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Abstract

Many machine learning applications are naturally
formulated as optimization problems on Rieman-
nian manifolds. The main idea behind Rieman-
nian optimization is to maintain the feasibility of
the variables while moving along a descent di-
rection on the manifold. This results in updating
all the variables at every iteration. In this work,
we provide a general framework for developing
computationally efficient coordinate descent (CD)
algorithms on matrix manifolds that allows updat-
ing only a few variables at every iteration while
adhering to the manifold constraint. In particu-
lar, we propose CD algorithms for various man-
ifolds such as Stiefel, Grassmann, (generalized)
hyperbolic, symplectic, and symmetric positive
(semi)definite. While the cost per iteration of the
proposed CD algorithms is low, we further de-
velop a more efficient variant via a first-order ap-
proximation of the objective function. We analyze
their convergence and complexity, and empirically
illustrate their efficacy in several applications.

1. Introduction

In this work, we consider the optimization problem

in f(X) st
Jain f(X) s
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where M is a smooth, and often nonlinear constraint. Exam-
ples of M include orthogonality constraint (Edelman et al.,
1998), positive (semi)definite constraint (Bhatia, 2009; Han
etal., 2021), fixed-rank constraint (Vandereycken, 2013), hy-
perbolic constraint (Nickel & Kiela, 2018), doubly stochas-
tic constraint (Douik & Hassibi, 2019), etc. Problem (1)
has been explored in applications such as PCA (Zhang
et al., 2016; Kasai et al., 2019), low-rank matrix/tensor com-
pletion (Jawanpuria & Mishra, 2018; Nimishakavi et al.,
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2018; Kressner et al., 2014), computer vision (Pennec
et al., 2006), natural language processing (Jawanpuria et al.,
2019a; 2020), optimal transport (Mishra et al., 2021; Han
et al., 2022; Shi et al., 2021), and deep learning (Arjovsky
et al., 2016; Wang et al., 2020). Problem (1) has also been
studied in various settings such as stochastic optimization
(Bonnabel, 2013; Zhang et al., 2016; Tripuraneni et al.,
2018; Sato et al., 2019; Kasai et al., 2019; Han & Gao,
2021), differential privacy (Reimherr et al., 2021; Han et al.,
2024a; Utpala et al., 2022), federated learning (Li & Ma,
2022; Huang et al., 2024), decentralized learning (Mishra
et al., 2019), and saddle point and bilevel optimization (Han
et al., 2023b;a; Zhang et al., 2023; Han et al., 2024b).

The smooth constraint set can be turned into a Riemannian
manifold by endowing a properly chosen metric structure.
The Riemannian optimization approach (Absil et al., 2008;
Boumal, 2023) then provides a principled approach to solve
(1) intrinsically on the manifold space. The main idea is
to iteratively update the variable along a descent direction
without leaving the manifold. The descent direction is often
computed using the Riemannian gradient, which is then
followed by a retraction update to ensure feasibility of the
manifold constraint. As the dimensionality of the constraint
set increases, ensuring feasibility via retraction becomes a
key computational bottleneck, e.g., the complexity of ensur-
ing orthogonality and positive definiteness scales as O(n?)
with the input dimension n. This has led to many recent
works (Gao et al., 2019; Xiao & Liu, 2021; Ablin et al.,
2023) that develop infeasible methods for solving (1). How-
ever, such methods are largely limited to the orthogonality
constraint and cannot be easily adapted to other manifolds.

In the Euclidean space, the coordinate descent (CD) method
(Luo & Tseng, 1992; Nesterov, 2012; Wright, 2015)
is a classic algorithm that successively solves a small-
dimensional subproblem along a component of the vector
variable while holding others fixed. Since each subproblem
can be more easily solved than the original problem, this
strategy leads to efficient variable update.

On manifolds, designing CD updates is inherently difficult
(Gutman & Ho-Nguyen, 2023). A few works have proposed
manifold specific CD updates, mainly for the orthogonal
(Shalit & Chechik, 2014; Jiang et al., 2022; Massart & Abrol,
2022) and Stiefel (Gutman & Ho-Nguyen, 2023) manifolds.
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Although Gutman & Ho-Nguyen (2023) discuss a general
framework for developing CD methods on manifolds, con-
crete developments have been shown only for the Stiefel
manifold. Recently, for a class of optimization objectives,
Darmwal & Rajawat (2023) have proposed CD updates on
the symmetric positive definite manifold with the affine-
invariant metric.

In this work, we provide a general approach for developing
CD algorithms on matrix manifolds. We summarize our
contributions below.

* We introduce a framework for designing CD algorithms
on manifolds. In particular, we find a basis spanning
the tangent space such that a chosen retraction along
the direction of such a basis admits an efficient com-
putation. We discuss a simple expression for the co-
ordinate derivative. Finally, we provide optimization
ingredients for various matrix manifolds of interest.

¢ A nonlinear objective f in (1) requires computation
of gradient for every CD update. Using a first-order
approximation of f, we develop a more efficient CD
algorithm which requires gradient computations one
in every fixed number of CD updates. We analyze
the convergence and complexity of the two algorithms
with randomized and cyclic selection of coordinates.

* We show the benefits of the proposed CD algorithms
on the orthogonal Procrustes, PCA, orthogonal deep
network distillation, nearest matrix, and learning hy-
perbolic embeddings problems.

2. Preliminaries

Riemannian manifolds and optimization. For a Rieman-
nian manifold M, denote its tangent space at X € M
as T'x M. A Riemannian metric is an inner product struc-
ture gx () = (-, )x : Tx M x Tx M — R that varies
smoothly with the base point X. In this work, we par-
ticularly focus on matrix manifolds, i.e., where X can be
represented in the ambient vector space R”*"™. The or-
thogonal projection Projy : R™*™ — T'x M projects ar-
bitrary ambient vectors to the tangent space T'x M with
respect to the Riemannian metric. For a differentiable
function f : M — R, the Riemannian gradient at
X is defined as the tangent vector gradf(X) € TxM
such that (U, gradf(X))x = Df(X)[U],YVU € TxM
where Df(X)[U] = (Vf(X),U). A retraction Retrx :
TxM — M allows points to move along the mani-
fold, which satisfies the conditions: Retrx(0) = X and
DRetrx (0)[U] =U.

