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Abstract
Large Language Models (LLMs) excel in natu-
ral language understanding by capturing hidden
semantics in vector space. This process enriches
the value of text embeddings for various down-
stream tasks, thereby fostering the Embedding-
as-a-Service (EaaS) business model. However,
the risk of privacy leakage due to direct text
transmission to servers remains a critical concern.
To address this, we introduce Split-N-Denoise
(SnD), an private inference framework that splits
the model to execute the token embedding layer
on the client side at minimal computational cost.
This allows the client to introduce noise prior to
transmitting the embeddings to the server, and
subsequently receive and denoise the perturbed
output embeddings for downstream tasks. Our
approach is designed for the inference stage of
LLMs and requires no modifications to the model
parameters. Extensive experiments demonstrate
SnD’s effectiveness in optimizing the privacy-
utility tradeoff across various LLM architectures
and diverse downstream tasks. The results re-
veal an improvement in performance under the
same privacy budget compared to the baselines by
over 10% on average, offering clients a privacy-
preserving solution for local privacy protection.

1. Introduction
Large Language Models (LLMs) have shown powerful capa-
bility in natural language understanding by capturing hidden
semantics in vector space. Consequently, users can leverage
LLMs to obtain embeddings and subsequently apply them
to their own downstream tasks, known as ”embedding as a
service” (EaaS). However, EaaS is typically provided as an
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online service, giving rise to significant privacy concerns.
In particular, users may input sensitive information, such as
names, phones, and email addresses, that needs to be kept
hidden from the service provider. With the growing concern
around the potential leakage of confidential data, certain
companies, such as Samsung, have temporally prohibited
the usage of online LLM services.

Recent research on privacy-preserving model inference in-
vestigates around two directions, cryptographic (Liu & Liu,
2023; Chen et al., 2022) and perturbation (Du et al., 2023).
Cryptography typically employs homomorphic encryption
(HE) to compute the inference result of the users’ encrypted
input. Unfortunately, the application of cryptographic tech-
nique is constrained by the significant computation overhead
of cryptographic operations, especially on large transformer
models. Perturbation provides differential privacy (DP)
guarantee by adding calibrated noise to the original data. A
key challenge of this approach is how to balance the utility
and privacy tradeoff in a local differential privacy (LDP)
setting, where users’ inputs are privatized before being re-
leased to the server. Furthermore, privatization on text data
is particularly difficult when the randomized algorithm is
required to map text input to text output.

Split learning (Gupta & Raskar, 2018; Vepakomma et al.,
2018) has emerged as a solution to privacy-preserving com-
putation between two parties. During inference, the user
performs affordable computation locally to obtain intermedi-
ate results (IRs), and forwards them to the service provider
for subsequent operations. To mitigate privacy leakage,
recent research has integrate DP with split learning by in-
jecting noises into the IRs before sharing with the server
(Yang et al., 2022). In the split inference setting, a crucial
problem is to design an algorithm that minimizes the impact
on model performance while ensuring LDP.

A notable approach involves the application of denoising
techniques to conduct error correction and enhance model
utility. Existing studies incorporate denoising layers on the
server side, leveraging the post-processing properties of
DP (Nasr et al., 2020; Wang et al., 2019; Xu et al., 2022).
However, the effectiveness of denoising is hindered by the
fact that the server is ignorant of the injected noise levels.
Driven by the limitation, a question arises: can we improve

1



Split-and-Denoise: Protect Large Language Model Inference with Local Differential Privacy

the utility by conducting denoising on the user side, lever-
aging the knowledge of noise levels and raw IRs? This is a
nontrivial task to uncover the closed-form mapping between
denoised embedding and noises as well as raw IRs since the
inputs have undergone a series of complex transformations.

In this paper, we answer this question affirmatively by
proposing Split-N-Denoise (SnD), a framework that inte-
grates split inference and denoising techniques to enhance
utility under LDP bound. To minimize computational over-
head of users, we deploy only the token representation
layer on the client sides. A denoise model that enhances
noisy embeddings using raw inputs and noise levels is pre-
trained on the server side and subsequently shared with the
user. Once receiving the output from server, users input
their private data into the denoise model to improve the
utility of embeddings. The implementation is available at
https://github.com/NusIoraPrivacy/eaas-privacy.

Our main contributions involve the following:

• We propose SnD, a framework that integrates split
inference and denoising techniques to protect user’s
privacy during LLM inference with strong privacy guar-
antee. Empirical studies demonstrate that our method
outperforms existing DP-based baselines by more than
10% on average and maintains utility even in extremely
low privacy budget settings (η ≤ 0.01).

• We design a innovative denoising method deployed
on user side. In this approach, a denoise model is pre-
trained on server side using public dataset and synthetic
noises. Subsequently, this trained model is deployed
on the user side, where it leverages the specific noise
levels and raw IRs provided by the user to enhance the
embeddings.

2. Prior Works
Local Privacy Protection for LLMs With the advent of
LLMs, privacy leakage has emerged as a crucial concern.
Existing literature predominantly focuses on privacy protec-
tion throughout the entire training process, encompassing
pre-training (Hoory et al., 2021), fine-tuning (Huang et al.,
2020; Kerrigan et al., 2020; Yu et al., 2021; Lukas et al.,
2023; Shen et al., 2023; Ye et al., 2024), and prompt-tuning
phases (Duan et al., 2023; Li et al., 2023). Yet, there is a no-
table dearth of research that addresses local privacy during
the inference phase with a fully frozen LLM. This scenario,
which prohibits alterations to the model’s structure and pa-
rameters, is particularly complex. Nonetheless, it holds
significance in black-box API access contexts, especially
for proprietary models like GPT-4. An intuitive approach in-
volves anonymizing sensitive terms prior to LLM input and
subsequently restoring them post-output (Kan et al., 2023;

Chen et al., 2023). However, this method, while effective
for obfuscating specific entities, falls short in concealing
other linguistic elements, including verbs and non-named
entities. Such a limitation compromises full privacy and is
unsuitable for tasks necessitating exact semantic interpreta-
tion of the altered entities, such as knowledge retrieval and
text continuation (Chen et al., 2023). An alternative strategy
might entail privatizing the input at token representations or
intermediate layer levels. Qu et al. (2021b) investigates the
utility and privacy tradeoff for privacy-preserving finetuing,
involving text-to-text privatization (Feyisetan et al., 2019;
Qu et al., 2021a) and token embedding privatizations, while
the two techniques could be adapted to private LLM infer-
ence. Privacy-Preserving Prompt Tuning (RAPT) (Li et al.,
2023) employs text-text privatization to conduct prompt tun-
ing and inference with local differential privacy. The authors
propose a reconstruction head during prompt tuning to en-
hance the utility. Another direction employs homomorphic
encyption (HE) to conduct private transformer inference
such as Privacy-Computing Friendly Transformers (PCFT)
and The-x (Liu & Liu, 2023; Chen et al., 2022), but the sig-
nificant overhead renders it impractical for implementation
in LLM.

