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Abstract

The performance of learning models often deteri-
orates when deployed in out-of-sample environ-
ments. To ensure reliable deployment, we propose
a stability evaluation criterion based on distribu-
tional perturbations. Conceptually, our stability
evaluation criterion is defined as the minimal per-
turbation required on our observed dataset to in-
duce a prescribed deterioration in risk evaluation.
In this paper, we utilize the optimal transport (OT)
discrepancy with moment constraints on the (sam-
ple, density) space to quantify this perturbation.
Therefore, our stability evaluation criterion can
address both data corruptions and sub-population
shifts—the two most common types of distribu-
tion shifts in real-world scenarios. To further
realize practical benefits, we present a series of
tractable convex formulations and computational
methods tailored to different classes of loss func-
tions. The key technical tool to achieve this is
the strong duality theorem provided in this paper.
Empirically, we validate the practical utility of
our stability evaluation criterion across a host of
real-world applications. These empirical studies
showcase the criterion’s ability not only to com-
pare the stability of different learning models and
features but also to provide valuable guidelines
and strategies to further improve models.

1. Introduction

The issue of poor out-of-sample performance frequently
arises, particularly in high-stakes applications such as health-
care (Bandi et al., 2018; Wynants et al., 2020; Roberts
et al., 2021), economics (Hand, 2006; Ding et al., 2021),
self-driving (Malinin et al., 2021; Hell et al., 2021). This
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phenomenon can be attributed to discrepancies between
the training and test datasets, influenced by various fac-
tors. Some of these factors include measurement errors
during data collection (Jacobucci & Grimm, 2020; Elmes
et al., 2020), deployment in dynamic, non-stationary envi-
ronments (Camacho & Conover, 2011; Conger et al., 2023),
and the under-representativeness of marginalized groups in
the training data (Corbett-Davies et al., 2023), among oth-
ers. The divergence between training and test data presents
substantial challenges to the reliability, robustness, and fair-
ness of machine learning models in practical settings. Re-
cent empirical studies have shown that algorithms intention-
ally developed for addressing distribution shifts—such as
distributionally robust optimization (Blanchet et al., 2019;
Sagawa et al., 2019; Kuhn et al., 2019; Duchi & Namkoong,
2021; Rahimian & Mehrotra, 2022; Blanchet et al., 2024),
domain generalization (Zhou et al., 2022), and causally in-
variant learning (Arjovsky et al., 2019; Krueger et al., 2021)
— experience a notable performance degradation when faced
with real-world scenarios (Gulrajani & Lopez-Paz, 2020;
Frogner et al., 2021; Yang et al., 2023; Liu et al., 2023).

Instead of providing a robust training algorithm, we shift
focus towards a more fundamental (in some sense even
simpler) question:

Q: How do we evaluate the stability of a learning
model when subjected to data perturbations?

To answer this question, our initial step is to gain a compre-
hensive understanding of various types of data perturbations.
In this paper, we categorize data perturbations into two
classes: (i) Data corruptions, which encompass changes
in the distribution support (i.e., observed data samples).
These changes can be attributed to measurement errors in
data collection or malicious adversaries. Typical examples
include factors like street noises in speech recognition (Ki-
noshita et al., 2020), rounding errors in finance (Li & Myk-
land, 2015), adversarial examples in vision (Goodfellow
et al., 2020) and, the Goodhart’s law empirically observed
in government assistance allocation (Camacho & Conover,
2011). (i) Sub-population shifts, refer to perturbation on
the probability density or mass function while keeping the
same support. For example, model performances substan-
tially degrade under demographic shifts in recommender
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systems (Blodgett et al., 2016; Sapiezynski et al., 2017);
under temporal shifts in medical diagnosis (Pasterkamp
et al., 2017); and under spatial shifts in wildlife conserva-
tion (Beery et al., 2021).

Recent investigation on the question Q predominantly cen-
ters around sub-population shifts, see (Li et al., 2021;
Namkoong et al., 2022; Gupta & Rothenhaeusler, 2023).
However, in practical scenarios, it is common to encounter
both types of data perturbation. Studies such as Gokhale
et al. (2022) and Zou & Liu (2023) have documented that
models demonstrating robustness against sub-population
shifts can still be vulnerable to data corruptions. This under-
scores the importance of adopting a more holistic approach
when evaluating model stability, one that addresses both
sub-population shifts and data corruptions.

To fully answer the question Q, we frame the model stability
as a projection problem over probability space under the
OT discrepancy with moment constraints. Specifically, we
seek the minimum perturbation necessary on our reference
measure (i.e., observed data) to guarantee that the model’s
risk remains below a specified threshold. The crux of our
approach is to conduct this projection within the joint (sam-
ple, density) space. Consequently, our stability metric is
capable of addressing both data corruptions on the sample
space and sub-population shifts on the density or probability
mass space. To enhance the practical utility of our approach,
we present a host of tractable convex formulations and com-
putational methods tailored to different learning models.
The key technical tool for this is the strong duality theorem
provided in this paper.

To offer clearer insights, we visualize the most sensitive
distribution in stylized examples. Our approach achieves
a balanced and reasoned stance by avoiding overemphasis
on specific samples or employing overly aggressive data
corruptions. Moreover, we demonstrate the practical ef-
fectiveness of our proposed stability evaluation criterion
by applying it to tasks related to income prediction, health
insurance prediction, and COVID-19 mortality prediction.
These real-world scenarios showcase the framework’s ca-
pacity to assess stability across various models and features,
uncover potential biases and fairness issues, and ultimately
enhance decision-making.

Notations. Throughout this paper, we let R denote the set
of real numbers, R denote the subset of non-negative real
numbers. We use capitalized letters for random variables,
e.g., X, Y, Z, and script letters for the sets, e.g., X, ), Z.
For any close set Z C R%, we define P(Z) as the family
of all Borel probability measures on Z. For P € P(Z),
we use the notation Ep[-] to denote expectation with re-
spect to the probability distribution P. For the prediction
problem, the random variable of data points is denoted by
Z = (X,Y) € Z, where X € X denotes the input covari-
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Figure 1: Data Distribution Projection

ates, Y € ) denotes the target. fz : X — ) denotes the
prediction model parameterized by 3. The loss function
is denoted as ¢ : Y x ¥ — Ry, and ¢(f3(X),Y) is ab-
breviated as (8, Z). We use (-)4+ = max(-,0). We adopt
the conventions of extended arithmetic, whereby co - 0 =
0-0c0o=0/0=0andoo — o0 =—00+00=1/0=o00.

2. Model Evaluation Framework

In this section, we present a stability evaluation criterion
based on OT discrepancy with moment constraints, capable
of considering both types of data perturbation — data cor-
ruptions and sub-population shifts — in a unified manner.
The key insight lies in computing the projection distance,
as shown in Figure 1, which involves minimizing the proba-
bility discrepancy between the most sensitive distribution
denoted as Q* and the lifted training distribution Py ® 91
in the joint (sample, density) space, while maintaining the
constraint that the model performance falls below a specific
threshold. This threshold refer to a specific level of risk,
error rate, or any other relevant performance metrics. The
projection type methodology has indeed been employed in
the literature for statistical inference, particularly in tasks
like constructing confidence regions (Owen, 2001; Blanchet
et al., 2019). However, this application is distinct from our
current purpose.

