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ABSTRACT

Calibration measures and reliability diagrams are two fundamental tools for mea-
suring and interpreting the calibration of probabilistic predictors. Calibration mea-
sures quantify the degree of miscalibration, and reliability diagrams visualize the
structure of this miscalibration. However, the most common constructions of reli-
ability diagrams and calibration measures — binning and ECE — both suffer from
well-known flaws (e.g. discontinuity). We show that a simple modification fixes
both constructions: first smooth the observations using an RBF kernel, then com-
pute the Expected Calibration Error (ECE) of this smoothed function. We prove
that with a careful choice of bandwidth, this method yields a calibration measure
that is well-behaved in the sense of Błasiok, Gopalan, Hu, and Nakkiran (2023) —
a consistent calibration measure. We call this measure the SmoothECE. Moreover,
the reliability diagram obtained from this smoothed function visually encodes the
SmoothECE, just as binned reliability diagrams encode the BinnedECE.
We also release a Python package with simple, hyperparameter-free methods for
measuring and plotting calibration: `pip install relplot`. Code at:
https://github.com/apple/ml-calibration.

1 INTRODUCTION

Calibration is a fundamental aspect of probabilistic predictors, capturing how well predicted prob-
abilities of events match their true frequencies (Dawid, 1982). For example, a weather forecasting
model is perfectly calibrated (also called “perfectly reliable”) if among the days it predicts a 10%
chance of rain, the observed frequency of rain is exactly 10%. There are two key questions in
studying calibration: First, for a given predictive model, how do we measure its overall amount of
miscalibration? This is useful for ranking different models by their reliability, and determining how
much to trust a given model’s predictions. Methods for quantifying miscalibration are known as
calibration measures. Second, how do we convey where the miscalibration occurs? This is useful
for better understanding an individual predictor’s behavior (where it is likely to be over- vs. under-
confident), as well as for re-calibration— modifying the predictor to make it better calibrated. The
standard way to convey this information is known as a reliability diagram. Unfortunately, in ma-
chine learning, the most common methods of constructing both calibration measures and reliability
diagrams suffer from well-known flaws, which we describe below.

The most common choice of calibration measure in machine learning is the Expected Calibration
Error (ECE), more specifically its empirical variant the Binned ECE (Naeini et al., 2015). The ECE
is known to be unsatisfactory for many reasons; for example, it is a discontinuous functional, so
changing the predictor by an infinitesimally small amount may change its ECE drastically1(Kakade
& Foster, 2008; Foster & Hart, 2018; Błasiok et al., 2023). Moreover, the ECE is impossible to
estimate efficiently from samples (Lee et al., 2022; Arrieta-Ibarra et al., 2022), and its sample-
efficient variant, the Binned ECE, is overly sensitive to choice of bin widths (Nixon et al., 2019;
Kumar et al., 2019; Minderer et al., 2021). These shortcomings have been well-documented in the
community, which motivated proposals of new, better-behaved calibration measures (e.g. Roelofs
et al. (2022); Arrieta-Ibarra et al. (2022); Lee et al. (2022)).

1See Figure 3 and Appendix E for an illustration of this discontinuity.
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Figure 1: Left: Traditional reliability diagram based on binning, which is equivalent to histogram
regression. Right: Proposed reliability diagram based on kernel regression, with our theoretically-
justified choice of bandwidth. The width of the red line corresponds to the density of predictions, and
the shaded region shows bootstrapped confidence intervals. Plot generated by our Python package.

Recently, Błasiok et al. (2023) proposed a theoretical definition of what constitutes a “good” cali-
bration measure. The key principle is that good measures should provide upper and lower bounds
on the calibration distance dCE, which is the Wasserstein distance between the joint distribution of
prediction-outcome pairs, and the set of perfectly calibrated such distributions (formally defined in
Definition 5 below). Calibration measures which satisfy this property are called consistent calibra-
tion measures. In light of this line of work, one may think that the question of which calibration
measure to choose is largely resolved: simply pick a consistent calibration measure, such as Laplace
Kernel Calibration Error / MMCE (Błasiok et al., 2023; Kumar et al., 2018), as suggested by Błasiok
et al. (2023). However, this theoretical suggestion belies the practical reality: Binned ECE remains
the most popular calibration measure used in practice, even in recent studies. We believe this is
partly because Binned ECE enjoys an additional property: it can be visually represented by a spe-
cific kind of reliability diagram, namely the binned histogram. This raises the question of whether
there are calibration measures which are consistent in the sense of Błasiok et al. (2023), and can
also be represented by an appropriate reliability diagram. To be precise, we must discuss reliability
diagrams more formally.

Reliability Diagrams. We consider measuring calibration in the setting of binary outcomes, for
simplicity. Here, we have a joint distribution (f, y) ∼ D over predictions f ∈ [0, 1], and true
outcomes y ∈ {0, 1}. We interpret f as the predicted probability that y = 1. The “calibration
function” µ : [0, 1]→ [0, 1] is defined as the conditional expectation:

µ(f) := E
D
[y | f ].

A perfectly calibrated distribution, by definition, is one with a diagonal calibration function: µ(f) =
f . Reliability diagrams are traditionally thought of as estimates of the calibration function µ (Naeini
et al., 2014; Bröcker, 2008). In other words, reliability diagrams are one-dimensional regression
methods, since the goal of regressing y on f is exactly to estimate the regression function E[y | f ].
The practice of “binning” to construct reliability diagrams (as in Figure 1 left) can be equivalently
thought of as using histogram regression to regress y on f .

With this perspective on reliability diagrams, one may wonder why histogram regression is still the
most popular method, when more sophisticated regressors are available. One potential answer is that
users of reliability diagrams have an additional desiderata: it should be easy to visually read off a
reasonable calibration measure from the reliability diagram. For example, it is easy to visually read
off the Binned ECE from a binned reliability diagram, because it is simply the integrated absolute
deviation from the diagonal:

BinnedECEk =

∫ 1

0

∣∣µ̂k(f)− fk

∣∣ dF
2
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where k is the number of bins, µ̂k is the histogram regression estimate of y given f , and fk is the
“binned” version of f — formally the histogram regression estimate of f given f . This relationship
is even more transparent for the full (non-binned) ECE, where we have

ECE =

∫ 1

0

|µ(f)− f | dF = E
f
[|µ(f)− f |]

where µ is the true regression function as above. However, more sophisticated regression methods
do not neccesarily have such tight relationships to calibration measures. Thus we have a situation
where better calibration measures exist, but they are not accompanied by reliability diagrams, and
conversely better reliability diagrams exist (i.e. regression methods), but they are not associated
with consistent calibration measures. We address this situation here: we present a new consistent
calibration measure, SmoothECE, along with a regression method which naturally encodes this cali-
bration measure. The SmoothECE is, per its name, equivalent to the ECE of a “smoothed” version of
the original distribution, and the resulting reliability diagram can thus be interpreted as a smoothed
estimate of the calibration function.

We emphasize that the idea of smoothing is not new — Gaussian kernel smoothing has been ex-
plicitly proposed as method for constructing reliability diagrams in the past (e.g. Bröcker (2008),
as discussed in Arrieta-Ibarra et al. (2022)). Our contribution is two-fold: first, we give strong the-
oretical justification for kernel smoothing by proving it induces a consistent calibration measure.
Second, and of more practical relevance, we show how to chose the kernel bandwidth in a principled
way, which differs significantly from existing recommendations.

1.1 OVERVIEW OF METHOD

We start by describing the regression method, which defines our reliability diagram. We are given
i.i.d. observations {(f1, y1), (f2, y2) . . . (fk, yk)} where fi ∈ [0, 1] is the i-th prediction, and yi ∈
{0, 1} is the corresponding outcome. For example, if we are measuring calibration of an ML model
on a dataset of validation samples, we will have fi = F (xi) for model F evaluated on sample xi,
with ground-truth label yi. We would like to estimate the true calibration function µ(f) := E[f | y].
Our estimate µ̂(f) is given by Nadaraya-Watson kernel regression (kernel smoothing) on this dataset
(see Nadaraya (1964); Watson (1964); Simonoff (1996)):

µ̂(f) :=

∑
i Kσ(f, fi)yi∑
i Kσ(f, fi)

. (1)

That is, for a given f ∈ [0, 1] our estimate of y is the weighted average of all yi, where weights are
given by the kernel function Kσ(f, fi). The choice of kernel, and in particular the choice of band-
width σ, is crucial for our method’s theoretical guarantees. We use an essentially standard kernel
(defined formally in Section 3): the Gaussian Kernel, reflected appropriately to handle boundary-
effects of the interval [0, 1]. Our choice of bandwidth σ is more subtle, but it is not a hyperparameter
– we describe the explicit algorithm for choosing σ in Section 3. It suffices to say for now that the
amount of smoothing σ will end up being proportional to the reported calibration error.

Reliability Diagram We then construct a reliability diagram in the standard way, by displaying a
plot of the estimated calibration function µ̂ along with a kernel density estimate of the predictions
fi (see Figure 1). These two estimates, compactly presented on the same diagram, provide a tool to
quickly understand and visually assess calibration properties of a given predictor. Moreover, they
can be used to define a quantiative measure of overall degree of miscalibration, as we show below.

SmoothECE A natural measure of calibration can be easily computed from data in the above
reliability diagram. Specifically, let δ̂(f) be the kernel density estimate of predictions: δ̂(f) :=
1
n

∑
i Kσ(f, fi). Then, similar to the definition of ECE, we can integrate the deviation of µ̂ from the

diagonal to obtain:

˜smECEσ :=

∫
|µ̂(t)− t|δ̂(t)dt.

3
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The measure of calibration we actually propose in Section 3, smECEσ , is closely related but not
identical to the above. Briefly, to define smECEσ we consider the kernel smoothing of the dif-
ference between the outcome and the prediction (yi − fi) instead of just smoothing the outcomes
yi. As it turns out, those choices lead to a calibration measure with better mathematical proper-
ties: smECEσ is monotone decreasing as the kernel bandwidth σ is increased, and smECE, at our
specific bandwidth choice and applied to the population distribution, is 0 for perfectly calibrated
predictors.