Privacy-Preserving Split Learning Split learning is a
privacy-preserving approach in distributed learning, where
each client trains a segment of a deep network up to a des-
ignated ”cut layer.” The outputs at this layer are then for-
warded to the server side, which completes the training
without accessing the client’s raw data. This approach facil-
itates forward and backward propagation without sharing
raw data, ensuring the client-side local privacy (Gupta &
Raskar, 2018; Vepakomma et al., 2018). Vepakomma et
al shows that split learning surpasses federated learning
and large batch synchronous SGD in achieving superior
accuracy with significantly reduced client-side computa-
tional demands (Gupta & Raskar, 2018). Singh et al further
validate its efficacy across broader experimental contexts,
demonstrating that an increase in the number of clients or
model dimensions gives split learning an edge over fed-
erated learning (Singh et al., 2019). The advantage in its
computational efficiency renders it suitable for LLM local
privacy setting, where the client side executes minimal com-
putational tasks, such as noising and denoising operations
at specific segmented layers, to ensure privacy at reduced
computational expenses. Meanwhile, the server handles
the bulk of the model’s layers. Our research serves as an
initial endeavor to integrate split learning with LLM privacy
concerns.

Denoising for Differential Privacy (DP) While ele-
vated noise levels offer robust privacy protections, privacy-
preserving methods inevitably compromise the model’s qual-
ity (Wang et al., 2019). A notable approach involves the
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application of denoising techniques specifically tailored for
Differential Privacy (DP), incorporating a post-processing
layer to enhance DP utility. Pioneering research in statisti-
cal estimation underscores the efficacy of post-processing
denoising in achieving accurate private network degree dis-
tribution estimates (Hay et al., 2009), and in reducing lin-
ear regression estimation errors when the ground truth is
sparse (Nikolov et al., 2013). Balle et al. demonstrated
that denoising significantly enhances the Gaussian mech-
anism’s accuracy in high-dimensional settings for DP al-
gorithms with output perturbations (Balle & Wang, 2018).
More recently, denoising mechanisms have been extended
to the training of Machine Learning (ML) models, particu-
larly Deep Neural Networks (DNNs), by applying denoising
techniques to Gaussian noise-injected gradients, thereby im-
proving the utility of privately trained ML models (Wang
et al., 2019). Nasr, Shokri, and Houmansadr further ex-
plored the use of scaling as a denoising strategy to optimize
DP utility in Differential Privacy Stochastic Gradient De-
scent (DP-SGD), scaling the noisy gradients based on their
usefulness (Nasr et al., 2020). Subsequently, Xu et al. em-
ployed scaling and masking as post-processing denoising
techniques on top of Gaussian noise-injected intermediate
results in split learning, aiming to reduce the noisy neural
network output’s estimation error without compromising
privacy (Xu et al., 2022).

3. Methodology
3.1. Preliminaries

3.1.1. LDP

Differential privacy (DP) (Dwork, 2006; Dwork et al., 2014)
is considered the gold standard for data privacy. Its defini-
tion is as follows:

Definition 3.1 ((ϵ, δ)-Differential Privacy). A randomized
mechanism M with domain D and range R preserves (ϵ, δ)-
differential privacy if and only if for any two neighboring
datasets D,D′ ∈ D and for any subset S ⊆ R, the follow-
ing inequality holds:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ

where ϵ is the privacy budget and δ is the failure probability.

Local differential privacy (LDP) is a particular case of DP,
where the server is not trusted and data privatization is
conducted by the client. For any inputs x, x′ ∈ D, LDP
requires a randomized mechanism M to satisfy:

Pr[M(x) ∈ S] ≤ eϵ Pr[M(x′) ∈ S] + δ (1)

for any measurable subset subset S ⊆ Range(M).

3.1.2. dχ-PRIVACY

In the context of local privacy preservation, we employ
dχ-privacy (Chatzikokolakis et al., 2013), a specialized
variant of local differential privacy tailored for textual data
(Feyisetan et al., 2019; Qu et al., 2021a). dχ-privacy allows
to impose high probability of observing the same output for
inputs with similar semantics. We state the formal definition
in the following:

Definition 3.2 (dχ-privacy). For an input domain X and
an output domain Y , dχ serves as a metric space over X .
A stochastic mechanism M : X → Y is said to adhere
to ηdχ-privacy if, for any two elements x, x′ ∈ X , the
output distributions M(x) and M(x′) satisfy the following
inequality:

P (M(x) = y)

P (M(x′) = y)
≤ eηdχ(x,x

′), ∀y ∈ Y,

where η ≥ 0 is a tunable privacy parameter that modulates
the level of privacy protection.

The privacy guarantee indicates that the log-likelihood ratio
of producing the same outcome y is bounded by ηdχ(x, x′)
for any two possible inputs x, x′.

3.2. Architecture

Denote G : Vn → Rd as the language model that maps n-
token to embedding. In Split-N-Denoise (SnD), we split the
language model G into a local encoder Gl : Vn → Rn×d

at user side and a cloud encoder Gc : Rn×d → Rd at
server side. The local encoder consists of only the token
representation layer to minimize the computation cost for
user, and the server performs subsequent operations on the
IRs uploaded by the clients. The architecture of SnD is
depicted in Figure 1, containing four main components:

• Local encoder module: the user retrieves the token
embeddings of their input locally.

• Privatization module: the token representations are
privatized by the user before being transmitted to the
server to satisfy LDP.

• Cloud encoder module: the server performs transforma-
tion on the privatized token representations and returns
the embedding to user.

• Denoise module: user conducts local denoising on the
received embedding leveraging their raw inputs and
specific noise levels.

3.3. Noise Mechanism

We adopt dχ-privacy to privatize the token representa-
tion layers on user side. Given an input sequence x =
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Denoise Module
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Figure 1: Overview of our privacy-preserving SnD framework. Users first obtain an initial embedding from a local encoder,
followed by a noise addition via the privatization module. This privatized embedding is then transmitted to the server for
processing. Upon completion, users receive a noised output, which is subsequently refined using a pre-trained denoising
model to achieve an optimal balance between privacy and utility.

[x1, . . . , xn], the token representation layer transforms x
into a vector sequence X = [x1, . . . ,xn] ∈ Rn×d via
embedding model E ∈ R|V|×d, where |V| denotes the vo-
cabulary size and d represents the dimensionality of the
embeddings.

Assuming L2 norm as the distance metric, the application of
dX privacy, parameterized by η, to a given word embedding
xt ∈ Rd is realized by the addition of Laplacian noise z ∼
c exp(−η||z||), where c is a real-valued constant (Wu et al.,
2017). To sample z from the Laplacian distribution, consider
z = lv, where l is sampled from a Gamma distribution
Γ(d, 1/η) and v is uniformly sampled from the unit ball Bd.
Consequently, the privatized representation M(xt) can be
succinctly expressed as:

M(xt) = xt + z. (2)

The supports for z and thus M(xt) are unbounded, impos-
ing difficulties on subsequent denoise procedures, especially
under low level of η. To improve the performance of denoise
model introduced in Section 3.4, the client clips the l2 norm
of the privatized representation within Cxt

:

M ′(xt) =M(xt) ·min (1, Cxt
/∥M(xt)∥) (3)

, where Cxt
= maxxt∈Xt

∥xt∥ is chosen to be the upper
bound of xt. The user then updates its noise matrix locally
according to the clipped representations for subsequent de-
noise. Appendix A.12 demonstrates the benefits of norm
clipping empirically.

The following theorem states that the noise mechanism M ′ :
Rd → Rd adheres to ηdχ−privacy. Refer to Appendix A.1

for the proof.

Theorem 3.3. For any d ≥ 1 and any η > 0, the mechanism
M ′ : Rd → Rd achieves ηdχ−privacy with respect to
dχ(x,x

′) = ∥x− x′∥.