Related works. We provide a detailed review of the existing
coordinate descent (CD) algorithms on specific manifolds,
along with other related works in Appendix B.

Notations. We use (-,-) without the subscript to rep-
resent the Euclidean inner product while we use (-, )x
to denote the Riemannian inner product on T’x M. The
specific expression for (-,-)x depends on both M and
X. Sym(n) and Skew(n) denote the sets of n X n sym-
metric and skew-symmetric matrices, respectively. Let
sym(A) == (A+ A7) /2, skew(A) == (A—AT)/2, exp(+)
be the elementwise exponential, and expm(+) be the matrix
exponential. We also use e; to represent the ¢-th basis vector
with the dimension to be determined from the context. [A];;
denotes the %, j-th entry of a matrix A while A;; represents
a matrix with index ¢, j. We use I,, to denote the n x n
identity matrix, 1,, to denote the size-n vector of all 1s, and
define [n] = {1,2,...,n}.

3. Proposed CD Framework

As shown in (Shalit & Chechik, 2014; Gutman & Ho-
Nguyen, 2023; Massart & Abrol, 2022; Jiang et al., 2022;
Darmwal & Rajawat, 2023), for specific manifolds, the key
in developing CD algorithms is the choice of the basis vec-
tors By ({ € Z and T denotes the index set) spanning the
tangent space that allow efficient retraction. In general,
our chosen basis need not be orthonormal with respect to
the Riemannian metric. Once the basis and retraction are
chosen, the CD update is given by Retrx (—n0By), where
1 > 0 is the stepsize and 6 is the coordinate derivative, i.e.,

0: Retrx (0By))|g=0 = (gradf(X),Be)x. (2)

d

It can be verified that —6 B, is indeed a descent direction,
ie., (gradf(X),—0B¢)x = —0-% f(Retrx (0By))|o=0 =
—62 < 0. The CD algorithm then involves iteratively select-
ing coordinate index ¢, computing #, and updating in the
coordinate descent direction Retrx (—n6By).

The main challenges in developing CD algorithms on matrix
manifolds are: 1) characterization of B, which facilitates
efficient computation, 2) efficient computation of ¢, and 3)
easy generalization to different manifolds. We propose to
leverage the following connection between the Riemannian
and Euclidean gradients:

0= <gradf(X)7 B€>X = <Vf(X)’ B€>’ (3)

where V f(X) is the Euclidean gradient and the last equality
follows from the definition of the Riemannian gradient. We
exploit (3) to efficiently compute 6 for several manifolds
as it is independent of the Riemannian gradient and metric.
In the subsequent sections, we develop concrete CD opti-
mization ingredients for the manifolds of interest under the
proposed approach. These are summarized in Table 1.
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Table 1: Summary of CD ingredients over various manifolds. H;; = eiel —

T

e]e and E;; = e;e; + eje; are the basis

for skew-symmetric and symmetric matrices, respectively. G;;(6) and R;;(6) corresponds to the Givens and hyperbolic
rotations, respectively. Px = I, — XX T, and V f(X)y is the k-th column of V f(X). We use Exp (v) to denote the
exponential retraction over sphere. The complexity only considers the computation of coordinate derivative and coordinate
update, while excluding the complexity of first-order oracle V f(X).

Size Basis Coordinate derivative Coordinate descent update Complexity
By 0 = (gradf(X), Be) x Retrx (—n0B) (per update)
Orthogonal”® nxn H;; X <Vf(X), Hin> Gij ( - T]9> O(n)
. XHj, (V(X),XHy), XGij(—=m(Vf(X), X Hij))
T J 9 J J
Stiefel nxp Uxez Px(V (X)) Exp}s(k_( nPx (VF(X )k )) O(n), O(np)
SPD° nxn LE;L" (VF(X),LE;LT) Lexpm(—n0E;;)L" O(n)
Stiefel
Grassmann nxp Hi; X (VF(X), Hi; X) Gij ( - 176)X O(p)
, Gi(—n0)X ifi#1
H | H;;JX X),Hi; JX 7
yperbolic nxp i (VI(X), Hi; JX) {Rij(’ne)X ifi=1 O(p)
Symplectic 2nx2p  Ei;Q,X (Vf(X) EUQ X) Proposition 3.7 O(p)
Doubly stoch. m x n Aeie, BT (VF(YYT), Aese] BT) cSK(X @ exp(—n0B¢ @ X)) o(1)
Multinomial nxp eilej —ejr1)|  [VF(X )] — [Vf(X)]ig+1y P(X ©exp(—nbBe @ X)) o(1)
SPSD / SPD nxn eie; (VIYY ), ee)) Y — nfeie; 0(1)

*(Shalit & Chechik, 2014); T (Gutman & Ho-Nguyen, 2023); ®(Darmwal & Rajawat, 2023).

3.1. CD on Stiefel manifold

The Stiefel manifold St(n, p) is the set of column orthonor-
mal matrices of size R"*?, i.e., St(n,p) = {X € R"*P:
XTX =1I,}. When p = n, St(n,n) = O(n), the orthogo-
nal manifold. The tangent space of Stiefel manifold is iden-
tified as Tx St(n,p) = {U e R : XU + UT X = 0}.
The Riemannian metric is defined as (U, V)x = (U, V)
for any U,V € T'x M. The Riemannian gradient is derived
as gradf(X) = Vf(X) — Xsym(X "V f(X)).

Choice of basis. Taking inspiration from O(n), we adopt
the QX parameterization of the tangent vectors (where
2 € Skew(n)) and choose the basis as B, = H;; X for
teT={(i,j):1<i<j<n}and Hj; = ee] —eje].
In contrast to O(n), the chosen basis is not orthonormal
for St(n,p). This is expected as the manifold St(n,p)
has a dimension np — @ while we adopt an over-
parameterization of the tangent space using n(n — 1)/2
basis vectors.

Retraction. For the purpose of CD update, we first note that
Retrx (tU) = expm(t§2) X is a valid retraction on St(n, p)
because: 1) Retrx(0) = X and 2) DRetry (0)[U]
QX = U are satisfied (Siegel, 2020).

