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ABSTRACT

We study the Neural Optimal Transport (NOT) algorithm which uses the general
optimal transport formulation and learns stochastic transport plans. We show that
NOT with the weak quadratic cost may learn fake plans which are not optimal. To
resolve this issue, we introduce kernel weak quadratic costs. We show that they
provide improved theoretical guarantees and practical performance. We test NOT
with kernel costs on the unpaired image-to-image translation task.

(a) Celeba (female) → anime, 128× 128. (b) Outdoor → church, 128× 128.

Figure 1: Unpaired image-to-image translation (one-to-many) by Kernel Neural Optimal Transport.

1 INTRODUCTION

Neural methods have become widespread in Optimal Transport (OT) starting from the introduction
of the large-scale OT (Genevay et al., 2016; Seguy et al., 2018) and the Wasserstein Generative
Adversarial Networks (Arjovsky et al., 2017) (WGANs). Most existing methods employ the OT cost
as the loss function to update the generator in GANs (Gulrajani et al., 2017; Sanjabi et al., 2018;
Petzka et al., 2018). In contrast to these approaches, (Korotin et al., 2023; Rout et al., 2022; Daniels
et al., 2021; Fan et al., 2022a; Korotin et al., 2023) have recently proposed scalable neural methods to
compute the OT plan (or map) and use it directly as the generative model.
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In this paper, we focus on the Neural Optimal Transport (NOT) algorithm (Korotin et al., 2023). It is
capable of learning optimal deterministic (one-to-one) and stochastic (one-to-many) maps and plans
for quite general strong and weak (Gozlan et al., 2017; Gozlan & Juillet, 2020; Backhoff-Veraguas
et al., 2019) transport costs. In practice, the authors of NOT test it on the unpaired image-to-image
translation task (Korotin et al., 2023, M5) with the weak quadratic cost (Alibert et al., 2019, M5.2).
Contributions. We conduct the theoretical and empirical analysis of the saddle point optimization
problem of NOT algorithm for the weak quadratic cost. We show that it may have a lot of fake
solutions which do not provide an OT plan. We show that NOT indeed might recover them (M3.1).
We propose weak kernel quadratic costs and prove that they solve this issue (M3.2). Practically, we
show how NOT with kernel costs performs on the unpaired image-to-image translation task (M5).
Notations. We use X ,Y,Z to denote Polish spaces and P(X ),P(Y),P(Z) to denote the respective
sets of probability distributions on them. For a distribution P, we denote its mean and covariance
matrix by mP and ΣP, respectively. We denote the set of probability distributions on X × Y with
marginals P and Q by Π(P,Q). For a measurable map T : X × Z → Y (or Tx : Z → Y), we
denote the associated push-forward operator by T♯ (or Tx♯). We use H to denote a Hilbert space
(feature space). Its inner product is ⟨·, ·⟩H, and ∥ · ∥H is the corresponding norm. For a function
u : Y → H (feature map), we denote the respective positive definite symmetric (PDS) kernel by

k(y, y′)
def
= ⟨u(y), u(y′)⟩H. A PDS kernel k : Y ×Y → R is called characteristic if the kernel mean

embedding P(Y) ∋ µ 7→ u(µ)
def
=

∫
X u(y)dµ(y) ∈ H is a one-to-one mapping. For a function

ϕ : RD → R ∪ {∞}, we denote its convex conjugate by ϕ(y)
def
= supx∈RD{⟨x, y⟩ − ϕ (x)}.

2 BACKGROUND ON OPTIMAL TRANSPORT

Strong OT formulation. For distributions P ∈ P(X ), Q ∈ P(Y) and a cost function c : X×Y → R,
Kantorovich’s (Villani, 2008) primal formulation of the optimal transport cost (Figure 2a) is

Cost(P,Q)
def
= inf

π∈Π(P,Q)

∫
X×Y

c(x, y)dπ(x, y), (1)

where the minimum is taken over all transport plans π, i.e., distributions on X × Y whose marginals
are P and Q. The optimal π∗ ∈ Π(P,Q) is called the optimal transport plan. A popular example of an
OT cost for X = Y = RD is the Wasserstein-2 (W2

2), i.e., formulation (1) for c(x, y) = 1
2∥x− y∥2.

(a) Strong OT formulation (1). (b) Weak OT formulation (2).

Figure 2: Strong (Kantorovich’s) and weak (Gozlan et al., 2017) optimal transport formulations.

Weak OT formulation. Let C : X × P(Y) → R be a weak cost (Gozlan et al., 2017), i.e., a function
which takes a point x ∈ X and a distribution of y ∈ Y as inputs. The weak OT cost between P,Q is

Cost(P,Q)
def
= inf

π∈Π(P,Q)

∫
X
C
(
x, π(·|x)

)
dπ(x), (2)

where π(·|x) denotes the conditional distribution (Figure 2b). Weak OT (2) subsumes strong OT
formulation (1) for C(x, µ) =

∫
Y c(x, y)dµ(y). An example of a weak OT cost for X = Y = RD is

the γ-weak (γ≥0) Wasserstein-2 (W2,γ), i.e., formulation (2) with the γ-weak quadratic cost

C2,γ

(
x, µ

) def
=

∫
Y

1

2
∥x− y∥2dµ(y)− γ

2
Var(µ) =

∫
Y

1

2
∥x−

∫
Y
y dµ(y)∥2dµ(y) + 1− γ

2
Var(µ), (3)

where Var(µ) denotes the variance of µ:

Var(µ)
def
=

∫
Y
∥y −

∫
Y
y′dµ(y′)∥2dµ(y) = 1

2

∫
Y×Y

∥y − y′∥2dµ(y)dµ(y′). (4)

For γ = 0, the transport cost (3) is strong, i.e., W2 = W2,0.
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If the cost C(x, µ) is lower bounded, lower-semicontinuous and convex in the second argument,
then we say that it is appropriate. For appropriate costs, the minimizer π∗ of (2) always exists
(Backhoff-Veraguas et al., 2019, M1.3.1). Since Var(µ) is concave and non-negative, cost (3) is
appropriate when γ ∈ [0, 1]. For appropriate costs the (2) admits the following dual formulation:

Cost(P,Q) = sup
f

∫
X
fC(x)dP(x) +

∫
Y
f(y)dQ(y), (5)

where f are upper-bounded, continuous and not rapidly decreasing functions, see (Backhoff-Veraguas
et al., 2019, M1.3.2), and fC(x) def

= infµ∈P(Y){C(x, µ)−
∫
Y f(y)dµ(y)} is the weak C-transform.

Figure 3: Implicit representation of a
transport plan via function T : X×Z → Y .

Neural Optimal Transport (NOT). In (Korotin et al.,
2023), the authors propose an algorithm to implicitly
learn an OT plan π∗ with neural nets (Figure 3). They
introduce a (latent) atomless distribution S ∈ P(Z),
e.g., Z = RZ and S = N (0, IZ), and search for a
function T ∗ : X×Z → Y (stochastic OT map) which
satisfies T ∗

x ♯S = π∗(y|x) for some OT plan π∗. That
is, given x ∈ X , function T ∗ pushes the distribution
S to the conditional distribution π∗(y|x) of an OT
plan π∗. In particular, T ∗ satisfies the distribution-
preserving condition T ∗♯(P×S) = Q. To get T ∗, the
authors use (5) to derive an equivalent dual form:

Cost(P,Q) = sup
f

inf
T

∫
X

(
C
(
x, Tx♯S

)
−
∫
Z
f
(
Tx(z)

)
dS(z)

)
dP(x) +

∫
Y
f(y)dQ(y), (6)

where the inf is taken over measurable functions T : X × Z → Y . The functional under supf infT
is denoted by L(f, T ). For every optimal potential f∗ ∈ arg supf infT L(f, T ), it holds that

T ∗ ∈ arg infT L(f∗, T ), (7)

see (Korotin et al., 2023, Lemma 4). Consequently, one may extract optimal maps T ∗ from optimal
saddle points (f∗, T ∗) of problem (6). In practice, saddle point problem (6) can be approached with
neural nets fω, Tθ and the stochastic gradient descent-ascent (Korotin et al., 2023, Algorithm 1).

The limitation (Korotin et al., 2023, M6) of NOT algorithm is that arg infT set of f∗ in (7) may
contain not only optimal transport maps but other functions as well. As a result, the function T ∗

recovered from a saddle point (f∗, T ∗) may be not an optimal stochastic map. In this paper, we show
that for the γ-weak quadratic cost (3) this may be problematic: the arg infT sets might contain fake
solutions T ∗ (M3.1). To resolve the issue, we propose kernel γ-weak quadratic costs (M3.2).

Convex order. For two probability distributions P,Q on RD, we write P ⪯ Q if for all convex
functions h : RD → R it holds

∫
h(x)dP(x) ≤

∫
h(x)dQ(x). The relation "⪯" is a partial order,

i.e., not all P,Q are comparable. If P ⪯ Q, then mP = mQ and ΣP ⪯ ΣQ (Scarsini, 1998, Lemma 3).
If P,Q are Gaussians, P ⪯ Q holds if and only if mP = mQ and ΣP ⪯ ΣQ (Scarsini, 1998, Theorem
4). For P,Q, we define the projection of P onto the convex set of distributions which are ⪯ Q as

Proj⪯Q(P) = arg infP′⪯Q W2
2(P,P′). (8)

The infimum is attained uniquely (Gozlan & Juillet, 2020, Proposition 1.1). There exists a 1-Lipschitz,
continuously diffirentiable and convex function ϕ : RD → R satisfying Proj⪯Q(P) = ∇ϕ♯P, see
(Gozlan & Juillet, 2020, Theorem 1.2) for details.

Figure 4: Every optimal restricted potential
ϕ∗ satisfies ∇ϕ∗♯P = Proj⪯Q(

1
γ ♯P) ⪯ Q.