3.4. Denoise Model

Limitation of server-side denoise: the denoising ability
of a server is limited by its lack of knowledge regarding
the noise levels. The server’s capacity to remove noise is
inherently conflicted with the level of privacy protection.
Intuitively, if the server could produce an appropriate de-
noised output on its own, there is a higher probability that it
can also reconstruct the original user input. Proposition 3.4
below gives the lower bound of mean square error (MSE)
for server-side denoise algorithms. The proof can be found
in Appendix A.2.1.

Proposition 3.4. Let y ∈ Y ⊆ Rk be the original vec-
tor without noises added, and let ŷ ∈ Rk be the noisy
vector obtained under ηdχ-privacy mechanism. Denote
Ds : Rk → Rk as the denoising algorithm run by the
server. Suppose Ds is unbiased and the token embeddings
are bounded by Bx:

∥x′ − x∥ ≤ Bx,∀x′, x (4)

, then:

E[∥Ds(ŷ)− y∥/k] ≥
∑d

i=1 diami(Y)2/4k

eηBx − 1
(5)

where diami(Y) = supy,y′∈Y:yj=y′
j∀j̸=i |yi − y′

i| is the
diameter of Y in the i-th dimension.
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Remark 3.5. The vector y can be: (i) the token representa-
tions uploaded from users, (ii) output embeddings, or (iii)
any intermediate results returned by the language model
based on the token embeddings. The instantiation of y is
determined by the layer at which the server runs denoising
algorithm.

To address the limitation, we propose a denoise framework
where users conduct error correction on the noisy embed-
dings using their specific noises and raw inputs. Given
the black-box nature of neural network transformation on
the privatized token representations, we propose to train a
transformer-based model for embedding denoise.

Let X̃ = [x̃1, . . . , x̃n], Z = [z1, . . . ,zn] ∈ Rn×d denote,
respectively, the privatized token representations and noise
matrix. Noted that the noise vector is updated with the
clipped privatized token embeddings z =M ′(xt)−xt. Af-
ter a series of operations, the server returns a noisy embed-
ding en capturing the context of input token to the user. The
denoise model is parameterized by a L-layer transformer
decoder, D : R(2n+1)×d → Rd:

ed = D(en, X̃, Z) (6)

The input to the denoise model H0 is a concatenation of
vectors:

H0 = [en; x̃1, . . . , x̃n; z1, . . . ,zn] (7)

Let hl
t represents the hidden state for the tth vector at layer

l. This state is computed using the following recursive
relation:

hl
t = hl−1

t + al−1
t +ml−1

t (8)

where

al−1
t = attnl(hl−1

1 ,hl−1
2 , ...,hl−1

2n+1),

ml−1
t =W l

projσ(W
l
fcγ(a

l
t + hl−1

t ))
(9)

The denoised embedding is obtained directly from the hid-
den state representation for en at the final layer:

ed = hL
0 (10)

We visualize the architecture of the denoise model in Figure
3. Intuitively, the noisy embedding undergoes L steps to
transform into the denoised embedding. In each step, the
transformation is conditioned on the feature representations
of raw IRs as well as specific noises.

To train a denoise model, the server samples a set of noises
added to the token representations of public corpus. Sub-
sequently, the clean embedding ec and noisy embedding
en are computed from, respectively, the raw and privatized
token representations:

ec = G(X), en = G(X̃) (11)

The denoise model is trained on the above datasets with the
objective to minimize the deviation between denoised and
clean embeddings:

min
D

E[∥D(en, X̃, Z)− ec∥2] (12)

The pretrained model is shared with users to conduct denois-
ing on the received embeddings locally. It is important to
note that the denoise model does not expose any information
regarding user data. This is primarily due to the fact that
the model’s training is carried out exclusively on a public
dataset, rendering it irrelevant to users’ private inputs.

3.5. Complexity Analysis

In this section, we analyze the communication complexity
and user computation complexity of our framework.

Communication complexity: the communication cost can be
broken as: (1) user uploads the token representations to the
server (O(nd) messages); (2) server share the embeddings
with user (O(d) messages). Hence, the total communication
overhead is O(nd).

User computation complexity: user’s computation cost can
be broken as: (1) retrieving token embeddings from in-
put text (O(n) complexity); (2) performing local denoising
with the transformer-based model (O(n2dL) complexity
(Vaswani et al., 2017)). Therefore, the user’s computation
cost adds up to O(n2dL).

4. Experiment
4.1. Experiment Settup

We evaluate our framework on three classes of LLMs: Bert
(Devlin et al., 2018), GPT2 (Radford et al., 2019), and T5
(Raffel et al., 2020). The architectures of our denoise and
downstream models are described in appendix A.5. We
benchmark our experiments against three baseline methods:
(i) Token embedding privatization (TokEmbPriv) (Qu et al.,
2021b), where the token embeddings are perturbed by the
user before sending them to the server. (ii) Text-to-text
privatization (Text2Text) (Feyisetan et al., 2019; Qu et al.,
2021b), where the plain token sequence is transformed into
a privatized token sequence by replacing each word with
the perturbed token embeddings. (iii) Privacy-Preserving
Prompt Tuning (RAPT) (Li et al., 2023) that protects prompt
tuning and inference with local DP.

Table 4 summarizes the existing privacy-preserving LLM
inference approaches along four dimensions: (i) involve-
ment of finetuning, including parameter efficient finetunings,
on task specific data, (ii) adoption of server-side denoise
technique on privatized values, (iii) adoption of user-side
denoise technique on privatized values, (iv) privacy guar-
antee in terms of the security in multiparty computation
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Table 1: Accuracies on downstream tasks for BERT.

DistillBert (66m) Bert Base (110m) Bert Large (340m)

η 100 500 ∞ 100 500 ∞ 100 500 ∞
CoLA 0.693 0.694 0.701 0.688 0.694 0.751 0.697 0.699 0.757
QQP 0.632 0.649 0.683 0.667 0.688 0.728 0.676 0.684 0.706
MRPC 0.683 0.691 0.695 0.689 0.725 0.742 0.684 0.689 0.701
RTE 0.578 0.580 0.592 0.592 0.610 0.616 0.590 0.601 0.621

Table 2: Accuracies on downstream tasks for T5.

T5 Small (60m) T5 Base (220m) T5 Large (770m)
η 0.001 0.01 1 ∞ 0.001 0.01 1 ∞ 0.001 0.01 1 ∞
CoLA 0.69 0.69 0.69 0.71 0.69 0.70 0.70 0.73 0.70 0.70 0.70 0.75
QQP 0.68 0.69 0.68 0.71 0.66 0.67 0.69 0.72 0.66 0.67 0.70 0.71
MRPC 0.68 0.69 0.69 0.70 0.69 0.69 0.70 0.71 0.68 0.69 0.69 0.71
RTE 0.55 0.56 0.58 0.60 0.57 0.58 0.62 0.63 0.57 0.59 0.61 0.62

Table 3: Accuracies on downstream tasks for GPT2.

GPT2 Small GPT2 Medium GPT2 large GPT2 Xlarge
(120m) (345m) (774m) (1.5b)

η 1 100 ∞ 1 100 ∞ 1 100 ∞ 100 ∞
CoLA 0.688 0.700 0.709 0.690 0.698 0.728 0.700 0.701 0.724 0.693 0.766
QQP 0.645 0.657 0.716 0.647 0.652 0.711 0.637 0.650 0.721 0.650 0.741
MRPC 0.688 0.691 0.720 0.688 0.693 0.710 0.674 0.691 0.701 0.686 0.705
RTE 0.556 0.563 0.581 0.567 0.578 0.583 0.581 0.606 0.611 0.584 0.592

(SMPC), or local differential privacy (LDP). Noted that
RAPT employs a reconstruction head to improve the ro-
bustness of prompt tuning process, where the module recon-
structs the random tokens to help the LLM better understand
the privatized token at training stage. However, the precise
mechanism by which the LLM learns to decode the priva-
tized tokens remains unclear, especially considering that
the reconstruction module works solely on random tokens.
Furthermore, the reconstruction head is discarded during
LLM inference stage, rendering no denoise mechanism for
LLM inference.