CD update. Based on the above choices of the
basis vectors and retraction, the proposed CD up-
date is Retrx(—n0B;) = G,;(—n0)X, where 6
(VF(X),B)) = [VFAX)XT — XVf(X)T];;. Here,
Gij (9) = I+ (cos(0) —1)(eie] +eje] ) +sin(0)(eie] —
e;e; ) is known as the Givens rotation around axes i, j with

angle —6. Overall, each CD update only requires O(p) as
we modify only two rows of X.

Remark 3.1. Gutman & Ho-Nguyen (2023) propose a
column-wise CD update on the Stiefel manifold which costs
O (np) per iteration. On the other hand, our proposed CD
update is row-wise and costs O(p), which is cheaper. Fur-
thermore, the CD update strategy of (Gutman & Ho-Nguyen,
2023) cannot be applied to the sphere manifold, i.e., when
p = 1, it reduces to the full gradient update on the sphere.
This, however, is not an issue for our update. Finally, the
update of Gutman & Ho-Nguyen (2023) is not invariant
to the right action of orthogonal group and hence does not
yield a valid CD strategy for the Grassmann manifold. In
contrast, as shown in the next section, our strategy can be
readily generalized to the Grassmann manifold.

3.2. CD on Grassmann manifold

The Grassmann manifold Gr(n,p) represents the p-
dimensional subspaces in R”, which can be represented
by an n X p orthonormal matrix X, i.e., X € St(n,p),
where the columns span the subspace. The representation
is not unique, with X () representing the same subspace for
arbitrary () € O(p). Thus, the Grassmann manifold can be
identified as Gr(n,p) = {[X] : X e R"*?, XX = I,},
where [X] = {XQ : Q € O(p)}. The tangent space
can be uniquely characterized by the horizontal space at
TxSt(n,p), ie., Tix)Gr(n,p) = {[U] : XTU = 0}.
For a given { € Tix)Gr(n,p), its unique horizontal lift
is U = liftx (£), where [X] is represented as X. The lift
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operator satisfies liftxg(¢) = liftx(£)Q. On Gr(n,p),
the Riemannian metric is pushed forward by the Euclidean
metric on St(n,p) as (£, ()x) = (liftx (£), liftx (¢)) and
the corresponding Riemannian gradient grad f ([X]) can be
represented by lift y (grad f([X]) = (I, — XX ")V f(X).
Retractions such as QR retraction for St(n,p) also work
for Gr(n,p) as long as it preserves the equivalence class,
ie., [Retrxo(tliftx (§)Q)] = [Retrx (tlift x (£))] for any
Q € O(p). Below, we show that the proposed CD update
for St(n, p) is also well-defined for Gr(n, p).

Proposition 3.2. Consider a function f : Gr(n,p) —
R. Let the coordinate descent update at [X] be given
by Retrx(—n0H;;X) = Gij(—m0)X for 1 < i <
Jj < n, where § = (Vf(X),H;;X) and for some fixed
stepsize 7 > 0. Then, Retrxq(—nbxoH;;XQ) =
RetrX(—UHHin)Q.

3.3. CD on hyperbolic manifold

We now consider the generalized hyperbolic space (Bai
& Li, 2014; Xiao et al., 2023) H(n,p) = {X € R"*P :
—XTJX = I,}, where J = diag(—1,1,...,1) € R"™" is
the metric tensor. When p = 1, this reduces to the well-
known hyperbolic space (the hyperboloid model). The tan-
gent space at X € H(n,p) is identified as

TxH(n,p) = {UeR™.UTJX +XTJU =0}
= {(WJX :W € Skew(n)}.

The Riemannian metric on TH(n,p) is the generalized
Lorentz inner product as (U, V) := tr(U T JV'). The nor-
mal space is given by NxH(d,r) = {XS : S € Sym(p)}.
The orthogonal projection to T'xH(n,p) and the Rieman-
nian gradient are derived below.

Proposition 3.3. The orthogonal projection of A € R"*P to
TxH(n,p) is given by Projy (A) = A+ Xsym(X T JA).
The Riemannian gradient is gradf(X) = JVf(X) +
Xsym(X TV f(X)).

Choice of basis. For generalized hyperbolic manifold, we
consider the basis By = H;;JX = (e,-ejT —eje) ) JX, for
1<i<j<n.

Retraction. Taking inspiration from our Stiefel analy-
sis in Section 3.1, we define the map Retrx (tU) :=
expm(tWJ)X for U = WJX € TxH(n,p). We next
show such a map defines a valid retraction. As shown below,
the retraction expression considerably simplifies along the
chosen basis H;; JX.

Proposition 3.4. Given a tangent vector U = WJX €
TxH(n,p) for some skew-symmetric matrix W, then
Retrx (tU) := expm(tW J)X is a retraction.

In fact, expm(tWJ) is a Lorentz transform that satisfies
expm (tWJ) T Jexpm(tW.J) = J, which preserves the

Lorentz inner product as (LX) JLX = X TJX = —1I,.
Hence by following the direction U = 60 H;;J X, we define
a coordinate type of updates on (generalized) hyperbolic
manifold as expm(6#H,;.J) X, which can be computed ef-
ficiently similar to the Givens rotation. Particularly, when
i,j # 1, HZJJ = Hij and expm(@HijJ) = G”(o) €X-
actly recovers the Givens rotation. When ¢ = 1, we have
Hi;J = B = eie;r + eje;-'—. We show in the follow-
ing lemma that this also leads to a rotation known as the
hyperbolic rotation.

Lemma 3.5. For U = 0H;;JX with1 < i < j < n,
Retrx (tU) = G (0)X le 7L

Ri;(0)X  ifi=1
(cosh(f) — 1)(eje; + ejejT) + sinh(@)(eiejT +eje} ).

where R;;(6) = I, +

When d = 4, R;;(0) is known as the Lorentz boost with
rapidity —6 and can be thought of as rotation in the time
domain. Hence, while the Givens rotation based CD updates
have been explored for the orthogonal and Stiefel manifolds
(Shalit & Chechik, 2014; Gutman & Ho-Nguyen, 2023), our
approach generalizes the Givens rotation based CD updates
to hyperbolic spaces.