Weak OT with the quadratic cost (γ > 0). For the
γ-weak quadratic cost (3) on X = Y = RD, (Gozlan
& Juillet, 2020, M5), (Alibert et al., 2019, M5.2) prove
that there exists a continuously differentiable convex
function ϕ∗ : RD → R such that π∗ ∈ Π(P,Q) is op-
timal if and only if

∫
Y y dπ

∗(y|x) = ∇ϕ∗(x) holds
true P-almost surely. In general, π∗ is not unique. We
say that ϕ∗ is an optimal restricted potential. It may
be not unique as a function RD → R, but ∇ϕ∗ is
uniquely defined P-almost everywhere. It holds true
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that ∇ϕ∗ is 1
γ -Lipschitz; ∇ϕ∗♯P = Proj⪯Q(

1
γ ♯P); it is the OT map between P and Proj⪯Q(

1
γ ♯P)

for the strong quadratic cost (Figure 4). The function ϕ∗ maximizes the dual form alternative to (5):

W2
2,γ(P,Q) = max

ϕ∈Cvx( 1
γ )

[ ∫
X

∥x∥2

2
dP(x)+

∫
Y

∥y∥2

2
dQ(x)−

(∫
X
ϕ(x)dP(x)+

∫
Y
ϕ(y)dQ(y)

)]
, (9)

where Cvx( 1γ ) denotes the set of 1
γ -smooth convex functions ϕ : RD → R. Duality formula (9)

appears in (Alibert et al., 2019, M5.2), (Gozlan & Juillet, 2020, Theorem 1.2 & M5) but with different
parametrization. In Appendix F, for completeness of the exposition, we derive (9) from the results of
(Gozlan & Juillet, 2020) by the change of variables.

3 SOLVING ISSUES OF NEURAL OPTIMAL TRANSPORT

In what follows, we consider X = Y ⊂ RD. In M3.1, we theoretically derive that arg infT sets (7)
for the γ-weak quadratic cost (3) may indeed contain functions which are not stochastic OT maps.
In M3.2, we introduce kernel weak quadratic costs and prove that they do not suffer from this issue,
i.e., all functions in sets arg infT for all optimal f∗ are stochastic OT maps. In M3.3, we discuss the
practical aspects of learning with kernels. We give the proofs of all the statements in Appendix G.

3.1 FAKE SOLUTIONS FOR THE WEAK QUADRATIC COST

In this subsection, we consider X = Y = RD. We show that arg infT L(f∗, T ) sets (7) of optimal
potentials f∗ in (5) for the γ-weak quadratic cost (3), in general, may contain functions T which are
not stochastic OT maps. We call such T fake solutions. To show why one should be concerned about
fake solutions, we emphasize their key defect below.
Lemma 1 (Fake solutions are not distribution-preserving). Let f ∈ arg supf infT L(f, T ) and
T † ∈ arg infT L(f∗, T ) be a fake solution. Then it holds that T †♯(P× S) ̸= Q.
Throughout the section, we assume that P,Q have finite second moments. We analyse the potentials
of the form f∗(y) = 1

2∥y∥
2 − ϕ∗(y), where ϕ∗ : RD → R is an optimal restricted potential. To

begin with, we show that such potentials are indeed optimal potentials for dual forms (5) and (6).
Lemma 2 (Optimal restricted potentials provide dual form maximizers). Let ϕ∗ : RD → R be an

optimal restricted potential. Assume that ϕ∗ takes only finite values. Then f∗(y)
def
= 1

2∥y∥
2 − ϕ∗(y)

maximizes dual formulations (5) and (6).
For a convex ψ : RD → R, we denote the area around point y ∈ RD in which ψ is linear by

Uψ(y) = {y′ ∈ RD such that ∀x ∈ ∂yψ(y) it holds ψ(y′) = ψ(y) + ⟨x, y′ − y⟩} ⊇ {y}. (10)

Proposition 1 (Convexity of sets of local linearity of a convex function). Set Uψ(y) is convex.
Our following theorem provides a full characterization of the arg infT L(f∗, T ) sets in view.

Theorem 1 (Characterization of saddle points with optimal restricted f∗). Let f∗(y) = ∥y∥2

2 −ϕ∗(y),
where ϕ∗ is an optimal restricted potential. Assume that ϕ∗ takes only finite values. Then it holds
true that arg infT L(f∗, T ) is a convex set and

T †∈arg inf
T

L(f∗, T ) ⇔
{∫

Z T
†
x(z)dS(z) = ∇ϕ∗(x) holds true P-almost everywhere;

T †
x(z) ∈ Uψ

(
∇ϕ∗(x)

)
holds true P×S-almost everywhere,

(11)

where ψ(y)
def
= ϕ∗(y)− γ

2 ∥y∥
2. Note that ψ is convex since ϕ∗ is 1

γ -smooth (Kakade et al., 2009).

We define the optimal barycentric projection T ∗
x (z)

def
= ∇ϕ∗(x) for (x, z)∈X×Z; it does not depend

on z∈Z . The function depends on the choice of optimal ϕ∗; we are interested only in its values in the
support of P, where ∇ϕ∗ is unique (M2). From definition (10), we see that ∇ϕ∗(x) ∈ Uψ

(
∇ϕ∗(x)

)
and T ∗ satisfies both conditions on the right side of (11). Thus, we have T ∗ ∈ arg infT L(f∗, T ).
Lemma 3 (The barycentric projection is not always a stochastic OT map). The following holds true

T ∗ is a stochastic OT map
(a)⇐⇒ Proj⪯Q

( 1
γ
♯P
)
= Q (b)

=⇒ T ∗ is the unique stochastic OT map.

We use the word stochastic but T ∗ is actually deterministic since it does not depend on z. From our
Lemma 3, we derive that if Proj⪯Q(

1
γ ♯P) ̸= Q, it holds that (f∗, T ∗) is a fake saddle point.
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(a) Input and target
distributions P and Q.

(b) Fitted map T̂x(z)
for γ = 1

2
.

(c) Fitted map T̂x(z)
for γ = 3

4
.

(d) Fitted map T̂x(z)
for γ = 1.

Figure 5: Stochastic maps T̂ between P and Q fitted by NOT algorithm with costs C2,γ for various γ.

Corollary 1 (Existence of fake saddle points). Assume that Proj⪯Q(
1
γ ♯P) ̸= Q. Then problem (6)

has optimal saddle points (f∗, T ∗) in which T ∗ is not a stochastic OT map.

Beside T ∗, our Theorem 1 can be used to construct arbitrary many fake solutions which are not
OT maps. Let T ∗ be any stochastic OT map and T † ∈ arg infT L(f∗, T ) satisfy T † ̸= T ∗ and
Var

(
T †♯(P×S)

)
≤ Var(Q). For example, T † may be another stochastic OT map or the optimal

barycentric projection T ∗. For any α ∈ (0, 1) consider Tα = αT ∗+(1−α)T † ∈ arg infT L(f∗, T ).

Proposition 2 (Interpolant is not a stochastic OT map). Assume that Proj⪯Q(
1
γ ♯P) ̸= Q. Then

Tα♯(P× S) ̸= Q. Consequently, Tα is not a stochastic OT map between P and Q.

It follows that a necessary condition for non-existence of fake saddle points is Proj⪯Q(
1
γ ♯P) = Q.

This requirement is very restrictive and naturally prohibits using large values of γ. Also, due to our
Lemma 3, the OT plan between P,Q must be deterministic. From the practical point of view, this
requirement means that there will be no diversity in samples T ∗

x (z) for a fixed x and z ∼ S.

On the other hand, if Proj⪯Q(
1
γ ♯P) ̸= Q, i.e., P is not γ-times more disperse than Q, the optimization

may indeed converge to fake solutions. To show this, we consider the following example.

Toy 2D example. We consider P = N (0, [ 12 ]
2I2), Q = N (0, I2) (Figure 5a) and run NOT (Korotin

et al., 2023, Algorihm 1) for γ∈{12 ,
3
4 , 1}-weak quadratic costs C2,γ . We show the learned stochastic

maps T̂x(z) and their barycentric projections T (x)
def
=

∫
Z T̂x(z)dS(z) in Figures 5b, 5c, 5d.

Good case. When γ ≤ 1
2 , we have 1

γ ♯P = N (0, [ 1
2γ ]

2I2) with 1
2γ ≥ 1. Since the distributions

1
γ ♯P and Q are Gaussians and ΣQ ⪯ Σ 1

γ ♯P
, we conclude that Proj⪯Q(

1
γ ♯P) = Q (Gozlan & Juillet,

2020, Corollary 2.1). Next, we use our Lemma 3 and derive that the OT plan is unique, deterministic
and equals the barycentric projection. The latter is the OT map between P and Q for the quadratic
cost. It is given by ∇ϕ∗(x) = 2x (Álvarez-Esteban et al., 2016, Theorem 2.3). In Figure 5b (when
γ = 1

2 ), we have T̂x(z) = T (x) ≈ 2x = ∇ϕ∗(x) and T̂ ♯(P×S) ≈ Q. Thus, NOT correctly learns
the (unique and deterministic) OT plan.

Bad case. When γ > 1
2 , we have 1

γ ♯P = N (0, [ 1
2γ ]

2I2) with 1
2γ < 1. Since 1

γ ♯P and Q are
Gaussians and ΣQ ⪰ Σ 1

γ ♯P
, we conclude that 1

γP ⪯ Q (recall M2). Thus, Proj⪯Q(
1
γ ♯P) =

1
γ ♯P ̸= Q

by definition of the projection (8). The optimal barycentric projection is the OT map between
Gaussians P and 1

γ ♯P for the quadratic cost. It is given by ∇ϕ∗(x) = 1
γx (Álvarez-Esteban et al.,

2016, Theorem 2.3). In Figures 5c and 5d, we see that the learned T (x) ≈ 1
γx, i.e., T̂ captures the
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(a) Iteration 10k. (b) Iteration 10k+100. (c) Iteration 10k+200. (d) Iteration 10k+300.

Figure 6: The evolution of the learned transport map T̂ during training on a toy 2D example (γ = 1).
conditional expectation of π∗(y|x) shared by all OT plans π∗ (M2). However, T̂ ♯(P×S) ̸= Q and
NOT fails to learn an OT plan.

Importantly, we found that when γ > 1
2 (Figures 5c, 5d), the transport map T̂ extremely fluctuates

during the optimization rather than converges to a solution. In Figure 6, we visualize the evolution
of T̂ during training (for γ = 1). In all the cases, the barycentric projection T (x) ≈ x = ∇ϕ∗(x)
is almost correct. However, the "remaining" part of T̂ is literally random. To explain the behavior,
we integrate ∇ϕ∗(x) = x and get that ϕ∗(x) = 1

2∥x∥
2 is an optimal restricted potential. We derive

ψ(y) = ϕ∗(y) − 1
2∥y∥

2 = 1
2∥y∥

2 − 1
2∥y∥

2 ≡ 0 =⇒ Uψ(y) = U0(y) ≡ RD for every y ∈ RD.
From our Theorem 1 it follows that T †∈arg infT L(f∗, T ) ⇔

∫
Z T

†
x(z)dS(z) = ∇ϕ∗(x) = x holds

P-almost everywhere. Thus, a function T † recovered from (6) may be literally any function which
captures the first conditional moment of a plan π∗(y|x). This agrees with our practical observations.
In Appendix C, we give an additional toy example illustrating the issue with fake solutions.