2.1. OT-based stability evaluation criterion

We begin by presenting the OT discrepancy with moment
constraints, as proposed in Blanchet et al. (2023, Definition
2.1). This serves as a main technical tool for our further
discussions.

Definition 1 (OT discrepancy with moment constraints).
If Z CRTand W C R are convex and closed sets, ¢ :
(Z x W)? — R, is a lower semicontinuous function, and
Q,P € P(Z x W), then the OT discrepancy with moment
constraints induced by ¢, Q and P is the function IM,. :
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P(Z x W)? — R, defined through

inf E.[c((Z,W),(Z,W))]

s.t. TEP(Z xW)?)
Tzw) = Q Tz =P
E[W]=1 m-as,

Mc(@a P) =

where 7z vy and T4 vy are the marginal distributions of
(Z,W) and (Z, W) under .

Remark 1. The core idea is to lift the original sample space
Z to a higher dimensional space Z x W —- a joint (sam-
ple, density) space. Here, we treat the additional random
variable W as the “density ” or “probability mass”, making
it also amenable to perturbations through optimal trans-
port methods. However, these perturbations are subject to
the constraint that the expectation of the density must re-
main equal to one. Thus, the transportation cost function
¢((z,w), (2,1)) can measure the changes in both samples
(2 — 2) and their probability densities (w0 — w).

To evaluate the stability of a given learning model f3 trained
on the distribution Py € P(Z), we formally introduce the
OT-based stability evaluation criterion as

m(ﬁa T) == { QG’Pl(%fo) MC(@7 P) (P)
S.t. EQ[W . ((67 Z)] > r.

Here, the reference measure PP is selected as Py ® 61, with
8, denoting the Dirac delta function,' IM,(Q, P) represents
the OT discrepancy with moment constraints between the
projected distribution Q and the reference distribution P,
¢(B, z) denotes the prediction risk of model fg on sample z,
and r > 0 is the pre-defined risk threshold.

To sum up, we evaluate a model’s stability under distribution
shifts by quantifying the minimum level of perturbations
required for the model’s performance to degrade to a pre-
determined risk threshold. The magnitude of perturbations
is determined through the use of the OT discrepancy with
moment constraints and the cost function ¢, see definition 1.

Then, a natural question arises: How do we select the cost
function c to effectively quantify the various types of per-
turbations? We aim for this cost function to be capable of
quantifying changes in both the support of the distribution
and the probability density or mass function. One possible
candidate cost function is

c((z,w), (2,w)) = 01 - w-d(z,2) + 02 - (P(w) — P(w)) .-

ey
Here, d(z, 2) = ||z — &3 + oo - |y — 9| quantifies the cost
associated with the different data samples z and £ in the

!This implies that the sample weights are almost surely equal
to one with respect to the reference distribution, as we lack any
prior information about them.

set Z, with the label measurement’s reliability considered
infinite; (¢(w) — ¢(w))4 denotes the cost related to differ-
ences in probability mass, where ¢ : R, — R, is a convex
function satisfying ¢(1) = 0; 61,62 > 0 serve as two hyper-
parameters, satisfying 1/6; + 1/605 = C for some constant
C, to control the trade-off between the cost of perturbing the
distribution’s support and the probability density or mass on
the observed data points. This cost function was originally
proposed in Blanchet et al. (2023, Section 5) within the
framework of distributionally robust optimization.

Remark 2 (Effect of 6 and 65). (i) When 6; = 400, the
stability criterion S8(3, r) only counts the sub-population
shifts, as any data sample corruptions are not allowed. In
this scenario, our proposed stability criterion can be reduced
to the one recently introduced in Gupta & Rothenhaeusler
(2023) and Namkoong et al. (2022). (ii) When 65 = +o0,
the stability criterion 93(5, r*) only takes the data corruptions
into account instead. (iii) The most intriguing scenario arises
when both 6; and 0, have finite values. These parameters, 61
and 65, hold a pivotal role in adjusting the balance between
data corruptions and sub-population shifts within our sta-
bility criterion, which allows us to simultaneously consider
both types of distribution shifts. By manipulating the values
of 61 and 65, we can achieve a versatile representation of
a model’s resilience across a wide range of distributional
perturbation directions. This adaptability carries significant
implications when evaluating the robustness of models in
diverse and ever-evolving real-world environments.

2.2. Dual reformulation and its interpretation

Problem (P) constitutes an infinite-dimensional optimization
problem over probability distributions and thus appears to
be intractable. However, we will now demonstrate that by
first establishing a strong duality result, problem (P) can be
reformulated as a finite-dimensional optimization problems
and discuss the structure of the most sensitive distribution
from problem (P).

Theorem 1 (Strong duality for problem (P)). Suppose that
(i) The set Z x W is compact, (ii) £(3,) is upper semi-
continuous for all 3, (iii) the cost function ¢ : (Z x W)? —
R is continuous; and (iv) the risk level r is less than the
worst case value 7 := max,¢ z {(8, z). Then, we have

R(B,r) = sup
heRy,aeR

hr+a+Eg [{27(8,(2,W))] ©)
where the surrogate function 14" (3, (2,%)) equals to

i 2 W —h-w-{
(Z7wr)ré1gch((z,w), (2,0)) + aw w - (B, z),
forall Z € Z and w € W.

For a detailed proof, we direct interested readers to the
Appendix A.1.
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Remark 3. When the reference measure Py is a discrete
measure, some technical conditions in Theorem 1 (e.g., com-
pactness, (semi)-continuity) can be eliminated by utilizing
the abstract semi-infinite duality theory for conic linear pro-
grams. Please refer to Shapiro (2001, Proposition 3.4) and
our proof in Appendix A.l for more detailed information.

If we adopt the cost function in the form of (1) for two
commonly used ¢ functions, we can simplify the surrogate
function further by obtaining the closed form of w. Here, we
explore the following cases: (i) Selecting ¢(t) = tlogt —
t + 1, which is associated with the Kullback—Leibler (KL)
divergence. (ii) Choosing ¢(t) = (t — 1)2, which is linked
to the y2-divergence.

Proposition 1 (Dual reformulations). Suppose that W =
Ry. (i) If ¢(t) = tlogt — t + 1, then the dual problem (D)

admits:
exp <£h>91 (Z) )
B2

(ii) If p(t) = (t — 1)?, then the dual problem (D) admits:

. 2
Eh,Ol (Z) + o
< 292 ’ 1)+ ’
(3)

where the d-transform of h - £(3, -) with the step size 01 is
defined as

sup hr — 62 log Ep, ; (2)

h>0

sup hr+4+a+0y — GQE]PO
h>0,a€R

lho,(2) = math (B, z) — 01 -d(z,2).
z€

When the reference measure Py is represented as the empir-
ical measure Py = % >0, 8z, the characterization of the
most sensitive distribution Q*, can be elucidated through
the dual formulation provided in (2) and (3).

Remark 4 (Structure of the most sensitive distribution). We
express Q* as follows: Q* = % Dy 6(2;@2), where each
(zF,w}) € Z x Ry satisfies the conditions:

z; = argmax h*l(B;z) — 01 - d(z, 2;),
zEZ

Vi € [n].