CD update. Similar to the Stiefel case, the pro-
posed CD update is Retrx(—nfH;;JX), where § =
Appendix E.3, we additionally derive a canonical-type met-
ric and a Cayley retraction.

3.4. CD on symplectic manifold

The symplectic manifold (Gao et al., 2021a;b; 2022) is
defined as Sp(n,p) = {X € R*"*? : XTQ, X = Q,},

where Qj, = [ (} Ig] is a 2k x 2k skew-symmetric
—1

block matrix. The tangent space is given as

TxSp(n,p) ={U e R"*? . UTQ, X + X'Q,U = 0}
={50,X : S € Sym(2n)}.

Here we consider the Euclidean metric (Gao et al., 2021a)
as (U, V)x = tr(UTV) for any X € Sp(n,p),U,V €
TxSp(n,p). The Riemannian gradient (Gao et al., 2021a,
Proposition 3) is given by gradf(X) = Vf(X) —
2, XWx, where Wx € Skew(2p) is the unique solu-
tion to the Lyapunov equation X T XW + WXTX =
2skew(X Q] Vf(X)).

Choice of basis. Similar to the Stiefel and hyperbolic man-
ifolds, we consider the basis B, = FE;;Q2, X for the tan-
gent space TxSp(n,p), where E;; = eie;r + ejeiT, for
1 <4 < j < 2n. Here, ¢; is the i-th basis in R?".

Retraction. We propose the following retraction for effi-
cient CD updates.

Proposition 3.6. Forany X € Sp(n,p)andU = SQ, X €
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TxSp(n,p), the map Retrx (tU) = expm(tSQ,)X is a
retraction.

The above retraction further simplifies when moving along
the chosen basis direction.

Proposition 3.7. Let U;; = E;;Q,X € TxSp(n,p) for
1 <4 < j < 2n. Then, we have Retrx (0U;;) = X +
(exp (—0) — Deje] X + (exp(0) — V)enyie, X, ifi =
j—n,j > nandRetrx (0U;;) = X +0E;;Q, X otherwise.
Remark 3.8 (Block coordinate updates). We may also con-
A C

ot} B} for
A,B € Sym(n) and C € R™*", and we wish to update
X in the direction of U = EQ, X € TxSp(n,p). First,
we consider the upper-left and bottom-right blocks, i.e.,
0 0 0
0 0} or k= {o B
Sym(n). Here, Retrx (0EQ, X) = X +0FEQ,, X. Second,

ifE =, 0 diag(u) , for u,v € R", then EQ2,, =
diag(v) 0

—diag(u) 0 B
[ 0 diag (v) , and therefore, Retrx (0 EQ, X ) =
(I +0EQ, + 2(EQ,)? +--)X = GX, where G =

[diag(exp (—6u)) 0 }
0 diag(exp (6v))|’

CD update. Finally, based on the above discus-
sion our proposed CD update is Retry(—n0E;;Q,X),
where, § = (Vf(X),E;Q.X) = [VF(X)XTQ] +
QuXVF(X)T; 5.

sider block coordinate updates. Let £ = [

where F = for arbitrary A, B €

3.5. CD on doubly stochastic and multinomial manifolds

Given two marginals p1 € A,,,, v € A,, where Ay, == {z €
R* : 2 > 0,271 = 1} denotes the k-simplex, the doubly
stochastic manifold (Douik & Hassibi, 2019; Shi et al., 2021;
Mishra et al., 2021) is defined as II(p, v) = {X € R™*™:
X > 0,X1, = u,X"1,, = v}. The tangent space is
Tx(p,v) = {U € R™*" . UL, = 0,U"1,, = 0},
which can be endowed with the Fisher metric as (U, V) x =
tr(UT(V @ X)), where ® and @ represent the elementwise
product and division operations, respectively. The orthog-
onal projection is Projy (A) = A — (a1 +1,,87) ® X,
where v € R™, 3 € R™ are solutions to the linear system:
a®pu+XpB=A1,,,0v+X"Ta=AT1,, The Rie-
mannian gradient is given by gradf(X) = Projy (X ®
VX)) =X (VAX) = (al] +1,.87)).

Choice of basis. We consider the parameterization of
the tangent space as TxII(u,v) = {ACBT : A ¢
Rmx(m=1) B e R**(n=1) AT1, =0,B"1, =0,C €
R(m=1x(n=1)1 We notice that the tangent space has a di-
mension (m—1) X (n—1), and hence, we can let A = [e; —
€2, ey b1 —€m] ER™ M1 B — (e —ey, ..., 1 —
en] € R™*("=1) where we denote e; as the i-th canonical

basis for the corresponding vector space. Hence the tangent
space is parameterized by C' € R("=1)x(»=1) The basis
we consider Bg = Aeie;rBT = (62' — €i+1)(6j — €j+1)T
fori € [m—1],j € [n —1].

Retraction. We consider the Sinkhorn retraction applied
in the direction of the basis as Retrx (—nfB;) = SK(X ©
exp(—ndBy @ X)). Here, the Sinkhorn algorithm SK(U)
iteratively normalize rows and columns of U according to
the given marginals (Knight, 2008). We notice the input to
the Sinkhorn algorithm only modifies a 2 x 2 sub-matrix
of X. It, thus, suffices to apply the Sinkhorn algorithm to
the 2 x 2 sub-matrix with the modified marginals, which
largely simplifies the computation compared to running
the Sinkhorn algorithm for the entire input. To this end,
we define the coordinate Sinkhorn, denoted as SK* (U) or
simply ¢SK(U) if the coordinates are clear from context,
as performing the Sinkhorn algorithm for the 2 x 2 sub-
matrix formed by indices ¢, + 1 and j, j + 1 with marginals
(I = kg je1 Ulins [Wlivr = 2 ks i1 [U1)x) and
(M = Xiziie1 Ulss Wlisr = 2oizi i1 [UNi+1))- The
other entries of U remains unchanged. We show in the next
proposition that applying coordinate Sinkhorn to the basis
results in a valid retraction.