Our results show that the γ-weak quadratic cost C2,γ may be not a good choice for NOT algorithm
due to fake solutions. However, prior works on OT (Korotin et al., 2023; Rout et al., 2022; Fan
et al., 2022a; Gazdieva et al., 2022; Korotin et al., 2022) use strong/weak quadratic costs and show
promising practical performance. Should we really care about solutions being fake?

Yes. First, fake solutions T ∗ ∈ arg infT L(f∗, T ) do not satisfy T ∗♯(P×S) ̸= Q, i.e., they are not
distribution preserving (Lemma 1). Second, our analysis suggests that fake solutions might be one of
the causes for the training instabilities reported in related works (Korotin et al., 2023, Appendix D),
(Korotin et al., 2021b, M4): the map T̂ may fluctuate between fake solutions rather than converge.

3.2 KERNEL WEAK QUADRATIC COST REMOVES FAKE SADDLE POINTS

In this section, we introduce kernel weak quadratic costs which generalize weak quadratic cost (3).
We prove that for characteristic kernels the costs completely resolve the ambiguity of arg infT sets.

Henceforth, we assume that X =Y⊂RD are compact sets. Let H be a Hilbert space (feature space).
Let u : X → H be a function (feature map). We define the γ-weak quadratic cost between features:

Cu,γ(x, µ)
def
=

1

2

∫
Y
∥u(x)− u(y)∥2Hdµ(y)−

γ

2
·
[
1

2

∫
Y×Y

∥u(y)− u(y′)∥2Hdµ(y)dµ(y′)
]
. (12)

We denote the PDS kernel k : Y × Y → R with the feature map u by k(y, y′)
def
= ⟨u(y), u(y′)⟩H.

Cost (12) can be computed without knowing the map u, i.e., it is enough to know the PDS kernel k.
By using ∥u(y)− u(y′)∥2H = k(y, y)− 2k(y, y′) + k(y′, y′), we obtain the equivalent form of (12):

Ck,γ(x, µ)
def
=

1

2
k(x, x)+

1−γ
2

∫
Y
k(y, y)dµ(y)−

∫
Y
k(x, y)dµ(y)+

γ

2

∫
Y×Y
k(y, y′)dµ(y)dµ(y′). (13)
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(a) Handbag → shoes, 128× 128. (b) Shoes → handbags, 128× 128.

Figure 7: Unpaired one-to-many translation with kernel Neural Optimal Transport (NOT).

We call (12) and (13) the γ-weak kernel cost. The γ-weak quadratic cost (3) is its particular case for
H = RD and u(x) = x. The respective kernel k(x, y) = ⟨u(x), u(y)⟩ = ⟨x, y⟩ is bilinear.

Lemma 4 (Weak kernel costs are appropriate). Let k be a continuous PDS kernel and γ ∈ [0, 1].
Then the cost Ck,γ(x, µ) is convex, lower semi-continuous and lower bounded in µ.
Corollary 2 (Existence and duality for kernel costs). Let k be a continuous PDS kernel and γ ∈ [0, 1].
Then an OT plan π∗ for cost Ck,γ(x, µ) exists and duality formulas (5) and (6) hold true.

We focus on characteristic kernels k and show that they resolve the ambiguity in arg infT sets.

Lemma 5 (Uniqueness of the optimal plan for characteristic kernel costs). Let k be a characteristic
PDS kernel and γ ∈ (0, 1]. Then the OT plan π∗ for cost Ck,γ(x, µ) is unique.

Theorem 2 (Optimality of stochastic functions in all optimal saddle points). Let k be a continuous
characteristic PDS kernel and γ ∈ (0, 1]. Consider weak OT problem (2) with cost Ck,γ and its dual
problem (5). For any optimal potential f∗ ∈ arg supf infT L(f, T ) it holds that

T ∗∈arg infT L(f∗, T ) ⇐⇒ T ∗
x ♯S = π∗(y|x) holds true P-almost surely for all x ∈ X , (14)

i.e., every optimal saddle point (f∗, T ∗) provides a stochastic OT map T ∗.

Bilinear kernel k(x, y) = ⟨x, y⟩ is not characteristic and is not covered by our Theorem 2; its
respective γ-weak quadratic cost C2,γ suffers from fake solutions (M3.1). In the next subsection, we
give examples of practically interesting kernels k(x, y) which are ideologically similar to the bilinear
but are characteristic. Consequently, their respective costs Ck do not have ambiguity in arg infT sets.

3.3 PRACTICAL ASPECTS OF LEARNING WITH KERNEL COSTS

Optimization. To learn the stochastic OT map T ∗ for kernel cost (13), we use NOT’s training
procedure (Korotin et al., 2023, Algorithm 1). It requires stochastic estimation of Ck,γ(x, Tx♯S) to
compute the corresponding term in (6). Similar to the γ-weak quadratic cost (Korotin et al., 2023,
Equation 23), it is possible to derive the following unbiased Monte-Carlo estimator Ĉk,γ for x ∈ X
and a batch Z ∼ S (|Z| ≥ 2):

Ĉk,γ
(
x, Tx(Z)

)
=

1

2
k(x, x) +

1−γ
2|Z|

∑
z∈Z

k
(
Tx(z), Tx(z)

)
−

1

|Z|
∑
z∈Z

k(x, Tx(z)) +
γ

2|Z|(|Z| − 1)

∑
z ̸=z′

k
(
Tx(z), Tx(z

′)
)
≈ Ck,γ(x, Tx♯S). (15)

The time complexity of estimator (15) is O(|Z|2) since it requires considering pairs z, z′ in batch to
estimate the variance term. Specifically for the bilinear kernel k(y, y′) = ⟨y, y′⟩, the variance can be
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(a) Texture → shoes, 128× 128. (b) Texture → handbags, 128× 128.

Figure 8: Unpaired one-to-many translation with kernel Neural Optimal Transport (NOT).

estimated in O(|Z|) operations (Korotin et al., 2023, Equation 23), but NOT algorithm may suffer
from fake solutions (M3.1).

Kernels. Consider the family of distance-induced kernels k(x, y)= 1
2∥x∥

α+ 1
2∥y∥

α− 1
2∥x− y∥α.

For these kernels, we have ∥u(x)− u(x′)∥2H = ∥x− x′∥α, i.e., (12), (13) can be expressed as

Ck,γ(x, µ) = Cu,γ(x, µ) =
1

2

∫
Y
∥x− y∥αdµ(y)− γ

2
·
[
1

2

∫
Y×Y

∥y − y′∥αdµ(y)dµ(y′)
]
. (16)

For α = 2 the kernel is bilinear, i.e., k(x, y) = ⟨x, y⟩; it is PDS but not characteristic and (16) simply
becomes the γ-weak quadratic cost (3). In the experiments (M5), we focus on the case α = 1; it yields
a PDS and characteristic kernel (Sejdinovic et al., 2013, Definition 13 & Proposition 14).

4 RELATED WORK

In deep learning, OT costs are primarily used as losses to train generative models. Such approaches
are called Wasserstein GANs (Arjovsky & Bottou, 2017); they are not related to our paper since
they only compute OT costs but not OT plans. Below we discuss methods to compute OT plans.

Existing OT solvers. NOT (Korotin et al., 2023) is the only parametric algorithm which is capable
of computing OT plans for weak costs (2). Although NOT is generic, the authors tested it only with
the γ-weak quadratic cost (3). The core of NOT is saddle point formulation (6) which subsumes
analogs (Korotin et al., 2021b, Eq. 9), (Rout et al., 2022, Eq. 14), (Fan et al., 2022a, Eq. 11),
(Henry-Labordere, 2019, Eq. 11), (Gazdieva et al., 2022, Eq. 10), (Korotin et al., 2022, Eq. 7) for
strong costs (1). For the strong quadratic cost, (Makkuva et al., 2020), (Taghvaei & Jalali, 2019,
Eq. 2.2), (Korotin et al., 2021a, Eq. 10) consider analogous to (9) formulations restricted to convex
potentials; they use Input Convex Neural Networks (ICNNs (Amos et al., 2017)) to approximate
the potentials. ICNNs are popular in OT (Korotin et al., 2021c; Mokrov et al., 2021; Huang et al.,
2020; Alvarez-Melis et al., 2022; Bunne et al., 2022) but recent studies (Korotin et al., 2021b; 2022;
Fan et al., 2022b) show that OT algorithms based on them underperform compared to unrestricted
formulations such as NOT.

In (Genevay et al., 2016; Seguy et al., 2018; Daniels et al., 2021), the authors propose neural
algorithms for f -divergence regularized costs (Genevay, 2019). The first two methods suffer from
bias in high dimensions (Korotin et al., 2021b, M4.2). Algorithm (Daniels et al., 2021) alleviates the
bias but is not end-to-end and is computationally expensive due to using the Langevin dynamics.
There also exist GAN-based (Goodfellow et al., 2014) methods (Lu et al., 2020; Xie et al., 2019;
González-Sanz et al., 2022) to learn OT plans (or maps) for strong costs. However, they are harder to
set up in practice due to the large amount of tunable hyperparameters.

8



Published as a conference paper at ICLR 2023

Kernels in OT. In (Zhang et al., 2019; Oh et al., 2020), the authors propose a strong kernel W2

distance and an algorithm to approximate the transport map under the Gaussianity assumption on
P,Q. In (Li et al., 2021), the authors generalize Sinkhorn divergences (Genevay et al., 2019) to
Hilbert spaces. These papers consider discrete OT formulations and data-to-data matching tasks; they
do not use neural networks to approximate the OT map.

5 EVALUATION

In Appendix A, we learn OT between toy 1D distributions and perform comparisons with discrete
OT. In Appendix B, we conduct tests on toy 2D distributions. In this section, we test our algorithm
on an unpaired image-to-image translation task. We perform comparison with principal translation
methods in Appendix K. The code is written in PyTorch framework and is available at

https://github.com/iamalexkorotin/KernelNeuralOptimalTransport

Image datasets. We test the following datasets as P,Q: aligned anime faces1, celebrity faces (Liu
et al., 2015), shoes (Yu & Grauman, 2014), Amazon handbags, churches from LSUN dataset (Yu
et al., 2015), outdoor images from the MIT places database (Zhou et al., 2014), describable textures
(Cimpoi et al., 2014). The size of datasets varies from 5K to 500K images.