Using various ¢ functions requires adjusting the weight in a
distinct manner:
(i) If ¢(t) = logt — t + 1, then we have:

w} X exp (&*,2(%)) , Vie[n];
D)

(ii) If ¢(t) = (t — 1)2, then we have:

wi*oc(gh*ﬂl(zi)_o‘_FQ , Vi€ ln],
20, .

where h* and o* are the optimal solution of problem (D).
Therefore, it becomes evident that the most sensitive distri-
bution encompasses both aspects of shifts: the transforma-
tion from 2; to 2} and the reweighting from * to w}. Our
cost function enables a versatile evaluation of model stabil-
ity across a range of distributional perturbation directions.
This approach yields valuable insights into the behavior of
a model in different real-world scenarios and underscores
the importance of incorporating both types of distributional
perturbation in stability evaluation.

2.3. Computation

In this subsection, our emphasis lies in addressing problems
(2) and (3) with varying types of loss functions, specifically
when the reference measure P, takes the form of the
empirical distribution.

Convex piecewise linear loss functions. If the loss func-
tion ¢(f3, -) is piecewise linear (e.g., linear SVM), we can
show that (2) admits a tractable finite convex program.

Theorem 2 (KL divergence). Suppose that Z =
R? x {+1, —1} and (({(ay, br) bre[r], 2) = MaXpe[k] Y -
a;—x + b. The negative optimal value of problem (2) is
equivalent to the optimal value of the finite convex program:

min —hr+t

s.t. AeRy,teRneR},peR”
(03,02, pi —t) € Kexp
lolzp2 1 g, aTd; - h+ by < p;
LS < s,

where the set Keyp, is the exponential cone.

Theorem 3 (x? Divergnce). Suppose that Z = R? x
{1, —1} and €({(ar, br) }re[x), 2) = maxpe(r) y-a -+
bx. The negative optimal value of problem (2) is equiv-
alent to the optimal value of the finite convex program

min —hr+t
s.t. heRi,aeR,teRneR}
2
% “h2 4 ;- a{il ~h 4 by + 202a + 2605 < 209m;
972 Yiam St

For a detailed proof, we direct interested readers to the
Appendix A.3 and A.4 for more detailed information.
Equipped with Theorem 2 and 3, we can calculate our
evaluation criterion by general purpose conic optimization
solvers such as MOSEK and GUROBI.

0/1 loss function. In practical applications, employing a
0/1 loss function offers users a simpler method to set up the
risk level r, which corresponds to a pre-defined acceptable
level of error rate. That is, given a trained model 3, we
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define the loss function on the sample (z, y) as

B, (2,Y) = Lysfs(a)s

where [ is the indicator function defined as I, +r, () = 0 if
y # fa(x); = 0 otherwise. In this scenario, the d-transform
of h-£5(-) can be expressed in a closed form. Conceptually,
this loss function promotes long-haul transportation, as it
encourages either minimal perturbation or no movement at
all, i.e.,

Ch0,(2) = (h = 01 -d*(2))+,

where d*(2) := min,cz{d(z,2) : (8,z) = 1}. This
distance quantifies the minimal adjustment needed to
fool or mislead the classifier’s prediction for the sam-
ple z. A similar formulation has been employed in
Si et al. (2021) to assess group fairness through opti-
mal transport projections. Finally, the dual formulation
(2) is reduced to an one-dimensional convex problem w.r.t h.

Nonlinear loss functions. For general nonlinear loss func-
tions, such as those encountered in deep neural networks,
the dual formulation (2) retains its one-dimensional convex
nature with respect to h. However, the primary compu-
tational challenge lies in solving the inner maximization
problem concerning the sample z. In essence, this dual max-
imization problem (2) for nonlinear loss functions is closely
associated with adversarial training (Nouiehed et al., 2019;
Yi et al., 2021). All algorithms available in the literature for
this purpose can be applied to our problem as well. The key
distinction lies in the outer loop. In our case, we optimize
over h € R to perturb the sample weights, whereas in
adversarial training, this outer loop is devoted to the training
of model parameters.

For simplicity, we adopt a widely-used approach in our pa-
per: Performing multiple gradient ascent steps to generate
adversarial examples, followed by an additional gradient
ascent step over h. For a more thorough understanding,
please see Algorithm 1. If we can solve the inner maximiza-
tion problem nearly optimally, then we can ensure that the
sequence generated by Algorithm 1 converges to the global
optimal solution. You can find further details in Sinha et al.
(2018, Theorem 2).

2.4. Feature stability analysis

As an additional benefit, if we select an alternative cost
function, different from the one proposed in (1), our evalu-
ation criterion JR(/3, ) can serve as an effective metric for
assessing feature stability within machine learning models.
If we want to evaluate the stability of the i-th feature, we
can modify the distance function d in (1) as

d(z,2) = |2y — 2 ll3 + 00 - |l2,—) — Z(1)lI3,

Ay 0‘..‘....0 .'.'o‘%..'-
:/‘:.. :“:} °s & 2 .-:-;{‘:*‘:’ s
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Figure 2: Visualizations of the original dataset and the most
sensitive distribution Q* produced by cross-entropy loss
function under different 6, 65. The original prediction error

is 0.1, and the risk threshold is 0.5.

where z(;) represents the i-th feature of z, while z(_; =
2\z(;) denotes all variables in z except for the i-th one.
This implies that during evaluation, we are only permitted
to perturb the i-th feature while keeping all other features
unchanged.

Substituting d(z, 2) in problem (2), we could obtain the
corresponding feature stability criterion R;(/3,r), which
provides a quantitative stability evaluation of how robust
the model is with respect to changes in the i-th feature.
Specifically, a higher value of R;(3,r) indicates greater
stability of the corresponding feature against potential shifts.

3. Visualizations on stylized / toy examples

In this section, we use a toy example to visualize the most
sensitive distribution Q* based on Remark 4, which provides
intuitive insights into the structure of Q*.

We consider a two-dimensional binary classification prob-
lem. We generate 100 samples for Y = 0 from distribution
N([2,2]T, 1), and 100 samples for Y = 1 from distribu-
tion N'([—1, —1]7, I,). The model f3(-) under evaluation
is logistic regression (LR). To explore the effects of varying
the adjustment parameters, we fix 1/6, +1/6, = 5. We use
the cross-entropy loss function, set the risk threshold to be
0.5 (the original loss was 0.1), and solve the problem (2). In
Figure 2c-2d, we visualize the most sensitive distribution
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Q* in each setting, where the decision boundary of fz(-)
is indicated by the boundary line, colored points represent
the perturbed samples, shallow points represent the original
samples, and the size of each point is proportional to its
sample weight in Q*. Corresponding with the analysis in
Section 2.1, we have the following observations:

* When 6; = +o0, our stability criterion only considers
sub-population shifts. From Figure 2b, we observe an
increased concentration on several samples near the de-
cision boundary. This corresponds with Namkoong et al.
(2022); Gupta & Rothenhaeusler (2023) that focus on the
tail performances.

* When 0y = +o0, the stability criterion only considers
data corruptions. From Figure 2c, a significant number of
samples are severely perturbed to adhere to the predefined
risk threshold.