We reiterate that the choice of the scale σ is very important: too large or too small bandwidth will
prevent the SmoothECE from being a consistent calibration measure. In Section 3, we will show
how to algorithmically define the correct scale σ∗. For the reliability diagram, we suggest presenting
the estimates ŷ and δ̂ with the same scale σ∗, and for this scale we indeed have ˜smECEσ∗ ≈
smECEσ∗ (see Appendix A). Finally, note that we have been discussing finite-sample estimators of
all quantities; the corresponding population quantities are defined analogously in Section 3.

1.2 SUMMARY OF OUR CONTRIBUTIONS

1. SmoothECE. We define a new hyperparmeter-free calibration measure, which we call the
SmoothECE (abbreviated smECE). We prove that the SmoothECE is a consistent calibra-
tion measure, in the sense of Błasiok et al. (2023). It also corresponds to a natural notion
of distance: if SmoothECE is ε, then the function f can be stochastically post-processed to
make it perfectly calibrated, without perturbing f by more than ε in L1.

2. Smoothed Reliability Diagrams. We show how to construct principled reliability di-
agrams which visually encode the SmoothECE. These diagrams can be thought of as
“smoothed” versions of the usual binned reliability diagrams, where we perform Nadaraya-
Watson kernel smoothing with the Gaussian kernel.

3. Code. We develop a Python package which computes the SmoothECE and plots the asso-
ciated smooth reliability diagram (link omitted for anonymity). It is hyperparameter-free,
efficient, and includes uncertainty quantification via bootstrapping. We include several
experiments in Section 4, for demonstration purposes.

4. Extensions to general metrics. On the theoretical side, we investigate how far our con-
struction of SmoothECE generalizes. We show that the notion of SmoothECE introduced
in this paper can indeed be defined for a wider class of metrics on the space of predictions
[0, 1], and we prove the appropriate generalization of our main theorem: that the smECE
for a given metric is a consistent calibration measure with respect to the same metric. Fi-
nally, perhaps surprisingly, we show that under specific conditions on the metric (which
are satisfied, for instance, by the dlogit metric), the associated smECE is in fact a consistent
calibration measure with respect to ℓ1 metric.

Organization. We begin by discussing the closest related works (Section 2). In Section 3 we
formally define the SmoothECE and prove its mathematical and computational properties. To aid
intuition, we discuss the justification behind our various design choices in Appendix A. We then
prove the SmoothECE can be estimated efficiently with respect to both sample-complexity and run-
time (Section 3.4). Finally, we include experimental demonstrations of our method in Section 4,
and conclude in Section 5. Extensions of our results to more general metrics are provided in Ap-
pendix B.

2 RELATED WORKS

Reliability Diagrams and Binning. Reliability diagrams, as far as we are aware, had their origins in
the early reliability tables constructed by the meteorological community (Hallenbeck, 1920). These
early accounts of calibration already applied the practice of binning— discretizing predictions into
bins, and estimating frequencies conditional on each bin. Plots of these tables turned into binned
reliability diagrams (Murphy & Winkler, 1977; DeGroot & Fienberg, 1983), which was recently
popularized in the machine learning community by a series of works including Zadrozny & Elkan
(2001); Niculescu-Mizil & Caruana (2005); Guo et al. (2017). Binned reliability diagrams continue
to be used in studies of calibration in deep learning, including in the GPT-4 tech report (Guo et al.,
2017; Nixon et al., 2019; Minderer et al., 2021; Desai & Durrett, 2020; OpenAI, 2023).
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Reliability Diagrams as Regression. The connection between reliability diagrams and regression
methods has been noted in the literature (e.g. Bröcker (2008); Copas (1983); Stephenson et al.
(2008)). For example, Stephenson et al. (2008) observes “one can consider binning to be a crude
form of non-parametric smoothing.” However, we remind the reader of a subtlety: our objective in
this work is not identical to the regression objective, since we want an estimator that is simultane-
ously a reasonable regression and a consistent calibration measure. Our choice of bandwidth must
thus carefully balance the two; it cannot be simply be chosen to minimize the regression test loss.

Alternate Constructions. There have been various proposals to construct reliability diagrams which
improve on binning; we mention several of them here. Many proposals can be seen as suggesting
alternate regression techniques, to replace histogram regression. For example, some works suggest
modifications to improve the binning method, such as adaptive bin widths or debiasing (Kumar
et al., 2019; Nixon et al., 2019; Roelofs et al., 2022). These are closely related to data-dependent
histogram estimators in the statistics literature (Nobel, 1996). Other works suggest using entirely
different regression methods, including spline fitting (Gupta et al.), kernel smoothing (Bröcker,
2008; Popordanoska et al., 2022), and isotonic regression (Dimitriadis et al., 2021). The above
methods for constructing regression-based reliability diagrams are closely related to methods for re-
calibration, since the ideal recalibration function is exactly the calibration function µ. For example,
isotonic regression (Barlow, 1972) has been used as both for recalibration (Zadrozny & Elkan, 2002;
Naeini et al., 2015) and for reliability diagrams (Dimitriadis et al., 2021). Finally, Tygert (2020) and
Arrieta-Ibarra et al. (2022) suggest visualizing reliability via cumulative-distribution plots, instead
of estimating conditional expectations. While all the above proposals do improve upon binning
in certain aspects, none of them ultimately induce consistent calibration measures in the sense of
Błasiok et al. (2023). See Błasiok et al. (2023) for further discussion on the shortcomings of these
measures.

Multiclass Calibration. We focus on binary calibration in this work. The multi-class setting intro-
duces several new complications— foremost, there is no consensus on how best to define calibration
measures in the multi-class setting; this is an active area of research (e.g. Vaicenavicius et al. (2019);
Kull et al. (2019); Widmann et al. (2020)). Howevever, our methods apply directly to any of the met-
rics induced by the “multiclass-to-binary” reductions of Gupta & Ramdas (2021), because these are
determined by the standard calibration of a related binary problem. This includes, for example, the
multi-class confidence calibration.

Consistent Calibration Measures. We warn the reader that the terminology of consistent calibra-
tion measure does not refer to the concept of statistical consistency. Rather, it refers to the definition
introduced in Błasiok et al. (2023), to capture calibration measures which polynomially approximate
the true (Wasserstein) distance to perfect calibration.

3 SMOOTH ECE

In this section we will define the calibration measure smECE. As it turns out, it has slightly better
mathematical properties than ˜smECE defined in Section 1.1, and those properties will allow us to
chose the proper scale σ in a more principled way — moreover, we will be able to relate smECE
with ˜smECE.

Specifically, the measure smECEσ enjoys the following convenient mathematical properties, which
we will prove in this section.

• The smECEσ(D) is monotone decreasing as we increase the smoothing parameter σ.

• If D is perfectly calibrated distribution, then for any σ we have smECEσ(D) = 0. Indeed,
for any σ we have smECEσ(D) ≤ ECE(D).

• The smECEσ is Lipschitz with respect to the Wasserstein distance on the space of distri-
butions over [0, 1] × {0, 1}: for any D1,D2 we have |smECEσ(D1) − smECEσ(D2)| ≤
(1 + σ−1)W1(D1,D2). This implies smECEσ(D) ≤ (1 + σ−1)dCE(D).

• For any distribution D and any σ, there is a (probabilistic) post-processing κ, such that
if (f, y) ∼ D, then the distribution D′ of (κ(f), y) is perfectly calibrated, and moreover
E |f − κ(f)| ≤ smECEσ(D) + σ. In particular dCE(D) ≤ smECEσ + σ.

5
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Reflected Gaussian Kernel. In all of our kernel applications, we use a “reflected” version of the
Gaussian kernel defined as follows. Let πR : R→ [0, 1] be the projection function which is identity
on [0, 1], and collapses two points iff they differ by a composition of reflections around integers.
That is πR(x) := (x mod 2) if (x mod 2) ≤ 1, and (2 − (x mod 2)) otherwise. The Reflected
Gaussian kernel on [0, 1] with scale σ, is then given by

K̃σ(x, y) :=
∑

x̃∈π−1
R (x)

ϕσ(x̃− y) =
∑

ỹ∈π−1
R (y)

ϕσ(x− ỹ), (2)

where ϕ is the probability density function of N (0, 1), that is ϕσ(t) = exp(−t2/2σ2)/
√
2πσ2. We

use the Reflected Gaussian kernel in order to alleviate the bias introduced by standard Gaussian
kernel near the boundaries of the interval [0, 1].

3.1 DEFINING SMECEσ AT SCALE σ

We now present the construction of smECEσ , at a given scale σ > 0. We will show how to pick
this σ in the subsequent section. Let D be a distribution over [0, 1]× {0, 1} of the pair of prediction
f ∈ [0, 1] and outcome y ∈ {0, 1}. For a given kernel K : R → R we define the kernel smoothing
of the residual r := y − f as

r̂D,K(t) :=
E(f,y)∼D K(t, f)(y − f)

E(f,y)∼D K(t, f)
. (3)

This differs from the definition in Section 1.1, where we applied the kernel smoothing to the out-
comes y instead. In many cases of interest, the probability distributionD is going to be an empirical
probability distribution over finite set of pairs {(fi, yi)} of observed predictions fi and associated
observed outcomes yi. In this case, the r̂D(t) is just a weighted average of residuals (fi − yi)
where the weight of a given sample is determined by the kernel K(fi, t). This is equivalent to the
Nadaraya-Watson kernel regression (a.k.a. kernel smoothing, see Nadaraya (1964); Watson (1964);
Simonoff (1996)), estimating (y − f) with respect to the independent variable f .

We consider also the kernel density estimation δ̂D,K(t) := Ef,y∼D K(t, f). The smECEK(D) is
now defined as

smECEK(D) :=
∫
|r̂D,K(t)|δ̂D,K(t) dt. (4)

This notion is close to ECE of a smoothed distribution of (f, y), in a sense which can be formalized
(see Appendix A). For now, let us discuss the intuitive connection. For any distribution of prediction,
and outcome (f, y), we can consider an expected residual r(t) := E[f − y|f = t], then

ECE(f, y) :=
∫
|r(t)|dµf (t),

where µf is a measure of f . We can compare this with (4), where the conditional residual r has been
replaced by its smoothed version r̂, and the measure µf has been replaced by δ̂ dt – the measure of
f + η for some noise η. Equation (4) can be simplified by using the definitions of δ̂D,K and r̂D,K ,

smECEK(D) =
∫ ∣∣∣∣ E

f,y
K(t, f)(y − f)

∣∣∣∣ dt. (5)

In what follows, we will be focusing on the reflected Gaussian kernel with scale σ, K̃N,σ, and we
shall use shorthand smECEσ to denote smECEK̃N,σ

. We will now show how the scale σ is chosen.

