h0
(
a,w, x;Pεhbw

)∣∣
ε=0

p0 (a,w, x)

∫
q0 (a, z, x) p

0 (z | a,w, x) dµzdµ (w, x)

=

∫
q0 (a, z, x)

∂

∂ε
h0
(
a,w, x;Pεhbw

)∣∣
ε=0

p0 (w, y | a, z, x) p0 (a, z, x) dµ (w, x, z, y)

And by Eq. 2, we have

∂

∂ε

∫ (
y − h0

(
a,w, x;Pεhbw

))
pεhbw (y, w | a, z, x) dµ (y, w)

∣∣∣∣
ε=0

= 0

Then

∫
∂

∂ε
h0
(
a,w, x;Pεhbw

)∣∣
ε=0

p0 (w, y | a, z, x)dµ (w, y)

=

∫
[y − h0 (a,w, x)]

∂
∂εp

εhbw (w, y, a, z, x)
∣∣
ε=0

p0 (a, z, x)
dµ (w, y)

−
∫

[y − h0 (a,w, x)]
p0 (w, y, a, z, x) ∂

∂εp
εhbw (a, z, x)

∣∣
ε=0

(p0)2 (a, z, x)
dµ (w, y)

where we use the equation

∂

∂ε
pεhbw (w, y | a, z, x)

∣∣∣∣
ε=0

=
∂
∂εp

εhbw (w, y, a, z, x)
∣∣
ε=0

p0 (a, z, x)
−
p0 (w, y, a, z, x) ∂

∂εp
εhbw (a, z, x)

∣∣
ε=0

(p0)2 (a, z, x)

Substituting (I), we obtain
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(I) =

∫
q0 (a, z, x) (y − h0 (a,w, x)) p

0 (a, z, x)
∂
∂εp

εhbw (w, y, a, z, x)
∣∣
ε=0

p0 (a, z, x)
dµ (w, x, z, y)

−
∫
q0 (a, z, x) (y − h0 (a,w, x)) p

0 (a, z, x)
p0 (o) ∂

∂εp
εhbw (a, z, x)

∣∣
ε=0

(p0)
2
(a, z, x)

dµ (w, x, z, y)

=

∫
q0 (a, z, x) (y − h0 (a,w, x)) p

0 (a, z, x)
phbw (o)− p0 (o)

p0 (a, z, x)
dµ (w, x, z, y)

−
∫
q0 (a, z, x) (y − h0 (a,w, x)) p

0 (a, z, x)
p (o)

(
phbw (a, z, x)− p0 (a, z, x)

)
(p0)

2
(a, z, x)

dµ (w, x, z, y)

hbw→0
====== q0 (a, Z,X) (Y − h0 (a,w, x)) lim

hbw→0
phbw

A (a)

+

∫
q0 (a, z, x) (y − h0 (a,w, x)) p

0 (w, y | a, z, x) phbw (a, z, x)dµ (w, x, z, y)

hbw→0
====== q0 (a, Z,X) (Y − h0 (a,W,X)) lim

hbw→0
phbw

A (a)

where the last line is because of Eq. 2.

The corresponding probability density function (pdf) phbw

O (o) = Khbw
(O − o)I(p0O(o) > hbw) is

our kernel density, and we thus have limhbw→0 p
hbw

O (o) = limhbw→0Khbw
(O − o). Combining the

two terms, we get

lim
hbw→0

∂

∂ε
β(a;Pεhbw )

∣∣∣∣
ε=0

= (Y − h0(a,W,X)) q0(a, Z,X) lim
hbw→0

Khbw (A− a) + h0 (a,W,X)− β(a)

E.3 PROOF OF THEOREM 6.2

To prove Theorem 6.2, we first give some Lemma.
Lemma E.1 (Theorem 14.1 in Wainwright (2019)). Given a star-shaped, b-uniformly bounded func-
tion class F , let δn be any positive solution of the inequality Rn(δ;G) ≤ δ2/b. Then for any t ≥ δn,
we have ∣∣∥f∥22,n − ∥f∥22

∣∣ ≤ 1

2
∥f∥22 +

t2

2
, ∀f ∈ F ,

with probability at least 1 − c1e
−c2nt

2/b2 . If in addition nδ2n ≥ 2 log (4 log (1/δn)) /c2, then we
have that ∣∣∥f∥22,n − ∥f∥22

∣∣ ≤ c0δn, ∀f ∈ F ,
with probability at least 1− c′1 exp(−c′2nδ2n/b2).
Lemma E.2 (Lemma 11 in Foster & Syrgkanis (2019)). Consider a function class F , with
supf∈F ∥f∥∞ ≤ b, and pick any f⋆ ∈ F . Also, consider a loss function ℓ : R × Y 7→ R which
is L-Lipschitz in its first argument with respect to the l2 norm. Let δ2n ≥ 4d log(41 log(2c2n))

c2n
be any

solution to the inequalities:

Rn (δ; star (F − f)) ≤ δ2

∥F∥∞
,

where star (F − f) = α (f − f∗) for ∀f ∈ F , α ∈ [0, 1]. Then for any t ≥ δn and some universal
constants c1, c2 > 0, with probability 1− c1e

−c2nt
2/b2 , it holds that

|(En [ℓ (f(x), y)]− En [ℓ (f
⋆(x), y)])− (E [ℓ (f(x), y)]− E [ℓ (f⋆(x), y)])| ≤ 18Ldt {∥f − f⋆∥2 + t} ,

for any f ∈ F . If furthermore, the loss function ℓ is linear in f , i.e., ℓ((f+f ′)(x), y) = ℓ(f(x), y)+
ℓ(f ′(x), y) and ℓ(αf(x), y) = αℓ(f(x), y), then the lower bound on δ2n is not required. If the
outcome f̂ of constrained ERM satisfies that with the same probability,

E
[
ℓ
(
f̂(x), y

)]
− E [ℓ (f⋆(x), y)] ≤ 18Ldt

{∥∥∥f̂ − f⋆
∥∥∥
2
+ t
}
.
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Lemma E.3. Let some a, b, d ≥ 0 be given, and suppose that

aX2 ≤ bX + d,

for some X ≥ 0. Then, we have

X ≤ b+
√
ad

a

Proof. Since a, b and d are both positive, the quadratic aX2 − bX − d must have a positive and a
negative root. Therefore, this quadratic is negative if and only if X is less than the positive root; that
is, we have

aX2 − bX − d ≤ 0

⇐⇒ X ≤ b+
√
b2 + 4ad

2a

=⇒ X ≤ b+
√
ad

a
.

Proposition E.4. Let δqn respectively be the upper bound on the Rademacher complexity of M. For

any η ∈ (0, 1), define δq := δqn + cq0

√
log(cq1/η)

n for some constants cq0, c
q
1; then under assump. 6.1,

we have with probability 1− η that

sup
m∈M

Φn,λm
q (q0,m; p̂) ≤ 1

λm

∥∥∥∥1p − 1

p̂

∥∥∥∥2
2

+

{
λm
2

+
c2C2

1

λm
+ cC1

}
(δq)2

Proof. To relate ∥m∥22,n and ∥m∥22, by Lemma E.1, it holds with probability at least 1− η that∣∣∣∥m∥22,n − ∥m∥22
∣∣∣ ≤ 1

2
∥m∥22 +

1

2
(δq)

2
, ∀m ∈ M, (17)

as long as we choose t equal to δq = δqn + c0

√
log(c1/η)

n , where δqn is an upper bound on the

critical radius of M. On the other hand, to relate Φn,λm
q (q̂,m; p̂) = Φn

q (q̂,m; p̂) − λm ∥m∥22
to its empirical version, we apply Lemma E.2 to ℓ(a1, a2) := a1a2, a1 = m(A,W,X), a2 =
q0(A,Z,X)− 1

p̂(A|W,X) that is C1-Lipschitz with respect to a1 by noting q0(A,Z,X)− 1
p̂(A|W,X)

is in [−C1, C1] with some constants C1 = 1/∥p̂∥∞ + ∥Q∥∞:

|ℓ (a1, a2)− ℓ (a′1, a2)| ≤ C1 |a1 − a′1| .