Train-test split. We pick 90% of each dataset for unpaired training. The rest 10% are considered as
the test set. All the results presented here are exclusively for test images, i.e., unseen data.

Transport costs. We focus on the γ-weak cost for the kernel k(x, y) = 1
2∥x∥+

1
2∥y∥ −

1
2∥x− y∥.

For completeness, we test other popular PDS kernels in Appendix E.

Other training details (optimizers, architectures, pre-processing, etc.) are given in Appendix I.

We learn stochastic OT maps between various pairs of datasets. We rescale images to 128× 128 and
use γ = 1

3 in the experiments with the kernel cost. Additionally, in Appendix D we analyse how
varying parameter γ affects the diversity of generated samples. We provide the qualitative results in
Figures 1, 7 and 8; extra results are in Appendix L. Thanks to the first term in (16), our translation
map T̂x(z) tries to minimally change the image content x in the pixel space. At the same time, the
second term (kernel variance) in (16) enforces the map to produce diverse outputs for different z ∼ S.

Datasets
(128×128)

C2,0

(strong)
C2,γ

(weak)

Ck,γ

(weak)
Ours

Handbags → shoes 35.7 33.9 ± 0.2 26.7 ± 0.06

Shoes → handbags 39.8 − 29.51 ± 0.19

Outdoor → church 25.5 25.97 ± 0.14 15.16 ± 0.03

Celeba (f) → anime 38.73 28.21 ± 0.12 21.96 ± 0.07

Table 1: Test FID↓ of NOT with various costs.

We provide quantitative comparison with
NOT with the γ-weak quadratic costC2,γ . We
compute FID score (Heusel et al., 2017) be-
tween the mapped input test subset and the
output test subset (Table 1). For C2,γ , we
use the pre-trained models provided by the
authors of NOT (Korotin et al., 2023, M5).2
We observe that FID of NOT with kernel cost
Ck,γ is better than that of NOT with cost C2,γ .
We show qualitative examples in Appendix J.
In Appendix H, we perform a detailed com-
parison of NOT’s training stability with the weak quadratic and kernel costs.

6 DISCUSSION

Potential impact. Neural OT methods and their usage in generative models constantly advance. We
expect our proposed weak kernel quadratic costs to improve applications of OT to unpaired learning.
In particular, we hope that our theoretical analysis provides better understanding of the performance.

Limitations (theory). In our Theorem 2, we implicitly assume the existence a maximizer f∗ of dual
form (5) for kernel costs Ck,γ . Deriving precise conditions for existence of such maximizers is a
challenging question. We hope that this issue will be addressed in the future theoretical OT research.

Limitations (practice). Applying kernel costs to domains of different nature (RGB images → depth
maps, infrared images → RGB images) is not straightforward as it might require selecting meaningful
shared features u (or kernel k). Studying this question is a promising avenue for the future research.

1kaggle.com/reitanaka/alignedanimefaces
2https://github.com/iamalexkorotin/NeuralOptimalTransport
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Reproducibility. We provide the source code for all experiments and release the checkpoints for all
models of M5. The details are given in README.MD in the official repository.
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A TOY EXPERIMENTS IN 1D AND COMPARISON WITH DISCRETE OT
In this section, we learn transport plans between various pairs of toy 1D distributions and compare
them with the discrete optimal transport (DOT) considered as the ground truth. We use the distance-
induced kernel and consider γ ∈ {1, 10}. All the rest training details (fully-connected architectures,
optimizers, etc.) match those of (Korotin et al., 2023, Appendix C). We consider Gaussian N (0, 1)
→ Mixture of 2 Gaussians and Mixture of 3 Gaussians → Mixture of 2 Gaussians.
In Figure 9, we visualize the pairs P,Q (1st and 2nd columns), the plan π̂ learned by Kernel NOT
(3rd column) and the plan π∗ learned by DOT (4th column). To compute DOT, we sample 103

random points x ∼ P, y ∼ Q and compute a discrete plan by ot.optim.cg solver from Python
OT (POT) library https://pythonot.github.io/. Our learned plan π̂ and DOT’s plan π∗

nearly match. Note also that, as one may expect, with the increase of γ from 1 to 10, the conditional
variance of the plan increases and for very high γ = 10 it becomes similar to the trivial plan P×Q.
This is analogous to the entropic optimal transport, see, e.g., (Peyré et al., 2019, Figure 4.2).

(a) Gaussian N (0, 1)→ Mixture of 2 Gaussians, γ = 1.

(b) Gaussian N (0, 1)→ Mixture of 2 Gaussians, γ = 10.

(c) Mixture of 3 Gaussians → Mixture of 2 Gaussians, γ = 1.

(d) Mixture of 3 Gaussians → Mixture of 2 Gaussians, γ = 10.
Figure 9: Stochastic plans (3rd and 4th columns) between toy 1D distributions (1st and 2nd columns)
learned by our Kernel NOT (3rd column) and discrete OT with the weak kernel cost (4th column).
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B TOY EXPERIMENTS IN 2D

In this section, we learn transport maps between various common pairs of toy 2D distributions.
We use the distance-induced kernel and γ = 1. All the rest training details (fully-connected
architectures, optimizers, etc.) exactly match those of (Korotin et al., 2023, Appendix B). We consider
Gaussian N (0, 12I2) → Gaussian N (0, I2) (the same experiment as in Figures 5d and 6), Gaussian
N (0, [ 12 ]

2I2)→ Mixture of 8 Gaussians and Gaussian N (0, [ 12 ]
2I2)→ Swiss roll as P,Q pairs. In

Figure 10, we provide the learned stochastic (one-to-many) maps. Since the ground truth OT maps
for kernel costs are not known, we provide only qualitative results.

(a) Gaussian N (0, [ 1
2
]2I2) → Gaussian N (0, I2).

(b) Gaussian N (0, [ 1
2
]2I2)→ Mixture of 8 Gaussians.

(c) Gaussian N (0, 1
2
I2)→ Swiss roll.

(d) Mixture of 4 Gaussians → Uniform.

Figure 10: Stochastic (one-to-many) maps learned between toy 2D distributions by Kernel NOT.
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C ADDITIONAL TOY 2D EXAMPLE

In this section, we provide an additional toy 2D example demonstrating the issue with fake solutions
for the weak quadratic cost. We consider a mixture of 4 Gaussians as P and the uniform distribution
on a square as Q. We train NOT with the γ-weak quadratic cost for γ = 0, 12 , 1 and report the results
in Figure 11. For γ = 0 (Figure 11b), we see that NOT with the weak quadratic cost3 learns the
target distribution. However, when γ = 1

2 (Figure 11c) and γ = 1 (Figure 11d), the method does not
converge and yields fake solutions. In addition, in Figure 12, we show that for γ = 1 the method
notably fluctuates between the fake solutions. This is analogous to the toy example with Gaussians in
M3.1, see Figure 6. For completeness, we run NOT with our proposed kernel cost (16) on this pair
(P,Q) and γ = 1 and show that it learns the distribution Q, see Figure 10d.

(a) Input and target
distributions P and Q.

(b) Fitted map T̂x(z)
for γ = 0.

(c) Fitted map T̂x(z)
for γ = 1

2
.

(d) Fitted map T̂x(z)
for γ = 1.

Figure 11: Stochastic maps T̂ between P and Q fitted by NOT with costs C2,γ for various γ.

(a) Iteration 10k.
2

(b) Iteration 10k+100. (c) Iteration 10k+200. (d) Iteration 10k+300.

Figure 12: The evolution of the learned transport map T̂ during training on a toy 2D example (γ = 1).

3In this case, the cost is the strong quadratic cost.

16



Published as a conference paper at ICLR 2023

D VARIANCE-SIMILARITY TRADE-OFF

In this section, we study how parameter γ affects the resulting learned transport map. In (Korotin
et al., 2023, Appendix A), the authors empirically show that for the γ-weak quadratic cost C2,γ the
variety of samples Tx(z) produced for a fixed x and z ∼ S increases with the increase of γ, but their
similarity to x decreases. We formalize this statement and generalize it for kernel costs Ck,γ .

For a plan π, we define its (feature) conditional variance and (the square of) input-output distance by

CVaru(π)
def
=

∫
X
Var

(
u♯π(y|x)

)
dπ(x) and Dist2u(π)

def
=

∫
X×Y
∥u(x)− u(y)∥2Hdπ(x, y), (17)

respectively. Recall that Var
(
u♯π(y|x)

)
=

∫
Y×Y ∥u(y)− u(y′)∥2Hdπ(y|x)dπ(y′|x). We note that

the γ-weak kernel cost of a plan π ∈ Π(P,Q) is given by

Costk,γ(π) =
1

2
Distu(π)−

γ

2
CVaru(π). (18)

Our following proposition explains the behaviour of the above mentioned values for OT plans.

(a) γ = 0 (b) γ = 1
3

(c) γ = 2
3

(d) γ = 1 (e) γ = 4
3

Figure 13: Texture → shoes (64× 64) translation with the γ-weak kernel cost for various values γ.

Proposition 3 (Behavior of the conditional variance and input-output distance). Let π∗
γ ∈ Π(P,Q)

be an OT plan for γ-weak kernel cost. Then for γ2 > γ1 ≥ 0 it holds true

CVaru(π
∗
γ1) ≤ CVaru(π

∗
γ2) and Distu(π

∗
γ1) ≤ Distu(π

∗
γ2), (19)
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γ = 0 γ = 1
3

γ = 2
3

γ = 1 γ = 4
3

CVaru(π̂γ) 0.72 15.2 16.28 17.86 18.26

Dist2u(π̂γ) 46.6 48.13 48.75 49.87 51.24

Costk,γ(π̂γ) 23.3 21.56 19.0 16.01 13.48

Table 2: The values of CVar(π̂γ), Dist(π̂γ) and Costk,γ(π̂γ) of learned plans π̂γ ≈ π∗
γ with

different values of γ on texture → shoes (64× 64) translation with the kernel quadratic cost.
i.e., for larger γ, the OT plan π∗

γ on average for each x yields more conditionally diverse samples
π∗(y|x) but they are less close to x in features w.r.t. ∥ · ∥2H. The OT cost is non-increasing, i.e.,

Costk,γ1(π
∗
γ1) ≥ Costk,γ1(π

∗
γ2). (20)

The proof is given in Appendix G. We empirically check the proposition by training OT maps for
Ck,γ for texture → shoes translation (64×64), distance-induced k (M5) and γ ∈ {0, 13 ,

2
3 , 1,

4
3}, see

Figure 13 and Table 2. We observe the increase of the variety of samples with the increase of γ. At
the same time, with the increase of γ, output samples become less similar to the inputs.