3.2 DEFINING SMECE: PROPER CHOICE OF SCALE

First, we observe that smECEσ satisfies a natural monotonicity property: increasing the smoothing
scale σ decreases the smECEσ . (Proof of this and subsequent lemmas can be found in Appendix D.)
Lemma 1. For a distribution D over [0, 1]× {0, 1} and σ1 ≤ σ2, we have

smECEσ1(D) ≥ smECEσ2(D).

6
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Several of our design choices were crucial to ensure this property: the choice of the reflected Gaus-
sian kernel, and the choice to smooth the residual (y − f) as opposed to the outcome y. Note that
since smECEσ(D) ∈ [0, 1], and for a given predictor D, the function σ 7→ smECEσ(D) is a non-
increasing function of σ, there is a unique σ∗ s.t. smECEσ∗(D) = σ∗ (and we can find it efficiently
using binary search). Thus we can define:
Definition 2 (SmoothECE). We define smECE(D) to be the unique σ∗ satisfying smECEσ∗(D) =
σ∗. We also write this quantity as smECE∗(D) for clarity.

3.3 SMECE IS A CONSISTENT CALIBRATION MEASURE

We will show that σ∗ defined in the previous subsection is a convenient scale on which the smECE
ofD should be evaluated. The formal requirement that smECEσ∗ meets is captured by the notion of
consistent calibration measure, introduced in Błasiok et al. (2023). We provide the definition below,
but before we do, let us recall the definition of the Wasserstein metric.

For a metric space (X , d), let us consider ∆(X ) to be the space of all probability distributions over
X . We define the Wasserstein metric on the space ∆(X) (sometimes called earth-movers distance)
Peyré et al. (2019).
Definition 3 (Wasserstein distance). For two distributions µ, ν ∈ ∆(X ) we define the Wasserstein
distance

W1(µ, ν) := inf
γ∈Γ(µ,ν)

E
(x,y)∼γ

d(x, y),

where Γ(µ, ν) is the family of all couplings of distributions µ and ν.
Definition 4. A probability distribution D over [0, 1] × {0, 1} of prediction f and outcome y is
perfectly calibrated if ED[y|f ] = f . We denote the family of all perfectly calibrated distributions by
P ⊂ ∆([0, 1]× {0, 1}).
Definition 5 (Consistent calibration measure (Błasiok et al., 2023)). For a probability distribution
D over [0, 1]× {0, 1} we define the distance to calibration dCE(D) to be the Wasserstein distance
to the nearest perfectly calibrated distribution, associated with metric d on [0, 1]×{0, 1} which puts
two disjoint intervals infinitely far from each other.

Concretely

d((f1, y1), (f2, y2)) :=

{
|f1 − f2| if y1 = y2
∞ otherwise

.

and
dCE(D) = inf

D∈P
W1(D,D′).

Finally, any function µ assigning to distributions over [0, 1]×{0, 1} a non-negative real calibration
score, is called consistent calibration measure if it is polynomially upper and lower bounded by
dCE, i.e. there are constants c1, c2, α1, α2, s.t.

c1dCE(D)α1 ≤ µ(D) ≤ c2dCE(D)α2 .

With this definition in hand, we prove the following.
Theorem 6. The measure smECE(D) is a consistent calibration measure.

This theorem is a consequence of the following two inequalities. First of all, if we add the penalty
proportional to the scale of noise σ, then smECEσ upper bounds the distance to calibration.
Lemma 7. For any σ, we have

dCE(D) ≲ smECEσ(D) + σ.

On the other hand, as soon as the scale of the noise is sufficiently large compared to the distance to
calibration, the smECE of a predictor is itself upper bounded as follows.
Lemma 8. Let (f, y) be any predictor. Then for any σ we have

smECEσ(D) ≤
(
1 +

1

σ

)
dCE(D).

7
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In particular if σ > 2
√
dCE(D), then

smECEσ(D) ≤ 2
√

dCE(D).

This lemma, together with the fact that σ 7→ smECEσ is non-increasing, directly implies that the
fixpoint satisfies σ∗ ≤ 2

√
dCE(D). On the other hand, using Lemma 7, at this fixpoint we have

dCE(D) ≤ σ∗ + smECEσ∗(D) = 2σ∗. That is

1

2
dCE(D) ≤ smECE∗(D) ≤ 2

√
dCE(D),

proving the Theorem 6.

3.4 SAMPLE AND RUNTIME EFFICIENCY

Here we prove that our method is efficient with respect to both sample complexity and runtime. We
want to estimate smECE of the underlying distribution D over [0, 1] × {0, 1}, using samples from
this distribution. Specifically, let us sample independently at random m pairs (fi, yi) ∼ D, and let
us define D̂ to be the empirical distribution over the multiset {(fi, yi)}; that is, to sample from D̂,
we pick a uniformly random i ∈ [m] and output (fi, yi). Then, the plug-in estimator satisfies the
following generalization bound.

Theorem 9. For a given σ0 > 0 if m ≳ σ−1
0 ε−2, then with probability at least 2/3 over the choice of

independent random sample (fi, yi)
m
i=1 (with (fi, yi) ∼ D), we have simultanously for all σ ≥ σ0,

|smECEσ(D)− smECEσ(D̂)| ≤ ε.

In particular if smECE∗(D) > σ0, then (with probability at least 2/3) we have |smECE∗(D) −
smECE∗(D̂)| ≤ ε.

The proof is in Appendix D.6. The success probability 2/3 can be amplified arbitrarily in the
standard way, by taking the median of independent trials. Finally, it is clear that smECE can
be computed efficiently, by using the Fast Fourier Transform for convolutions. For completeness,
in Appendix C we show that smECE can be approximated up to error ε in time O(n log ε−1 +

M log ε−1 log3/2 M) in the RAM model, where M = ⌈ε−1σ−1⌉.

4 EXPERIMENTS

We include several experiments demonstrating our method on public datasets in various domains,
from deep learning to meteorology. The sample sizes vary between several hundred to 50K, to show
how our method behaves for different data sizes. In each setting, we compare the classical binned
reliability diagram to the smooth diagram generated by our Python package. Our diagrams include
kernel density estimates of the predictions (at the same kernel bandwidth σ∗ used to compute the
SmoothECE). For binned diagrams, the number of bins is chosen to be optimal for the regression
test MSE loss, optimized via cross-validation.

Deep Networks. Figure 2a shows the confidence calibration of ResNet32 (He et al., 2016) on
the ImageNet validation set (Deng et al., 2009). ImageNet is an image classification task with
1000 classes, and has a validation set of 50,000 samples. In this multi-class setting, the model f
outputs a distribution over k = 1000 classes, f : X → ∆k. Confidence calibration is defined as
calibration of the pairs (argmaxc∈[k] fc(x) , 1{f(x) = y}), which is a distribution over [0, 1] ×
{0, 1}. That is, confidence calibration measures the agreement between confidence and correctness
of the predictions. We use the publicly available data from Hollemans (2020), evaluating the models
trained by Wightman (2019).

Solar Flares. Figure 2b shows the calibration of a method for forecasting solar flares, over a pe-
riod of 731 days. We use the data from Leka et al. (2019), which was used to compare reliability
diagrams in Dimitriadis et al. (2021). Specifically, we consider forecasts of the event that a class

8
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(a) ResNet34 on ImageNet. (b) Solar flare forecasts.

(c) Rain forecasts in Finland. (d) Synthetic data.

Figure 2: Comparison of binned reliability diagrams and our proposed smooth reliability diagrams,
on several demonstration datasets.

C1.0+ solar flare occurs on a given day, made by the DAFFS forecasting model developed by North-
West Research Associates. Overall, such solar flares occur on 25.7% of the 731 recorded days.
We use the preprocesssed data from the replication code at: https://github.com/TimoDimi/
replication_DGJ20. For further details of this dataset, we refer the reader to Dimitriadis et al.
(2023, Section 6.1) and Leka et al. (2019).

Precipitation in Finland. Figure 2c shows the calibration of daily rain forecasts made by the
Finnish Meteorological Institute (FMI) in 2003, for the city of Tampere in Finland. Forecasts are
made for the probability that precipitation exceeds 0.2mm over a 24 hour period; the dataset includes
records for 346 days (Nurmi, 2003).

Synthetic Data. For demonstration purposes, we apply our method to a simple synthetic dataset
in Figure 2d. One thousand samples fi ∈ [0, 1] are drawn uniformly in the interval [0, 1], and the
conditional distribution of labels E[yi | fi] is given by the green line in Figure 2d. Here, instead of
kernel density estimates, we show bootstrapped confidence bands around our estimated regressor.
Note that the true conditional distribution is non-monotonic in this example.

Limitations. One limitation of our method is that since it is generic, there may be better tools
to use in special cases, when we can assume more structure in the prediction distributions. For
example, if the predictor is known to only output a small finite set of possible probabilities, then it
is reasonable to simple estimate conditional probabilities by using these points as individual bins.
The rain forecasts in Figure 2c have this structure, since the forecasters only predict probabilities in
multiples of 10% – in such cases, using bins which are correctly aligned is a very reasonable option.

5 CONCLUSION

We have presented a method of computing calibration error which is both mathematically well-
behaved (i.e. consistent in the sense of Błasiok et al. (2023)), and can be visually represented in a
reliability diagram. We also released a python package which efficiently implements our suggested
method. We hope this work aids practitioners in computing, analyzing, and visualizing the reliability
of probabilistic predictors.
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A DISCUSSION: DESIGN CHOICES

Here we discuss the motivation behind several design choices that may a-priori seem ad-hoc. In
particular, the choice to smooth the residuals (yi − fi) when computing the smECE, but to smooth
the outcomes yi directly when plotting the reliability diagram.