Therefore, we have that there exists a positive constant c such that, with probability at least 1− η,

∣∣Φn
q (q0,m; p̂)− Φq (q0,m; p̂)

∣∣ ≤ cC1

{
δq ∥m∥2 + (δq)

2
}
. ∀m ∈ M (18)

Thus, we can further deduce that, for some absolute constants c > 0, with probability at least 1− η,

sup
m∈M

Φn,λm
q (q0,m; p̂) = sup

m∈M

{
Φn

q (q0,m; p̂)− λm ∥m∥22,n
}

(1)

≤ sup
m∈M

{
Φq (q0,m; p̂) + cC1{δq ∥m∥2 + (δq)

2} − λm ∥m∥22,n
}

(2)

≤ sup
m∈M

{
Φq (q0,m; p̂) + cC1{δq ∥m∥2 + (δq)

2} − λm
2

∥m∥22 +
λm
2

(δq)
2

}
,
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where (1) is derived from Eq. 18, and (2) is derived from Eq. 17. We cam further bound the right-
hand side of the above inequality as

sup
m∈M

Φn,λm
q (q0,m; p̂) ≤ sup

m∈M

{
Φq (q0,m; p̂)− λm

4
∥m∥22

}
+ sup

m∈M

{
cC1{δq ∥m∥2 + (δq)2} − λm

4
∥m∥22 +

λm
2

(δq)2
}

(1)

≤ sup
m∈M

Φq (q0,m; p) +

{
λm
2

+
c2C2

1

λm
+ cC1

}
(δq)2

+ sup
m∈M

{
Φq (q0,m; p̂)− Φq (q0,m; p)− λm

4
∥m∥22

}
(2)

≤ sup
m∈M

{
E
[(

1

p
− 1

p̂

)
m

]
− λm

4
∥m∥22

}
+

{
λm
2

+
c2C2

1

λm
+ cC1

}
(δq)2

(3)

≤ sup
m∈M

{∥∥∥∥1p − 1

p̂

∥∥∥∥
2

∥m∥2 −
λm
4

∥m∥22

}
+

{
λm
2

+
c2C2

1

λm
+ cC1

}
(δq)2

(1)

≤ 1

λm

∥∥∥∥1p − 1

p̂

∥∥∥∥2
2

+

{
λm
2

+
c2C2

1

λm
+ cC1

}
(δq)2

where (1) from the fact sup∥m∥2
{a∥m∥2 − b∥m∥22} ≤ a2/4b for any b > 0, (2) holds from the fact

that Φq (q0,m; p) = 0 and (3) holds from Cauchy’s inequality.

Theorem 6.2. Let δqn respectively be the upper bound on the Rademacher complexity of M. For

any η ∈ (0, 1), define δq := δqn + cq0

√
log(cq1/η)

n for some constants cq0, c
q
1; then under assump. 6.1,

we have with probability 1− η that∥∥projq(q̂ − q0)
∥∥
2
= O

(
δq
√
λ2m + λm + 1 +

∥∥∥∥1p − 1

p̂

∥∥∥∥
2

)
, p stands for p(a|w, x).

Proof. First we note that,

sup
m∈M

Φn,λm
q (q̂,m; p̂) = sup

m∈M

{
Φn

q (q̂,m; p̂)− Φn
q (q0,m; p̂) + Φn

q (q0,m; p̂)− λm ∥m∥22,n
}

≥ sup
m∈M

{
Φn

q (q̂,m; p̂)− Φn
q (q0,m; p̂)− 2λm ∥m∥22,n

}
︸ ︷︷ ︸

(⋆)

+ inf
m∈M

{
Φn

q (q0,m; p̂) + λm ∥m∥22,n
}

By the symmetry of M, we have

inf
m∈M

{
Φn

q (q0,m; p̂) + λm ∥m∥22,n
}
= inf

−m∈M

{
Φn

q (q0,−m; p̂) + λm ∥m∥22,n
}

= inf
−m∈M

{
−Φn

q (q0,m; p̂) + λm ∥m∥22,n
}

= − sup
−m∈M

{
Φn

q (q0,m; p̂)− λm ∥m∥22,n
}

= − sup
−m∈M

Φn,λm
q (q0,m; p̂)

= − sup
m∈M

Φn,λm
q (q0,m; p̂)

In the sequel, we upper and lower bound term (⋆) respectively.

(i). Upper bound of term (⋆).
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By definition of the estimator q̂ and the assumption q0 ∈ Q, we have

sup
m∈M

Φn,λm
q (q̂,m; p̂) ≤ sup

m∈M
Φn,λm

q (q0,m; p̂) .

We have

(⋆) ≤ sup
m∈M

Φn,λm
q (q̂,m; p̂) + sup

m∈M
Φn,λm

q (q0,m; p̂)

≤ 2 sup
m∈M

Φn,λm
q (q0,m; p̂) ≤ 2

(
1

λm

∥∥∥∥1p − 1

p̂

∥∥∥∥2
2

+

{
λm
2

+
c2C2

1

λm
+ cC1

}
(δq)2

)

(ii). Lower bound of term (⋆).

We now invoke Lemma E.2 with ℓ(a1, a2), a1 = m and a2 = q−q0 that isC2-Lipschitz with respect
to a1 by noting q(A,Z,X)− q0(A,Z,X) is in [−C2, C2] with some constants C2 = 2∥Q∥∞:

|ℓ(a1, a2)− ℓ(a′1, a2)| ≤ C2|a1 − a′1|.

Therefore, we have that there exists a positive constant c such that, with probability at least 1− η,∣∣{Φn
q (q,m; p̂)− Φn

q (q0,m; p̂)
}
− {Φq (q,m; p̂)− Φq (q0,m; p̂)}

∣∣ ≤ cC2{δq ∥m∥2 + (δq)2}
(19)

Now we are ready to prove the lower bound on term (⋆). Since mq := 1
2λm

projq (q − q0) ∈ M,
and Star-shaped, we have mq

2 ∈ M

(⋆) = sup
m∈M

{
Φn

q (q̂,m; p̂)− Φn
q (q0,m; p̂)− 2λm ∥m∥22,n

}
≥ Φn

q

(
q̂,
mq

2
; p̂
)
− Φn

q

(
q0,

mq

2
; p̂
)
− λm

2
∥mq∥22,n

≥Φq

(
q̂,
mq

2
; p̂
)
− Φq

(
q0,

mq

2
; p̂
)

︸ ︷︷ ︸
(⋄)

−cC2

{
δq
∥∥∥mq

2

∥∥∥
2
+ (δq)

2
}
− λm

2

(
3

2
∥mq∥22 +

(δq)
2

2

)

where the last line holds from the Eq. 17 and 19. For the term (⋄), we have

(⋄) = Φq

(
q̂,
mq

2
; p
)
+Φq

(
q̂,
mq

2
; p̂
)
− Φq

(
q̂,
mq

2
; p
)
− Φq

(
q0,

mq

2
; p
)

+Φq

(
q0,

mq

2
; p
)
− Φq

(
q0,

mq

2
; p̂
)

= Φq

(
q̂,
mq

2
; p
)
+ E

[(
1

p
− 1

p̂

)
mq

2

]
+ E

[(
1

p̂
− 1

p

)
mq

2

]
= Φq

(
q̂,
mq

2
; p
)

where we used Φq

(
q0,

mq

2 ; p
)
= 0. Moreover, since we have

E
[
q̂ (A,Z,X)− 1

p (A |W,X)
| A,W,X

]
= E [q̂ (A,Z,X)− q0 (A,Z,X) | A,W,X]

= projq (q̂ − q0)

and mq = 1
2λm

projq (q̂ − q0), we have

Φq

(
q̂,
mq

2
; p
)
=

1

2
E
[(
q (Z,A,X)− 1

p (A |W,X)

)
mq (A,W,X)

]
=

1

2
E
[
mq (A,W,X)E

[
q (A,Z,X)− 1

p (A |W,X)
| A,W,X

]]
=

1

4λm
E
[(
projq (q̂ − q0)

)2]
= λm ∥mq∥22
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Therefore, we obtain the lower bound of (⋆):

(⋆) ≥ λm ∥mq∥22 − cC2

{
δq
∥∥∥mq

2

∥∥∥
2
+ (δq)

2
}
− λm

2

(
3

2
∥mq∥22 +

(δq)
2

2

)

(iii). Combining upper bound and lower bound of term (⋆).

Now we are ready to combine the upper bound and lower bound of (⋆).