E EXPERIMENTS WITH DIFFERENT KERNELS

We empirically test several popular kernels on texture → handbag translation (64×64), γ = 1
3 .

We consider bilinear, distance-based, Gaussian and Laplacian kernels. The three latter kernels are
characteristic. The quantitative and qualitative results are given in Figure 14.

For the kernels in view, the squared feature distance can be expressed as ∥u(x)−u(y)∥2H = h(∥x−y∥)
for some increasing function h : R+ → R+. Due to this, all the stochastic transport maps try to
preserve the input content in the pixel space. According to FID, the distance-based kernel performs
better than the bilinear one, which agrees with the results in M5. Interestingly, both Gaussian and
Laplacian kernels are slightly outperformed by the bilinear kernel. We do not know why this happens,
but we presume that this might be related to their boundness (0 < k(x, y) ≤ 1) and exp operation.

F RESTRICTED DUALITY FOR THE WEAK QUADRATIC COST

In this section, we derive duality formula (9) for the γ-weak quadratic cost. First, we derive formula
(9) for γ = 1 by using (Gozlan & Juillet, 2020, Theorems 1.1, 1.2). Next, following the discussion in
(Gozlan & Juillet, 2020, M5.2), we generalize duality formula (9) to arbitrary γ > 0. We note that the
constants in our derivations differ from those in (Gozlan & Juillet, 2020) since our quadratic cost
C2,γ differs by a constant multiplicative factor.

Part 1 (γ = 1). From (Gozlan & Juillet, 2020, Theorems 1.1, 1.2) it follows that there exists a
lower-semi-continuous and convex function v∗ : RD → R ∪ {∞} which maximizes the following
expression:

W2
2,1(P,Q) = max

v∈ l.s.c. Cvx

[ ∫
X

inf
y∈RD

[
v(y) +

1

2
∥x− y∥2

]
dP(x)−

∫
Y
v(y)dQ(y)

]
. (21)

Importantly, ϕ∗(x)
def
= (∥·∥

2

2 + v∗)(x) is the optimal restricted potential, i.e., ∇ϕ∗ implements the
projection of P to Q and is a 1-smooth convex function.

We consider the change of variables ϕ(x) = (∥·∥
2

2 + v)(x) in (21). Since ∥y∥2

2 + v(y) is 1-strongly
convex, its conjugate ϕ(x) is 1-smooth. From the lower-semi-continuity of v it follows that

ϕ(y) =
(∥ · ∥2

2
+ v

)
(y) =

(∥ · ∥2
2

+ v
)
(y) =

1

2
∥y∥2 + v(y) =⇒ −v(y) = 1

2
∥y∥2 − ϕ(y). (22)

We derive

inf
y∈RD

[
v(y) +

1

2
∥x− y∥2

]
=

1

2
∥x∥2 + inf

y∈RD

[
ϕ(y)− ⟨x, y⟩

]
=

18



Published as a conference paper at ICLR 2023

(a) Bilinear k(y, y′) = ⟨y, y′⟩ (Korotin et al., 2023),
FID = 18.79± 0.08.

(b) Distance k(y, y′)= 1
2
∥y∥+ 1

2
∥y′∥− 1

2
∥y′ − y∥,

FID = 16.13 ± 0.1.

(c) Gaussian k(y, y′) = exp
(
− ∥y−y′∥2

2D

)
,

FID = 20.89± 0.09.
(d) Laplacian k(y, y′) = exp

(
− ∥y−y′∥

2D

)
,

FID = 20± 0.09.

Figure 14: Texture → handbags (64× 64) translation with the different γ-weak kernel costs.

1

2
∥x∥2 − sup

y∈RD

[
⟨x, y⟩ − ϕ(y)

]
=

1

2
∥x∥2 − ϕ(x). (23)

We substitute (22) and (23) to (21) and obtain

W2
2,1(P,Q) =max

ϕ∈Cvx(1)

[ ∫
X

∥x∥2

2
dP(x)+

∫
Y

∥y∥2

2
dQ(x)−

(∫
X
ϕ(x)dP(x)+

∫
Y
ϕ(y)dQ(y)

)]
. (24)

We only need to note that (24) exactly matches the desired (9) for γ = 1.

Part 2 (arbitrary γ > 0). In (Gozlan & Juillet, 2020, M5.2), the authors show that the OT problem
between P and Q for the γ-weak cost becomes the OT problem between 1

γP and Q for the 1-weak
cost. It holds

W2
2,γ(P,Q) =

[
γ · inf

P′⪯Q
W2

2(
1

γ
♯P,P′)︸ ︷︷ ︸

=W2
2,1(

1
γ ♯P,Q), see (Backhoff-Veraguas et al., 2019, Thm. 1.4)

]
+

1− γ

2γ

∫
X
∥x∥2dP(x) + 1− γ

2

∫
Y
∥y∥2dQ(x). (25)

Moreover, ϕ∗(x) is the optimal restricted potential for γ-weak cost between P,Q if and only if
ϕ∗1(x) = γϕ∗(γ−1x) is the optimal restricted potential between 1

γ ♯P and Q for the 1-weak quadratic
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cost. Note that ∇ϕ∗(x) = ∇ϕ∗1( 1γx), i.e., ∇ϕ∗(x) first scales x ∼ P by 1
γ and then implements

projection ∇ϕ∗1 of 1
γ ♯P to Q. In particular, the function ϕ∗ is 1

γ -Lipschitz.

We reparameterize the duality formula (24) for distributions 1
γ ♯P and Q as follows:

W2
2,1(

1

γ
♯P,Q) = max

ϕ1∈Cvx(1)

[ ∫
X

∥x∥2

2
d
( 1
γ
♯P
)
(x)+

∫
Y

∥y∥2

2
dQ(x)−(∫

X
ϕ1(x)d

( 1
γ
♯P
)
(x)+

∫
Y
ϕ1(y)dQ(y)

)]
=

max
ϕ1∈Cvx(1)

[
1

γ2

∫
X

∥x∥2

2
dP(x)+

∫
Y

∥y∥2

2
dQ(x)−

(∫
X
ϕ1(

1

γ
x)dP(x)+

∫
Y
ϕ1(y)dQ(y)

)]
= (26)

max
ϕ∈Cvx( 1

γ )

[
1

γ2

∫
X

∥x∥2

2
dP(x)+

∫
Y

∥y∥2

2
dQ(x)− 1

γ

(∫
X
ϕ(x)dP(x)+

∫
Y
ϕ(y)dQ(y)

)]
. (27)

In transition from (26) to (27), we use the change of variables for ϕ(x) = γϕ1(
1
γx) known as the

right scalar multiplication. It yields ϕ(y) = γϕ1(y).

To finish the derivation of dual form (9), we simply substitute (27) to (25).

G PROOFS

Proof of Lemma 1. Assume the opposite, i.e., T †♯(P× S) = Q. Then T † implicitly represents some
transport plan π† ∈ Π(P,Q) between P and Q. By the definition of f∗, T † and (6), it holds

Cost(P,Q) = L(f∗, T †) =∫
X
C(x, T †

x♯S)dP(x)−
∫
X

∫
Z
f∗

(
T †
x(z)

)
dS(z)dP(x) +

∫
Y
f∗(y)dQ(y) = (28)∫

X
C(x, T †

x♯S)dP(x)−
∫
Y
f∗(y)dQ(y) +

∫
Y
f∗(y)dQ(y) = (29)∫

X
C(x, T †

x♯S)dP(x) =
∫
X
C(x, π†(·|x))dπ†(x), (30)

where in transition between lines (28) and (29), we use the change of variables formula for y = T †
x(z)

and the equality T †♯(P×S) = Q. From (30) we see that the cost of the plan π† ∈ Π(P,Q) equals the
optimal cost Cost(P,Q). As a result, it is an optimal plan by definition. In turn, T † is an stochastic
OT map but not a fake solution. This is a contradiction. Thus, it holds that T †♯(P× S) ̸= Q.

Proof of Lemma 2. We compute the C-transform of f∗(y) = ∥y∥2

2 − ϕ∗(x). We have

(f∗)C(x) = inf
µ∈P(Y)

[
C2,γ(x, µ)−

∫
Y
f∗(y)dµ(y)

]
=

inf
µ∈P(Y)

[
1

2

∫
Y
∥x− y∥2dµ(y)− γ

2
Var(µ)−

∫
Y

[∥y∥2
2

− ϕ∗(y)
]
dµ(y)

]
=

inf
µ∈P(Y)

[
1

2
∥x∥2 − ⟨x,

∫
Y
y dµ(y)⟩+ 1

2

∫
Y
∥y∥2dµ(y)− γ

2
Var(µ)−

∫
Y

[∥y∥2
2

− ϕ∗(y)
]
dµ(y)

]
=

inf
µ∈P(Y)

[
1

2
∥x∥2 − ⟨x,

∫
Y
y dµ(y)⟩ − γ

2
Var(µ) +

∫
Y
ϕ∗(y)dµ(y)

]
=

1

2
∥x∥2 + inf

µ∈P(Y)

[ ∫
Y

(
ϕ∗(y)− ⟨x, y⟩

)
dµ(y)− γ

2
Var(µ)

]
=

1

2
∥x∥2 + inf

µ∈P(Y)

[ ∫
Y

(
ϕ∗(y)− γ

2
∥y∥2 − ⟨x, y⟩

)
dµ(y) +

γ

2

∥∥∥∥∫
Y
y dµ(y)

∥∥∥∥2 ]. (31)
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Pick any µ ∈ P(Y) and denote its expectation by m =
∫
Y y dµ(y). Since ϕ∗ is 1

γ -smooth, it holds
that ϕ∗ is γ-strongly convex, i.e., ϕ∗(y)− γ

2 ∥y∥
2 − ⟨x, y⟩ is convex. We use the Jensen’s inequality:∫

Y

(
ϕ∗(y)− γ

2
∥y∥2 − ⟨x, y⟩

)
dµ(y) ≥ ϕ∗(m)− γ

2
∥m∥2 − ⟨x,m⟩. (32)

Therefore, we may restrict the feasible set of inf in (31) to Dirac distributions δm, m ∈ Y . That is,

(f∗)C(x) =
1

2
∥x∥2 + inf

m∈Y

[
ϕ∗(m)− γ

2
∥m∥2 − ⟨x,m⟩+ γ

2
∥m∥2

]
=

1

2
∥x∥2 + inf

m∈Y

[
ϕ∗(m)− ⟨x,m⟩

]
=

1

2
∥x∥2 − sup

m∈Y

[
⟨x,m⟩ − ϕ∗(m)

]
︸ ︷︷ ︸

=ϕ∗(x)

=
1

2
∥x∥2 − ϕ∗(x), (33)

where ϕ∗(x) = ϕ∗(x) holds since ϕ∗ is continuous. We substitute (33) to (5) and obtain∫
X
(f∗)C(x)dP(x) +

∫
Y
f∗(y)dQ(y) =∫

X

[∥x∥2
2

− ϕ∗(x)
]
dP(x) +

∫
Y

[∥y∥2
2

− ϕ∗(y)
]
dQ(y) = W2

2,γ(P,Q), (34)

where in line (34), we use the optimality of ϕ∗ and (9). We conclude that f∗ maximizes (5), (6).