For the purpose of constructing the reliability diagram, it might be tempting to plot a function
y′(f) := r̂(f)+ f (of smoothed residual as defined in (3), shifted back by the prediction f ), as well
as the smoothed density δ̂(t), as in the definition of smECE. This is a fairly reasonable approach,
unfortunately it has a particularly undesirable feature — there is no reason for y′(t) := r̂(t) + t to
be bounded in the interval [0, 1]. It is therefore visually quite counter-intuitive, as the plot of y(t) is
supposed to be related with our guess on the average outcome y given (slightly noisy version of) the
prediction t.
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As discussed in Section 1.1, we instead consider the kernel regression on y, as opposed to the kernel
regression on the residual y − f , and plot exactly this, together with the density δ̂. Specifically, let
us define

ŷD,K(t) :=
Ef,y∼D K(t, f)y

Ef,y∼D K(t, f)
. (6)

and chose as the reliability diagram a plot of a pair of functions t 7→ ŷD,K(t) and t 7→ δ̂D,K(t) —
the first plot is our estimation (based on the kernel regression) of the outcome y for a given prediction
t, the other is the estimation of the density of prediction t. As discussed in the Section 1.1, we will
focus specifically on the kernel K being the reflected Gaussian kernel, defined by (2).

It is now tempting to define the calibration error related with this diagram, as an ECE of this new
random variable over [0, 1]× {0, 1}, analogously to the definition of smECE, by considering

˜smECEσ(D) :=
∫
|ŷD,K(t)− t|δ̂D,K(t) dt. (7)

This definition can be readily interpreted: for a random pair (f, y) and an η ∼ N (0, σ) independent,
we can consider a pair (f + η, y). It turns out that

˜smECEσ(D) = ECE(πR(f + η), y),

where πR : R→ [0, 1] collapses points that differ by reflection around integers (see Section 1.1).

Unfortunately, despite being directly connected with more desirable reliability diagrams, and hav-
ing more immediate interpretation as a ECE of a noisy prediction, this newly introduced measure
˜smECE has its own problems, and is generally mathematically much poorer-behaved than smECE.

In particular it is no longer the case that if we start with the perfectly calibrated distribution, and ap-
ply some smoothing with relatively large bandwidth σ, the value of the integral (7) stays small. In
fact it might be growing as we add more smoothing2.

Nevertheless, if we chose the correct bandwidth σ∗, as guided by the smECE consideration, the
integral (7), which is visually encoded by the reliability diagram we propose, should still be within
constant factor from the actual smECE∗

σ(D), and hence provides a consistent calibration measure
Lemma 10. For any σ we have

˜smECEσ(D) = smECEσ(D)± cσ,

where c =
√

2/π ≤ 0.8.

In particular, for σ∗ s.t. smECEσ∗(D) = σ∗, we have

˜smECEσ∗(D) ≈ smECEσ∗(D).

(The proof can be found in Appendix D.3).

B GENERAL METRICS

Our previous discussion implicitly assumed the the trivial metric on the interval d(u, v) = |u − v|.
We will now explore which aspects of our results extend to more general metrics over the interval
[0, 1]. This is relevant if, for example, our application downstream of the predictor is more sensitive
to miscalibration near the boundaries.

The study of consistency measures with respect to general metrics is also motivated by the results of
Błasiok et al. (2023). There it was shown that for any proper loss function l, there was an associated
metric dl on [0, 1] such that the predictor has small weak calibration error with respect to dl if and
only if the loss l cannot be significantly improved by post-composition with a Lipschitz function
with respect to dl. Specifically, they proved

wCEdl
(D) ≲ E

(f,y)∼D
[l(f, y)]− inf

κ
E

(f,y)∼D
[l(κ(f), y)] ≲

√
wCEdl

(D),

2This can be easily seen, if we consider the trivial perfectly calibrated distribution, where outcome y ∼
Bernoulli(1/2) and prediction f is deterministic 1/2. Then ˜smECEσ(D) = Cσ for some constant C ≈ 0.79.
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where κ : [0, 1] → [0, 1] ranges over all functions Lipschitz with respect to the dl metric, and
wCEdl

(D) is the weak calibration error (as introduced by Kakade & Foster (2008), and extended to
general metrics in Błasiok et al. (2023), see Definition 11).

The most intuitive special case of the above result is the square loss function, which corresponds
to a trivial metric on the interval d(u, v) = |u − v|. In practice, different proper loss functions are
also extensively used — the prime example being the cross entropy loss l(f, y) := −(y ln p+ (1−
y) ln(1− p)), which is connected with the metric dlogit(u, v) := | log(u/(1−u))− log(v/(1− v))|
on [0, 1]. Thus, we may want to generalize our results to also apply to non-trivial metrics.

B.1 GENERAL DUALITY

We will prove a more general statement of the duality theorem in Błasiok et al. (2023). Specifically,
they showed that the minimization problem in the definition of the dCE, can be dualy expressed
as a maximal correlation between residual r := y − f and a bounded Lipschitz function of the
prediction f . This notion, which we will refer to as weak calibration error first appeared in Kakade
& Foster (2008), and was further explored in Gopalan et al. (2022); Błasiok et al. (2023); Błasiok
et al. (2023)3.
Definition 11 (Weak calibration error). For a distributionD over [0, 1]×{0, 1} of pairs of prediction
and outcome, and a metric d on the space [0, 1] of all possible predictions, we define

wCEd(D) := sup
w∈Ld

E
f,y∼D

(f − y)w(f), (8)

where the supremum is taken over all functions w : [0, 1] → [−1, 1] which are 1-Lipschitz with
respect to the metric d.4

For the trivial metric on the interval d(u, v) = |u− v|, wCE was known to be linearly related with
dCE by Błasiok et al. (2023). We show in this paper that the duality theorem connecting wCE and
dCE holds much more generally, for a broad family of metrics.
Theorem 12 (Błasiok et al. (2023)). If a metric d on the interval satisfies d(u, v) ≳ |v − u| then
wCEd ≈ dCEd.

The more general formulation provided by Theorem 12 can be shown by following closely the orig-
inal proof step by step. We provide an alternate proof (simplified and streamlined) in Appendix D.8.

B.2 THE dCEdlogit
IS A CONSISTENT CALIBRATION MEASURE WITH RESPECT TO ℓ1

As in turns out, for a relatively wide family of metrics on the space of predictions (including the
dlogit metric), the associated calibration measures are consistent calibration measures with respect
to the ℓ1 metric. The main theorem we prove in this section is the following.
Theorem 13. If a metric d : [0, 1]2 → R∪{±∞} satisfies d(u, v) ≳ |u−v| and moreover for some
c > 0,

∀ε, ∀u, v ∈ [ε, 1− ε], d(u, v) ≤ |u− v|ε−c,

then dCEd is a consistent calibration measure.

The proof of this theorem (as is the case for many proofs of consistency for calibration measures)
heavily uses the duality Theorem 12 — since proving that a function is a consistent calibration
measure amounts to providing a lower and upper bound, it is often convenient to use the dCE
formulation for one bound and wCE for the other.

The lower bound in Theorem 13 is immediate — since d(u, v) ≥ ℓ1(u, v), the induced Wasser-
stein distances on the space [0, 1] × {0, 1} satisfy the same inequality, hence dCEd ≥ dCEℓ1

, and
dCEℓ1

≥ dCE/2 by Claim 31.

As it turns out, if the metric of interest is well-behaved except near the endpoints of the unit interval,
we can also prove the converse inequality, and lower bound wCE(D) by polynomial of wCEd(D).

3Weak calibration was called smooth calibration error in Gopalan et al. (2022); Błasiok et al. (2023). We
revert back to the original terminology weak calibration error to avoid confusion with the notion of smECE
developed in this paper.

4In Błasiok et al. (2023)
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Lemma 14. Let d : [0, 1]2 → R+ ∪ {∞} be any metric satisfying for some c > 0,

∀ε, ∀u, v ∈ [ε, 1− ε], d(u, v) ≤ |u− v|ε−c,

then wCEd(D)q ≲ wCE(D), where q := max(c+ 1, 2).

(Proof in Appendix D.5.)

We are ready now to prove the main theorem here

Proof of Theorem 13. We have dCEd(D) ≥ dCE(D)/2 by our previous discussion, on the other
hand Theorem 12 and Lemma 14 imply the converse inequality:

dCEd(D) ≈ wCEd(D) ≤ wCE(D)1/q ≈ dCE(D)1/q.

Corollary 15. For a metric induced by cross-entropy loss function dlogit(u, v) := | ln(u/(1−v))−
ln(v/(1− v))|, the wCEdlogit

is a consistent calibration measure.

Proof. To verify the conditions of Theorem 13 it is enough to check that logit(v) := ln(v/(1− v))
satisfies min(t, 1− t)c ≤ d

dt logit(t) ≤ C. Since d
dt logit(t) =

1
t(1−t) , these conditions are satisfied

with c = 1 and C = 4.

B.3 GENERALIZED SMOOTHECE

We now generalize the definition of SmoothECE to other metrics, and show that it remains a consis-
tent calibration measure with respect to its metric. Motivated by the logit example discussed above,
a concrete way to introduce a non-trivial metric on a space of predictions [0, 1], is to consider a
continuous and increasing function h : [0, 1]→ R∪{±∞}, and the metric obtained by pulling back
the metric from R to [0, 1] through h, i.e. dh(u, v) := |h(u)− h(v)|.
Using the isomorphism h between ([0, 1], dh) and a subinterval of (R∪{±∞}, |·|), we can introduce
a generalization of the notion of smECE, where the kernel-smoothing is being applied in the image
of h.

More concretely, for a probability distributionD over [0, 1]×{0, 1}, a kernel K : R×R→ R+ and
an increasing continuous map h : [0, 1]→ R ∪ {±∞} we define

r̂K,h(t) :=
E(f,y) K(t, h(f))(f − y)

E(f,y) K(t, h(f))

δ̂K,h(t) := E
(f,y)

K(t, h(f)).