To assess the performance of our approach, we employ two
distinct evaluation metrics: (1) similarity with ec: we com-
pute the mean square error (MSE) and cosine similarity
(COS) between ec and ed, the clean and privatized embed-
dings, to quantify the extent of data variations induced by
the perturbation process; (2) performance on downstream
tasks: we utilize accuracy scores (ACC) and area under the
roc curve (AUC) to gauge the utility of the embeddings on
downstream tasks.

Table 4: Comparison of different privacy-preserving LLM
inference approaches.

Finetuning
Server
denoise

User
denoise

Privacy
guarantee

PCFT × × × SMPC
TokEmbPriv × × × LDP
Text2Text × × × LDP
RAPT

√ √
× LDP

SnD × ×
√

LDP

4.2. Datasets

To train the denoise model, we use the combination of 20
datasets to better mimic the generalized training scenarios,
including TweetEval Offensive (Barbieri et al., 2020), Hate
Speech 18 (de Gibert et al., 2018), Health Fact (Kotonya &
Toni, 2020), Daily Dialogue (Li et al., 2017), etc. See the
full list of datasets we used in Appendix A.3.

We test our denoising performance on a collection of down-
stream tasks: (i) Sentence classification: CoLA (Warstadt
et al., 2019), (ii) Pair similarity: Quora Question Pairs
(QQP) (Chen et al., 2018), MSR Paraphrase Corpus
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(MRPC) (Dolan & Brockett, 2005), (ii) Recognizing Tex-
tual Entailment (RTE) (Dagan et al., 2006; Bar-Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al., 2009).
Refer to Appendix A.4 for the evaluation details.

4.3. Empirical Privacy Evaluation

4.3.1. MUTUAL INFORMATION

We leverage mutual information (MI) to evaluate the pri-
vacy leakage under each level of η among varying models.
Mutual information (MI) measures how much knowing one
variable reduces uncertainty about the other, i.e., how much
information the two variables share. We follow Kozachenko
and Leonenko’s method (Delattre & Fournier, 2017) to es-
timate the mutual information from empirical distribution,
where the entropy is estimated from the distance to the k-
nearest neighbor. The MI between original and privatized
token embedding, X and X̃ , is formulated as:

Î(X; X̃) =
d

N

N∑
i=1

log ϵX̃(i)− d

N

N∑
i=1

log ϵZ(i) (13)

, where N is the sample size, d is the embedding size, Z
denote the noises added to X , and ϵ(i) is the distance of the
ith sample to its k-nearest neighbor. See Appendix A.6 for
the derivation.

4.3.2. ATTACKS

We simulate two inference attacks on the privatized token
embeddings from SnD to investigate the privacy protection
ability under varying η.

Token embedding inversion attack (Li et al., 2023; Qu
et al., 2021b): a token-level attack that reconstructs the
raw text from the privatized token representation. Given a
noisy embedding x̂t, t ∈ [1, n], the server identify a token
xt closest to x̂t measured by L2 distance in the embedding
space:

xt = argmin
k

∥wk − x̂t∥ (14)

, where wk represents the representation for the kth token
in the vocabulary.

Attribute inference attack (Li et al., 2023): an attack that
infers the sensitive features of records from the privatized
token representations. We rely on the twitter text dataset
(Vashisth & Meehan, 2020) to predict the gender based on
the user’s review.

4.3.3. GEOMETRY OF THE EMBEDDING SPACE

According to expression 13, the variaty in MI under a con-
stant η comes from d

N

∑N
i=1 log ϵX̃(i), the average distance

to the k-nearest neighbor could be a reliable proxy for. To
understand the variation of η across different models, we

analyze the embedding space with the following metrics: (i)
Euclidean distances with sorrounding tokens: we compute
the average distances between each token and its k-nearest
neighbors, (ii) Euclidean distances between raw token em-
beddings and its embeddings perturbed by equation 2.

4.4. Experiment Results

4.4.1. PRIVACY EXPERIMENTS

In this section we present the results for mutual informa-
tion estimation (MI) and token embedding inversion attack.
The discussion for attribute inference attack and Geometric
properties can be found in Appendix A.7.

Figure 2 the attack accuracy, measured by the percentage of
token correctly identified by the attack, for the three series
of models at various η values. It can be observed that: (1) for
Bert models, the attack success rates remain below 1% with
η ≤ 500. GPT models exhibit negligible attack accuracy
with η values up to 100, while GPT Xlarge demonstrates ex-
ceptional robustness against inference attacks as η increases.
T5 models, on the other hand, require much smaller privacy
budgets to resist inference attacks effectively. (2) The at-
tack success rate is nearly zero for mutual information less
than 0.02. (3) The mutual information is within 0.02 under
η ≤ 0.1, η ≤ 50, and η ≤ 10 for T5, BERT, and GPT2
models, respectively.

4.4.2. PERFORMANCE ON DOWNSTREAM TASK

We record the performance on various downstream task
in terms of accuracy (ACC) under varing η in Table 1, 2
and 3. The utility is benchmarked against the case with-
out any noise injection and thus no denoise operation, de-
noted by η = ∞. One important observation is that our
framework maintains acceptable accuracy compared with
the non-privatized setting. Across the chosen η levels and
four downstream tasks, Bert, T5, and GPT models yield
average model losses of 4.31%, 4.48%, and 5.25%, respec-
tively. It is observed that under the same class of model,
larger models tend to incur greater utility loss, which aligns
with the intuitive understanding that transformed noises be-
come increasingly unpredictable—and consequently, more
challenging to denoise—after traversing through additional
layers. Noted that we perform evaluation on the embeddings
from pre-trained model without any fine-tuning, and thus
there’s a gap between the accuracy in our results for η = ∞
and the SOTA benchmarks.

4.4.3. COMPARISON WITH BASELINE

In Table 5, 6, and 7, we assess and compare the performance
of three model families against three baseline methods using
AUC. For the three model families, we selected three dis-
tinct η levels for experimentation, given the varying noise

7
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Table 5: AUC comparisons for BERT models with QQP task.

DistillBert Bert Base Bert Large

η 50 100 500 50 100 500 50 100 500

TokenEmbPriv 0.502 0.518 0.521 0.511 0.535 0.557 0.522 0.525 0.541
Text2Text 0.541 0.541 0.541 0.512 0.513 0.513 0.507 0.537 0.540
RAPT 0.517 0.515 0.545 0.513 0.528 0.551 0.515 0.539 0.565
SnD 0.583 0.600 0.610 0.674 0.675 0.691 0.639 0.655 0.657

Table 6: AUC comparison for GPT Models with MRPC task.

GPT2 Small GPT2 Medium GPT2 large

η 1 50 100 1 50 100 1 50 100

TokenEmbPriv 0.514 0.525 0.532 0.526 0.523 0.530 0.512 0.513 0.518
Text2Text 0.498 0.502 0.502 0.496 0.498 0.498 0.491 0.499 0.500
RAPT 0.504 0.521 0.524 0.503 0.502 0.539 0.500 0.510 0.547
SnD 0.542 0.552 0.579 0.553 0.578 0.573 0.547 0.556 0.556

Table 7: AUC comparison for T5 Models with RTE task.