* When 6; = 6, = 0.4, in Figure 2d, a more balanced
Q* is observed, reflecting the incorporation of both data
corruptions and sub-population shifts. This showcases
a scenario where samples undergo moderate and reason-
able perturbations, and the sensitive distribution is not
disproportionately concentrated on a limited number of
samples. Such a distribution is a more holistic and reason-
able approach to evaluating stability in practice, taking
into account a broader range of potential shifts.

Besides, the visualizations of Q* with 0/1 loss function are
provided in Figure 6 in Appendix C.1. Additionally, Figure
8 further shows that the risk Eq [W - £(3, Z)] always con-
verges to the pre-defined threshold » when the number of
epoch number ¢ goes to infinity.

4. Experiments
In this section, we explore real-world applications to show

the practical effectiveness of our stability evaluation crite-
rion, including how this criterion can be utilized to compare
the stability of both models and features, and to inform
strategies for further enhancements.

Datasets. We use three real-world datasets. ACS In-
come and ACS Public Coverage are based on the American
Community Survey (ACS) Public Use Microdata Sample
(PUMS) (Ding et al., 2021). COVID-19 dataset (Baqui et al.,
2020) is based on SIVEP-Gripe data.

* ACS Income. The task is to predict whether an individ-
val’s income is above $50,000 based on his/her demo-
graphic features and occupational information.

* ACS Public Coverage (PubCov). The task is to predict
whether an individual has public health insurance.

* COVID-19. The dataset consists of 6,882 patients from
Brazil recorded between Feb 27-May 4, 2020, which
captures risk factors including comorbidities, symptoms,
and demographic characteristics. The task is to predict
the mortality of each patient.

Throughout the experiments, we set 1/0; + 1/6, = 5 for
adjustment parameters ¢ and 5. Details of experiments
can be found in Appendix D.

4.1. Model stability analysis

In this section, we first provide more in-depth empirical
analyses of our proposed criterion, and demonstrate how it
can reflect a model’s stability with respect to data corrup-
tions and sub-population shifts. We focus on the income
prediction task for individuals from California, using the
ACS Income dataset, where we sample 2,000 data points for
training and another 2,000 points for evaluation.

Excess risk decomposition. Recall that our stability eval-
uation misleads the model to a pre-defined risk threshold by
perturbing the original distribution Py in two ways, i.e. data
corruptions and sub-population shifts. Based on the optimal
solutions Q* € P(Z x W) of problem (P), we can compute
the excess risk A = Eq«[W{(8, Z)] — Ep,[¢(53, Z)] into
two parts satisfying A = Ay + Ay

Ar = Eqy [U(B, Z)] — Ep, [£(B, 2)], @

A = Eqg- [W (B, Z)] - EQ*Z [[(ﬂ7 Z)],
where A denotes the excess risk induced by data corrup-
tions (data samples 2 — z), and Ay denotes that induced
by sub-population shifts (probability density 1 — w). In
this experiment, for a MLP model trained with empirical
risk minimization (ERM), we use the cross-entropy loss and
set the risk threshold to be 3.0. In Figure 3a, we vary the
01 and 05 and plot the Ay, Ay in each setting. The results
align with our theoretical understanding that a decrease in
0, leads our evaluation method to place greater emphasis
on data corruptions. Conversely, a reduction in 6o shifts
the focus of our evaluation towards sub-population shifts.
This observation confirms the adaptability of our approach
in weighing different types of distribution shifts based on
the values of 6; and 0.

Convergence of our optimization algorithm. In Figure
3b, we plot the curve of the risk on Q) w.r.t. the epoch
number ¢ throughout the optimization process. For different
values of #; and 65, we observe that the risk consistently
converges to the pre-defined risk threshold of » = 3.0. This
empirical observation is in agreement with our theoretical
investigation, demonstrating the reliability and effectiveness
of our optimization approach.

Reflection of stability. We then proceed to compare the
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Figure 3: Results of the income prediction task. (a): The excess risk decomposition under different values of §; and 65
according to (4). (b): The curve of the risk on the most sensitive distribution Q* during optimization for different choices
of 0, and 65, which converge to the pre-defined risk threshold. The models under evaluation in (a) and (b) are both ERM
(MLP). (c): The stability measure for MLP models trained with ERM, AT, and Tilted ERM, under varying #; and 5. Error

bars denote the standard deviations over multiple runs.

stability of MLP models trained with three well-established
methods, including ERM, adversarial training (AT (Sinha
et al., 2018)), and Tilted ERM (Li et al., 2023). Adversarial
training is specifically designed to enhance the model’s
resilience to data corruptions, whereas Tilted ERM, through
its use of the log-sum-exp loss function, aims to prioritize
samples with elevated risks, potentially enhancing stability
in the presence of sub-population shifts. For our analysis,
we set the risk threshold 7 to 3.0, vary 6, and 65, and plot
the resulting stability measure 93(/3, 3.0) for each method.

From Figure 3c, we have the following observations: (i)
both robust learning methods exhibit markedly higher sta-
bility compared to ERM; (ii) AT exhibits greater stability
in the context of data corruptions, while Tilted ERM shows
superior performance in scenarios involving sub-population
shifts. These findings align with our initial hypotheses re-
garding the strengths of these methods; (iii) Furthermore,
the results suggest that robust learning methods tailored to
specific types of distribution shifts may face challenges in
generalizing to other contexts. Therefore, accurately identi-
fying the types of shifts to which a model is most sensitive
is crucial in practice, as it can inform machine learning
engineers on strategies to further refine and improve the
model’s robustness and efficacy. This insight underscores
the significance of our proposed stability evaluation frame-
work. It offers a comprehensive and unified perspective
on a model’s stability across various types of distribution
shifts, enabling a more holistic understanding and strategic
approach to enhancing model robustness and reliability. Ad-
ditional results on ACS PubCov and COVID-19 datasets are
shown in Figure 9 in Appendix D.4.

4.2. Feature stability analysis

Building upon our previous findings, we further investigate
the applicability of feature stability analysis across multiple
prediction tasks, including income, insurance, and COVID-

19 mortality prediction. By examining feature stability, we
gain valuable insights into the specific attributes that signifi-
cantly influence model performance. It provides a principle
approach to enhance our understanding of the risky factors
contributing to overall model instability, and thereby helps
to discover potential discriminations and improve model
robustness and fairness. Throughout all the experiments,
we use 0/1 loss function and set the error rate threshold 7 to
be 40%. The adjustment parameter 6, is set to 1.0, and 65
is 0.25.