Proof of Proposition 1. For all y′, y′′ ∈ Uψ(y), α ∈ [0, 1], from the convexity of ψ it follows that

ψ
(
αy′ + (1− α)y′′

)
≤ αψ(y′) + (1− α)ψ(y′′). (35)

By the definition of the subgradient of a convex function it also holds

ψ
(
αy′ + (1− α)y′′

)
≥ ψ(y) + ⟨x, αy′ + (1− α)y′′ − y⟩ =

α
(
ψ(y) + ⟨x, y′ − y⟩

)
+ (1− α) ·

(
ψ(y) + ⟨x, y′′ − y⟩

)
= αψ(y′) + (1− α)ψ(y′′) (36)

for all x ∈ ∂yψ(y). Therefore, (35) and (36) are equalities, and αy′ + (1− α)y′′ ∈ Uψ(y).

Proof of Theorem 1. It holds that

T † ∈ arg inf
T

L(f∗, T ) ⇔ T † ∈ arg inf
T

∫
X

(
C
(
x, Tx♯S

)
−

∫
Z
f∗

(
Tx(z)

)
dS(z)

)
dP(x).

The latter condition holds if and only if P-almost surely for all x ∈ X we have

T †
x ∈ arg inf

Tx:Z→Y

[
C
(
x, T †

x♯S
)
−
∫
Z
f∗

(
T †
x(z)

)
dS(z)

]
. (37)

We substitute f∗ = ∥·∥2

2 − ϕ∗ and C = C2,γ . As a result, we derive

C2,γ

(
x, T †

x♯S
)
−

∫
f∗

(
T †
x(z)

)
dS(z) =

1

2

∫
Z
∥x− T †

x(z)∥2dS(z)−
γ

2
Var(T †

x♯S)−
1

2

∫
Z
∥T †

x(z)∥2dS(z) +
∫
Z
ϕ∗

(
T †
x(z)

)
dS(z) =

1

2
∥x∥2 − ⟨x,

∫
Z
T †
x(z)dS(z)⟩ −

γ

2
Var(T †

x♯S) +
∫
Z
ϕ∗

(
T †
x(z)

)
dS(z) =

1

2
∥x∥2 − ⟨x,

∫
Z
T †
x(z)dS(z)⟩+

γ

2

∥∥∥∥∫
Z
T †
x(z)dS(z)

∥∥∥∥2 + ∫
Z

[
ϕ∗

(
T †
x(z)

)
− γ

2
∥T †

x(z)∥2
]
dS(z) =

1

2
∥x∥2 − ⟨x,

∫
Z
T †
x(z)dS(z)⟩+

γ

2

∥∥∥∥∫
Z
T †
x(z)dS(z)

∥∥∥∥2 + ∫
Z
ψ
(
T †
x(z)

)
dS(z) ≥ (38)

1

2
∥x∥2 − ⟨x,

∫
Z
T †
x(z)dS(z)⟩+

γ

2

∥∥∥∥∫
Z
T †
x(z)dS(z)

∥∥∥∥2 + ψ

(∫
Z
T †
x(z)dS(z)

)
, (39)
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where we substitute ψ = ϕ∗ − γ
2 ∥ · ∥

2. Recall that ψ is convex since ϕ∗ is 1
γ -smooth (Kakade et al.,

2009). In transition from (38) to (39), we use the convexity of ψ and the Jensen’s inequality.

Part 1. To begin with, we prove implication "=⇒" in (11).

If (37) holds true, then (39) is the equality. If it is not, one may pick T ′
x(z)

def
=

∫
Z T

†
x(z

′)dS(z′)
which provides smaller value (39) for (37) than T †

x . Let T ∗ be any stochastic OT map and π∗ be its
respective OT plan. We know that T ∗ ∈ arg infT L(f∗, T ), i.e., the optimal value (39) of (37) equals

1

2
∥x∥2 − ⟨x,

∫
Z
T ∗
x (z)dS(z)⟩+

γ

2

∥∥∥∥∫
Z
T ∗
x (z)dS(z)

∥∥∥∥2 + ψ

(∫
Z
T ∗
x (z)dS(z)

)
= (40)

1

2
∥x∥2 − ⟨x,∇ϕ∗(x)⟩+ γ

2
∥∇ϕ∗(x)∥2 + ψ

(
∇ϕ∗(x)

)
, (41)

where we use the equalities ∇ϕ∗(x) =
∫
Y ydπ

∗(y|x) =
∫
Z T

∗
x (z)dS(z), see M2. The function

m 7→ 1
2∥x∥

2 − ⟨x,m⟩ + γ
2 ∥m∥2 + ψ

(
m
)

is γ-strongly convex in m, therefore, the minimizer
m∗ = ∇ϕ∗(x) is unique. This yields that

∫
Z T

†
x(z)dS(z) = m∗ = ∇ϕ∗(x).

We know that (38) equals (39), i.e.,∫
Z
ψ
(
T †
x(z)

)
dS(z)− ψ

(∫
Z
T †
x(z)dS(z)

)
=

∫
Z
ψ
(
T †
x(z)

)
dS(z)− ψ

(
∇ϕ∗(x)

)
= 0, (42)

and the Jensen’s gap vanishes. Now we are going to prove that Supp(Tx♯S) ⊂ Uψ(∇ϕ∗(x)). We
need to show that for every x′ ∈ ∂y(∇ϕ∗(x)) the following inequality

ψ(y) ≥ ψ(∇ϕ∗(x)) + ⟨x′, y −∇ϕ∗(x)⟩ (43)
is the equality T †

x♯S-almost surely for all y ∈ Supp(T †
x♯S). Assume the opposite, i.e., for some x′,

(43) holds true not T †
x♯S-almost surely. We integrate (43) w.r.t. y∼T †

x♯S and get the strict inequality∫
Y
ψ(y)d

(
T †
x♯S

)
(y) > ψ

(
∇ϕ∗(x)

)
+ ⟨x′,

∫
Y
yd

(
T †
x♯S

)
(y)−∇ϕ∗(x)⟩.

We use the change of variables for y = T †
x(z) and obtain∫

Z
ψ
(
T †
x(z)

)
dS(z) > ψ

(
∇ϕ∗(x)

)
+ ⟨y′,

∫
Z
T †
x(z)dS(z)−∇ϕ∗(x)︸ ︷︷ ︸

=0

⟩ = ψ
(
∇ϕ∗(x)

)
,

which contradicts (42). This finishes the proof of implication "=⇒".

Part 2. Now we prove implication "⇐=" in (11).

For every T † satisfying the conditions on the right-hand side of (11), the Jensen’s gap (42) is zero
since ψ is linear in Uψ

(
∇ϕ∗(x)

)
. Therefore, (38) equals (39). Due to

∫
Z T

†
x(z)dS(z) = ∇ϕ∗(x),

we have that (39) attains the optimal (minimal) values. Consequently, (37) holds.

Finally, we note that convexity of arg infT L(f∗, T ) follows from the convexity of sets Uψ(·).

Proof of Lemma 3. The plan π ∈ Π(P,Q) is optimal if and only if
∫
Y ydπ(y|x) = ∇ϕ∗(x). That is,

a stochastic map T : X × Z → Y is optimal if and only if it pushes P to Q (represents some plan
π ∈ Π(P,Q)), i.e., T♯(P×S) = Q, and

∫
Z Tx(z)dS = ∇ϕ∗(x). The optimal barycentric projection

T ∗ satisfies the second condition by the definition.

Consider implication "
(a)
=⇒". Since T ∗ is a stochastic OT map, the first condition T ∗♯(P×S) = Q

holds true. Recall that by the definition of ϕ∗ and T ∗ we have T ∗♯(P×S) = ∇ϕ∗♯P = ( 1γ ♯P).

Thus, Q = Proj⪯Q(
1
γ ♯P). Consider implication "

(a)⇐=". Since Proj⪯Q(
1
γ ♯P) = Q, the first condition

T ∗♯(P×S) = Q holds true. Therefore, T ∗ is a stochastic OT map.

Now we prove implication "
(b)
=⇒". Let T ∗ be any stochastic OT map. We compute the second moment

of T ∗
x ♯(P× S) = Q below:∫

Y
∥y∥2dQ(y) =

∫
X

∫
Z
∥T ∗

x (z)∥2dS(z)dP(x) = (44)

22



Published as a conference paper at ICLR 2023

∫
X

(
Var(T ∗

x ♯S) +
∥∥∥∥∫

Z
T ∗
x (z)dS(z)

∥∥∥∥2 )dP(x) =∫
X
Var(T ∗

x ♯S)dP(x) +
∫
X
∥∇ϕ∗(x)∥2dP(x) = (45)∫

X
Var(T ∗

x ♯S)dP(x) +
∫
Y
∥y∥2dQ(y), (46)

where in transition to (45), we use the equality
∫
Z T

∗
x (z)dS(z) = ∇ϕ∗(x); in transition to (46), we

use the change of variables formula for y = ∇ϕ∗(x) and ∇ϕ∗(x)♯P = Q. Finally, by comparing (44)
and (46), we obtain that Var(Tx♯S) = 0 holds P-almost surely. That is, T ∗ is deterministic (does not
depend on z) and (P×S)-almost surely matches the optimal barycentric projection T ∗.