Proposition 3.9. The coordinate Sinkhorn applied to the
basis By, i.e., cSK(X ©exp(tB, @ X)) is a valid retraction
in the direction of By.

We can further simplify the computation of ¢SK(X ®
exp(tB; @ X)), which is equivalent to performing Sinkhorn
on a 2 x 2 matrix. Furthermore, in this case, we show in
Lemma E.6 that the Sinkhorn admits a closed-form solution.

CD update. The CD update follows as cSK(X ©
exp(—nfdBy © X)), where the coordinate derivative ¢
is computed as § = (Vf(X),By) = [Vf(X)]i; —
[V (X)]ig+1) = VA1) + V(X)) 1) G+1)-

Remark 3.10 (CD on multinomial manifold). The devel-
opments in this section readily applies to the multinomial
manifold (Douik & Hassibi, 2019), i.e., M™? = {X €
R™P : X > 0,X1, = v} where we assume v = 1,
without loss of generality. The multinomial constraint cor-
responds to n independent simplex constraints restricted to
positive entries. The tangent space is TxM"™? = {U €
R™ P : Ul, = 0} = {VBT : V € R~ B ¢
RPX(P=1) BT1, = 0}. Thus, the basis is similarly given
by By = ei(e; — ej+1)T. The Riemannian metric is the
same Fisher metric. A retraction is given in Retrx (tU) =
P(X © (exp(tU @ X))), where P(V) = V @ (V1,1))
denotes the row normalization. It should be noted that P (V')
is a special case of the Sinkhorn algorithm without column
normalization. Thus, in the basis direction, we can define
the coordinate projection by modifying only two entries
per row. The coordinate derivative can be computed as

0 = (Vf(X),Be) = [VF(X)]i; — [VFX)]ig+1)-
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3.6. CD on positive (semi)definite manifold

The set of fixed-rank symmetric positive semi-definite man-
ifold (SPSD) matrices (Vandereycken et al., 2009; 2013;
Massart & Absil, 2020) is defined as S} == {X € R"*" :
X = 0,rank(X) = p}. When p = n, we recover the set of
symmetric positive definite (SPD) matrices as S’} = S .
For the purpose of developing efficient CD updates on SPSD,
we follow the parameterization purposed in (Massart & Ab-
sil, 2020), i.e., X € S}*? is factorized as X = YV,
Y € RI*P, which is unique up to the right-action of the or-
thogonal group O(p). The Riemannian gradient can be com-
puted as gradf(Y) = VF(YY ") = 2sym(VF(YY )Y
because the Ty R} *P ~ R"™*P. The main advantage of this
parameterization is its simple expression of retraction, i.e.,
Retry (t§) =Y + t£ (Massart & Absil, 2020).

Choice of basis, retraction, and CD update. Using
X = YY', the optimization problem is on R} with
a simple retraction. For the objective f : S'"¥ — R, we ini-
tialize Y € R} *? and update as Retry (—nVf(YY ")) =
Y —nVf(YYT) for some stepsize . We choose the ba-
sis to be e;e] fori € [n],j € [p], which is orthonormal
for the tangent space Ty R} *”. The CD update is given
by Retry (—nfese] ), where 6 = (Vf(YY "), eief) =
[VF(YYT)];;. The simplicity of the geometry allows CD
to be developed efficiently on S}, which coincides with
the Euclidean CD update in the Euclidean space. When
p = n, we obtain a CD update for the SPD manifold.

CD update with the BW metric. The Bures-Wasserstein
(BW) metric for the SPD manifold (p = n) has been re-
cently studied for various machine learning applications
(Bhatia et al., 2019; Han et al., 2021). For the BW met-
ric, the gradient descent update is Exp y (—ngradf(X)) =
X —2(VA(X)X + XVF(X)) +4*VF(X)XVf(X).
Consider a basis F;; X + XE;; where E;; = eie;r +
e;je; . The coordinate derivative is computed as 6;; =
(Ei;X + XE;;,Vf(X)). Finally, the CD update is given
by X —200;;(Ei; X + X Eij) + 4107, Ei; X E;;. Each CD
update modifies two rows and two columns of X.

Remark 3.11. For the SPD manifold (p = n), Darmwal &
Rajawat (2023) propose CD updates based on the affine-
invariant metric and Cholesky factorization. They specifi-
cally focus on a class of objective functions and show that
the exponential map computations are efficient. In contrast,
our choices of parameterization/metric directly leads to a
faster retraction.

4. Algorithms and Analysis

RCD. We present the proposed Riemannian coordinate de-
scent (RCD) algorithm in Algorithm 1. The complexity
of RCD per iteration is the complexity of one first-order
oracle and the update complexity in Table 1. Although

Algorithm 1 Riemannian coordinate  descent

(RCD/RCDlin)

1: Initialize Xg € M. Z denotes the index set. Given
hyper-parameters K, S, and 7.

2: fork=0,...,K —1do

3 XP =X,

4. fors=0,..,5—1do

5 Pick ¢; € 7 and construct basis Bgi at Xj.

6: g5 = { <Vf(X]§),Bg;>, ifRCD7

' k (Vf(Xk), B[z>, if RCDlin.
7. Update X;*' = Retrxs (—n0; B ).
8:  end for
9: X1 = X]‘f
10: end for

for some problem settings, we may explore the structure
of the objective to efficiently compute § = (V f(X), By),
for general problem instances, V f(X') becomes the main
computational bottleneck.

RCDLin. To reduce gradient computations in the RCD
setup (especially for non-linear objectives), we also pro-
pose the Riemannian linearized coordinate descent (RCDlin)
method in Algorithm 1. The main difference with RCD is
that the variables are updated using an anchored gradient
at X, (which does not change for inner iterations). This
scheme is equivalent to taking a linearization of the orig-
inal cost function at Xy, and in the inner iterations, we
solve: minxem {9(X) = f(Xp) + (Vf(Xk), X — X))},
where the inner product and subtraction are defined in the
ambient Euclidean space. Subsequently, the Euclidean
gradient at X} is Vg(X}) = Vf(Xy), and thus, 0] =
(Vf(Xk), Be; ). For the randomized setting with S = 1,
RCDilin is equivalent to RCD. Additionally, for linear prob-
lems where V f(Xj) = C (C is some constant matrix),
RCDlin also reduces to RCD.