Income prediction

We sample 2,000 data points from ACS Income dataset for
training, an additional 2,000 points for the evaluation set,
and a further 5,000 points to test the effectiveness of algo-
rithmic interventions. For both the LR model and the MLP
model, trained using ERM, we use the evaluation set to
compute the feature sensitivity measure 9;(3, ) for each
feature as outlined in Section 2.4. The top-5 most sensitive
features for each model — MLP and LR — are displayed in
Figure 4a. In these visualizations, distinct colors are as-
signed to different types of features for clarity; for example,
red is used to denote racial features, while green indicates
occupation features. From the results, we observe that: (i)
When the performances are similar (82% v.s. 83%), the
LR model is less sensitive to input features, compared with
the MLP model, which corresponds with the well-known
Occam’s Razor. (ii) Interestingly, our stability criterion re-
veals that both the MLP and LR models exhibit a notable
sensitivity to the racial feature ”American Indian”. This
raises concerns regarding potential racial discrimination
and unfairness towards this specific demographic group. It
is important to highlight that an individual’s race should
not be a determinant factor in predicting their income, and
the heightened sensitivity to this feature suggests a need for
careful examination and potential mitigation of biases in the
models before deployment.
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Figure 4: Feature sensitivity analysis for income prediction and public coverage prediction. Figure (a) and (c): the top-5
sensitive feature scores for MLP and LR in the income prediction and the public coverage (PubCov) prediction tasks, where
a smaller score means the corresponding feature is more sensitive. Figure (b) and (d): the worst racial group accuracy for
MLP, LR, AT, and targeted AT in the income prediction and the public prediction tasks.

Building on our initial observations, we conduct an in-depth
analysis of the accuracy across different racial groups for
both the LR and MLP models. The findings, as shown in
Figure 4b, align with our earlier feature stability results. No-
tably, the accuracy for the worst-performing racial group is
significantly lower compared to other groups (for instance,
a decrease from 82% to 72% in the case of the MLP model).
Such findings indicate that both the LR and MLP models,
when trained using ERM, exhibit unfairness towards mi-
nority racial groups. In light of these insights, our feature
stability analysis serves as a valuable tool to identify and
prevent the deployment of models that may perpetuate such
disparities in practice.

Subsequently, we use adversarial training as an algorithmic
intervention to enhance model performance. Figure 4b illus-
trates the results of this intervention: AT denotes adversarial
training that perturbs all racial features, whereas targeted AT
specifically perturbs the identified sensitive racial feature
“American Indian”. The results indicate that targeted AT
markedly outperforms all baseline models, achieving a sig-
nificant improvement in accuracy for the worst-performing
racial group. This outcome effectively demonstrates the
utility of our feature stability analysis in guiding targeted
improvements to model performance and fairness.

Public coverage prediction

We replicated the aforementioned experiment on the ACS
PubCov dataset, which involves predicting an individual’s
public health insurance status. Following the previous setup,
we identify and display the top-5 most sensitive features
for both LR and MLP models in Figure 4c. Additionally,
Figure 4d presents the accuracy for the worst-performing
racial group for each method.

The findings reveal several key insights: (i) The MLP model
outperforms the LR model in this context (71% vs. 67%),
and it exhibits less sensitivity to input features. This ob-

servation suggests that feature sensitivity is influenced by
both the nature of the task and the characteristics of the
model. (ii) Consistent with previous results, the “Ameri-
can Indian” racial feature is identified as sensitive in both
models. The accuracy of the worst-performing racial group
further underscores the presence of discrimination against
minority groups. (iii) Leveraging our feature stability anal-
ysis, targeted AT achieves the most notable improvement.
This again underscores the effectiveness of our evaluation
method in enhancing model performance and fairness.
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Figure 5: Results of the COVID-19 mortality prediction
task. (a): The top-5 most sensitive features for MLP and
LR, respectively. (b): The prediction accuracy (upper sub-
figure) and macro F1 score (lower sub-figure) before and
after algorithmic intervention on the LR model.

COVID-19 mortality prediction

We use the COVID-19 dataset, and the task is to predict the
mortality of a patient based on features including comor-
bidities, symptoms, and demographic characteristics. For
the LR and MLP models trained with ERM, we follow the
outlines in Section 2.4 and identify the top-5 most sensi-
tive features, as shown in Figure 5a. From the results, we
observe that: (i) Consistent with the trends observed in the
income prediction task, the LR model demonstrates lower
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sensitivity to input features compared to the MLP model
when their performance levels are comparable; (ii) Notably,
both LR and MLP models are quite sensitive to the “Age”
feature. Given the variety of risk factors for COVID-19,
such as comorbidities and symptoms, it is concerning that
these models might overemphasize age, which is not the
sole determinant of mortality. This highlights a critical need
to ensure models effectively account for diverse age groups
and do not rely excessively on age as a predictive factor.

Building on these insights, we further evaluate the accuracy
and macro F1 score across different age groups for the LR
model. As illustrated in Figure 5, the accuracy for younger
individuals (age < 40) and older individuals (age > 70) is
notably high (the blue bars in the upper sub-figure). How-
ever, their corresponding macro F1 scores are significantly
lower (as shown by the blue bars in the lower sub-figure).
This suggests that the LR model may overly rely on the
age feature for making predictions. For example, it tends
to predict survival for younger individuals and mortality
for older individuals with high probability, irrespective of
other relevant clinical indicators. Such a simplistic approach
raises concerns about the model’s ability to provide nuanced
predictions for these age groups.

Considering the possibility of varied mortality prediction
mechanisms among different age groups, we propose a tar-
geted algorithmic intervention: training distinct LR models
for each age group. From the lower sub-figure in Figure 5,
we see a substantial improvement in macro F1 scores for
both younger and older populations.

From these three real-world experiments, we demonstrate
how the proposed feature stability analysis can help discover
potential discrimination and inform targeted algorithmic in-
terventions to improve the model’s reliability and fairness.

5. Closing Remarks

This work proposes an OT-based stability criterion that al-
lows both data corruptions and sub-population shifts within
a single framework. Applied to three real-world datasets,
our method yields insightful observations into the robustness
and reliability of machine learning models, and suggests
potential algorithmic interventions for further enhancing
model performance. The utility of our stability evaluation
criterion to modern model architectures (e.g., Transformer,
tree-based ensembles) and popular real-world applications
(e.g., LLMs) is natural to further explore.
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criterion can help prevent the deployment of biased or unre-
liable models, thereby contributing to more equitable out-
comes, especially in high-stakes applications like healthcare,
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A. Proofs
A.1. Proof of Theorem 1

Proof. To start with, we first reformulation the primal problem (P) into an infinite-dimensional linear program:

inf  E.[c((Z,W),(Z,W))]

s

s.t. meP((ZxW)?)

r—E;[W-p,Z2)] <0 (Primal)
E.[W] =1
W(Z,W) =P.

We aim to apply Sion’s minimax theorem to the Lagrangian function
L(m;h,a) = hr + o+ Er[c((Z, W), (Z,W)) —h-W - £(B3,Z) —a - W],

where h € Ry, a € R, and 7 belongs to the primal feasible set
HIE” = {ﬂ' S P((Z X W)Q) : W(Z,W) = [AP} .

Since Z x W is compact, it follows that P(Z x W) is tight. Furthermore, as a subset of a tight set is also tight, we conclude
that ITj is tight as well. Consequently, according to Prokhorov’s theorem (Van der Vaart, 2000, Theorem 2.4), II; has a
compact closure. By taking the limit in the marginal equation, we observe that I1; is weakly closed, establishing that IIj is
indeed compact. Moreover, it can be readily demonstrated that I3 is convex.

The Lagrangian function L(7; h, «) is linear in both 7 and (h, «). To employ Sion’s minimax theorem, we will now prove
that (i) L(; h, «) is lower semicontinuous in 7 under the weak topology and (ii) continuous in (/, «) under the uniform
topology in Ry x R.