λm ∥mq∥22 − cC2

{
δq
∥∥∥mq

2

∥∥∥
2
+ (δq)

2
}
− λm

2

(
3

2
∥mq∥22 +

(δq)
2

2

)

≤ 2

(
1

λm

∥∥∥∥1p − 1

p̂

∥∥∥∥2
2

+

{
λm
2

+
c2C2

1

λm
+ cC1

}
(δq)2

)

This give a quadratic inequality on ∥mq∥2, i.e.

λm ∥mq∥22 − 2cC2δ
q︸ ︷︷ ︸

(B)

∥mq∥2 −

(
8

λm

∥∥∥∥1p − 1

p̂

∥∥∥∥2
2

+

{
5λm +

8c2C2
1

λm
+ 8cC1 + 4cC2

}
(δq)2

)
︸ ︷︷ ︸

(C)

≤ 0

By Lemma E.3, we have that

∥mq∥2 ≤ B +
√
B2 + 4λmC

2λm
≤ 1

λm

(
B +

√
λmC

)
Applying the definition of A and B, we conclude that, with probability at least 1− η,

∥mq∥2 ≤ 2cC2δ
q

λm
+

1

λm

√√√√λm

(
8

λm

∥∥∥∥1p − 1

p̂

∥∥∥∥2
2

+

{
5λm +

8c2C2
1

λm
+ 8cC1 + 4cC2

}
(δq)2

)

≤

(
2cC2

λm
+

√
5 +

8cC1 + 4cC2

λm
+

8c2C2
1

λ2m

)
δq +

2
√
2

λm

∥∥∥∥1p − 1

p̂

∥∥∥∥
2

≤

√
2

(
5 +

8cC1 + 4cC2

λm
+

4c2 (2C2
1 + C2

2 )

λ2m

)
δq +

2
√
2

λm

∥∥∥∥1p − 1

p̂

∥∥∥∥
2

≲

√
1 +

1

λm
+

1

λ2m
δq +

1

λm

∥∥∥∥1p − 1

p̂

∥∥∥∥
2

where the third line holds from the
√
a+

√
b ≤

√
2(a+ b). According Eq. 11, we have√

Lq (q; p) =

√
E
[(
projq (q̂ − q0)

)2]
=

√
4λ2mE

[
(mq)

2
]
= 2λm ∥mq∥2 ,

we can bound the Projected RMSE by∥∥projq(q̂ − q0)
∥∥
2
=
√
Lq (q; p) = 2λm ∥mq∥2 ≲ δq

√
λ2m + λm + 1 +

∥∥∥∥1p − 1

p̂

∥∥∥∥
2

For bridge function h, we also the similar theorem. We first give some assumption.
Assumption E.5. (1) (Boundness) ∥G∥∞ <∞ and y is uniformly bounded; (2) (Symmetric) G is a
symmetric class, i.e, if g ∈ G, then −g ∈ G; (3) (Star-shaped) G is star-shaped class, that is for each
function g in the class, αg for any α ∈ [0, 1] also belongs to the class; (4) (Realizability) h0 ∈ H;
(5) (Closedness) 1

2λg
projh(h− h0) ∈ H.
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Theorem E.6. Let δhn respectively be the upper bound on the Rademacher complexity of G. For any

η ∈ (0, 1), define δh := δhn + ch0

√
log(ch1 /η)

n for some constants ch0 , c
h
1 ; then under assump. E.5, we

have with probability 1− η that∥∥∥projh(ĥ− h0)
∥∥∥
2
= O

(
δh
√
λ2g + λg + 1

)
The proof of the Thm. E.6 is detailed in Kallus et al. (2021).

E.4 PROOF OF THEOREM 6.4

We prove the bias and variance of the PKDR estimator given Eq. 7 respectively. The proof method
comes from Colangelo & Lee (2020); Kallus & Uehara (2020).

Theorem E.7. Under assump. 3.1-3.4 and 4.1, suppose ∥ĥ − h∥2 = o(1), ∥q̂ − q∥2 = o(1)

and ∥ĥ − h∥2∥q̂ − q∥2 = o((nhbw)
−1/2), nh5bw = O(1), nhbw → ∞, h0(a,w, x), p(a, z|w, x)

and p(a,w|z, x) are twice continuously differentiable wrt a, as well as h0, q0, ĥ, q̂ are uniformly
bounded. Then for any a, we have the following for the bias of the PKDR estimator given Eq. 7:

E
[
β̂ (a)

]
− β(a) =

h2bw
2
κ2(K)B + o((nhbw)

−1/2),

where B = E[q0(a, Z,X)[2 ∂
∂Ah0(a,W,X) ∂

∂Ap(a,W | Z,X) + ∂2

∂A2h0(a,W,X)]].

Proof. We calculate the expectation of the estimator for a single data point. For simplicity, we treat
this data point as a random variable. We have

E
[
β̂ (a)− β(a)

]
= E

[
β̂ (a)

]
− β(a)

= E
[
Khbw

(A− a)
{(
Y − ĥ (a,W,X)

)
q̂ (a, Z,X)

}]
︸ ︷︷ ︸

(I)
− E [Khbw

(A− a) {(Y − h0 (a,W,X)) q0 (a, Z,X)}]︸ ︷︷ ︸
(II)

+ E
[
ĥ (a,W,X)− h0 (a,W,X)

]
︸ ︷︷ ︸

(III)
+ E [Khbw

(A− a) (Y − h0 (a,W,X)) q0 (a, Z,X)]︸ ︷︷ ︸
(IV)

For the (IV) term, we first have

E [Khbw
(A− a) q0 (a, Z,X) (Y − h0 (a,W,X))]

=E [Khbw
(A− a) q0 (a, Z,X)E [(Y − h0 (a,W,X)) | A,Z,X]]

=E [Khbw
(A− a) q0 (a, Z,X)E [(h0 (A,W,X)− h0 (a,W,X)) | A,Z,X]]

=E [q0 (a, Z,X)E [Khbw
(A− a) (h0 (A,W,X)− h0 (a,W,X)) | Z,X]]

=E
[
q0 (a, Z,X)

∫
Khbw

(a′ − a) (h0 (a
′, w, x)− h0 (a,w, x)) p (a

′, w | z, x) dµ (a′, w)
]

=E
[
q0 (a, Z,X)

∫
K (u) (h0 (a+ hbwu,w, x)− h0 (a,w, x)) p (a+ hbwu,w | z, x) dµ (u,w)

]
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where the last line holds from a′ = hbwu + a. Consider Taylor expansion of h0 (a,w, x) and
p (a,w | z, x) around A = a:

p (hbwu+ a,w | z, x)− p (a,w | z, x) = hbwu
∂

∂A
p (a,w | z, x) +O

(
h2bw

)
h0 (a+ hbwu,w, x)− h0 (a,w, x) = hbwu

(
∂

∂A
h0 (a,w, x)

)
+

(hbwu)
2

2

(
∂2

∂A2
h0 (a,w, x)

)
+O

(
h3bw

)
Then, we can compute the conditional expectation by integrating the approximation to the density
term by term. Here, κj(K) represents the jth kernel moment, defined as κj(K) =

∫
ujK(u)du. It’s

important to note that for a symmetric kernel, the odd-order moments integrate to 0. Therefore, we
have
E [Khbw

(A− a) q0 (a, Z,X) (Y − h0 (a,W,X))]

=E
[
q0 (a, Z,X)

∫
K (u) (h0 (a+ hbwu,w, x)− h0 (a,w, x)) p (a+ hbwu,w | z, x) dµ (u,w)

]
=h2bwκ2(K)E

[
q0 (a, Z,X)

[
∂

∂A
h0 (a,W,X)

∂

∂A
p (a,W | Z,X) +

1

2

(
∂2

∂A2
h0 (a,W,X)

)]]
+ o

(
h2bw

)
For the (I)-(III) term, we have

(I) − (II) + (III)

=E
[
Khbw

(A− a) (q̂ (a, Z,X)− q0 (a, Z,X))
(
h0 (a,W,X)− ĥ (a,W,X)

)]
(20)

+E [Khbw
(A− a) (q̂ (a, Z,X)− q0 (a, Z,X)) (Y − h0 (a,W,X))] (21)

+E
[
Khbw

(A− a) q0 (a, Z,X)
(
h0 (a,W,X)− ĥ (a,W,X)

)
−
(
h0 (a,W,X)− ĥ (a,W,X)

)]
.