T5 Small T5 Base T5 Large

η 0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1

TokenEmbPriv 0.503 0.515 0.514 0.505 0.525 0.537 0.518 0.503 0.537
Text2Text 0.512 0.533 0.537 0.504 0.527 0.537 0.501 0.507 0.516
RAPT 0.510 0.548 0.547 0.506 0.532 0.533 0.514 0.519 0.516
SnD 0.547 0.577 0.575 0.566 0.564 0.611 0.566 0.580 0.599

Figure 2: Estimated mutual information (MI) and embedding inversion attack accuracy under varying η. MI and attack
accuracies approach 0 under η ≤ 0.1, η ≤ 50, and η ≤ 10 for T5, BERT, and GPT2 models, respectively.
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tolerance of each model. Note that η levels do not possess
a universal implication across model families, as varying
models exhibit distinct robustness against inference attacks,
as delineated in Section 4.4.1.

For each model family, a representative task was se-
lected. For BERT models, SnD outperforms TokenEmbPriv,
Text2Text, and RAPT by an average of 22.2%, 22.1%, and
20.9%, respectively. For GPT models, SnD results in AUC
higher than the three baselines from 7.3% to 12.3% on av-
erage. For T5 models, the performance of SnD is higher
than the baselines by an average of over 10%. It can be
observed that TokenEmbPriv and Text2Text exhibit poorer
performance compared to the other two approaches. This
could be attributed to the lack of denoise or reconstruction
mechanism within these methods. Furthermore, the un-
bounded noise support in TokenEmbPriv leads to significant
deviations between the privatized token representations and
their original values. The MSE and COS between the initial
and recovered embeddings in presented in Appendix A.10.
Both AUC and the similarity metrics suggest our technique’s
proficiency in restoring the original attributes of the noised
embedding.

4.4.4. FINETUING BUDGET WITH MODEL UPDATE

In reality, the server may periodically update its model. To
account for this, we evaluate the additional training budget
on the denoise model if the server finetune the underlying
model with new data. Specifically, we fine-tune the BERT-
base model with the Stanford Sentiment Treebank (SST2)
dataset, varying the sample size from 1,000 to 60,000 for
one epoch. Table 10 presents the AUC under η =100 with
the MRPC task. We can observe that: (a) when BERT-
base model is finetuned with less than 10000 samples, the
loss in utility is within 4.8% if the denoise model is not
adjusted; (b) when BERT-base model is finetuned with less
than 60000 samples, finetuning the denoise model within
only 1000 samples for one epoch could maintain the utility.

4.4.5. OTHER STUDIES

For other studies, we conduct overhead analysis of our
framework (see Appendix A.11), evaluation model perfor-
mance on different public dataset (see Appendix A.13), and
ablation studies for the impact of server-side denoise model
and norm clipping (see Appendix A.12).

5. Discussion and Future Work
Scalability to larger language model: our experiments pri-
marily focused on language models ranging from 100MB to
1GB in size. We also tested our approach on larger language
model, such as LLaMa and OPT-6.7B. While we observed
substantial improvements in terms of MSE and COS of the

embeddings compared to the baseline, we discovered that
the accuracy on downstream tasks still requires further en-
hancement. We suspect that the inputs undergo significantly
more intricate transformations in these larger language mod-
els, necessitating the use of more sophisticated noise and
denoising mechanisms.

Reduce user computation cost: local denoising consti-
tutes a major component of user’s computation overhead.
We observe that the size of denoise model, and thus the
user computation cost, scale with the underlying LLM. For
those users with limited computation resource, it’s crucial
to design a lightweight denoise mechanism with minimal
computation cost.

Sequence-to-sequence (S2S) inference: it’s of great inter-
est to extend our EaaS framework to S2S inference model.
One important obstacle of the generalization is the noise
amplification issue with S2S model. In particular, S2S re-
lies on the auto-regressive mechanism, where the prediction
of previous token is taken as an input to the next token.
Therefore, the error from the previous prediction would ex-
aggerate the deviation of the following tokens. A universal
denoise model might be insufficient to correct the errors in
the generated sequence.

6. Conclusion
This paper proposes SnD, a framework that employs split
inference and denoising techniques to protect LLM infer-
ence with LDP. We split the language model to deploy the
token representation layer on user side. User perturbs the to-
ken embeddings to guarantee dχ-privacy before transmitting
them to the server. To improve the utility of embeddings,
user conducts local denoising with a pre-trained model lever-
aging the raw token representations and specific noises. The
empirical studies show that SnD performs better in main-
taining the utility of embeddings compared with baseline
methods by over 10% on average.

Impact Statement
This paper presents work aimed at advancing the field of
Trustworthy Machine Learning, particularly focusing on im-
proving privacy in large language models (LLMs) through
our Split-N-Denoise (SnD) framework. Although our pri-
mary goal is technical innovation, we acknowledge the
broader societal implications of improving privacy in ma-
chine learning applications. The SnD framework offers a
potential increase in user trust and broader adoption of LLM
technologies by addressing privacy concerns. However, as
this research primarily contributes to technical aspects of
LLMs, we believe that the ethical impacts and societal con-
sequences align with those well established in advancing
machine learning.
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A. Appendix
A.1. Proof of Theorem 3.3

To prove the theorem, we first demonstrate that the noise follows Laplacian distribution:

Lemma A.1. By sampling l from Gamma distribution Γ(d, 1/η), and v from the unit ball Bd, the vector z = lv can be
released as d-dimensional Laplacian z ∼ c exp(−η∥z∥).

Proof. The proof follows by changing variables to spherical coordinates and showing that the Laplacian can be expressed as
the product of v and l. See, for instance, Lemma 4 in (Fernandes et al., 2019).

We can now proceed to the proof of Theorem 3.3.

Proof. Plugging in the probability density function of z, it holds that:

P (M(x) = y)

P (M(x′) = y)
=

P (z = y − x)

P (z = y − x′)
= exp(η(∥y − x′∥ − ∥y − x∥)) ≤ exp(η(∥x′ − x∥)) (15)

, for any η > 0.

Then the mechanism M ′ achieves ηdχ-DP based on post-processing property.

A.2. Denoise Model

A.2.1. PROOF OF PROPOSITION 3.4

We begin with the below Lemma to bound the relative entropy of ŷ and ŷ′.

Lemma A.2. Let ŷ ∈ Rk be the noisy vector described in Proposition 3.4. Denote F : Rn×d → Rk as the transformation
from privatized token representations to ŷ. It holds that:

D2(F (ŷ)∥F (ŷ′)) ≤ D∞(F (ŷ)∥F (ŷ′))) ≤ ηBx,∀ŷ =M ′(x), ŷ′ =M ′(x′) (16)

where Di(·) denotes the rényi divergence of order i.

Proof. The proof directly follows by applying post-processing properties on the relative entropy.