Convergence and complexity of Algorithm 1

We next discuss the convergence analysis of RCD and
RCDilin. It follows the standard analysis for CD algorithms
(Wright, 2015). Note that Gutman & Ho-Nguyen (2023)
mostly consider the analysis of CD algorithms under expo-
nential map and parallel transport operations. In contrast,
we consider the more general retraction and vector transport
operations. We also adapt our analysis for RCDlin. For
brevity, our analysis is informally discussed here. The anal-
ysis is in a compact neighbourhood around a critical point,
which is required for validating certain regularity assump-
tions, boundedness of basis and projection onto the basis,
and smoothness of the objective (details in Appendix F).

On RCD. We start by showing the convergence of RCD
under randomized selection of basis and certain regularity
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assumptions. L is the smoothness constant of the objective.

Theorem 4.1 (Randomized RCD). Under mild assump-
tions, consider RCD with S = 1 and {}, selected uniformly
at random from I. Then, choosing n = @(%) leads to

ming<k<x—1 Ellgrad f(Xp)[%, < O(%)

The convergence of RCD with cyclic selection of basis
requires further assumptions that bound the difference of
the constructed bases between tangent spaces. These are
reasonable given the compactness of the domain.

Theorem 4.2 (Cyclic RCD). Under mild assumptions
in addition to the ones required by randomized RCD,
consider RCD with S = |I| and l; = s + 1 for
0,...,|Z| — 1. Then, for n = @(%) we have
ming<g< 1 |lgrad f(X5) | x, < O(ZEL).
On RCDIlin. The key idea here is to relate the coordi-
nate derivative 07 = (V f(X}), By ) to the correct descent
derivative (V f(X}), Be: ). In randomized settings, we can
show the same convergence rate as RCD up to some addi-
tional constants regulated by the difference between 6} and
the descent direction. For the cyclic settings, however, we
require S = |Z| in order to cycle through all the basis.

Theorem 4.3 (Randomized and cyclic RCDlin). Under
assumptions required in Theorems 4.1 & 4.2, suppose
0y and (Vf(X}),Be:) are positively related. — Then,
consider randomized RCDlin with [}, selected uniformly
at random from I. Choosing 1 = ©O(1) leads to
Ming<p<k—1,0<s<S—1 ]E||gradf(Xj§)||§(£ < (%) In
addition, consider cyclic RCDlin with S = |I| and ¢5, =
s+ 1fors =0,..,|I| — 1. Also, ifn = ©(1), then

ming<k<rc1 gradf(XP)[%, < O(ZLE).

S =

Complexity analysis. Let the cost of computing the coordi-
nate derivative # and CD update be § (last column of Table
1). Then, the total computational cost of RCD and RCDlin
is O(KS(F+6)) and O(K (F + S0)), respectively, where
F denotes the cost of computing V f(X'). We note that the
proposed algorithms can parallely update in disjoint basis
directions. For example, in the Stiefel/Grassmann case, we
can select n/2 non-overlapping index pairs, which results in
n/2 independent Givens rotation, and can be parallelized.

5. Experiments

We now benchmark the performance of the proposed RCD
and RCDlin algorithms in terms of computational efficiency
(flop counts and/or runtime) and convergence quality (dis-
tance to optimality). One of the considered baselines is
the Riemannian gradient descent method (RGD), a full
gradient method. As RGD exploits the entire gradient di-
rection, it has advantage over CD algorithms. However,
RGD is significantly more costly than CD in every up-

-
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(a)n = 200,p = 150 (b) n = 200,p = 50

Figure 1: The Procrustes problem with varying p: (a)
p = 150 and (b) p = 50. (Top row) Comparing various al-
gorithms in terms of flop counts. (Bottom row) Comparing
various algorithms in terms of runtime. We observe that our
RCD algorithm obtains better flop counts than the baselines
in flop counts and is competitive in terms of runtime.

date. Our codes are implemented using the Manopt tool-
box (Boumal et al., 2014) and run on a laptop with an
15-10500 3.1GHz CPU processor. The codes are available
athttps://github.com/andyjm3.

5.1. Orthogonal Procrustes and PCA

Orthogonal Procrustes problem. We aim to solve
miny ese(n,p) | XA — Bl|*(= —(X A, B)) for given ma-
trices A € RP*P, B € R™*P_ There exists a closed-form
solution provided by the (thin) SVD of BAT. For this, RCD
and RCDlin have same updates as Vf(X) = —BA" for
X € St(n, p). In experiments, we generate random matri-
ces A, B and evaluate the performance against optimality

gap computed as | f(Xy) — f*|/]f*|.

Baselines. The closest baseline to RCD is TSD (Gutman
& Ho-Nguyen, 2023), which is a CD method under an
alternative construction of bases. As discussed, while TSD
updates the columns, the proposed RCD updates the rows.
Since RCD is equivalent to TSD for p = n, we focus only
on the p < n setting. For both RCD and TSD, we use the
cyclic selection of basis. We also compare against RGD
methods with QR, Cayley (CL), and exponential (EXP)
retractions. For all the methods, we tune the stepsize.

Results. In Figure 1, we show results with varying dimen-
sion p. While the proposed RCD obtains better flop counts
than the baselines in flop counts, it is competitive in terms
of runtime. We highlight that the runtime of RCD can be
further improved with parallel implementation. In Figure
2c, we compare a variety of basis selection rules for both
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Figure 2: (a) & (b): Experiments on the PCA problem with n = 200, p = 50. In (a), we observe that our algorithm RCDlin
achieves the fastest convergence due to low per-iteration cost. In (b), we compare various strategies for basis selection: cyclic
selection (-c) and uniformly random selection (-r) of basis for TSD, RCD, and RCDlin, and selection without replacement
(-nr) for RCDlin. We observe that cyclic and selection without replacement strategies are better than random selection. (c) &
(d): Experiments on the Procrustes problem with n = 200, p = 150. In (c), we again observe that cyclic selection performs
better than random selection. In (d), RCD performs competitively against the infeasible methods.