(22)

We will explain in turn that the above three convergence rates are o((nhbw)−1/2), o(1) × O(h2bw)
and o(1)×O(h2bw) respectively. From now on, we prove Eq. 21 is o(1)×O(h2bw).

E [Khbw
(A− a) (q̂ (a, Z,X)− q0 (a, Z,X)) (Y − h0 (a,W,X))]

=E [Khbw
(A− a) (q̂ (a, Z,X)− q0 (a, Z,X))E [(Y − h0 (a,W,X)) | A,Z,X]]

(1)
=E [Khbw

(A− a) (q̂ (a, Z,X)− q0 (a, Z,X))E [(h0 (A,W,X)− h0 (a,W,X)) | A,Z,X]]

=E [Khbw
(A− a) (q̂ (a, Z,X)− q0 (a, Z,X)) (h0 (A,W,X)− h0 (a,W,X))]

=E [(q̂ (a, Z,X)− q0 (a, Z,X))E [Khbw
(A− a) (h0 (A,W,X)− h0 (a,W,X)) | Z,X]]

(2)
=E

[
(q̂ (a, Z,X)− q0 (a, Z,X))

{
O(h2bw)

}]
(3)
=o(1)×O(h2bw),

where (1) is derived from Eq. 2, (3) is derived from assumption ∥q̂ − q∥2 = o(1) and (2) is because

E [Khbw
(A− a) (h0 (A,W,X)− h0 (a,W,X)) | Z,X]

=

∫
Khbw

(a′ − a) (h0 (a
′, w, x)− h0 (a,w, x)) p (a

′, w | z, x) dµ (a′, w)

=

∫
K (u) (h0 (a+ hbwu,w, x)− h0 (a,w, x)) p (a+ hbwu,w | z, x) dµ (u,w)

=

∫
K (u)

(
hbwu

∂

∂A
h0 (a,w, x) +O

(
h2bw

))
(p (a,w | z, x) +O (hbwu)) dµ (u,w)

=O
(
h2bw

)
.
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Next, we prove Eq. 22 is o(1)×O(h2bw).

E[Khbw
(A− a) q0 (a, Z,X) (h0 (a,W,X)− ĥ (a,W,X))− (h0 (a,W,X)− ĥ (a,W,X))]

= E[(h0 (a,W,X)− ĥ (a,W,X))E [Khbw
(A− a) q0 (a, Z,X)− 1 |W,X]].

We consider
E [Khbw

(A− a) q0 (a, Z,X)− 1 |W,X]

=

∫
(Khbw

(a′ − a) q0 (a, z, x)− 1) p (a′, z | w, x) dµ (a′, z)

=

∫
Khbw

(a′ − a) q0 (a, z, x) p (a
′, z | w, x) dµ (a′, z)− 1

=

∫
K (u) q0 (a, z, x) p (a+ hbwu, z | w, x) dµ (u, z)− 1

=

∫
K (u) q0 (a, z, x)

(
p (a, z | w, x) + hbwu

∂

∂A
h0 (a,w, x) +O

(
h2bw

))
dµ (u, z)− 1

=

∫
q0 (a, z, x) p (a, z | w, x) dµ (z)− 1 +O

(
h2bw

)
,

where we use the first-order Taylor expansion of p (a, z | w, x):

p (hbwu+ a, z | w, x) = p (a, z | w, x) + hbwu
∂

∂A
h0 (a,w, x) +O

(
h2bw

)
.

Therefore, we have

E
[(
h0 (a,W,X)− ĥ (a,W,X)

)(∫
q0 (a, z, x) p (a, z | w, x) dµ (z)− 1 +O

(
h2bw

))]
(1)
=E

[(
h0 (a,W,X)− ĥ (a,W,X)

)(∫
q0 (a, z, x) p (a, z | w, x) dµ (z)− 1

)]
+ o (1)×O

(
h2bw

)
where (1) is derived from assumption ∥ĥ− h∥2 = o(1). We assert that the first expression is 0:

E
[(
h0 (a,W,X)− ĥ (a,W,X)

)(∫
q0 (a, z, x) p (a, z | w, x) dµ (z)− 1

)]
=

∫ (
h0 (a,w, x)− ĥ (a,w, x)

)
q0 (a, z, x) p (a, z, w, x) dµ (z, w, x)

−
∫ (

h0 (a,w, x)− ĥ (a,w, x)
)
p (w, x) dµ (w, x)

(1)
=

∫
ĥ (a,w, x) p (w, x) dµ (w, x)−

∫
ĥ (a,w, x) q0 (a, z, x) p (a, z, w, x) dµ (z, w, x)

=

∫
ĥ (a,w, x) p (w, x) dµ (w, x)−

∫
ĥ (a,w, x)

p (a,w, x)

p (a | w, x)
dµ (w, x) = 0

where we used the following property for (1)

β (a) =

∫
h0 (a,w, x) p (w, x) dµ (w, x)

=

∫
h0 (a,w, x) q0 (a, z, x) p (a, z, w, x) dµ (z, w, x).

By assumption ∥ĥ−h∥2∥q̂− q∥2 = o((nhbw)
−1/2), we have Eq. 20 is o((nhbw)−1/2). Combining

these terms we get

(I) − (II) + (III) = o((nhbw)
−1/2) + o(1)×O(h2bw) + o(1)×O(h2bw) = o((nhbw)

−1/2)

where we use nh5bw = O(1). Therefore,

E
[
β̂ (a)

]
− β(a) =

h2bw
2
κ2(K)B + o((nhbw)

−1/2),

where B = E[q0(a, Z,X)[2 ∂
∂Ah0(a,W,X) ∂

∂Ap(a,W | Z,X) + ∂2

∂A2h0(a,W,X)]].
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Theorem E.8. Under assump. 3.1-3.4 and 4.1, suppose ∥ĥ − h∥2 = o(1), ∥q̂ − q∥2 = o(1) and
∥ĥ − h∥2∥q̂ − q∥2 = o((nhbw)

−1/2), nh5bw = O(1), nhbw → ∞, h0(a,w, x), p(a, z|w, x) and
p(a,w|z, x) are twice continuously differentiable wrt a as well as h0, q0, ĥ, q̂ are uniformly bounded.
Then for any a, we have the following for the variance of the PKDR estimator given Eq. 7:

Var[β̂(a)] =
Ω2(K)

nhbw
(V + o(1)),

where V = E[I(A = a)q0(a, Z,X)2(Y − h0(a,W,X))2].

Proof. For convenience, we let

m (o;h, q) = Khbw
(A− a) (Y − h (a,W,X)) q (a, Z,X) (23)

ϕ (o;h, q) = m (o;h, q) + h (a,W,X) (24)

We first use cross-fitting which allows us to exchange the order of summation and variance. More
specifically, we split the data randomly into two halves O1 and O2. Then we have

E
[
En

[
ϕ1

(
o; ĥ, q̂

)]2]
= E

[
E
[
En

[
ϕ1

(
o; ĥ, q̂

)]2
|O2

]]
= n−1E

[
E
[(
ϕ1

(
o; ĥ, q̂

)2)
|O2

]]

We will omit this step later, please identify it according to the context. According to the definition
of variance, we have

Var
(
En

[
ϕ
(
o; ĥ, q̂

)]
− β (a)

)
≤Var (En [ϕ (o;h0, q0)]− β (a))︸ ︷︷ ︸

(I)

+Var
(
En

[
ϕ (o;h0, q0)− ϕ

(
o; ĥ, q̂

)])
︸ ︷︷ ︸

(II)

+2

√
Var (En [ϕ (o;h0, q0)]− β (a))Var

(
En

[
ϕ (o;h0, q0)− ϕ

(
o; ĥ, q̂

)])
︸ ︷︷ ︸

(III)

We use cross-fitting and by Eq. 24:

(I) =
1

n
Var (m (o;h0, q0) + h0 (a,W,X)− β (a)) (25)

We first consider Var (m (o;h0, q0)). Since

Var (m (o;h0, q0)) =
1

n

(
E
[
m (o;h0, q0)

2
]
− (E [m (o;h0, q0)])

2
)

≤ 1

n
E
[
m (o;h0, q0)

2
]
,
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we only consider the second moment of a term in the estimator

E
[
m (o;h0, q0)

2
]

=E
[
(Khbw

(A− a) (Y − h0 (a,W,X)) q0 (a, Z,X))
2
]