(i) Suppose that 7,, converges weakly to 7. Then, Portmanteau theorem states that for any lower semicontinuous function g

that is bounded below, we have
lim inf/gdﬂ'n > /gdﬂ'.
n—-+oo

Since ¢(3, -) is upper semicontinuous for all 8 and w, h > 0, we can conclude that h - w - £(/3, z) is upper semicontinuous
w.r.t (z,w). Moreover, armed with the lower semicontinuity of the function ¢((z,w), (2, w)), we know the following
candidate function

C((sz)a(évw)) —hwﬁ(ﬂ,z) —a-w

is lower semicontinuous with respect to (z,w) for any (2,%) € Z x W. As Z x W is compact, the above candidate
function is also bounded below. Thus, we have

liminf L(m,; h, ) > L(m; h, ).

n—-+oo

It follows that L(m; h, «) is lower semicontinuous in 7 under the weak topology.

(ii) Suppose now that lim,,_, 1 h, = h in the Euclidean topology and lim,, - &, = « in the Euclidean topology.
There exists h € Ry and & € R with sup,, . |hn| < h and sup,, . |an| < @ for all n > 1. Thus, by the dominated
convergence theorem, we have

lim L(m; hp, o) = L(m; by @).

n—-+oo
We then conclude that L(7; h, ) is continuous in (h, ) under the Ecludiean topology in R, x R.
We are now prepared to utilize Sion’s minimax theorem, and thus, we have:

inf sup L(mh,a)= sup inf L(mh,«). 5)
mellp peR, ,acR heR, ,acR TEM
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Our subsequent task involves demonstrating the equivalence between the left-hand side of (5) and the primal problem
(Primal). To achieve this, we will re-express the function L as follows:

L(m; h, @) = Ex[e((Z, W), (Z,W)] + h (r = E<[W - £(8, 2)]) + a1 — Ex[W]).

Then, we can see infrerr, SUPyer, aer L(7; 1, «) is bounded above. To start with, we construct a single support distribution
as follows: Qo = 0.+ 1) Where z* = argmax_. z £(f3, z). Then, we have

inf  sup L(mh,a)< sup L(Qy ® P h, &),
mn€lly heR, ,aeR heRy xR

= Equope((Z W), (2. )] + sup h(r ~7) < +20,

where the second inequality follows from Eq,[W] = 1 and the last equality holds as we know r < 7 = Eq, [¢(8, Z)] =
maxcz £(3, Z) and c is continuous and hence bounded on a compact domain Z x W. For any feasible point 7 € II, let
us consider the inner supremum of the left-hand-side of (5), ensuring it doesn’t go to infinity. In this case, we find that
r— E‘IT[W E(ﬁ,Z)] < 0
E.[W]=1.

It remains to be shown that the sup-inf part is equivalent to the dual problem (D). To do this, we rewrite the dual problem as

sup  inf L(m;h,a).
heRy,acR 7€l

= sup hr+a+ inf Efe(Z,W),(Z,W))—h-W-4B,Z)—a-W].
heR, ,a€R mellp

The last step is to take the supremum of L over 7 € II;. That is,

inf Er[c((Z,W),(Z,W))—h-W -£(B,Z) —a-W]

mellp

— E- i ZWN)—-h-w- -
P (z,wl)IggXWC((Z,w)7( 7W)) h w é(ﬁaz) Q-wi,

due to the measurability of functions of the form min; ,)ezxw c((z, w), (Z,W)) —h-w-{(B,z) — - w, following the
similar argument in (Blanchet & Murthy, 2019). ]

When the reference measure is discrete, i.e., Py = % > 8z, we can get the strong duality result under some mild
conditions.

Theorem 4 (Strong duality for problem (P)). Suppose that r < Ep,[¢(5, Z)] holds. Then we have,

R(B,r)= sup hr+a+E; [Z?’h(ﬁ, (Z,W))] . (D)
heR,a€R

Proof. To start, we have the primal problem (P) admits

R(B,r) = inf  Exe((Z,W),(Z2,W))]
ﬂZW(ZAYW):]P),WEP((ZXW)z) 6
5. 1. r—E.[W-(8,2)] <0 ©)
E.[W] =1

Due to the condition r < Ep, [¢(3, Z)], we know the Slater condition, i.e., 7 — Ep, s, xPo s, [W - £(8, Z)] < 0, holds. Thus,
we can apply Shapiro (2001, Proposition 3.4) to get the strong duality result directly. That is,

R(B,r)= sup hr+a+E; inf c((z,w),(Z,VV))+aw7h~w~€(ﬂ,z)
heRy,a€R (z,w)EZXW

13
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A.2. Proof of Proposition 1
Proof. Now, we are trying to calculate the surrogate function with our proposed cost function c in (1) . Then, we have

BB (5 0) = wmin 1w d(z2) + 02(6(w) — 6(@)) 1 — aw b £(3,2)
(z,w)EZXW

. . h-0(8,z) —01-d(z,2) + «
= gélg 0o - {unelﬁ —w 0y + ¢(w) + Hw(w)

h-t — 0, -d(z. 2
:3?2—92-(¢+Hw)*< (8,2) 9; (272)—#&).

where the first equality follows as W =1 almost surely and ¢(1) = 0, and the second equality holds due to the definition of
conjugate functions.

(i) When W = R and ¢(t) = tlogt —t + 1, we know its conjugate function (¢ + I, )* = exp(t) — 1. Consequently, we
obtain the following:

égvh(g,(27w)) = min —6s - exp (he(ﬁ’z) _Zl d(z’é) +a) + 6o
2

z€Z
= —92 - exXp <maXZEZ h- 6(57 20)2_ 91 ) d(Z7 Z) + a) + 92

, ;
= —0 -exp < hﬁlsgz) + a) + 0.

where the second equality follows from the fact the function exp(-) is monotonically increasing. Hence, we can reformulate
the dual problem (D) as
exp (&,91 Z)+ a)
02

Next, we will solve the supremum problem via « and the first-order condition reads

Z
1 —exp (;) Ep, |exp <£h€01()>
2 2

and a* = —05 log (Epo {W] ) Put all of them together, we get

R(B,7) = sup hr —0bslog (EPO leXp <M(Z)>

heR, 02

R(B,r) = sup hr+a—0:Ep,
heRy,a€R

+ 5.

=0

).

(i) When W = R+ and ¢(t) = (t — 1)2, the conjugate function can be computed as (¢ + Ig, )*(t) = (3 + 1)2 — 1.

2 +
Additionally, it is straightforward to demonstrate that (¢ + Iz, )*(¢) is a monotonically increasing function. Hence, we have:
> S . (R L(B,2)—01-d(2,2)+
R N
z€Z 92
5 2
— min 6, - h-E(B,z)—91~d(z,z)+a+1 Lo,
zEZ 262 +

B lho,(2) + 2
= 92 (202+1 ++02

where the third equality holds as the monotonicity of (¢ 4 Ir, )*. Then, we can reduce the dual problme (D) as

- 2
l Z
sup B+ a0 —OoFp, | (0D T
h>0,a€R 205 .