TSD and RCD: cyclic selection (‘c’) and uniformly random
selection (‘r’). We observe that cyclic selection is more
favourable than the random selection rule for both the meth-
ods. We compare against full gradient infeasible methods in
Figure 2d, including PLAM (Gao et al., 2019), PCAL (Gao
et al., 2019), PenCF (Xiao et al., 2022), ExPen (Xiao & Liu,
2021; Xiao et al., 2023), and Landing (Ablin & Peyré, 2022;
Ablin et al., 2023). RCD is performs competitively against
infeasible methods for orthogonality constraints.

PCA problem. The PCA problem solves a quadratic max-
imization problem as maxxrx—_p, tr(X TAX) for some
positive definite matrix A, i.e., A € S’ . This problem is
in fact an optimization problem over the Grassmann man-
ifold because the objective is invariant to basis change of
X . Hence, we use the Riemannian distance to the optimal
solution on the Grassmann manifold to measure the perfor-
mance. As discussed in Section 3.2, our proposed RCD
has well-defined updates on the Grassmann manifold. In
contrast, TSD is not invariant to the basis change. For ex-
periments, we generate A with a condition number 103 and
with exponential decay of eigenvalues. For TSD, RCD, and
RCDlin, we implement the cyclic selection of basis.

Results. In Figure 2a, we observe that RCDlin achieves
the best performance due to its low per-iteration cost. We
note that TSD converges slowly due to non-invariance of
the CD updates. In Figure 2b, we compare the cyclic and
uniformly random selection of the basis of RCD, RCDlin,
and TSD. For RCDlin, we also implement the selection
without replacement (‘nr’) strategy. We observe that cyclic
and ‘nr’ strategies are better than random selection.

5.2. Orthogonal deep networks for distillation

We next evaluate RCD on a deep learning based distilla-
tion problem (Hinton et al., 2015). Let © denote the pa-
rameters of the student network (S) while ©1 be the opti-
mal parameters of the teacher network (T). Then, the aim

test error
test error

10' 10 10° 107 10° 10 10% 1

flops
(a) Distill (flops)

2 3 4
time

(b) Distill (time)

Figure 3: Experiments on the distillation problem. We
observe that the proposed RCD algorithm performs better
than the baselines both in terms of flop counts and runtime.

is to learn S that approximates T, i.e., minimize £(O)
[Vo(X) — Yo, (X)|?, where Ug(X) € RN *dout repre-
sent the output of the network for some input X € RN *din
The network architecture is detailed in Appendix A.1. Here,
we constrain all the weights to be orthonormal, thus posing
the problem as optimization over the joint space of Stiefel
and Euclidean manifolds. For experiments, we consider
a six-layer network and set di, = 500, doyt = 200. We
use stochastic versions of RGD and RCD where the input
samples are randomly generated. In Figure 3, RCD out-
performs the baselines in terms of flop counts and runtime.
This is because RCD has the most cost-efficient update per
iteration, while maintaining a competitive convergence rate.

5.3. Nearest matrix problem

We consider the problem: min x egp(n.p) || X — Al|? on the
symplectic manifold (Gao et al., 2021b). We follow the
setting in (Gao et al., 2021b) by generating A as a random
matrix with p = n = 200. The algorithms are evaluated on
optimality gap | f(X) — f*|/|f*|, where f* is obtained by
running the conjugate gradient algorithm with the Cayley
retraction. We implement RCD and RCDlin with both CD
and block CD updates (discussed in Remark 3.8). As there
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Figure 5: Experiments on learning Lorentz (hyperbolic)
embeddings. The performance of our RCDlin algorithms
(with cyclic and time-cyclic basis selection) is competitive
to RGD.

is no CD baseline on the symplectic manifold, we compare
against the full gradient RGD algorithms with three retrac-
tions: Cayley (‘CL"), quasi-geodesic (‘QG’), and SR (‘SR’).
In Figure 4, RCD with block update shows clear advantage
in both flop counts and runtime.

5.4. Learning Lorentz embeddings

We consider the task of learning embeddings for word hi-
erarchies, which is formulated on the hyperbolic manifold
using the hyperboloid model (Nickel & Kiela, 2017; 2018;
Jawanpuria et al., 2019b). The goal is to map word pairs
with hypernymy relations closer while separate those with-
out. We follow the formulation in (Nickel & Kiela, 2018),
and the details are in Appendix A.2.

For experiment settings, we train 5-dimensional embed-
dings (n = 5) for WordNet mammals subtree (Miller,
1998). We adopt the RCDlin algorithm with two selection
rules for the basis H;;JX: cyclic (‘RCDlin-c’) and time
cyclic (‘RCDlin-tc’). The cyclic selection loops through
all n(n — 1)/2 pairs per iteration. The time cyclic selec-
tion only loops through all the space-time coordinate pairs,
namely (1,2),(1,3), ..., (1,n), which reduces the computa-
tional cost to scale linearly with dimension n. For RCDlin-c
and RCDlin-tc, we use a linearly-decaying stepsize, i.e.,
n/(1 + 0.1 x epoch). For RGD we use a fixed stepsize n
which generally leads to better convergence. We tune and
set n = 1.0 for RCDIlin and 0.5 for RGD. We use the met-
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Optimality gap
Optimality gap
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(a) Optimization over SPD (b) Optimization over SPSD
manifold with dense A manifold with sparse A

Figure 6: Experiments on the weighted least squares prob-
lem in two settings: (a) n = p = 500 and A = 1711;r is a
dense matrix and (b) n = 500, p = 100 and A is a random
symmetric matrix with 70% entries as 1 and others are 0.
While RGD and the proposed RCDlin have similar conver-
gence rate in (a), RCDlin has clear advantage in (b).

rics for evaluating the convergence: mean average precision
(MAP) and mean rank (MR) (Nickel & Kiela, 2017; 2018).
In Figure 5, we see that RCDlin converges at a similar rate
compared to RGD in terms of runtime.