Again, we define

smECEK,h(D) :=
∫

r̂K,h(t)δ̂K,h(t) dt,

which simplifies to

smECEK,h(D) =
∫ ∣∣∣∣ E

(f,y)∼D
K(t, h(f))(f − y)

∣∣∣∣ dt.
As it turns out, with the duality theorem in place (Theorem 12) the entire content of Section 3 can
be carried over in this more general context without much trouble.

Specifically, if we define smECEσ,h := smECEKN,σ,h, where KN,σ is a Gaussian kernel with
scale σ, then σ 7→ smECEσ,h(f, y) is non-increasing in σ, and therefore there is a unique fixed
point σ∗ s.t. σ∗ = smECEσ∗,h(f, y).

We can now define smECE∗,h(f, y) := σ∗, and we have the following generalization of Theorem 6,
showing that SmoothECE remains a consistent calibration even under different metrics.
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Theorem 16. For any increasing and continuous function h : [0, 1] → R ∪ {±∞}, if we define
dh : [0, 1]2 → R+ to be the metric dh(u, v) = max(|h(u)− h(v)|, 2) then

dCEdh
(D) ≲ smECE∗,h(D) ≲

√
dCEdh

(D).

(Proof in Appendix D.7.)

Note that if the function h is such that the associated metric dh satisfies the conditions of Theo-
rem 13, as an additional corollary we can deduce that smECE∗,h is also a consistent calibration
measure in a standard sense.

B.4 OBTAINING PERFECTLY CALIBRATED PREDICTOR VIA POST-PROCESSING

One of the appealing properties of the notion dCE as it was introduced in Błasiok et al. (2023), was
the theorem stating that if a predictor (f, y) is close to calibrated, then in fact a nearby perfectly
calibrated predictor can be obtained simply by post-processing all the predictions by a univariate
function. Specifically, they showed that for a distribution D over [0, 1]×{0, 1}, there is κ : [0, 1]→
[0, 1] such that for (f, y) ∼ D the pair (κ(f), y) is perfectly calibrated and moreover E |κ(f)−f | ≲√

dCE(D).
As it turns out, through the notion of smECEh we can prove a similar in spirit statement regarding
the more general distances to calibration dCEdh

. The only difference is that we allow the post-
processing κ to be a randomized function.
Theorem 17. For any increasing function h : [0, 1]→ R∪{±∞}, and any distributionD supported
on [0, 1] × {0, 1}, there is a probabilistic function κ : [0, 1] → [0, 1] such that for (f, y) ∼ D, the
pair (κ(f), y) is perfectly calibrated and

E dh(κ(f), f) ≲ smECE∗,h(D),

where dh is the metric induced by h. In particular

E dh(κ(f), f) ≲
√

dCEdh
(D).

Proof. Let us consider a distribution D over [0, 1] × {0, 1} and a monotone function h, such that
smECEh,∗ = σ∗.

First, let us define the randomized function κ1: let π0 : R→ R be a projection of R to h([0, 1]), and
let η ∼ N (0, σ∗). We define

κ1(f) := h−1(π0(h(f) + η)).

We claim that this κ1 satisfy the following two properties:

1. E(f,y)∼D |d(f, κ′(f))| ≲ σ∗,

2. ECE(κ′(f), y) ≲ σ∗.

Indeed, the first inequality is immediate:

E[d(f, κ′(f)] = E[|h(f)− π0(h(f) + η)|] ≤ E |η| ≤ σ∗.

The proof that ECE(κ′(f), y) ≲ σ∗ is identical to the proof of Lemma 28, where such a statement
was shown for the standard metric (corresponding to h(x) = x).

Finally, those two properties together imply the statement of the theorem: indeed, if ECE(f ′, y) ≤
σ∗, we can take κ2(t) := E[y|f ′ = t]. In this case pair (κ2(f

′), y) is perfectly calibrated, and by
definition of ECE, we have E |κ2(f

′)− f ′| = ECE(f ′, y). Composing now κ = κ2 ◦ κ1, we have

E
(f,y)∼D

|κ(f)− f | ≤ E[|κ2 ◦ κ1(f)− κ1(f)|] + E[|κ1(f)− f |] ≲ σ∗.

Moreover distribution D′ of (κ(f), y) is perfectly calibrated.
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C ALGORITHMS

In this section we discuss how smECE can be computed efficiently: for any σ, the quantity
smECEσ can be approximated up to error ε in time O(n+M−1 log3/2 M−1) in the RAM model,
where M = ⌈ε−1σ−1⌉. In order to find an optimal scale σ∗, we need to perform a binary search,
involving log ε−1 evaluations of smECEσ .

The explicit procedure to compute smECE is given in Algorithm 2.

We shall first observe that the convolution with the reflected Gaussian kernel can be expressed in
terms of a convolution with a shift-invariant kernel. This is useful, since such a convolution can
be implemented in time O(M logM) using Fast Fourier Transform, where m is the size of the
discretization.
Claim 18. For any function g : [0, 1] → R, the convolution with the reflected Gaussian kernel
g ∗ KN,σ can be equivalently computed as follows. Take an extension of g to the entire real line
g̃ : R→ R defined as g̃(x) := g(πR)(x)). Then

[g ∗ K̃N,σ](t) = [g̃ ∗KN,σ](t),

where KN,σ : R × R → R is the standard Gaussian kernel Kσ(t1, t2) = exp(−(t1 −
t2)

2/2σ)/
√
2πσ2.

Proof. Elementary calculation.

We can now restrict g̃ to the interval [−T, T + 1] where T := ⌈
√
log(2ε−1)⌉, convolve such a

restricted g̃ with a Gaussian, and restrict the convolution in turn to the interval ε. Indeed, such a
restriction introduces very small error, for every t ∈ [0, 1] we have.

[(1[−T,T+1] · g̃) ∗KN,σ](t)− [g̃ ∗KN,σ](t) ≤ (1− Φ(T/σ)) + (1− Φ((T + 1)/σ))

≤
√
2/π(T/σ) exp(−(T/σ)2/2).

In practice, it is enough to reflect the function g only twice, around two of the boundary points
(corresponding to the choice T = 1). For instance, when σ < 0.38, the above bound implies that
the introduced additive error is smaller than σ2, and the error term rapidly improves as σ is getting
smaller.

Let us now discuss computation of smECEσ for a given scale σ. To this end, we discretize the
interval [0, 1], splitting it into M equal length sub-intervals. For a sequence of observations (fi, yi)
we round each ri to the nearest integer multiple of 1/M , mapping it to a bucket bi = round(Mfi).
In each bucket b ∈ {0, . . .M}, we collect the residues of all observation falling in this bucket
hb :=

∑
i:bi=b(fi − yi).

In the next step, we apply the Claim 18, and produce a wrapping h̃ of the sequence h — extending
it to integer multiples of 1/M in the interval [−T, T + 1] by pulling back h through the map πR.

The method smECEσ then proceeds to compute convolution h̃ ∗ K with the discretization of the
Gaussian kernel probability density function, i.e. K̃t := exp(−t2/2σ2), and Kt := K̃t

/∑
i K̃t .

This convolution r̃ := h ∗K can be computed in time O(Q logQ), where Q = MT , using a Fast
Fourier Transform, and is implemented in standard mathematical libraries. Finally, we report the
sum of absolute values of the residuals

∑
|r̃i| as an approximation to smECEσ as an approximation

to smECEσ .
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Algorithm 1: Efficient estimation of smECEσ , at fixed scale σ

Function Discretization({(fi, zi}ni=1, M ) is
h← zeros(M + 1);
for i ∈ [n] do

b← round(Mfi);
hb ← hb + zi;

end
return h;

end
Function Wrap(h, T) is

M ← len(h);
for i ∈ [(2T + 1)M ] do

j ← (i mod 2M);
if j > M then

j ← 2M − j;
end
h̃i ← hj ;

end
return h̃;

end
Function smECE(σ, {fi, yi}n1 ) is

h← Discretization({fi, fi − yi}, ⌈σ−1ε−1⌉);
h̃←Wrap(h, ⌈

√
log(2ε−1));

K ← DiscreteGaussianKernel(σ, ⌈σ−1ε−1⌉);
r̃ ← h̃ ∗K;
return

∑(T+1)M−1
i=TM |r̃i|;

end

Algorithm 2: Efficient estimation of smECE∗: using binary search over σ to find a root of
decreasing function smECEσ − σ.
Data: (fi, yi)n1 , ε
Result: smECE∗({(fi, yi)})
l← 0;
u← 1;
while u− l > ε do

σ ← (u+ l)/2;
if smECEσ({fi, yi}) < σ then

u← σ;
else

l← σ;
end

end
return u;
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D OMITTED PROOFS

D.1 PROOF OF THEOREM 6

In this section we will prove Lemma 21 and Lemma 23, two main steps in the proof of Theorem 6,
corresponding to respectively lower and upper bound. As it turns out, those two lemmas are true for
a much wider class of kernels. The restriction on the kernel K to be a Gaussian kernel stems from
the monotonicity property (Lemma 28), which was convenient for us to define the scale invariant
measure smECE∗ by considering a fix-point scale σ∗. In Appendix D.2 we will show that the
Reflected Gaussian kernel satisfies the conditions of Lemma 21 and Lemma 23.

We will first define a dual variant of dCE.
Definition 19. We define the weak calibration error to be the maximal correlation of the residual
(f − y) with a 1-Lipschitz function and [−1, 1] bounded function of a predictor, i.e.

wCE(D) := sup
w∈L

E
(f,y)∼D

w(f)(f − y),

where L is a family of all 1-Lipschitz functions from [0, 1] to [−1, 1].

To show that smECE∗ is a consistent calibration measure we will heavily use the duality theorem
proved in Błasiok et al. (2023) — the wCE and dCE are (up to a constant factor) equivalent. A
similar statement is proved in this paper, in a greater generality (see Theorem 12).
Theorem 20 (Błasiok et al. (2023)). For any distribution D over [0, 1]× {0, 1} we have

dCE(D) ≤ wCE(D) ≤ 2dCE(D).

Intuitively, this is useful since showing that a new measure smECE is a consistent calibration mea-
sure corresponds to upper and lower bounding it by polynomials of dCE. With the duality theorem
above, we can use the minimization formulation dCE for one direction of the inequality, and the
maximization formulation wCE for the other.