14
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Remark 5. We want to highlight the distinction between the KL and y?-divergence cases. In the latter case, we are unable to
derive a closed-form expression for the optimal o*. Instead, we must reduce it to a solution of a piecewise linear equation as

follows: .
Ep o (Z) +a +1 =1. (7
20, .

0

A.3. Proof of Theorem 2

Proof. By introducing epigraphical auxiliary variable ¢ € R, we know problem (2) is equivalent to

. [ Cno,(2)
%1218 —hr 4+ 031logEp, |exp <L

)
min —hr+t
_) st heR, teR ®)
r h0,(2)
(92 log E[po exp 0, <t
min —hr+t

s.t. AeRi,teR,neRY
(77¢7 92,&1,91 (ZA:%) — t) S /Cexp Vi e [n]
%Z?:l n < 0

min —hr+t
s.t. AeR,teRnelR},peR,
= (1i,02,pi —t) € Kexp Vi € [n] 9)
Cho, (2i) < pi Vi € [n]

% Do i < Oa.
Here, the second equality can be derived from the fact that the second inequality in problem (8) can be reformulated as

Ep, [exp (W)] <1.

To handle this constraint, we introduce an auxiliary variable 7 € R}, allowing us to further decompose it into n exponential
cone constraints and one additional linear constraint. Specifically, we have

1 n
— Zm <0
ni3

o (3) —t _
0 exp (’791(;2)> <m, Vié€|[n]

The third constraint can be further reduced to (9) by considering the fact that the set Kc;, corresponds to the exponential
cone, which is defined as

Kexp = {(xl,xg,xg) eR?: 21 > 29 -exp (%2) , T > O} U{(x1,0,23) € R?: 2y > 0,25 < 0}.
The fourth equality is due to 5, ¢, (2;) < p; when we introduce auxiliary variables p;.

Next, we show that ¢5, g, (2;) < p; admits the following equivalent forms

lho,(2:) < pi

<= sup {h -max y - a x + by —01d(z, 21)} <p;

z€Z ke[K]
< sup{h-y- ajx + bi,—01d(z, %) } <p; Vk € [K]

ez (10)
<= sup {h i - a;:r + b —01]|x — i:,H%} <p; Yk € [K]

zERC

2
= ”ZZHQ “h® + G- ap & h+ by < p;, Vk € K]
1

15



Stability Evaluation through Distributional Perturbation Analysis

where the second equivalence arises from the non-negativity of h, while the third one can be derived from the nature of the
cost function, which is defined as d(z, 2;) = ||x — #;||3 + 0o - |y — ;. The second term in the cost function prevents us
from perturbing the label due to the imposed budget limit.

Put everthing together, we have

min —hr+t
s.t. AeR,teRnelR},peR”
(’l’]i, 92api - t) € K:exp Vi € [TL]

”221‘5 h%+§;-ald; -h+by <p;, Vke[K] Vi€ [n]
%Z?:l n; < 2.

O
A.4. Proof of Theorem 3
Proof. By introducing epigraphical auxiliary variable ¢ € R, we know problem (2) is equivalent to
Oy (2 ’
min _ —hr —a + 03 + 6:Ep, M—i—l
h>0,a€R 292
+
min —hr—a+t
_ s.t. heRy,aeRtelR
= 5 2
02, {(éhﬂlsz”a + 1) } =
2 +
min —hr+t
_ s.t. heRi,aeRteR,neRy
o Ehﬁl (2) + 2020 + 205 < 292’/]1‘ Vi € [’I’L]
%2 S <t
min —hr+t
s.t. heRi,aecRteR,neRy}
= 2
lowlls . p2 4 ;- af'@; - h+ by + 2620 + 205 < 20, Yk € [K],Vi € [n]
%2 Z?:1 771‘2 <t
Here, the second equality follows from the fact that the constraint can be reformulated as
0 n
W
n <
=1
Eh,Gl (2) + 205 + 205 < 2927}1‘, RS R+.
as the function ()i is monotonically increasing. The last equality holds due to (10) . O

B. Pseudo-code for Algorithms

In this section, we provide the pseudo-code of our algorithms. For ¢(t) = tlogt — ¢ + 1, please refer to Algorithm 1, and
for ¢(t) = (t — 1), please see Algorithm 2.

C. Stylized / Toy Example

In this section, we provide more results for our toy example in Section 3.

C.1. Visualization

For the toy example in Section 3, we showcase the most sensitive distributions with continuous loss function (cross-entropy
loss). Here we choose ¢(t) = tlogt — ¢ + 1, and provide the results with 0/1 loss. We set the error rate threshold - to be
30%. The results are shown in Figure 6. From the results, we have the following observations:

16
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Algorithm 1 Stability evaluation with general nonlinear loss functions (¢(t) = tlogt — ¢ + 1).

1: Input: trained model f3(-), samples {Z;}7_,, adjustment parameters 61, 65, pre-defined threshold r;
2: Hyper-parameters: outer iteration number 7y, inner iteration number 7;,, learning rates 7, y;
3: Initialize for i € [n], set 250) < %, and (O = 1;
4: fort =0to Ty — 1 do
5 fork=0toT}, —1do
6: For i € [n], szﬂ) — sz) +n-Vgz <h(t)€(ﬂ, zi(k)) - 91d(zi(k), 21)) (update samples using ADAM optimizer)
7:  end for
8:  Update the dual parameter using ADAM optimizer as:
R O 4y v, (R Or — 6, logz exp( (B2 ") = brd(z ", 2 ))
i=1 02
9: end for

10: Output: stability criterion 3(3, r) (Equation (2)), the most sensitive distribution (@* (according to Remark 4).

Algorithm 2 Stability evaluation with general nonlinear loss functions (¢(t) = (t — 1)?)

1: Input: trained model fy(-), samples {Z;}!",, adjustment parameters 61, 62, mis-classification threshold r;
2: Hyper-parameters: outer iteration number 75, inner iteration number 7j,, learning rates 7, v, Ya;
3: Initialize for i € [n], set 21(1) +— %, and BV = 1;
4: fort = 1to Ty, do
5. fork=1to7T;, do
6: For i € [n], zi(kﬂ) — zgk) +n-Vz h(t)ﬁ(ﬁ; zi(k)) - 01d(zi(k), 21)),
(update samples using ADAM optimizer)
7:  end for
8:  Compute o* via Equation 7;
9:  Update the dual parameter using ADAM optimizer as:
n o (ﬁ Z_(Tm)) 4ot 2
h(H—l)<—h(t)+’}/'vh<hr+a*+92—922 S Rt +1 ); (11)
i=1 20, I

10: end for
11: Output: stability criterion R(53, r) (Equation (2)), the most sensitive distribution Q* (according to Remark 4).

17
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Figure 6: Visualizations of the original dataset and the most sensitive distribution Q* with 0/1 loss function under different
61, 6>. The original prediction error rate is 1%, and the error rate threshold r is set to 30%.

(a) Error rate r = 20% (b) Error rate 7 = 40% (c) Error rate r = 60% (d) Error rate » = 80%

Figure 7: Visualizations of the most sensitive distribution Q* with 0// loss function under different error rate threshold. We
set 61 = 1.0 and 65 = 0.25 here.