=E
[
q0 (a, Z,X)

2 E
[
Khbw

(A− a)
2
(Y − h0 (a,W,X))

2 | Z,X
]]

=E

[
q0 (a, Z,X)

2
∫

1

h2bw
K

(
a′ − a

hbw

)2

(y − h0 (a,w, x))
2
p (a′, y, w | z, x) dµ (a′, y, w)

]

=E
[
q0 (a, Z,X)

2
∫

1

hbw
K (u)

2
(y − h0 (a,w, x))

2
p (a+ uhbw, y, w | z, x) dµ (u, y, w)

]
=E

[
q0 (a, Z,X)

2
∫

1

hbw
K (u)

2
(y − h0 (a,w, x))

2
(p (a, y, w | z, x) + o (hbw)) dµ (u, y, w)

]
=

1

hbw
{Ω2(K)V + o (hbw)}

(26)

where V = E
[
I (A = a) q0 (a, Z,X)

2
(Y − h0 (a,W,X))

2
]

Because h0 is bound, we have Var (h0 (a,W,X)− β (a)) is bound. Therefore, substituting the
above equation to Eq. 25, we have

(I) =
1

n
Var (m (o;h0, q0) + h0 (a,W,X)− β (a))

≤ 1

n
Var (m (o;h0, q0)) +

1

n
Var (h0 (a,W,X)− β (a))

+
2

n

√
Var (m (o;h0, q0))Var (h0 (a,W,X)− β (a))

≤ 1

nhbw
{Ω2(K)V + o (hbw)}+

C

n
+

2

n

{
1

nhbw
{V + o (hbw)}

}1/2(
C

n

)1/2

≈ 1

nhbw
{Ω2(K)V + o (hbw)}

For the term of (II), we have

(II) =Var
(
En

[
ϕ (o;h0, q0)− ϕ

(
o; ĥ, q̂

)])
=
1

n

(
E
[(
ϕ (o;h0, q0)− ϕ

(
o; ĥ, q̂

))2]
−
(
E
[
ϕ (o;h0, q0)− ϕ

(
o; ĥ, q̂

)])2)
≤ 1

n
E
[(
ϕ (o;h0, q0)− ϕ

(
o; ĥ, q̂

))2]
.

(27)
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Similar to Kallus & Uehara (2020), according to the definition of Eq. 24 and decomposition of
Eq. 24 (Eq. 20-22), we have

E
[(
ϕ (o;h0, q0)− ϕ

(
o; ĥ, q̂

))2]
(1)
=E

[
Khbw

(A− a)
2
(q̂ (a, Z,X)− q0 (a, Z,X))

2
(
h0 (a,W,X)− ĥ (a,W,X)

)2]
+ E

[
Khbw

(A− a)
2
(q̂ (a, Z,X)− q0 (a, Z,X))

2
(Y − h0 (a,W,X))

2
]

+ E
[
Khbw

(A− a)
2
q0 (a, Z,X)

2
(
h0 (a,W,X)− ĥ (a,W,X)

)2]
+ E

[(
ĥ (a,W,X)− h0 (a,W,X)

)2]
+∆

(2)

≲E
[
Khbw

(A− a)
2
(q̂ (a, Z,X)− q0 (a, Z,X))

2
(
h0 (a,W,X)− ĥ (a,W,X)

)2]
+ E

[
Khbw

(A− a)
2
(q̂ (a, Z,X)− q0 (a, Z,X))

2
(Y − h0 (a,W,X))

2
]

+ E
[
Khbw

(A− a)
2
q0 (a, Z,X)

2
(
h0 (a,W,X)− ĥ (a,W,X)

)2]
+ E

[(
ĥ (a,W,X)− h0 (a,W,X)

)2]
+O(1)

(3)

≲h−1
bw max

{
E
[∥∥∥h0 (a,W,X)− ĥ (a,W,X)

∥∥∥2
2

]
,E
[
∥q̂ (a, Z,X)− q0 (a, Z,X)∥22

]}
+O(1)

=o(h−1
bw)

where (1) is the square expansion of Eq. 20-22 and ∆ is sum of cross terms, (2) is derived from
ĥ, q̂, h, q is uniformly bounded, (3) uses the same approach as Eq. 26.

Therefore, substituting the above equation to Eq. 27, we have

(II) = Var
(
En

[
ϕ (o;h0, q0)− ϕ

(
o; ĥ, q̂

)])
≤ o

(
(nhbw)

−1
)

(28)

For the term of (III), we only need to substitute (I) and (II) to (III)

(III) =
√
Var (En [ϕ (o;h0, q0)]− β (a))Var

(
En

[
ϕ (o;h0, q0)− ϕ

(
o; ĥ, q̂

)])
=

{
1

nhbw
{V + o (hbw)}

}1/2

o
(
n−1/2h

−1/2
bw

)
Therefore, combining the three terms (I), (II) and (III), we get

Var
(
En

[
ϕ
(
o; ĥ, q̂

)]
− β (a)

)
=

1

nhbw
{Ω2 (k)V + o (hbw)}+ 2

{
1

nhbw
{V + o (hbw)}

}1/2

o
(
n−1/2h

−1/2
bw

)
+ o

(
n−1h−1

bw

)
=

1

nhbw
{Ω2(k)V + o (1)}

Theorem 6.4. Under assump. 3.1-3.4 and 4.1, suppose ∥ĥ − h∥2 = o(1), ∥q̂ − q∥2 = o(1) and
∥ĥ − h∥2∥q̂ − q∥2 = o((nhbw)

−1/2), nh5bw = O(1), nhbw → ∞, h0(a,w, x), p(a, z|w, x) and
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p(a,w|z, x) are twice continuously differentiable wrt a as well as h0, q0, ĥ, q̂ are uniformly bounded.
Then for any a, we have the following for the bias and variance of the PKDR estimator given Eq. 7:

Bias(β̂(a)) := E[β̂(a)]−β(a) = h2bw
2
κ2(K)B+o((nhbw)

−1/2),Var[β̂(a)] =
Ω2(K)

nhbw
(V +o(1)),

where B = E[q0(a, Z,X)[2 ∂
∂Ah0(a,W,X) ∂

∂Ap(a,W | Z,X) + ∂2

∂A2h0(a,W,X)]], V = E[I(A =

a)q0(a, Z,X)2(Y − h0(a,W,X))2].

Proof. By Theorem. E.7 and E.8, we completed the proof. If we want to optimize the bias-variance
tradeoff of the asymptotic mean squared error, we choose the optimal bandwidth hbw such that
neither term dominates the other.

MSE
(
β̂ (a)− β (a)

)
= Bias2 +Variance

=
h4bw
4

(κ (K)B)
2
+

1

nhbw
Ω (K)V + o

(
1

nhbw

)
Optimizing the leading terms of the asymptotic MSE with respect to the bandwidth hbw:

∂

∂hbw
MSE = (κ (K)B)

2
h3bw − Ω (K)V

nh2bw
= 0

Therefore, we can select the optimal bandwidth is hbw = O(n−1/5) in terms of the mean squared
error (MSE) that converges at the rate of O(n−4/5).

E.5 CONSISTENCY OF THE ESTIMATOR

Theorem E.9. Under assump. 3.1-3.4 and 4.1, suppose h0(a,w, x) and p(a,w|z, x) are twice con-
tinuously differentiable wrt a as well as h0, q0, ĥ, q̂ are uniformly bounded. Then, for some universal
constants c1 and c2, with probability 1− η, the PKDR estimator given Eq. 7 error is bounded by:∣∣∣β(a)− β̂(a)

∣∣∣ ≤ ∥∥∥I (A = a)
(
h0 − ĥ

)∥∥∥
2
∥proj (q̂ − q0)∥2+c1

√
log (c2/η)

n
+
h2bw
2
κ2(K)R+o

(
h2bw

)
where R = E

[
q̂ (a, Z,X)

[
2 ∂
∂Ah0 (a,W,X) ∂

∂Ap (a,W | Z,X) +
(

∂2

∂A2h0 (a,W,X)
)]]

.