Then we proceed to the proof of Proposition 3.4. Let h = Ds(ŷ) For an unbiased denoise model, the MSE is lower bounded
by:

E[∥Ds(ŷ)− y∥/k] ≥
∑
i

V ar (Ds(ŷ)i) (17)

Then we examine the bound of V ar (Ds(ŷ)i). Denote h = Ds(ŷ) as the denoised output and µ(y) as the expectation of h.
From Hammersley-Chapman-Robbins Bound, we have:

V ar (Ds(ŷ)i) ≥
(µ(y + ei)i − µ(y)i)

2

E[(p(h;y + ei)/p(h;y)− 1)2]
≥ (µ(y + ei)i − µ(y)i)

2

eηBx − 1

(a)

≥
∑d

i=1 diami(Y)2/4k

eηBx − 1

(18)

where E[·] is the expectation taken over p(h;y), p(h;y) is the density function of h given y, and ei is the standard basis
vector with ith coordinate equal to 1. (a) follows from the unbias property of the denoise model (see, for example, Theorem
A.1 in (Guo et al., 2022)).
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ELOutput layer

Denoised output embedding
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N transformer
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Figure 3: Architecture of denoise model.The denoise model accepts the noised output embedding from the LLM model, in
conjunction with the raw token embedding and noise matrix, as input. Through multiple transformers, the model learns to
denoise, ultimately producing a denoised output embedding to augment the performance of downstream tasks.

A.2.2. FIGURE OF DENOISE ARCHITECTURE

A.3. Details of Datasets

A.3.1. DATASET TO TRAIN DENOISE MODEL

SQuAD: The Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, with questions posed by
crowdworkers based on a set of Wikipedia articles. The answer to every question is a segment of text from the corresponding
article, or the question might be unanswerable (Rajpurkar et al., 2016).

AG News: This dataset contains more than 1 million news articles, categorizing text into classes like sports, business, and
tech (Zhang et al., 2015).

Financial Phrasebank: Comprising sentiments in the financial domain, specifically with sentences where all annotators
concur. It is primarily for 3-class sentiment analysis (Malo et al., 2014).

Banking77: It contains online banking queries annotated with their corresponding intents, focusing on fine-grained
single-domain intent detection (Casanueva et al., 2020).

Health Fact: A comprehensive dataset for explainable automated fact-checking of public health claims (Kotonya & Toni,
2020).

Poem Sentiment: A dataset for 4-class sentiment analysis on poem verses from Project Gutenberg (Sheng & Uthus, 2020).

Tweet Eval - Sentiment: Containing tweets for sentiment analysis (Barbieri et al., 2020).

Tweet Eval - Emotion: Comprising tweets labeled with specific emotions (Barbieri et al., 2020).

Tweet Eval - Hate: A dataset to classify tweets containing hate speech (Barbieri et al., 2020).

Tweet Eval - Offensive: A dataset for classifying tweets deemed offensive (Barbieri et al., 2020).

ADE Corpus V2: A dataset for classification if a sentence discusses Adverse Drug Reaction or not. This dataset also
extracts the relation between Adverse Drug Event and Drug (Gurulingappa et al., 2012).

Hate Speech18: Dedicated to detecting hate speech in texts extracted from Stormfront, a white supremacist forum (de Gibert
et al., 2018).

SMS Spam: Comprising SMS labeled texts, this dataset is utilized to identify spam messages (Almeida et al., 2011).
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Daily Dialog: A high-quality multi-turn dialog dataset contains dialogues derived from daily conversations (Li et al., 2017).

Yelp Review Full: Comprising reviews from Yelp for text classification. This dataset is extracted from the Yelp Dataset
Challenge 2015 data (Zhang et al., 2015).

App Reviews: A dataset of user reviews of Android applications belonging to different categories (Grano et al., 2017).

Amazon Polarity: Contains reviews from Amazon, including product and user information, ratings, and a text review
(McAuley & Leskovec, 2013; Zhang et al., 2015).

Rotten Tomatoes: A movie review dataset used for sentiment analysis. This dataset comprises reviews from the Rotten
Tomatoes website (Pang & Lee, 2005).

Wikitext: A collection of over 100 million tokens extracted from the set of verified Good and Featured articles on Wikipedia.
Used for language modeling and other NLP tasks (Merity et al., 2016).

OpenWebText: An open-source collection of web articles, modeled after the dataset used in the original ”GPT” work
(Gokaslan* et al., 2019).

A.3.2. DATASET FOR DOWNSTREAM TASKS

QQP: The Quora Question Pairs2 dataset consists of question pairs to determine semantic equivalence (Chen et al., 2018).

RTE: The Recognizing Textual Entailment (RTE) datasets aggregates multiple Recognizing Textual Entailment challenges,
determining if texts entail each other. It combines data from several RTE challenges (Dagan et al., 2006; Bar-Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al., 2009).

MPRC: The Microsoft Research Paraphrase Corpus (MRPC) contains sentence pairs extracted from online news sources,
with labels to predict the equivalence of the sentences in the pair (Dolan & Brockett, 2005).

CoLA: The Corpus of Linguistic Acceptability (CoLA) consists of sentences from books and journal articles on linguistic
theory with annotations for acceptability (grammaticality) (Warstadt et al., 2019).

A.4. Evaluation of Downstream Tasks

We follow the steps below to conduct evaluation on downstream tasks:

• Obtain the embeddings of text in training and testing datasets via privacy-preserving LLM inference framework.

• Train a classification model on the privatized (denoised) embeddings from training set.

• Test the performance of classification model on the privatized (denoised) embeddings from testing set.

A.5. Specifications on Experimental Setting

A.5.1. EXPERIMENTAL SETTINGS

All the experiments are performed on a virtual server with Intel Xeon Platinum 8336C CPU and NVIDIA RTX A6000 GPU
(CUDA version 12.2). We utilize Python 3.9 as the programming language and pytorch 2.2.2 as the underlying framework.

A.5.2. HYPERPARAMETERS OF DENOISE MODEL

The hyperparameters of denoise model are represented as followed:

• dmodel: Dimension of input embeddings and hidden states.

• dff : Hidden dimension in the feed forward network.

• dkv: Dimension of each head in the multi-head attention layer.

• nhead: Number of heads in the multi-head attention layer.

• L: Number of layers.
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Table 8 lists the hyperparameters for each denoise model.

Table 8: Hyperparameters of denoise models.

dmodel dff dkv nhead L

DistillBert 768 768 240 6 3
Bert Base 768 1024 240 8 6
Bert Large 1024 1024 256 8 6
T5 Small 512 512 240 6 6
T5 Base 768 768 256 8 6
T5 Large 1024 1024 256 8 6
GPT2 Small 768 768 240 8 6
GPT2 Medium 1024 1024 256 8 6
GPT2 Large 1280 1280 256 8 6
GPT2 XLarge 1600 1600 256 10 6

A.5.3. TRAINING OF DENOISE MODEL

We take the following measures to train the denoise model adapting to varying η levels:

• Divide the privacy budget η into three groups. For each model, we partition η into three groups according to the
correlation coefficient between the plain and privatized token embeddings.

• Train separate denoise models for each group of η. For each partition, we sample the noises from two representative η
levels as training inputs to the denoise model.

• Perform denoising using the denoise model corresponding to the appropriate group. During the inference stage, users
specify the desired levels η and retrieve the denoise model from the corresponding partition.

During pre-training, we sampled up to 5000 examples for each of the 20 dataset, resulting in nearly 100,000 samples. Each
model is trained for 2 epochs. In Table 9, we compare the computation time to train the denoising model on a single A6000,
and that to train the original large language model (Sanh, 2019; Devlin et al., 2018; Raffel et al., 2020; Radford et al., 2019).
It can be observed that the computation cost to train the denoiser is acceptable, especially when it is compared with the
resources used to pre-train the original language model.