Indeed, we will first show that wCE is upper bounded by smECE if we add the penalty parameter
for the “scale” of the kernel K.
Lemma 21. Let U ⊂ R be (possible infinite) interval containing [0, 1] and K : U × U → R
be a non-negative symmetric kernel satisfying for every t0 ∈ [0, 1],

∫
K(t0, t) dt = 1, and

∫
|t −

t0|K(t, t0) dt ≤ γ. Then
wCE(D) ≤ smECEK(D) + γ.

Proof. Let us consider an arbitrary 1-Lipschitz function w : [0, 1] → [−1, 1], and take η ∼ K
as in the lemma statement. Since kernel K is nonnegative, and

∫
K(t, t0) dt = 0, we can sample

triple (f̃ , f, y) s.t. (f, y) ∼ D, and f̃ is distributed according to density K(·, f). In particular
E |f̃ − f | ≤ γ.

We can bound now

E
(f,y)∼D

[w(f)(f − y)] ≤ E[w(f̃)(f − y)] + E |f − f̃ ||f − y|

≤ γ + E
[
w(f̃)(f − y)

]
. (9)

We now observe that

E[(f − y)|f̃ = t] =
Ef,y K(t, f)(f − y)

Ef,y K(t, f)
= r̂(t),

and the marginal density of f̃ is exactly

µf̃ (t) = E
(f,y)∼D

K(t, f) = δ̂(t).

This leads to

E
[
w(f̃)(f − y)

]
=

∫
w(t)r̂(t)δ̂(t) dt ≤

∫
|r̂(t)|δ̂(t) dt = smECEK(f, y). (10)

Combining (11) and (12) we conclude the statement of this lemma.
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To show that smECEK(D) is upper bounded by dCE, we will first show that smECEK is zero for
perfectly calibrated distributions, and then we will show that for well-behaved kernels smECEK(D)
is Lipschitz with respect the Wasserstein distance on the space of distributions.
Claim 22. For any perfectly calibrated distribution D and for any kernel K we have

smECEK(D) = 0.

Proof. Indeed, by the definition of r̂ we have

r̂(t) =
Ef,y K(f, t)(f − y)

Ef,y K(f, t)
,

Since the distribution D is perfectly calibrated, we have E(f,y)∼D[(f − y)|f ] = 0, hence

E
f,y

[K(f, t)(f − y)] = E
f

[
E

(f,y)∼D
[K(f, t)(f − y)|f ]

]
= E

f

[
K(f, t) E

(f,y)∼D
[(f − y)|f ]

]
= 0.

This means that the function r̂(t) is identically zero, and therefore

smECEK(D) =
∫
t

|r̂(t)|δ̂(t) dt = 0.

Lemma 23. Let K be a symmetric, non-negative kernel, such that for and let λ ≤ 1 be a constant
such that for any t0, t1 ∈ [0, 1] we have

∫
|K(t0, t) −K(t1, t)|dt ≤ |t0 − t1|/λ. Let D1,D2 be a

pair of distributions over [0, 1]× {0, 1}. Then

|smECEK(D1)− smECEK(D2)| ≤
(
1

λ
+ 1

)
W1(D1,D2).

Proof. We have

smECEK(D) =
∫ ∣∣∣∣ E

(f,y)∼D
[K(t, f)(y − f)]

∣∣∣∣ dt.
If we have a coupling (f1, f2, y1, y2) s.t. E[|f1− f2|+ |y1− y2|] ≤ δ, (f1, y1) ∼ D1 and (f2, y2) ∼
D2, then by triangle inequality we can decompose

|smECEK(D1)− smECEK(D2)| ≤
∫

E
(f1,f2,y1,y2)

[|K(t, f1)−K(t, f2)||y1 − f1|dt

+

∫
E

(f1,f2,y1,y2)
[K(t, f2)(|f1 − f2|+ |y1 − y2|] dt.

We can bound those two terms separately∫
E

(f1,f2,y1)
[|K(t, f1)−K(t, f2)||y1−f1|] dt ≤ E

(f1,f2,y1)

∫
|K(t, f1)−K(t, f2)|dt ≤

1

λ
E[|f1−f2|] ≤ δ/λ,

and similarly∫
E [K(t, f2)(|f1 − f2|+ |y1 − y2|)] dt = E

[∫
t

K(t, f2) dt · (|f1 − f2|+ |y1 − y2|
]
= E[|f1−f2|+|y1−y2|] ≤ δ.

Corollary 24. Under the same assumptions on K as in Lemma 23, for any distribution D over
[0, 1]× {0, 1},

smECEK(D) ≤
(
1

λ
+ 1

)
dCE(D).

Proof. By definition there is a perfectly calibrated distributionD′, such that W1(D,D′) ≤ dCE(D).
By Claim 22, smECEK(D′) = 0, and the corollary follows directly from Lemma 23.
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D.2 FACTS ABOUT REFLECTED GAUSSIAN KERNEL

We wish to now argue that Lemma 21 and Lemma 23 imply the more specialized statements
Lemma 7 and Lemma 8 respectively — the reflected Gaussian kernel KN,σ satisfies conditions
of Lemma 21 and Lemma 23 with γ and λ proportional to σ. We

Lemma 25. Reflected Gaussian kernel K̃N,σ defined by (2) satisfies

1. For every t0, we have
∫
K̃N,σ(t, t0) dt = 1.

2. For every t0, we have
∫
|t− t0|K̃N,σ(t, t0) dt ≤

√
2/πσ.

3. For every t0, t1, we have
∫
|K̃N,σ(t, t0)− K̃N,σ(t, t0)|dt ≤ |t0 − t1|/(2σ).

Proof. For any given t0, the function K̃N,σ(t0, ·) is a probability density function of a random
variable πR(t0 + η) where η ∼ N (0, σ) and πR : R→ [0, 1] is defined in Section 1.1. In particular,
we have |πR(x)− πR(y)| ≤ |x− y|.

The property 1 is satisfied, since the K̃N,σ(·, t0) is a probability density function.

The property 2 follows since∫
|t− t0|K̃N,σ(t, t0) dt = E

η∼N (0,σ
|πR(t0 + η)− t0| = E

η∼N (0,σ
|πR(t0 + η)− πR(t0)|

≤ E
η∼N (0,σ

|η| = σ
√

2/π.

Finally, the property 2 again follows from the same fact for a Gaussian random variable: the integral
|K̃N,σ(t, t0) − K̃N,σ(t, t0)| is just a total variation distance between πR(t0 + η) and πR(t1 + η)
where η ∼ N (0, σ), but by data processing inequality we have

TV (πR(t0 + η), πR(t1 + η)) ≤ TV (t0 + η, t1 + η) ≤ |t0 − t1|/(2σ).

Where the last bound on the total variation distance between two one-dimension Gaussians is a
special case of Theorem 1.3 in Devroye et al. (2018)5.

Definition 26. We say that a paramterized family of kernels Kσ : U×U → R where [0, 1] ⊂ U ⊂ R
is a proper kernel family if for any σ1 ≤ σ2 there is a non-negative kernel Hσ1,σ2

: U × U → R,
satisfying ∥Hσ1,σ2

∥1→1 ≤ 1 and Kσ2
= Kσ1

∗Hσ1,σ2
.

Here the notation K ∗H is denotes

[K ∗H](t1, t2) :=

∫
U

K(t1, t)H(t, t2) dt,

and

∥H∥1→1 := sup
t0∈U

∫
U

|H(t0, t)|dt.

Claim 27. The family of reflected Gaussian kernels K̃N,σ is a proper kernel family, with

K̃σ1,N = K̃σ2,N ∗ K̃√σ2
1−σ2

2 ,N
.

Proof. Let σ3 :=
√
σ2
1 − σ2

2 , we wish to show that K̃σ1,N = K̃σ2,N ∗ K̃σ3,N . In order to show
this, it is enough to prove that for any f , we have f ∗ K̃σ1,N = f ∗ K̃σ2,N ∗ K̃σ3,N . This is true by
Claim 18, since this property holds for standard Gaussian kernel Kσ2,N ∗Kσ3,N = Kσ1,N (it is here
equivalent to saying that for two independent random variables Z2 ∼ N (0, σ2) and Z3 ∼ N (0, σ3)
we have Z2 + Z2 ∼ N (0, σ1)).

5This special case, where the two variances are equal, is in fact an elementary calculation.
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D.3 USEFUL PROPERTIES OF SMECE.

Lemma 28 (Monotonicity of smECE). Let Kσ be any proper kernel family parameterized by σ. If
σ1 ≤ σ2, then

smECEKσ1
(D) ≥ smECEKσ2

(D).

Proof. Let us define

hσ(t) := E
(f,y)∼D

Kσ(t, f)(f − y) = r̂(t)δ̂(t),

such that

smECEKσ (D) = ∥hσ∥1 :=

∫
|hσ(t)|dt.

Since σ1 ≤ σ2 and Kσ is a proper kernel family, we can write Kσ2
= Kσ1

∗Hσ1,σ2
.

We have now,

hσ1
∗Hσ1,σ2

=

(
E

(f,y)
(f − y)Kσ1

(·, f)
)
∗Hσ1,σ2

= E
f,y

(f − y)[Kσ1
∗Hσ1,σ2

(·, f)] = E
f−y

(f − y)Kσ2
(·, f)

= hσ2
.

On the other hand for any function f we have ∥f ∗ Hσ1,σ2
∥1 ≤ ∥f∥1∥Hσ1,σ2

∥1→1, and
∥Hσ1,σ2

∥1→1 ≤ 1 by the definition of proper kernel family. Therefore

Corollary 29. In particular for σ1 ≤ σ2 we have smECEσ2
(D) ≤ smECEσ1

(D).

Proof. Reflected Gaussian kernels form a proper kernel family by Claim 27.

Lemma 30. For any σ, we have ˜smECEσ(D) = smECEσ(D)± σ
√
2/π.

Proof. Let

f̂(t) :=
Ef,y K̃N,σ(t, f)f

Ef,y K̃N,σ(t, f)
.