Proof of Proposition 2. We are going to show that the second moment of Tα♯(P×S) is less than that
of Q. Consequently, Tα♯(P×S) ̸= Q, and Tα can not be a stochastic OT map. First, for T † we have∫

X

∫
Z
∥T †

x(z)∥2dS(z)dP(x) = Var
(
T †♯(P× S)

)︸ ︷︷ ︸
≤Var(Q)

−
∥∥∥∥∫

X

∫
Z
T †
x(z)dS(z)dP(x)

∥∥∥∥2 ≤

Var(Q)−
∥∥∥∥∫

X
∇ϕ∗(x)dP(x)

∥∥∥∥2 = Var(Q)− ∥mQ∥2 =

∫
X

∫
Z
∥T ∗

x (z)∥2dS(z)dP(x), (47)

where in the last equality we use T ∗♯(P× S) = Q. Finally, we derive∫
X

∫
Z
∥Tαx (z)∥2dS(z)dP(x) =

∫
X

∫
Z
∥αT ∗

x (z) + (1− α)T †
x(z)∥2dS(z)dP(x) <∫

X

∫
Z

[
α∥T ∗

x (z)∥2 + (1− α)∥T †
x(z)∥2

]
dS(z)dP(x) = (48)

α

∫
X

∫
Z
∥T ∗

x (z)∥2dS(z)dP(x) + (1− α)

∫
X

∫
Z
∥T †

x(z)∥2dS(z)dP(x) ≤∫
X

∫
Z
∥T ∗

x (z)∥2dS(z)dP(x) = [second moment of Q]. (49)

In transition to (48), we use the Jensen’s inequality for ∥ · ∥2. The inequality is strict since ∥ · ∥2
is strictly convex and T † ̸= T ∗ (P × S-almost surely). In transition to (49), we use (47). That is,
Tα♯(P× S) ̸= Q as its second moment is smaller.

Remark. The assumption Proj⪯Q(
1
γ ♯P) ̸= Q in Proposition 2 is needed to guarantee the existence

of a function T † ∈ arg infT L(f∗, T ) which differs from the given stochastic OT map T ∗. Due to
our Lemma 3, the optimal barycenteric projection T ∗ ∈ arg infT L(f∗, T ) is not an OT map. Thus,
T † = T ∗ is a suitable example. Since T ∗♯(P×S) ⪯ Q, we also have Var

(
T ∗♯(P× S

))
≤ Var(Q).

Proof of Lemma 4. The lower-semi-continuity of Ck,γ(x, µ) = Cu,γ(x, µ) in (x, µ) follows from
the continuity of k, compactness of X = Y ⊂ RD and (Santambrogio, 2015, Lemma 7.3). 4

The term 1
2

∫
Y ∥u(x)− u(y)∥2Hdµ(y) in (12) is linear in µ and, consequently, convex. The second

term in (12) equals to −γ
2 Var(u♯µ). The pushforward operator u♯ is linear and Var(·) is concave.

Therefore, the second term is convex in µ (γ ≥ 0). As a result, Ck,γ(x, µ) is convex in µ.

To prove that Ck,γ is lower-bounded, we rewrite (12) analogously to (3), i.e.,

Ck,γ(x, µ) =
1

2
∥u(x)−

∫
Y
u(y)dµ(y)∥2H +

1− γ

2
·
[
1

2

∫
Y×Y

∥u(y)− u(y′)∥2Hdµ(y)dµ(y′)
]
=

4We use the lower semi-continuity (in µ) of C(x, µ) w.r.t. the weak convergence of distributions in P(Y). In
contrast, Backhoff-Veraguas et al. (2019) work with µ ∈ Pp(Y) ⊂ P(Y), i.e., with the distributions which have
a finite p-th moment. They prove the existence and duality results for weak OT (2) assuming that C(x, µ) is
lower semi-continuous w.r.t. the convergence in the Wasserstein-p sence in Pp(Y). Since we consider compact
Y , it holds that Pp(Y) = P(Y) and these notions of convergence coincide (Villani, 2008, Def. 6.8).
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1

2
∥u(x)−

∫
Y
u(y)dµ(y)∥2H +

1− γ

2
·Var(u♯µ). (50)

Both terms are non-negative (γ ∈ [0, 1]), i.e., Ck,γ(x, µ) is lower bounded by 0.

Proof of Lemma 5. To begin with, we prove that if k is characteristic, then Ck,γ(x, µ) = Cu,γ(x, µ)
is strictly convex in µ. The term

∫
X ∥u(x)− u(y)∥2Hdµ(y) in (12) is linear in µ, so we focus on the

second (variance) term −γ
2 Var(u♯µ). We prove that Var(u♯µ) is strictly concave. We derive

Var(u♯µ) =
1

2

∫
Y×Y

∥u(y)− u(y′)∥2Hdµ(y)dµ(y′) =

1

2

∫
Y
∥u(y)∥2Hdµ(y)−

∫
Y×Y

⟨u(y), u(y′)⟩Hdµ(y)dµ(y′) +
1

2

∫
Y
∥u(y′)∥2Hdµ(y′) =∫

Y
∥u(y)∥2Hdµ(y)−

〈 ∫
Y
u(y)dµ(y),

∫
Y
u(y′)dµ(y′)

〉
H =∫

Y
∥u(y)∥2Hdµ(y)−

∥∥∫
Y
u(y)dµ(y)

∥∥2
H. (51)

The first term in (51) is linear in µ, so it sufficies to prove that
∥∥ ∫

Yu(y)dµ(y)
∥∥2
H = ∥u(µ)∥2H is

strictly convex. To do this, we pick any µ1 ̸= µ2 ∈ P(X ), α ∈ (0, 1). Since the kernel k is
characteristic, it holds that u(µ1) ̸= u(µ2). The squared norm function ∥ · ∥2H is strictly convex. As a
result, the following strict inequality holds

α∥u(µ1)∥2H + (1− α)∥u(µ2)∥2H > ∥u
(
αµ1 + (1− α)µ2

)
∥2H,

which yields strict convexity of ∥u(µ)∥2H. Consequently, Ck,γ(x, µ) is strictly convex in µ. In this
case, the weak OT functional π 7→

∫
X Ck,γ(x, π(·|x))dP(x) is also strictly convex and yields the

unique minimizer π∗ ∈ Π(P,Q) which is the OT plan (Backhoff-Veraguas et al., 2019, M1.3.1).

Proof of Theorem 2. To begin with, we expand the functional L:

T ∗ ∈ arg inf
T

L(f∗, T ) ⇐⇒ T ∗ ∈ arg inf
T

∫
X

(
C
(
x, Tx♯S

)
−

∫
Z
f∗

(
Tx(z)

)
dS(z)

)
dP(x). (52)

Define µ∗
x
def
= T ∗

x ♯S. We are going to prove that µ∗
x ≡ π∗(y|x), where π∗ ∈ Π(P,Q) is the (unique)

optimal plan; this yields that T ∗ is a stochastic OT map. Since the optimization over functions in
NOT equals to the optimization over distributions that they generate (Korotin et al., 2023, M4.1), we
have

{µ∗
x} ∈ arg inf

{µx}

∫
X

(
C
(
x, µx

)
−
∫
Y
f∗(y)dµx(y)

)
dP(x), (53)

where the inf is taken over collections of distributions µx ∈ P(Y) indexed by X . Importantly, (53)
can be split into x ∈ X independent problems, i.e., we have that

µ∗
x ∈ arg inf

µ

[
C
(
x, µx

)
−
∫
Y
f∗(y)dµx(y)

]
(54)

holds true P-almost surely for all x ∈ X . Note that the functional µ 7→ C(x, µ) −
∫
Y f

∗(y)dµ(y)

consists of a strictly convex term C(x, µ), which follows from the proof of Lemma 5, and a linear
term (integral over µ). Therefore, the functional itself is strictly convex. Since π∗(y|x) minimizes
this functional, it is the unique solution due to the strict convexity. Therefore, µ∗(x) = π∗(y|x) holds
true P-almost surely for x ∈ X and T ∗

x ♯S = µ∗
x = π∗(y|x), i.e., T ∗ is a stochastic OT map.

Proof of Proposition 3. Since π∗
γ1 is optimal for the γ1-weak cost, for all π ∈ Π(P,Q) it holds

Costk,γ1(π
∗
γ1) ≤ Costk,γ1(π). In particular, for π = π∗

γ2 it holds true that

Dist2u(π
∗
γ1)− γ1 CVaru(π

∗
γ1) ≤ Dist2u(π

∗
γ2)− γ1 CVaru(π

∗
γ2). (55)
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Analogously, π∗
γ2 is optimal for the γ2-weak cost; the following holds:

Dist2u(π
∗
γ2)−γ2 CVaru(π

∗
γ2)≤Dist2u(π

∗
γ1)−γ2 CVaru(π

∗
γ1). (56)

We sum (55) and (56) and obtain
−γ1 CVaru(π∗

γ1)− γ2 CVaru(π
∗
γ2) ≤ −γ1 CVaru(π∗

γ2)− γ2 CVaru(π
∗
γ1),

or, equivalently,
(γ2 − γ1) CVaru(π

∗
γ1) ≤ (γ2 − γ1) CVaru(π

∗
γ2),

which is equivalent to CVaru(π
∗
γ1) ≤ CVaru(π

∗
γ2) since γ2 − γ1 > 0. Now we multiply (55) and

(56) by γ2 and γ1, respectively, and sum the resulting inequalities. We obtain
γ2 Dist2u(π

∗
γ1) + γ1 Dist2u(π

∗
γ2) ≤ γ2 Dist2u(π

∗
γ2) + γ1 Dist2u(π

∗
γ1),

or, equivalently,
(γ2 − γ1)Dist2u(π

∗
γ1) ≤ (γ2 − γ1)Dist2u(π

∗
γ2),

which provides Distu(π
∗
γ1) ≤ Distu(π

∗
γ2). Finally, we note that

Costk,γ2(π
∗
γ2) = inf

π∈Π(P,Q)
Costk,γ2(π) ≤ Costk,γ2(π

∗
γ1) =

Costk,γ1(π
∗
γ1)− (γ2 − γ1)︸ ︷︷ ︸

≥0

CVaru(π
∗
γ1)︸ ︷︷ ︸

≥0

≥ Costk,γ1(π
∗
γ1), (57)

which concludes the proof.