Proof. From the relationship between causal effect and nuisance function, we have∣∣∣β (a)− β̂ (a)
∣∣∣ = ∣∣∣E [I(A = a)q0 (a, Z,X) (Y − h0 (a,W,X)) + h0 (a,W,X)]− β̂(a)

∣∣∣
≤
∣∣∣E [I (A = a) q0 (Y − h0) + h0]− E

[
I (A = a) q̂

(
Y − ĥ

)
+ ĥ

]∣∣∣︸ ︷︷ ︸
(I)

+
∣∣∣E [(I (A = a)−Khbw

(A− a)) q̂
(
Y − ĥ

)]∣∣∣︸ ︷︷ ︸
(II)

+
∣∣∣E [Khbw

(A− a) q̂
(
Y − ĥ

)
+ ĥ
]
− β̂(a)

∣∣∣︸ ︷︷ ︸
(III)

where h0 = h0 (a,W,X) , q0 = q0 (a, Z,X) , ĥ = ĥ (a,W,X) and q̂ = q̂ (a, Z,X).

We can bound each term as follows. For the first term, we have

(I) = E
[
I (A = a)

{
q0 (Y − h0)− q̂

(
Y − ĥ

)}]
− E

[
h0 − ĥ

]
= E [I (A = a)Y (q0 − q̂)] + E

[
I(A = a)

{
q̂ĥ− q0h0

}]
− E

[
h0 − ĥ

]
(1)
= E [I (A = a)h0 (q0 − q̂)] + E

[
I(A = a)

{
q̂ĥ− q0h0

}]
− E

[
I(A = a)q0

(
h0 − ĥ

)]
= E

[
I (A = a) (q0 − q̂)

(
h0 − ĥ

)] (2)

≤
∥∥∥I (A = a)

(
h0 − ĥ

)∥∥∥
2
∥proj (q̂ − q0)∥2
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where (2) is derived from Cauchy’s inequality and (1) is derived from

E [I (A = a)Y (q0 − q̂)] = E [I (A = a) (q0 − q̂)E [Y |A,Z,X]]

= E [I (A = a) (q0 − q̂)E [h0 (A,W,X) |A,Z,X]]

= E [I (A = a) (q0 − q̂)h0]

E
[
h0 − ĥ

]
=

∫ (
h0 − ĥ

) p (a,w, x)
p (a|w, x)

dµ(w, x)

=

∫ (
h0 − ĥ

)
p (a,w, x)E [q0 (a, Z,X) |A,W,X] dµ(w, x)

= E
[
I (A = a)

(
h0 − ĥ

)
q0

]
For the second term, we have

E
[
Khbw

(A− a) q̂ (a, Z,X)
(
Y − ĥ (a,W,X)

)]
=E

[
Khbw

(A− a) q̂ (a, Z,X)E
[(
Y − ĥ (a,W,X)

)
|A,Z,X

]]
=E

[
Khbw

(A− a) q̂ (a, Z,X)
(
h0 (A,W,X)− ĥ (a,W,X)

)]
=E

[
q̂ (a, Z,X)E

[
Khbw

(A− a)
(
h0 (A,W,X)− ĥ (a,W,X)

)
|Z,X

]]
=E

[
q̂ (a, Z,X)

∫
K (a′ − a)

(
h0 (a

′, w, x)− ĥ (a,w, x)
)
p (w, a′|z, x) dµ (w, a′)

]

=E

q̂ (a, Z,X)

∫
K (u)

(
h0 (a+ hbwu,w, x)− ĥ (a,w, x)

)
p (w, a+ hbwu|z, x)︸ ︷︷ ︸

(⋆)

dµ (w, u)


where the last line holds from a′ = hbwu + a. Consider Taylor expansion of h0 (a,w, x) and
p (a,w | z, x) around A = a:

p (hbwu+ a,w | z, x)− p (a,w | z, x) = hbwu
∂

∂A
p (a,w | z, x) +O

(
h2bw

)
h0 (a+ hbwu,w, x)− h0 (a,w, x) = hbwu

(
∂

∂A
h0 (a,w, x)

)
+

(hbwu)
2

2

(
∂2

∂A2
h0 (a,w, x)

)
+O

(
h3bw

)
Therefore, we have

(⋆) =
(
h0 (a,w, x)− ĥ (a,w, x)

)
p (a,w | z, x)

+
(
h0 (a,w, x)− ĥ (a,w, x)

)
hbwu

∂

∂A
p (a,w | z, x)

+ hbwu

(
∂

∂A
h0 (a,w, x)

)
p (a,w | z, x)

+
(hbwu)

2

2

(
∂2

∂A2
h0 (a,w, x)

)
p (a,w | z, x)

+ hbwu

(
∂

∂A
h0 (a,w, x)

)
hbwu

∂

∂A
p (a,w | z, x)

+
(hbwu)

2

2

(
∂2

∂A2
h0 (a,w, x)

)
hbwu

∂

∂A
p (a,w | z, x) +O

(
h3bw

)
Then, we can compute the conditional expectation by integrating the approximation to the density
term by term. Here, κj(K) represents the jth kernel moment, defined as κj(K) =

∫
ujK(u)du. It’s
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important to note that for a symmetric kernel, the odd-order moments integrate to 0. Therefore, we
have

E
[
Khbw

(A− a) q̂ (a, Z,X)
(
Y − ĥ (a,W,X)

)]
=E

[
q̂ (a, Z,X)

∫
K (u)

(
h0 (a+ hbwu,w, x)− ĥ (a,w, x)

)
p (a+ hbwu,w | z, x) dµ (u,w)

]
=h2bwκ2(K)E

[
q̂ (a, Z,X)

[
∂

∂A
h0 (a,W,X)

∂

∂A
p (a,W | Z,X) +

1

2

(
∂2

∂A2
h0 (a,W,X)

)]]
+ E

[
I (A = a) q̂ (a, Z,X)

(
Y − ĥ (a,W,X)

)]
+ o

(
h2bw

)
Therefore, we obtain

(II) =
∣∣∣E [(I (A = a)−Khbw

(A− a)) q̂
(
Y − ĥ

)]∣∣∣
=
h2bw
2
κ2(K)R+ o

(
h2bw

)
where R = E

[
q̂ (a, Z,X)

[
2 ∂
∂Ah0 (a,W,X) ∂

∂Ap (a,W | Z,X) +
(

∂2

∂A2h0 (a,W,X)
)]]

.

The third terms are upper-bounded by Bernstein inequality. This concludes∣∣∣β(a)− β̂(a)
∣∣∣ ≤ ∥∥∥I (A = a)

(
h0 − ĥ

)∥∥∥
2
∥proj (q̂ − q0)∥2+c1

√
log (c2/η)

n
+
h2bw
2
κ2(K)R+o

(
h2bw

)

Remark E.10. According to Thm. 6.2 and E.6, we have ∥ĥ − h0∥2 = O(n−1/4) and ∥q̂ − q0∥2 =
O(n−1/4). Therefore the order of the estimation error is controlled by hbw. From Thm. 6.4, we
know that the optimal bandwidth is hbw = O(n−1/5) in terms of estimator error that converges
at the rate of O(n−2/5). Note that this rate is slower than the optimal rate O(n−1/2), which is
a reasonable sacrifice to handle continuous treatment within the proximal causal framework and
agrees with existing studies (Kennedy et al., 2017; Colangelo & Lee, 2020).
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F COMPUTATION DETAILS

We can consider the nuisance/bridge function class Q or H and the dual/critic functional class M
or G are the RKHS class. The inner maximization in Eq. 8 and 9 may no longer have closed-
form solutions with the RKHS norm constraints. Similar to Dikkala et al. (2020), we consider the
following optimization problem

min
q∈Q

max
m∈M

1

n

∑
i

(
q(ai, zi, xi)−

1

p(ai|wi, xi)

)
m(ai, wi, xi)− λm ∥m∥22,n − γm ∥m∥2M + γq ∥q∥2Q

min
h∈H

max
g∈G

1

n

∑
i

(yi − h (wi, ai, xi)) g (ai, zi, xi)− λg ∥g∥22,n − γg ∥g∥2M + γh ∥h∥2Q

Proposition F.1. Suppose M and G are RKHS spaces with kernel KM and KG equipped with the
canonical RKHS norm, then for any q, h, we have

max
m∈M

Φn
q − λm ∥m∥22,n − γm ∥m∥2M =

1

4γm
ψ⊤
q,nKM,n

(
λm
γm

1

n
KM,n + γmI

)−1

ψq,n

=
1

4γm
ψ⊤
nK

1/2
M,n

(
λm
γm

1

n
KM,n + γmI

)−1

K
1/2
M,nψn

max
g∈G

Φn
h − λg ∥g∥22,n − γg ∥g∥2G =

1

4γg
ψ⊤
h,nKG,n

(
λg
γg

1

n
KG,n + γgI

)−1

ψh,n

=
1

4γg
ψ⊤
h,nK

1/2
G,n

(
λg
γg

1

n
KG,n + γgI

)−1

K
1/2
G,nψ

⊤
h,n

where KM,n = (KM(ai, wi, xi, aj , wj , xj))
n
i,j=1,KG,n = (KG(ai, zi, xi, aj , zj , xj))

n
i,j=1

the empirical kernel matrix and ψq,n = ( 1n (q(ai, zi, xi) − 1
p(ai|wi,xi)

))ni=1, ψh,n =(
1
n (yi − h (ai, wi, xi))

)n
i=1

.