We have

| ˜smECEσ(f, y)− smECEσ(f, y)| ≤
∫
|f̂(t)− t|δ̂(t) dt

≤
∫

E
f
[K̃N,σ(t, f)|f − t|] dt

= E
f

∫
Kσ(t, f)|f − t|dt

= E
f

E
Z∼N (f,σ)

|f − πR(Z)|

≤ E
Z∼N (0,σ)

|Z| =
√

2/π.
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D.4 EQUIVALENCE BETWEEN DEFINITIONS OF dCE FOR TRIVIAL METRICS

The dCE(D) was defined in Błasiok et al. (2023) as a Wasserstein distance to the set of perfectly
calibrated distributions over X := [0, 1]× {0, 1}, where X is equipped with a metric

d1((f1, y1), (f2, y2)) :=

{
|f1 − f2| if y1 = y2
∞ otherwise

.

While generalizing the notion to that of dCEd, where d is a general metric on [0, 1], we chose
a different metric on X (specifically, we put a different metric on the second coordinate), that is
d̃((f1, y1), (f2, y2)) = d(f1, f2) + |y1 − y2|.
As it turns out, for the case of a trivial metric on the space of predictions, this choice is inconsequen-
tial, but the new definition has better generalization properties.

Claim 31. For the metric ℓ1(f1, f2) = |f1 − f2|, we have dCE(D) ≲ dCEℓ1(D) ≤ dCE(D), for
some universal constant c.

Proof. The lower bound dCEℓ1
≤ dCE is immediate, since dCEℓ1

is a distance of D to P with
respect to a Wasserstein distance induced by the metric d1 on [0, 1]×{0, 1}, dCE is the Wasserstein
distance with respect to the metric d2, and we have a pointwise bound d1(u, v) ≤ d2(u, v), implying
W1,d1

(D1,D2) ≤W1,d2
(D1,D2).

The other bound follows from Theorem 12 and Theorem 20 — dCE and dCEℓ1 are within constant
factor from wCEℓ1 .

D.5 PROOF OF LEMMA 14

Proof. Let us take w(x) : [0, 1]→ [−1, 1] as in the definition of wCEd, a 1-Lipschitz function with
respect to the metric d, such that E(y − f)w(f) = wCEd(f, y) = ε.

We wish to show that wCE(f, y) ≳ εc+1. Indeed, let us take w̃(X) := w(πI(x)) where I :=
[γ, 1− γ], πI : [0, 1]→ I is a projection onto the interval I , and γ := ε/C for some large constant
C.

Note that w̃ is O(ε−c)-Lipschitz with respect to the standard metric on [0, 1]. If E(f − y)w̃(f) ≥
ε/2, we immediately have wCE(f, y) ≳ εc+1 (we can use w̃/L as a test function, where L =
O(ε−c) is a Lipcshitz constant for function w̃). Otherwise E(f − y)(w(f) − w̃(f)) ≥ ε/2. Let us
call w2 := (w− w̃)/2, such that E(f −y)w2(f) ≥ ε/4, and moreover supp(w2) ⊂ [0, 1]\ I , where
w2 is 1-Lipschitz with respect to d.

Since [0, 1] \ I has two connected components [0, γ) and (1− γ, 1], on one of those two connected
components correlation between the residual (y − f) and w2 has to be at least ε/8. Since the other
case is analogous, let us assume for concreteness, that

E(y − f)w3(f) ≥ ε/8,

where w3(x) = w2(x) for x ∈ [0, γ) and w3(x) = 0 otherwise.

We will show that this implies Pr(f ≤ γ∧y = 1) ≳ ε, and refer to Claim 32 to finish the argument.

Indeed

E(y−f)w3(f) ≤ E [(1− f)1[f ≤ γ ∧ y = 1]]+E [f1[f ≤ γ ∧ y = 0]] ≤ Pr(f ≤ γ∧y = 1)+γ,

hence
Pr(f ≤ γ ∧ y = 1) ≥ ε/8− γ ≥ ε/16,

where we finally specify γ := ε/32.

To finish the proof, it is enough to show the following

Claim 32. For a random pair (f, y) of prediction and outcome, if Pr(f ≤ γ ∧ y = 1) ≥ ε or
Pr(f ≥ 1− γ ∧ y = 0) ≥ ε, where γ = ε/8, then wCE(f, y) ≳ ε2.

23



Published as a conference paper at ICLR 2024

Proof. We will only consider the case Pr(f ≤ γ ∧ y = 1) ≥ ε. The other case is identical.

Let us take w(x) := max(1− x/2γ, 0). We have

E(y − f)w(f) ≥ 1

2
Pr(f ≤ γ ∧ y = 1)− 2γ Pr(f ≤ γ ∧ y = 0) ≥ ε/2− 2γ ≥ ε/4.

Since w is O(1/ε)-Lipschitz, we have wCE(f, y) ≳ ε2.

D.6 SAMPLE COMPLEXITY — PROOF OF THEOREM 9

Lemma 33. Let X : [0, 1] → R be a random function, satisfying with probability 1, ∥X∥1 :=∫ 1

0
|X(t)|dt ≤ 1 and sup

t
X(t) ≤ σ. Assume moreover that for every t, we have E[X(t)] = 0.

Consider now m independent realizations X1, X2, . . . Xm : [0, 1]→ R, each identically distributed
as X(t), and finally let

X(t) :=
1

m

∑
Xi(t).

Then

E
[
∥X(t)∥21

]
≤ 1

σm
.

Proof. By Cauchy-Schwartz inequality ∥X∥1 ≤ ∥X∥2∥1∥2 = ∥X∥2, hence

E[∥X∥21] ≤ E[∥X∥22] = E
[∫

X(t)2 dt

]
=

∫
E[X(t)2] dt

=
1

m

∫
E[X(t)2] dt

=
1

m
E[∥X∥22] ≤

1

m
E[∥X∥1∥X∥∞] ≤ 1

σm
.

Proof of Theorem 9. Let us first focus on the case σ = σ0. For a pair (f, y) ∈ [0, 1]× {0, 1}, let us
define X

(σ0)
f,y : [0, 1]→ R as

X
(σ0)
f,y (t) := K̃σ0

(f, t)(f − y).

Note that smECEσ0
(D̂) = ∥

∑
i X

(σ0)
fi,yi

/m∥1, and similarly smECE(D) = ∥Ef,y∼D X
(σ0)
f,y ∥1.

Define X̃
(σ0)
i := X

(σ0)
fi,yi
− Ef,y∼D X

(σ0)
f,y — this is a random function, since (fi, yi) is chosen at

random from distribution D, and note that:

1. Random functions X̃(σ0)
i for i ∈ {1, . . . ,m} are independent and identically distributed.

2. With probability 1, we have ∥X̃(σ00)
i ∥1 ≤ 2maxf ∥K̃σ0

(f, ·)∥1 = 2.

3. Similarly, with probability 1 we have ∥X̃(σ0)
i ∥∞ ≤ 2 sup

t1,t2

K̃σ0
(t1, t2) ≤ 2σ−1

0 .

4. For any t ∈ [0, 1] and i ∈ {1, . . . ,m}, we have E[X̃(σ0)
i (t)] = 0.
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Therefore, we can apply Lemma 33 to deduce

E

[∥∥∥∥ 1

m

∑
X̃i

∥∥∥∥2
1

]
≤ 1

σ0m
,

hence, if m ≳ ε−2σ−1
0 , by Chebyshev inequality with probability at least 2/3 we can bound

∥
∑

i X̃
(σ0)
i /m∥1 ≤ ε, and if this event holds, using triangle inequality

smECEσ0
(D)− smECEσ0

(D̂)| ≤ ∥
∑
i

X̃
(σ0)
i ∥/mε.

Finally, for σ > σ0, note that X(σ)
i = X

(σ0)
i ∗ K̃

N,
√

σ2−σ2
0

(Claim 27) and therefore as soon as

∥
∑

X̃
(σ0)
i ∥ ≤ ε, we also have

∥
∑
i

X̃
(σ)
i /m∥1 = ∥

∑
i

X̃
(σ0)
i ∗ K̃

N,
√

σ2−σ2
0

∥1

≤ ∥
∑
i

X̃
(σ0)
i ∥1∥K̃∥1→1 ≤ ε,

where
∥K̃∥1→1 := sup

t1

∫
t2

|K̃(t1, t2)|dt ≤ 1.

This implies |smECEσ(D)− smECEσ(D̂)| < ε for all σ ≥ σ0.

Finally, if smECE∗(D) = σ∗ ≥ σ0, we have smECEσ∗(D) = σ∗, hence smECEσ∗(D̂) ≥ σ∗ − ε,
and by monotonicity smECEσ∗−ε(D̂) ≥ σ∗ − ε, implying smECE∗(D̂) ≥ σ∗ − ε. Identical
argument shows smECE∗(D̂) ≤ σ∗ + ε.

D.7 PROOF OF THEOREM 16

The Lemma 21 and Lemma 23 have their correspondent versions in the more general setting where
a metric is induced on the space of predictions [0, 1] by a monotone function h : [0, 1] → R —
the proofs are almost identical to those supplied in the special case, except we need to use the
more general version of the duality theorem between wCE and dCE, with respect to a metric d
(Theorem 12).
Lemma 34. Let h be an increasing function h : [0, 1]→ R ∪ {±∞} and dh(u, v) = |h(u)− h(v)|
be the induced metric on [0, 1]. Assume moreover that K(t) is a probability density function, such
that for η ∼ K we have E |η| = γ. Finally, let us abuse the notation to define the associated kernel
on R× R as K(x, y) := K(x− y). Then

wCEd(f, y) ≤ smECEK,dh
(f, y) + γ.

Proof. Let us consider an arbitrary 1-Lipschitz function w : [0, 1]→ [−1, 1] with respect to dh, and
take η ∼ K as in the lemma statement. Let I = h([0, 1], and let us take w̃ : I → R to be given by
w̃(t) = w(h−1(t)), and note that w̃ is Lipschitz, since w was Lipschitz with respect to dh. We can
therefore extend w̃ to a [−1, 1] valued Lipschitz function on the entire line R. Now for any f, η we
have |w̃(h(f) + η)− w̃(h(f))| ≤ |η|, and we can bound

E
(f,y)∼D

[w(f)(f − y)] ≤ E[w̃(h(f) + η)(f − y)] + E |η||f − y|

≤ E |η|+ E [E[w̃(h(f) + η)(f − y)]

≤ γ + E [E[w̃(h(f) + η)(f − y)] . (11)

We now observe that

E[(f − y)|h(f) + η = t] =
Ef,y K(t, h(f))(f − y)

Ef,y K(t, h(f))
= r̂(t),
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and
µf+η(t) = E

f,y
K(t, h(f)) = δ̂(t),

where µf+η is the measure of h(f) + η.