Table 9: Training time of denoise model and orignal language model.

Denoiser Base Model

BERT
DistillBert 3.3 hours on single A6000 24-48 hours on multiple TPUs or high-end GPUs like V100
Bert Base 5.7 hours on single A6000 4 days on 4 Cloud TPUs (16 TPU chips)
Bert Large 9.9 hours on single A6000 4 days on 16 Cloud TPUs (64 TPU chips total)

T5
T5 Small 3.1 hours on single A6000 Several days on a Cloud TPU v3-8
T5 Base 6.0 hours on single A6000 One week on a Cloud TPU v3-8
T5 Large 11.2 hours on single A6000 Two weeks on a Cloud TPU v3-8

GPT2

GPT2 Small 5.8 hours on single A6000 A week using several NVIDIA V100 GPUs
GPT2 Medium 10.3 hours on single A6000 Two weeks with multiple NVIDIA V100 GPUs
GPT2 Large 17.2 hours on single A6000 3-4 weeks with multiple NVIDIA V100 GPUs
GPT2 XLarge 30.3 hours on single A6000 1-2 months on a substantial number of NVIDIA V100 GPUs

A.5.4. TRAINING OF DOWNSTREAM CLASSIFICATION MODEL

For downstream classification task, we employ a simple neural network model composed of two fully connected layers
and two rectified linear unit (ReLU) activation functions. We set the hidden dimension to be the same as input dimension.
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Regarding pairwise similarity and textual entailment tasks, we concatenate the embeddings of both sentences into one vector
which is then passed as input to the classification model.

A.5.5. SPECIFICATION OF BASELINE

Below we list the experimental specifications of the three baseline methods. All approaches utilize the dχ-privacy definition
with L2 distances d(x, x′) = ∥x− x′∥. The maximum sequence length is set to 512 in SnD and baselines.

• TokEmbPriv: the user perturbed the token embedding with dχ-privacy before uploading to the server. The privatization
is performed by adding random noise Z sampled from a d-dimensional distribution with density function p(Z) ∼
exp(−η∥Z∥).

• Text2Text: the user transforms the plain token sequence into a privatized token sequence. The tokens is first mapped to
a embedding space using the embedding model given by the token representation layer E : V → Rd, where V denotes
set of vocabulary. The token embeddings are privatized by adding noises drawn from the exponential distribution
described in TokEmbPriv. Finally, we identify the token with representation closest to the perturbed embeddings
measured by Euclidean distance.

• RAPT: We adopt the prompt tuning method with prompt length set to 150. We finetune the model for 4 epochs and
set the batch size to 15. The vocabulary size of the reconstruct head and plain token size are set to 7,630 and 40,
respectively. We employ AdamW (Loshchilov & Hutter, 2018) as the optimizer and set the learning rate to 6e-5.

A.6. Estimation of Mutual Information

Let X , X̃ denote the original and privatized token embedding respectively. Then mutual information is defined as:

I(X; X̃) = H(X̃)−H(X) = H(X)−H(X|X̃) (19)

, where H(·) is the entropy of the variable. I(X; X̃) ranges from 0 to ∞, and a smaller value indicates that two variables
share less information about each other. If I(X; X̃) = 0, then X and X̃ are independent.

According to data-processing inequality, the norm clipping step would not increase the mutual information. Therefore, in
the following, we focus on the case X̃ = X + Z, where Z is sampled from the Laplacian distribution. Given that X and Z
are independent, the mutual information can be simplified as

I(X; X̃) = H(X̃)−H(Z) (20)

To estimate the mutual information from empirical distribution, we follow Kozachenko and Leonenko’s method to compute
the entropy from the distance to the k-nearest neighbor:

Ĥ(X) = ψ(N)− ψ(k) + log cd +
d

N

N∑
i=1

log ϵ(i) (21)

, where N is the sample size, ψ(·) is the digamma function, cd is the volume of d-dimensional unit ball, and ϵ(i) is the
distance of the ith sample to its k-nearest neighbor.

By applying the same sample size and k-nearest neighbor for both X and Z, we can cancel out the first three terms and
formulate the estimation for mutual information as:

Î(X; X̃) =
d

N

N∑
i=1

log ϵX̃(i)− d

N

N∑
i=1

log ϵZ(i) (22)

Thus, the mutual information can be computed by the distance to the k-nearest neighbor for privatized embedding X̃ and
noise Z.

A.7. Attribute Inference Attack

Figure 4 presents the accuracies of inference attack on the tweet review dataset. In the case of Bert models, the attack
accuracies are around 0.5 when η ≤ 1500. As for GPT2 small, the attack performance gradually increases as η reaches 500,
whereas for GPT2 medium and large, the attack accuracies remain consistently low when η ≤ 1500. For T5 models, the
attacker’s inference capability starts to grow for η ≥ 600.
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(a) Bert (b) GPT (c) T5

Figure 4: Attribute inference attack accuracy under varying η.

A.8. Finetuning Budget with Model Update

Table 10: AUCs under various denoise and base model finetuning samples. # of denoise model finetune samples denotes
how many samples we selected from the mixed dataset to finetune the denoise model, and # of base model finetune samples
denotes how many samples we select from sst2 to finetune the base model.

# of base model finetune samples# of denoise model
finetune samples 1000 10000 30000 60000

0 0.621 0.612 0.589 0.575
100 0.629 0.627 0.592 0.614
1000 0.642 0.635 0.644 0.631

A.9. Geometry Properties of Embedding Space

We compute the Euclidean distances for three representative models: Bert Base, GPT2 Medium, and T5 Small. We evaluate
the privacy budget with η = 500 for GPT and Bert models, and η = 5 and η = 10 for T5 model in Figure 5. T5 model
has much larger Euclidean distances than the other two models with its neighbors, and thus requires smaller levels of η to
achieve the similar level of privacy protection.

(a) Bert Base (b) GPT2 Medium (c) T5 Small

Figure 5: Euclidean distances

A.10. Comparison with Baseline in Terms of Similarity

Table 11, 12, and 13 compare the MSE and COS of SnD with the three baselines. A higher COS (or lower MSE) suggests
that the final output embeddings is more similar to the clean output embeddings, indicating a higher preservation of utility.
Noted that we don’t list the metrics for RAPT as it returns the classification result to the user, which doesn’t involve the
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transmission of output embeddings. One important observation is that our proposed methods results in significantly lower
MSE and higher COS compared with the two baselines.

Table 11: MSE and COS comparisons for BERT models with QQP task.

DistillBert Bert Base Bert Large

η 50 100 500 50 100 500 50 100 500

TokenEmbPriv MSE 0.507 0.507 0.630 0.477 0.475 0.461 0.629 0.632 0.630
COS 0.212 0.214 0.204 0.097 0.098 0.105 0.203 0.200 0.204

Text2Text MSE 0.445 0.445 0.445 0.248 0.248 0.248 0.609 0.608 0.613
COS 0.279 0.279 0.279 0.470 0.470 0.470 0.224 0.226 0.224

SnD MSE 0.241 0.260 0.098 0.060 0.075 0.035 0.119 0.139 0.098
COS 0.511 0.490 0.846 0.870 0.862 0.935 0.806 0.769 0.846

Table 12: MSE and COS comparisons for GPT models with MRPC task.