Proof. By the generalized representer theorem of Schölkopf et al. (2001), implies that an optimal
solution of the constrained problem takes the form

m(a,w, x) =

n∑
i=1

αiKM(ai, wi, xi, a, w, x).

We denote KM,n = (KM(ai, wi, xi, aj , wj , xj))
n
i,j=1 the empirical kernel matrix. And we have

∥m∥2M = α⊤KM,nα, f(zi) = e⊤i KM,nα and ∥m∥22,n = 1
nα

⊤K2
M,nα. Thus the penalized prob-

lem is equivalent to the finite dimensional maximization problem:

max
α∈Rn

ψ⊤
q,nKM,nα− α⊤

(
λm
n
KM,n + γmI

)
KM,nα,

where ψq,n =
(

1
n

(
q(ai, zi, xi)− 1

p(ai|wi,xi)

))n
i=1

. By taking the first order condition, the latter
has a closed form optimizer of:

α =
1

2γm

(
λm
γm

1

n
KM,n + I

)−1

ψq,n

and optimal value of:

1

4γm
ψ⊤
nKM,n

(
λm
γm

1

n
KM,n + I

)−1

ψq,n =
1

4γm
ψ⊤
nK

1/2
M,n

(
λm
γm

1

n
KM,n + I

)−1

K
1/2
M,nψq,n

Similarly, we have

max
g∈g

Φn
h − λg ∥g∥22,n − γg ∥g∥2G =

1

4γg
ψ⊤
h,nKG,n

(
λg
γg

1

n
KG,n + I

)−1

ψh,n

=
1

4γg
ψ⊤
h,nK

1/2
G,n

(
λg
γg

1

n
KG,n + I

)−1

K
1/2
G,nψ

⊤
h,n

where ψh,n =
(
1
n (yi − h (ai, wi, xi))

)n
i=1

.
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If further Q and H are RKHS, we can obtain the closed form solution about the outer maximization,
by solving

q̂ = argmin
q∈Q

ψ⊤
q,nKM,n

(
λm
γm

1

n
KM,n + I

)−1

ψq,n + 4γmγq ∥q∥2Q

ĥ = argmin
h∈H

ψ⊤
h,nKG,n

(
λg
γg
KG,n + I

)−1

ψh,n + 4γgγh ∥h∥2H

Again by the representation theorem, we have

ĥ (·) =
∑
i

α̂ik ((ai, wi, xi) , ·) , q̂ (·) =
∑
i

β̂ik ((ai, zi, xi) , ·)

where
α̂ = (KH,nGhKH,n + 4γhγgKH,n)

−1
KH,nGhyi

β̂ = (KQ,nMqKQ,n + 4γqγmKQ,n)
−1
KQ,nMq

1

p(ai|wi, xi)

for Gh = K
1/2
G,n

(
λg

γg

1
nKG,n + I

)−1

K
1/2
G,n and Mq = K

1/2
M,n

(
λm

γm

1
nKM,n + I

)−1

K
1/2
M,n.

There are several tuning parameters in the estimation of h0 and q0. We accept the tricks and recom-
mendation defaults by Dikkala et al. (2020). The following parameters will be used to determine.

λg
γg

(n) =
5

n0.4
(29)

γhγg(s, n) =
s

2

(
λg
γg

(n)

)4

(30)

For λm

γm
and γqγm, we also choose parameters like this.
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G ADDITIONAL EXPERIMENTS
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Figure 4: ATE comparison of different methods across various methods on three different data-
generating mechanisms; Left Top: ATE comparison using 1000 samples in the Scenario 1; Right
Top: ATE comparison using 1000 samples in the Scenario 2; Left Bottom: ATE comparison using
1000 samples in the Scenario 3; Right Bottom: ATE comparison using 1000 samples in the Times
series data.

In this section, we consider three more synthetic settings introduced in Hu et al. (2023), as well
as the times-series setting introduced in Miao et al. (2018b) that satisfies the proximal causality
framework. Similar to Tab. 1, our methods are comparable or better than others.

Implementation Details. In the PKIPW and PKDR estimators, we choose the second-order
Epanechnikov kernel, with bandwidth hbw = cσ̂An

−1/5 with estimated std σ̂A and the hyperpa-
rameter c = 1.5. For policy estimation, we employ the KDE in the two datasets. The rest of the
implementation details are consistent with the experiments in the text.

Evaluation metrics. We report the causal Mean Squared Error (cMSE) across 100 equally spaced
points in the range of supp(A): cMSE := 1

100

∑100
i=1(E[Y ai ] − Ê[Y ai ])2. Here, we respectively

take supp(A) := [5.5, 7], [4, 5.5], [5.5, 7], [−2, 2] in three synthetic data and the times series data.
The truth E[Y a] is derived through Monte Carlo simulations comprising 10,000 replicates of data
generation for each a.

G.1 EXPERIMENTS WITH DIFFERENT DATA GENERATING PROCESS

Data generation. We consider three different data-generating mechanisms (Hu et al., 2023). Under
each of scenarios, we simulate the continuous unmeasured confounder U following a normal distri-
bution with mean 1 and variance 0.2, denoted by U ∼ N(1, 0.2). Similarly, we simulate two type
of proxy variables W |U ∼ N(1− 2 ·U, 0.2) and Z|U ∼ N(−1 + 1.5 ·U, 0.2). The three scenarios
vary according to the data generation process based on the models for the outcome Y |A,U , and for
the treatment A|U .

• Scenario 1. We assume that the true distribution of the outcome Y is a parabola, i.e., the outcome
is a second-order regression function of the treatment:

Y |A,U ∼ N(−10 + 2.2 · (A− 6)2 + 4 · Ui, 0.2)
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and A|U ∼ N(2.5 + 4 · U, 0.2).
• Scenario 2. We assume that the true distribution of the outcome Y has a sigmoidal shape:

Y |A,U ∼ N(1.5 + sign(A− 5) ·
√
|A− 5|+ 1.7 · U, 0.05),

where sign is the sign function such that it is equal to 1 when a ≥ 0 and -1 otherwise. We assume
A|U ∼ N(1 + 4 · U, 0.2).

• Scenario 3. We assume that the true distribution of the outcome Y is monotonically increasing
with a non-linear relationship with both variables A and U :

Y |A,U ∼ N(−2 · e−1.4·(A−6) + 0.8 · eU , 0.2).

We assume A | U ∼ N(2.5 + 4 · U, 0.2)

Results. We report the mean and the standard deviation (std) of cMSE over 20 times across four
scenarios, as depicted in Fig. 4 and Tab. 3. For each scenario, we take n = 1, 000. We can see that
the PKIPW method suffers from large errors in scenarios 1 and 2 while performing well in scenario
3, where the treatment-inducing proxy Z is misspecified. However, the PKDR method still performs
well due to its doubly robust. In addition, we find that the MINIMAX method does not perform well
because it requires more samples to fit the neural network.

Table 3: cMSE of all methods on three different data-generating mechanisms.