This leads to

E [w̃(h(f) + η)(f − y)] =

∫
w̃(t)r̂(t)δ̂(t) dt ≤

∫
|r̂(t)|δ̂(t) dt = smECEK,dh

(f, y). (12)

Combining (11) and (12) we conclude the statement of this lemma.

Lemma 35. Let h be an increasing function h : [0, 1]→ R∪{±∞}, and dh(u, v) := |h(u)−h(v)|
be the induced metric on [0, 1].

Let K(t) be a probability density function of a random variable, such that for η ∼ K we have
E η = 0, and let λ ≤ 1 be a constant such that for any ε, we have TV(η, η+ε) ≤ ε/λ, finally by the
abuse of notation let us define te assocated kernel on R× R as K(x, y) := K(x− y). Then Then

smECEK,h(D) ≤
(
1

λ
+ 1

)
dCEdh

(D).

D.8 GENERAL DUALITY THEOREM (PROOF OF THEOREM 12)

Let P ⊂ ∆([0, 1] × {0, 1}) be the family of perfectly calibrated distributions. This set is cut from
the full probability simplex ∆([0, 1] × {0, 1}) by a family of linear constraints, specifically µ ∈ P
if and only if

∀t, (1− t)µ(t, 1)− tµ(t, 0) = 0.

Definition 36. Let F(H,R) be a family of all functions from H to R. For a convex set of probability
distributions Q ⊂ ∆(H), we define Q∗ ⊂ F(H,R) to be a set of all functions q, s.t. for all D ∈ Q
we have Ex∼D q(x) ≤ 0.

Claim 37. The set P∗ ⊂ F([0, 1] × {0, 1},R) is given by the following inequalities. A function
H ∈ P∗ if and only if

∀t, E
y∼Ber(t)

H(t, y) ≤ 0.

Lemma 38. Let W1(D1,D2) be the Wasserstein distance between two distributions D1,D2 ∈
∆([0, 1]×, {0, 1}) with arbitrary metric d on the set [0, 1]× {0, 1}, and let Q ⊂ ∆([0, 1]× {0, 1})
be a convex set of probability distributions.

The value of the minimization problem

min
D1∈Q

W1(D1,D)

is equal to

max E
(f,y)∼D

H(f, y)

s.t. H is Lipschitz with respect to d,
H ∈ Q∗.

Proof. Let us consider a linear space V of all finite signed Radon measures on X := [0, 1]×{0, 1},
satisfying µ(X) = 0. We equip this space with the norm ∥µ∥V := EMD(µ+, µ−) for measures s.t.
µ+(X) = 1 (and extended by ∥λµ∥V = λ∥µ∥V to entire space). The dual of this space is Lip0(X)
— space of all Lipschitz functions on X which are 0 on some fixed base point x0 ∈ X (the choice
of base point is inconsequential). The norm on Lip0(X) is ∥W∥L given by the Lipschitz constant
of W (see Chapter 3 in Weaver (2018) for proofs and more extended discussion).

For a function H on X and a measure µ on X , we will write H(µ) to denote
∫
W dµ.

The weak duality is clear: for any Lipschitz function H ∈ Q∗, and any distribution D1 ∈ Q we
have H(D) ≤ H(D1) +W1(D1,D) = W1(D1,D).
For the strong duality, we shall now apply the following simple corollary of Hahn-Banach theorem.
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Claim 39 (Deutsch & Maserick (1967), Theorem 2.5). Let (X, ∥ · ∥X) be a normed linear space,
x0 ∈ X , and P ⊂ X a convex set, and let d(x, P ) := inf

p∈P
∥x − p∥X . Then there is w ∈ X∗, such

that ∥w∥X∗ = 1 and inf
p∈P

w(p)− w(x) = d(x, P ).

Take a convex set P ⊂ V given by P := {D−q : q ∈ Q}. Clearly minD1∈Q W1(D,D1) = d(0, P )
by definition of the space V , and hence using the claim above, we deduce

d(0, P ) = max
H̃∈Lip0:∥H̃∥L=1

inf
p∈P

H̃(p).

Taking H̃ which realizes this maximum, we can now consider a shift H := H̃ − sup
q∈Q

H̃(Q), so that

H ∈ Q∗, and verify

min
D1∈Q

W1(D,D1) = d(0, P ) = inf
p∈P

H̃(p) = H̃(D)− sup
q∈Q

H̃(q) = H(D).

Corollary 40. For any metric d on [0, 1]×{0, 1}, the dCEd(D) is equal to the value of the following
maximization program

max E
(f,y)∼D

H(f, y)

s.t. H is Lipschitz with respect to d

∀t, E
y∼Ber(t)

H(t, y) ≤ 0.

Lemma 41. For any metric d on [0, 1] if we define d̂ to be a metric on [0, 1] × {0, 1} given by
d̂((f1, y1), (f2, y2)) := d(f1, f2) + |y1 − y2|, we have

wCEd(D) ≥ dCEd̂(D)/2

Proof. We shall compare the value of wCEd(D) with the optimal value of the dual as in Corol-
lary 40.

Let us assume that for a distribution D we have a function H : [0, 1] × {0, 1} → R, s.t.
E(f,y)∼D H(f, y) = OPT, which is Lipschitz with respect to d̂. We wish to find a function
w : [0, 1]→ [−1, 1] which is Lipschitz with respect to d, s.t.

E
f,y

(f − y)w(f) ≥ OPT/2.

Let us take
w(f) := H(f, 0)−H(f, 1).

We will show instead that w is 2-Lipschitz, [−1, 1] bounded and satisfies Ef,y(f −y)w(f) ≥ OPT,
and the statement of the lemma will follow by scaling.

Let us define w(f) := H(f, 0)−H(f, 1). The condition

∀f, E
y∼Ber(f)

H(f, y) ≤ 0

is equivalent to fw(f) ≥ H(f, 0). Hence

H(f, y) = yH(f, 1) + (1− y)H(f, 0) = H(f, 0)− yw(f) ≤ (f − y)w(f),

which implies E(f − y)w(f) ≥ EH(f, y).

Moreover, the function w(f) is bounded by construction of the metric d̂ and the assumption that
H(f, y) was Lipschitz. Indeed |w(f)| = |H(f, 0)−H(f, 1)| ≤ d̂((f, 0), (f, 1)) ≤ 1.
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E CONSISTENT CALIBRATION MEASURES AND SMOOTHECE

Here we elaborate on the shortcomings of ECE, and resolution offered by SmoothECE, and the
notion of a consistent calibration measure (Błasiok et al., 2023). One fundamental issue with the
ECE is: it is discontinuous in the underlying predictor, so a small change in the predictor can cause a
large change in its ECE. A simple example of this phenomenon was presented in the Introduction of
Błasiok et al. (2023) (also formalized as Lemma 4.8 in the same work). Here, we will demonstrate
this discontinuity visually, with a related example.

In Figure 3, we construct three different distributions that are each small perturbations of one an-
other. The top row shows samples (fi, yi) ∈ [0, 1] × {0, 1} from each distribution. The first dis-
tribution (first column) is nearly perfectly calibrated. This is is evident from both the smoothECE
diagram (middle row) and the binnedECE diagram (bottom row). To construct the second and third
distributions, we shift each positive sample (y = 1) slightly to the right, and each negative sample
(y = 0) slightly to the left. No sample moves more than 0.05 from its initial position in Distribution
1, so this is a small perturbation to the predictions fi. We see that the smooth reliability diagram in
the middle row does not change much between all three distributions, and the smECE metric itself
also stays nearly constant (the smECE metric is listed in the upper-left of each plot).

However, by Distribution 3, the binned reliability diagram (bottom row) has changed drastically,
and appears to be significantly mis-calibrated. Moreover, the binned ECE metric (with 20 bins) has
changed from 0.06 in the first distribution to 0.31 in the third distribution. The binned ECE thus
incorrectly reports that Distribution 3 is far from calibrated. This essentially occurs because we
have shifted the positive and negative samples into disjoint bins by Distribution 3.

This example demonstrates how standard (binned) ECE is not robust to small perturbations in the
predictor, and can severely over-estimate the calibration error. Smooth ECE, on the other hand, does
not suffer this flaw. The formal definition of a consistent calibration measure in Błasiok et al. (2023)
enforces this robustness/continuity property, in addition to other natural theoretical properties. We
refer to the exposition in Błasiok et al. (2023) for further theoretical details.

E.1 STATISTICAL CONSISTENCY

Our estimator of SmoothECE also satisfies the classical criteria of statistical consistency. Specifi-
cally Theorem 9 shows that as the number of samples m → ∞, the finite-sample estimation error
ε → 0. In fact, Theorem 9 is stronger than just asymptotic consistency— it provides a quantitative
generalization bound.
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Distribution 1

Samples

BinnedECE

SmoothECE

Distribution 3Distribution 2

Figure 3: Continuity Demonstration. A demonstration of the discontinuous behavior of stan-
dard (binned) ECE, and how this is addressed by our Smooth ECE. We construct three differ-
ent distributions that are each small perturbations of one another. The top row shows samples
(fi, yi) ∈ [0, 1]× {0, 1} from each distribution. The first distribution is nearly perfectly calibrated.
To construct the second and third distributions, we shift each positive sample (y = 1) slightly to
the right, and each negative sample (y = 0) slightly to the left. No sample moves more than 0.05
from its initial position in Distribution 1, so this is a small perturbation to the predictions fi. We
see that the smooth reliability diagram in the middle row does not change much between all three
distributions. However, the binned ECE in the bottom row changes drastically, and reports severe
miscalibration on Distribution 3 — even though all three distributions are actually close to cali-
brated. See Section E for more details.
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