* Similar to the phenomenon in Section 3, when 6, = 400, the stability criterion only considers data corruptions; and
when 6, = +o0, it only considers sub-population shifts.

* Different from Figure 2, since we use 0/1 loss here, the perturbed samples are all near the boundary.

Furthermore, for fixed 67 and 0, we vary the error rate threshold r and visualize the most sensitive distribution Q* in Figure
7. We set #; = 1.0 and 65 = 0.25 and our stability criterion will consider both data corruptions and sub-population shifts.

C.2. Convergence of risk

In Figure 8, we plot the curve of Eqe) [W - £(3, Z)] with respect to the epoch number ¢. From the results, we could see that
our solution could converge to the pre-defined threshold r.

D. Experiments

D.1. Datasets

Here we provide more details about our datasets used in Section 4.

* ACS Income dataset. The dataset is based on the American Community Survey (ACS) Public Use Microdata Sample
(PUMS) (Ding et al., 2021). The task is to predict whether an individual’s income is above $50,000. We filter the dataset
to only include individuals above the age of 16, usual working hours of at least 1 hour per week in the past year, and an

income of at least $100. The dataset contains individuals from all American states, and we focus on California (CA) in
our experiments. We follow the data pre-processing procedures in (Liu et al., 2021). The dataset comprises a total of 76
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(a) Continuous loss function. (b) 0/1 loss function.

Figure 8: The convergence of Eq [W - £(3, Z)] w.r.t. epoch t. (a): Use continuous loss function with ~ = 0.5. (b): Use 0/1
loss function with 7 = 30%. Here ¢k denotes ¢(t) = tlogt —t + 1, and ¢, 2 denotes @(t) = (¢t — 1)2.

features, with the majority of categorical features being one-hot encoded to facilitate analysis. In our experiments, we
sample 2,000 data points from CA for model training, and another 2,000 for evaluation. When involving algorithmic
interventions in Section 4.2, we further sample 5,000 points to compare the performances of different algorithms.

* ACS Public Coverage dataset. The dataset is based on the American Community Survey (ACS) Public Use Microdata
Sample (PUMS) (Ding et al., 2021). The task is to predict whether an individual has public health insurance. We focus on
low-income individuals who are not eligible for Medicare by filtering the dataset to only include individuals under the age
of 65 and with an income of less than $30,000. Similar to the ACS Income dataset, we focus on individuals from California
in our experiments. We follow the data pre-processing procedures in (Liu et al., 2021). The dataset comprises a total of 42
features, with the majority of categorical features being one-hot encoded to facilitate analysis. In our experiments, we
sample 2,000 data points from CA for model training, and another 2,000 for evaluation. When involving algorithmic
interventions in Section 4.2, we further sample 5,000 points to compare the performances of different algorithms.

* COVID-19 dataset. The COVID-19 dataset contains COVID patients from Brazil, which is based on SIVEP-Gripe
data (Baqui et al., 2020). It has 6882 patients from Brazil recorded between Februrary 27-May 4, 2020. There are 29
features in total, including comorbidities, symptoms, and demographic characteristics. The task is to predict the mortality
of a patient, which is a binary classification problem. In our experiments, we split the dataset with a ratio of 1:1 for
training and evaluation sets.

D.2. Algorithms under evaluation

In Section 4.1, we evaluate AT (Sinha et al., 2018) and Tilted ERM (Li et al., 2023). In Section 4.2, we introduce the

Targeted AT as a simple algorithmic intervention. We provide their formulations here:

o AT:
min {E% 16,(8, 2)] := s, [sgzp, B, 2) - el 2, Z)} } (12)

where ¢(z,2) = ||z — 2||2 + 0o - |y — 9|, and 7 is the penalty hyper-parameter.

mﬁintlog <]E[p>0 {exp (g(ﬁé Z)>} ), (13)

where ¢ is the temperature hyper-parameter.

* Tilted ERM:

* Targeted AT:
win { B [0, (9, 2)] = B sup €05, 2) ~ 16(Z, )] . 14

In this case, ¢(z, 2) = ||z — 23113+ 00 [|2(,—s) — Z(,—1)||3, where z(;) denotes the target feature of z, and z(_;) denotes
all the other features. - is the penalty hyper-parameter. By choosing this ¢(z, Z), the targeted AT will only perturb the
target feature while keeping the others unchanged.
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D.3. Training Details.

In our experiments, we use Logistic Regression (LR) for linear model and a two-layer MLP for neural network. We use
PyTorch Library (Paszke et al., 2019) throughout our experiments. The number of hidden units of MLP is set to 16. As for the
models under evaluation in Section 4, (1) for AT (Sinha et al., 2018), we vary the penalty parameter v € {0.1,0.2,...,1.0}
and select the best « according to the validation accuracy, and the inner optimization step is set to 20; (2) for Tilted ERM (Li
et al., 2023), we vary the temperature parameter ¢ € {0.1,0.2,...,1.0} and select the best ¢ according to the validation
accuracy. Throughout all experiments, the ADAM optimizer with a learning rate of 1e~3 is used. All experiments are
performed using a single NVIDIA GeForce RTX 3090.

D.4. More results on model sensitivity analysis

Here we provide more results on model sensitivity analysis in Section 4.1 in Figure 9. Similar to the setup in Section 4.1, for
ACS PubCov and COVID-19 datasets, we vary the values of 6, and 65 and calculate the stability measure for MLP models
trained with ERM, AT, and Tilted ERM. From Figure 9, the observations are consistent with those found in the main body
(on ACS Income dataset):

* When 6, is small, our stability measure pays more attention to data corruptions. Therefore, AT performs better than Tilted
ERM and ERM.

* When 6, is small, the main focus shifts to population shifts, where Tilted ERM is more preferred.

Furthermore, it is noteworthy that the standard deviation of the stability measure increases as 6 approaches infinitely (we
set it to 100 in our experiments), especially for Tilted ERM. Recall that our stability criterion relies on both the evaluation
data and the properties of the model under evaluation. The variability observed can be attributed to two primary sources
of randomness. Firstly, there is the inherent randomness associated with the sampling process of the evaluation dataset.
Secondly, the algorithmic randomness introduced by our proposed evaluation algorithm also contributes to this variability.
When fixing the evaluation data, the standard derivations that reflect the randomness of our computing algorithm are
relatively small. Therefore, sampling randomness is identified as the principal factor. Besides, the introduction of §; = +o0
will incur a statistical cost in calculating the stability measure, as detailed in (Namkoong et al., 2022). This aspect leads to
an increase in the randomness of our proposed algorithm.

0.5

—4— ERM(MLP) == Tilted ERM(MLP) —— ERM(MLP) —— Tilted ERM(MLP)
20 —— AT(MLP) —— AT(MLP)
z Z ///
2 Z
%’ 1.0 %: ,,,,, 4
w 0.0
0.0
6, =02 6 =1 0 = +0 6h=0.2 th=1 01 = +o0
0y = +00 02 = 0.25 0y =0.2 Oy = +00 02 =0.25 0y =0.2

(a) PubCov dataset. (b) COVID-19 dataset.

Figure 9: The stability measure for MLP models trained with ERM, AT, and Tilted ERM on ACS PubCov dataset and
COVID-19 dataset.
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