Dataset Size PMMR KPV DFPV MINIMAX NMMR POR PKIPW PKDR

Hu et al.
(2023)

Scenario 1 1000 0.25±0.05 0.25±0.05 0.59±0.35 1.45±1.32 0.17±0.09 0.16±0.23 0.29±0.12 0.16±0.22

Scenario 2 1000 0.16±0.02 0.16±0.02 0.22±0.17 0.88±0.29 0.05±0.04 0.08±0.07 0.15±0.06 0.07±0.06

Scenario 3 1000 0.10±0.02 0.10±0.02 0.28±0.39 0.45±0.29 0.21±0.10 0.22±0.20 0.09±0.03 0.21±0.19

Time Series
500 0.11±0.04 0.13±0.12 0.20±0.14 0.21±0.09 0.18±0.12 0.10±0.14 0.21±0.05 0.09±0.12

1000 0.10±0.05 0.08±0.07 0.16±0.21 0.22±0.06 0.18±0.10 0.12±0.12 0.20±0.06 0.12±0.10

G.2 EXPERIMENTS FOR TIME SERIES DATA

Data generation. We follow Miao et al. (2018b) to generate data.

Ui = ξUi−1 + (1− ξ2)1/2ε1i, Vi = 0.6Ui + ε2i, Ai = 0.4 + 1.5Vi + ηUi + ε3i,

Yi = 0.5 + 0.7Ai + 1.5Vi + 0.9Ui + ε4i, ε1i, ε2i, ε3i, ε4i ∼ N(0, 1),

where Ui is a stationary autoregressive process with autocorrelation coefficient ξ, and η controls the
magnitude of confounding. Here, we let ξ = 0.8, η = 0.5. For our proximal causal approach, we
use Wi = Yi−1 and Zi = Ai+1 as two types of proxy variables and do not need auxiliary data.

Results. We report the mean and the standard deviation (std) of cMSE over 20 times across four
scenarios, as depicted in Fig. 4 and Tab. 3. For each scenario, we consider two sample sizes, n = 500
and n = 1, 000. As shown in Fig. 4, our PKIPW and PKDR accurately estimate the causal effect
across all treatment values, making its overall cMSE comparable or better than other baselines. This
result suggests the effectiveness of our methods for different scenarios.

G.3 RATE

Due to the error introduced in kernel approximation, this is a reasonable sacrifice to handle contin-
uous treatment within the proximal causal framework. Besides, according to Ichimura & Newey
(2022), since the estimand is non-regular, therefore it may not enjoy the properties of

√
n-consistent

and asymptotically normality. Such flexible kernel function approximation will make a non-
negligible contribution to the limiting behavior of the estimator, preventing asymptotic normality
and root-n consistency.

We conducted empirical numerical verification using Scenario 1 from the initial synthesis experi-
ment outlined in Appendix G. As per the synthesis mechanism, we can easily obtain the density
function

f(A|W ) =
1√
0.4π

e−
1

0.4 (A−2.5+4W )2 .
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We compute the empirical estimator error with sample sizes {200, 400, 600, 800, 1, 000} and com-
pare the estimator error in Figure 5. As we speculated before, the convergence rate is difficult to
reach n−1/2.

200 400 600 800 1000
Sample size

0.04

0.06

0.08

0.10

0.12

0.14

Ra
te

n^-1/2
n^-2/5
PKDR

Figure 5: Empirical estimator error of the Scenario 1 in Appendix G.
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H EXPERIMENTS

In this section, we present the data generation process of experiments and the detailed settings of
hyper-parameters.

H.1 DATA GENERATING PROCESS IN THE LOW-DIMENSIONAL SYNTHETIC EXPERIMENT

We describe the data generating mechanism in the Synthetic-Data Experiment. The generative pro-
cess from Mastouri et al. (2021). Since the original data generates Y ∈ [0, 1] and the overall trend
is flat, we modify the structural equation of Y to make it easier to distinguish.

U := [U1, U2] , U2 ∼ Uniform [−1, 2]

U1 ∼ Uniform [0, 1]− I [0 ≤ U2 ≤ 1]

W := [W1,W2] = [U1 +Uniform [−1, 1] , U2 + ε1]

Z := [Z1, Z2] = [U1 + ε2, U2 +Uniform[− 1, 1]]

A := U2 + ε3

Y := 3 cos (2 (0.3U1 + 0.3U2 + 0.2) + 1.5A) + ε4

where {ϵi}4i=1 ∼ N(0, 1).

H.2 DATA GENERATING PROCESS IN THE HIGH-DIMENSIONAL SYNTHETIC EXPERIMENT

For X ∈ Rdim(X), Z ∈ Rdim(Z), W ∈ Rdim(W ) and (A,D) ∈ R, we first generate the unobserved
noise:

{ϵi}i∈[3]
i.i.d∼ N(0, 1), νz ∼ Uniform[−1, 1]dim(Z), νw ∼ Uniform[−1, 1]dim(W )

Next, we generate the following data structure

• For unobserved confounders U , we have

Uz = ϵ1 + ϵ3, Uw = ϵ2 + ϵ3

• For two types of proxies Z and W , we have

Z = νz + 0.25 · Uz · 1dim(Z), W = νw + 0.25 · Uw · 1dim(W )

where 1p ∈ Rp is the vector of ones of length p.
• For covariates X , we have

X ∼ N(0,Σ), where Σ ∈ Rdim(X)×dim(X),Σii = 1 and Σij =
1

2
· I{|i− j| = 1} for i ̸= j.

• For treatment A, we have

A = Λ(3X⊤βx + 3Z⊤βz) + 0.25 · Uw,

where βx ∈ Rdim(X) and βz ∈ Rdim(Z) are quadratically decaying coefficients, e.g. [βx]j = j−2.
Λ is the truncated logistic link function Λ(t) = (0.9− 0.1) exp(t)

1+exp(t) + 0.1.
• For outcome Y , we have

Y = θATE
0 (A) + 1.2(X⊤βx +W⊤βw) +AX1 + 0.25 · Uz,

where βw ∈ Rdim(W ) are quadratically decaying coefficients, e.g. [βw]j = j−2.

Follow Colangelo & Lee (2020), we use the quadratic design, θATE
0 (a) = a2 + 1.2a.

H.3 LEGALIZED ABORTION AND CRIME

In the Abortion and Criminality dataset, as described in the reference Woody et al. (2020), the key
variables are as follows:

• Treatment Variable A: Effective abortion rate;
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• Outcome variable Y : Murder rate;
• Treatment-inducing proxy Z: Generosity towards families with dependent children;
• Outcome-inducing proxy W : Beer consumption per capita, log-prisoner population per capita,

and concealed weapons laws.

We take the remaining variables as the unobserved confounding variables U . Following Mastouri
et al. (2021), the ground-truth value of β(a) is taken from the generative model fitted to the data.

The dataset is available at https://github.com/yuchen-zhu/kernel_proxies/
tree/main/data/sim_1d_no_x.

H.4 HYPERPARAMETERS SELECTION

In all our numerical studies, RKHSs G,H,M,Q are equipped with Gaussian kernels

K(x1, x2) = exp{γ∥x1 − x2∥22}.

The median heuristic bandwidth parameter γ−1 = median{∥xi − xj∥22}i<j∈I for indices subset
I ⊂ {1, . . . , n}. For the regularization coefficient, we automatically select it according to Eq. 29
and 30.

For KDE, we also choose the Gaussian kernel. For bandwidth, we employ three fold cross-
validation, where the bandwidth is chosen as 20 values uniformly distributed in logarithmic space
between 10−0.1 and 10 raised to 100.

For CNFs, we recommend using the package probaforms, where the prior distributions is multivari-
ate normal distribution.

Table 4: CNFs-block

Layer Configuration
1 Input(Ai,Wi, Xi)
2 FC(in-dim, 128), ReLU
3 FC(128, 64), ReLU
3 FC(64, 32)

We stack four CNFs-block and finally solve the density function.

Table 5: Hyperparameters for CNFs.

Hyperparameter
Learning rate 1e-4

Epochs 500
Batch size 512

Weight decay 1e-4

For the KPV method, we used the Gaussian kernel where the bandwidth is determined by the median
trick. We select the regularizers λ1 = λ2 = 0.005.

For the PMMR method, we used the Gaussian kernel where the bandwidth is determined by the
median trick. We select the regularizers λ1 = λ2 = 0.1.

For the DFPV, we optimize the model using Adam with learning rate = 0.001, β1 = 0.9, β2 = 0.999
and ε = 10−8. Regularizers λ1 = λ2 are both set to 0.1 as a result of the tuning procedure.

For the MINIMAX, we used learner and adversary networks where learner l2= 1e-4,learner lr=1e-4,
adversary l2 = 5e-3 and adversary lr = 5e-4.

For the NMMR, we optimize the model using Adam with learning rate =3e-3, decay=3e-6 and epoch
= 10000.
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