GPT2 Small GPT2 Medium GPT2 large

η 1 50 100 1 50 100 1 50 100

TokenEmbPriv MSE 97.019 21.962 18.520 35.680 32.189 31.463 2.584 1.920 1.608
COS 0.353 0.947 0.954 0.370 0.646 0.656 0.017 0.096 0.102

Text2Text MSE 18.791 17.824 17.824 28.613 28.440 28.440 1.489 1.437 1.247
COS 0.951 0.954 0.954 0.613 0.628 0.628 0.093 0.107 0.134

SnD MSE 4.667 4.611 4.177 11.721 10.333 11.951 0.502 0.501 0.484
COS 0.971 0.985 0.989 0.838 0.870 0.890 0.630 0.609 0.611

Table 13: MSE and COS comparisons for T5 models with MRPC task.

T5 Small T5 Base T5 large

η 0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1

TokenEmbPriv MSE 0.630 0.234 0.201 0.230 0.131 0.093 0.212 0.120 0.098
COS 0.909 0.923 0.962 0.873 0.902 0.973 0.697 0.934 0.957

Text2Text MSE 0.086 0.084 0.089 0.135 0.133 0.134 0.072 0.073 0.070
COS 0.923 0.924 0.923 0.826 0.825 0.826 0.834 0.837 0.837

SnD MSE 0.035 0.038 0.007 0.004 0.006 0.003 0.022 0.021 0.005
COS 0.988 0.992 0.997 0.991 0.996 0.992 0.961 0.966 0.978

A.11. Overhead Analysis

In this section, we evaluate the overhead on a virtual server with Intel Xeon Platinum 8336C CPU and NVIDIA RTX A6000
GPU (CUDA version 12.2).

Table 14: Overhead of SnD and encryption-based methods. Comp. and Comm. represent the computation and communication
cost respectively. The computation costs are measured in seconds.

SnD PCFT Iron
Comp. Comm. (MB) Comp. Comm. (GB) Comp. Comm. (GB)

DistillBert 0.026 0.00014 137.16 13.68 693.18 76.56
Bert Base 0.031 0.00014 420.12 5.7 2021.16 27.06
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To verify the practicability of SnD, we benchmark our framework with two encryption-based methods, Privacy-Computing
Friendly Transformers (PCFT) (Liu & Liu, 2023) and Iron (Hao et al., 2022). Table 14 presents the computation cost for the
inference of one sample, where the token length is set as 128. The communication cost in SnD doesn’t involve downloading
of denoise model as this is a one-time cost. The state-of-art encryption approaches incurred significant overhead in terms of
communication cost resulted from their multiparty computation protocols. The SnD results in more than 5000× speedup for
PCFT and 25000× speedup for Iron.

(a) Computation Time (Seconds) (b) Memory (MB)

Figure 6: Computation and memory cost on user side. Full model inference denotes the case where user runs the whole
language model, and SnD denotes the user’s computation cost in our proposed method.

In Figure 6 we compare the computation and memory cost of user-side inference in two cases: (a) user only conducts initial
representation retrievement and local denoising in SnD, and (b) user performs local inference with the whole language
model. It can be observed that SnD has significant advantages in terms of the overhead, and the computation benefits are
greater for language models of large sizes. In particular, SnD saves the user’s computation and memory cost by 95.3% and
93.5%, respectively, compared with full model inference for GPT2-Xlarge.

A.12. Ablation Studies

In this section, we conduct ablation studies to investigate the impact of user-side denoise model and norm clipping on
privatized token embeddings.

(a) DistillBert (b) Bert Base (c) Bert Large

Figure 7: AUC comparison on denoise model deployment for BERT models with MRPC task. Server denotes that the
denoise model is implemented at the server side without the knowledge of noise levels.

Impact of server-side denoise model: to evaluate the impact of noise level awareness on denoising performance, we deploy
the denoise model on server side using only privatized token representations as input. We train a transformer-based denoise
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model that outputs the denoised token representations with the objective to minimize MSE. The denoise model adopts the
same hyperparameters specified in Appendix A.5. Figure 7 demonstrates that SnD significantly outperforms the server-side
denoise method by over 10% in almost all cases. It’s also important to note that most AUCs of server-side denoise model
fall below 0.55, suggesting the server’s incapacity to deduce private information about the user.

Impact of norm clipping: we perform ablation studies on the norm clipping procedure for the privatized token embeddings.
Figure 8 shows the AUC comparisons for three downstream tasks on T5 large model. It can be observed that clipping the
privatized inputs improve the accuracy by an average of 7.5%, 15.5%, 13.4% for RTE, MRPC, and QQP tasks respectively.

(a) MRPC (b) QQP (c) RTE

Figure 8: AUC on T5 Large with and without norm clipping. No clip refers to the case where norm clipping is not performed
on the token representations.

Table 15: Corpus similarity between downstream task and three representative dataset.

CoLA MRPC RTE

Poem Sentiment 0.493 0.361 0.369
AG News 0.474 0.868 0.853
Rotten Tomatoes 0.547 0.513 0.517

Table 16: AUC with denoise model trained on various public datasets. Mix denotes the performance on our SnD framework
on the mixed public dataset.

Mix TokenEmbPriv Poem Sentiment AG News Rotten Tomatoes

CoLA
BERT-base (η = 100) 0.56 0.50 0.55 0.56 0.54
GPT2-medium (η = 50) 0.56 0.51 0.53 0.53 0.53
T5-base (η = 0.1) 0.55 0.51 0.52 0.54 0.53

MRPC
GPT2-medium (η = 100) 0.64 0.55 0.60 0.66 0.61
GPT2-medium (η = 50) 0.58 0.52 0.53 0.55 0.54
T5-base (η = 0.1) 0.57 0.51 0.54 0.57 0.56

RTE
GPT2-medium (η = 100) 0.60 0.53 0.56 0.62 0.57
GPT2-medium (η = 50) 0.57 0.53 0.56 0.56 0.56
T5-base (η = 0.1) 0.61 0.54 0.54 0.57 0.57

A.13. Performance on Different Public Datasets

In this section, we investigate how discrepancies between private and public datasets affect downstream performance. To
quantify these differences, we adopt the method in (Kilgarriff, 2001; Dunn, 2021) to measure the corpus similarity between
the downstream task and public dataset, which measures corpus similarity using Spearman’s rho between frequency ranks
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across 5,000 bag-of-words features. Specifically, we choose three representative datasets with varying degrees of similarity
to the downstream tasks, as detailed in Table 15.

We present the results on the three representative public datasets in terms of AUC in Table 16. We can make the following
observations from the results: (1) Overall, the downstream tasks show better performance when the denoiser is trained
with public dataset of higher corpus similarity. For instance, MRPC task has higher AUC with AG News, especially for
BERT and T5 models. (2) When the public and private dataset have diverse distribution, SnD show lower AUC, but the
performance is relatively robust compared with the baseline method.

A.14. Extreme Levels of η

In this section, we show that our denoise mechanism allows the model to maintain the performance even under extremely low
levels of privacy budget η. Table 17 presents the AUC for Bert base with η set as 0.001, 0.01, 0.1. The correlation coefficients
between the privated and clean token representations are below 0.005, indicating that the transmitted intermediate values
reveal little information about the input text. It can be observed that SnD still outperforms Text2Text by large under the low
privacy settings.

Table 17: AUC for Bert Base with η from 0.001 to 0.1.

MRPC RTE QQP

η 0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1

Text2Text 0.525 0.528 0.520 0.519 0.520 0.526 0.510 0.516 0.527
SnD 0.617 0.616 0.619 0.576 0.578 0.569 0.639 0.650 0.647
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