H WEAK QUADRATIC VS. KERNEL COSTS ON REAL DATA

The goal of this section is to demonstrate that our proposed kernel cost (12) consistently outperforms
the weak quadratic cost (3) in the downstream task of unpaired image translation. We consider
the distance-induced kernel k(x, y) = 1

2∥x∥+
1
2∥y∥ −

1
2∥x− y∥. In short, we run NOT (Korotin

et al., 2023, Algorithm 1) multiple times (with various random seeds) with the same hyperparameters
(Appendix I) for weak and kernel costs, and then we compare the obtained FID (µ± σ).
Datasets. We consider shoes → handbags and celeba (female) → anime translation. We work only
with small 32× 32 images to speed up the training and be able to run many experiments.
EXPERIMENT 1. We consider the γ-weak quadratic cost for each γ ∈ { 1

2 , 1,
3
2 , 2} we run NOT with

5 different random seeds and train it for 60k iterations of fω. In this experiment, during training,
we evaluate test FID every 1k iteration and for each experiment we report 3 FID values: the best
FID value of iterations 25-60k5 indicating what the model can achieve best, the max FID value of
iterations 25-60k indicating what the model achieves worst (because of potential training instabilities)
and the last FID value at the end of training (60k) showing what the model actually achieved.
The experimental results of Tables 3, 4 provide several important insights. First, we see that with
the increase of parameter γ, the best FID stably increases. Second, the overall training becomes
less stable: max FID becomes extremely large, which indicates severe fluctuations of the model. In
particular, both the mean and standard deviation of last FID (as well as max FID) drastically increase.
Why does this happen? We think that with the increase of γ sets Uψ(·) (11) become large. These
sets determine how much a fake solution may vary (Theorem 1). Thus, this naturally leads to high
ambiguity of the solutions and results in unstable and unpredictable behaviour.
EXPERIMENT 2. We pick the highest considered value γ = 2 and show that our γ-weak kernel cost
performs better than the weak quadratic cost from the previous experiments.
We run NOT with the kernel cost 5 times and report the results in the same Tables 3, 4. The results
show that even for high γ the issues with the fluctuation are notably softened. This is seen from the
fact that for γ = 2 the gap between the last FID (or max FID) and best much smaller for the kernel
cost than for the quadratic cost. In particular, this gap is comparable to the gap for γ = 1

2 -weak
quadratic cost for which sets Uψ(·) are presumably small and provide less ambiguity to the solutions.
Conclusion. Our empirical evaluation shows that NOT with our proposed kernel costs yields more
stable behaviour than NOT with the weak quadratic cost. This agrees with our theory which suggests
that one of the reasons for unstable behaviour and severe fluctuations might be the existence of the
fake solutions (M3.1). Our weak kernel cost removes all the fake solutions (M3.2).

5We choose 25k iterations as the starting point because at this time point FID roughly stabilizes at a small
level. This indicates the model has nearly converged and starts fluctuating around the optimum.
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Method Weak quadratic, C2,γ
Weak kernel
Ck,γ [Ours]

Setting γ = 0.5 γ = 1 γ = 1.5 γ = 2 γ = 2

Best FID 16.08± 0.37 19.87± 0.69 23.01± 5.16 25.36± 1.26 16.50± 0.88

Last FID 21.98± 3.04 33.56± 10.49 30.35± 8.85 37.18± 8.58 20.19± 2.36

Max FID 28.40± 3.18 52.03± 16.00 46.59± 9.53 67.50± 30.76 29.85± 3.75

Table 3: Test FID↓ (µ± σ) on shoes → handbags, 32× 32 of C2,γ and Ck,γ for different γ.
Red color highlights µ ≥ 30, orange color highlights σ ≥ 5.

Method Weak quadratic, C2,γ
Weak kernel
Ck,γ [Ours]

Setting γ = 0.5 γ = 1 γ = 1.5 γ = 2 γ = 2

Best FID 18.88± 0.57 34.71± 6.48 24.49± 0.64 40.49± 5.57 19.39± 1.06

Last FID 20.26± 1.98 36.89± 8.19 28.49± 1.66 49.66± 5.45 20.62± 1.66

Max FID 29.51± 1.45 81.78± 25.93 48.44± 5.14 76.25± 4.26 36.86± 0.45

Table 4: Test FID↓ (µ± σ) on celeba (female) → anime, 32× 32 of C2,γ and Ck,γ for different γ.
Red color highlights µ ≥ 40, orange color highlights σ ≥ 4.

I ADDITIONAL TRAINING DETAILS

Pre-processing. In all the cases, we rescale RGB channels of images from [0, 1] to [−1, 1]. As in
(Korotin et al., 2023), we beforehand rescale anime face images to 512 × 512, and do 256 × 256
crop with the center located 14 pixels above the image center to get the face. Next, for all the datasets
except for the describable textures, we resize images to the required size (64 × 64 or 128 × 128).
Specifically for the describable textures dataset (≈5K textures), we augment the samples. We rescale
input textures to minimal border size of 300, do the random resized crop (from 128 to 300 pixels) and
random horizontal & vertical flips. Then we resize images to the required size (64×64 or 128×128).

Neural networks. We use WGAN-QC discriminator’s ResNet architecture (Liu et al., 2019) for
potential f . We use UNet6 (Ronneberger et al., 2015) as the stochastic transport map T (x, z) = Tx(z).
To condition it on z, we insert conditional instance normalization (CondIN) layers after each UNet’s
upscaling block7. We use CondIN from AugCycleGAN8 (Almahairi et al., 2018). In experiments, z
is the 128-dimensional standard Gaussian noise.

Optimization. To learn stochastic OT maps, we use NOT algorithm (Korotin et al., 2023, Algorithm
1). We use the Adam optimizer (Kingma & Ba, 2014) with the default betas for both Tθ and fω.
The learning rate is lr = 1 · 10−4. We use the MultiStepLR scheduler which decreases lr by 2 after
[15k, 25k, 40k, 55k, 70k] (iterations of fω). The batch size is |X| = 64, |Zx| = 4. The number
of inner iterations is kT = 10. In toy experiments, we do 10K total iterations of fω update. In the
image-to-image translation experiments, we observe convergence in ≈ 70k iterations for 128× 128
datasets, in ≈ 40k iterations for 64× 64 datasets. In image-to-image translation, we gradually change
γ. Starting from γ = 0, we linearly increase it to the desired value (mostly 1

3 ) during 25K first
iterations of fω .

Computational complexity. NOT with kernel costs for 128× 128 images converges in 3-4 days on
a 4× Tesla V100 GPUs (16 GB). This is slightly bigger than the respective time for NOT (Korotin
et al., 2023, M6) with the quadratic cost due to the reasons discussed in M3.3.

6github.com/milesial/Pytorch-UNet
7github.com/kgkgzrtk/cUNet-Pytorch
8github.com/ErfanMN/Augmented_CycleGAN_Pytorch
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J COMPARISON WITH NOT WITH THE QUADRATIC COST

(a) Outdoor → church, 128× 128. (b) Celeba (f) → anime, 128× 128. (c) Handbags → shoes, 128× 128.

Figure 15: Unpaired translation with Neural Optimal Transport with various costs (C2,0, C2,γ , Ck,γ).

(a) C2,0

(Korotin et al., 2023, M5.2).
(b) C2,γ

(Korotin et al., 2023, M5.3).
(c) Ck,γ [Ours].

Figure 16: Celeba (f) → anime (128× 128) translation with NOT with costs C2,0, C2,γ , Ck,γ .

(a) C2,0 (Korotin et al., 2023, M5.2). (b) C2,γ (Korotin et al., 2023, M5.3). (c) Ck,γ [Ours].

Figure 17: Outdoor → church (128× 128) translation with NOT with costs C2,0, C2,γ , Ck,γ .
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(a) C2,0 (Korotin et al., 2023, M5.2). (b) C2,γ (Korotin et al., 2023, M5.3). (c) Ck,γ [Ours].

Figure 18: Handbags → shoes (128× 128) translation with NOT with costs C2,0, C2,γ , Ck,γ .

K COMPARISON WITH IMAGE-TO-IMAGE TRANSLATION METHODS

We compare NOT with our kernel costs with principal models (one-to-one and one-to-many) for
unpaired image-to-image translation. We consider CycleGAN 9(Zhu et al., 2017), AugCycleGAN10

(Almahairi et al., 2018) and MUNIT11 (Huang et al., 2018) for comparison. We use the official
or community implementations with the hyperparameters from the respective papers. We consider
outdoor → church and texture → shoes dataset pairs (128× 128). The FID scores are given in Table
5. Qualitative examples are shown in Figures 20, 19.

Method One-to-one One-to-many

Datasets
(128× 128)

Cycle GAN
(with L1 loss)

Cycle GAN
(no L1 loss) AugCycleGAN MUNIT NOT with Ck,γ

(Ours)

Outdoor → church 43.74 36.16 51.15 ± 0.19 32.14 ± 0.18 15.16 ± 0.03

Texture → shoes 34.65 ± 0.12 50.95 ± 0.12 N/A 43.74 ± 0.16 24.84 ± 0.09

Table 5: Test FID↓ of the considered image-to-image translation methods.

We do not include the results of AugCycleGAN on texture→shoes as it did not converge on these
datasets (FID≫100). We tried tuning its hyperparameters, but this did not yield improvement.

9github.com/eriklindernoren/PyTorch-GAN/tree/master/implementations/
cyclegan

10github.com/aalmah/augmented_cyclegan
11github.com/NVlabs/MUNIT
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(a) CycleGAN (b) CycleGAN (no identity loss)

(c) MUNIT (d) NOT with Ck,γ [Ours]

Figure 19: Texture → shoes (128× 128) translation with various methods.
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(a) CycleGAN (no identity loss) (b) CycleGAN

(c) MUNIT (d) AugCycleGAN

(e) NOT with Ck,γ [Ours]

Figure 20: Outdoor → church (128× 128) translation with various methods.
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L ADDITIONAL EXPERIMENTAL RESULTS

(a) Input images x and random translated examples Tx(z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 21: Celeba (female) → anime translation, 128× 128. Additional examples.
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(a) Input images x and random translated examples Tx(z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 22: Outdoor → church, 128× 128. Additional examples.
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(a) Input images x and random translated examples Tx(z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 23: Texture → shoes translation, 128× 128. Additional examples.
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(a) Input images x and random translated examples Tx(z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 24: Texture → handbags translation, 128× 128. Additional examples.
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(a) Input images x and random translated examples Tx(z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 25: Shoes → handbags translation, 128× 128. Additional examples.

35



Published as a conference paper at ICLR 2023

(a) Input images x and random translated examples Tx(z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 26: Handbags → shoes translation, 128× 128. Additional examples.
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