5.5. Weighted least squares (SPSD manifold)

The weighted least squares problem is min y _cnxp |4 ©
+

X — BJ|, where A € {0,1}™*™ masks the known entries
in B. It is an instance of the matrix completion problem
(Han et al., 2021). For the experiment, we follow (Han
et al., 2021) by generating B = A ® X* where X* is an
SPD/SPSD matrix with exponentially decaying eigenvalues.
We consider two settings: (left) n = p = 500, A = 1n1;';
is a dense matrix and (right) n = 500,p = 100 and A is a
random symmetric matrix with 70% entries as 1 and others
are 0. We compare RCDlin with RGD (for X = YY T
factorization). We set S = np/5 and select the coordinates
randomly without replacement. In Figure 6, we observe
that RCDlin performs competitively with RGD on the SPD
manifold with dense A while performing significantly better
on the SPSD manifold with sparse A.

6. Conclusion

In this work, we discuss how to develop computationally
efficient CD updates for a number of matrix manifolds. The
main bottleneck in developing CD methods is on finding the
right basis parameterization of the tangent space. We show
precise constructions for various manifolds and propose two
CD algorithms: RCD and RCDlin. RCDlin specifically
reduces the gradient computations of RCD further. Our
experiments show the benefit of our proposed CD updates
on a number of problem instances.
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Impact Statement

This paper presents work whose goal is to advance optimiza-
tion methods with applications in Machine Learning. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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A. Additional experiment details

The experiments are run on a laptop with an i5-10500 3.1GHz CPU processor.

A.1. Orthogonal deep networks for distillation

Here we provide the detailed network architecture for the distillation task. In particular, we define a L-layer feed-forward
neural network with Tanh activation function, i.e., X1 = tanh(W,X, + by) for £ € [L], where W; € R%=*d 1/, ¢
R?*dout and W, € R4*? for £ # 1, L. In the experiment, we set L = 6.

A.2. Learning Lorentz embeddings

Here we provide the problem formulation for the task of learning Lorentz embeddings. Let D = {(u, v)} be the related word
pairs and construct Neg(u) = {v : (u,v) ¢ D} as the negative samples of word u. The objective is to learn embeddings x,,
for all word u by solving

)

Z o exp (—dist(zy, z0))

min :
{zy€H(n,1)}u (wo)eD Zv,eNeg(u) exp (—dlst(u, v’))

where dist(z,,, z,,) = arccosh(—(x,, ) ) is the Lorentz Riemannian distance.

B. A review on coordinate descent for orthogonal and SPD manifold

We start by reviewing the developments of coordinate descent on the orthogonal manifold (Shalit & Chechik, 2014; Massart
& Abrol, 2022; Jiang et al., 2022), Stiefel manifold (Gutman & Ho-Nguyen, 2023), and symmetric positive definite (SPD)
manifold (Darmwal & Rajawat, 2023), which motivate the proposed general framework for other manifolds.

Some other works (Huang et al., 2021; Peng & Vidal, 2023) study (block) coordinate descent on a product of manifolds,
where each update concerns a component manifold. This is different to our considered setting, where the update is defined
for coordinate on the tangent space for a single manifold.

B.1. Orthogonal manifold

Orthogonal manifold O(n) is the smooth space formed by the orthogonality constraints, i.e., O(n) = {X € R**" :
XXT = XTX =1I,}. The tangent space can be identified as Tx O(n) := {QX : Q € Skew(n)}. The Riemannian metric
coincides with the Euclidean metric, i.e., (U, V) x = %(U , V). The % is added to ensure consistency with the canonical metric
for the Stiefel manifold, as we shall see later. This leads to the Riemannian gradient grad f(X) = Vf(X) — XVf(X)TX
and the exponential retraction is given by Retrx (02X ) = expm(0Q) X, for some 6 € R.

Remark B.1. We remark that in all the existing works (Shalit & Chechik, 2014; Massart & Abrol, 2022; Jiang et al., 2022),
the tangent space is parameterized as Tx O(n) := { X : Q' € Skew(n)} and thus the exponential retraction amounts to
Retrx (0X Q') = Xexpm(6Q'). Such a formulation is equivalent to the above by letting @ = XQ'X T € Skew(n). Our
reformulation allows natural generalization of the coordinate descent framework to column orthonormal matrices (the Stiefel
manifold), where the orthogonal matrix is a special case.

The manifold has a dimension of n(n — 1)/2 and its tangent space can be provided with an orthonormal basis H;; X
where H;; = eie;r — eje;r is the basis for the skew-symmetric matrices. In each basis direction H;; X, the exponential
retraction reduces to the Givens rotation, which allows efficient updates, i.e., Retrx (0 H;; X) = G;;(6)X where G;;(0) =
I, + (cos(0) — 1)(ese] +e;j ejT) + Sin(@)(eiejT —eje] ) is known as the Givens rotation matrix around axes 4, j with angle

In order to minimize a function f : O(n) — R, one needs to update the variables in the negative gradient direction. Here
along the basis direction, coordinate descent aims to minimize the function f(G;;(6)X) with respect to 6. One strategy is to
solve this one-variable optimization problem directly as in (Shalit & Chechik, 2014). When the objective is more involved,
we can approximately solve this problem by following a descent direction (Massart & Abrol, 2022; Jiang et al., 2022), which
is given by —-% f(G;;(0)X)|p=0 = —(gradf(X), H;; X ) x. This leads to the coordinate descent update in the direction of
—(gradf(X), H;; X) x H;; X, which modifies two rows of X every iteration, resulting in an O(n) complexity per update.
One pass over all the coordinates requires @ iterations, leading to O(n?) complexity in total, which is comparable to
the commonly considered retractions, including the exponential, Cayley and QR retractions.
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B.2. Stiefel manifold

The Stiefel manifold St(n, p) is the set of column orthonormal matrices of size R"*?, i.e., St(n,p) = {X € R"*? :
XTX =1I,}. When p = n, St(n,n) = O(n). The tangent space of Stiefel manifold is identified as T St(n, p) = {U €
R™P: XTU+UTX =0} = {XQ+ X, K : Q € Skew(p), K € R("~P)*P}_ The Euclidean metric turns out to be a
valid Riemannian metric (Edelman et al., 1998), (U, V)x = (U, V) for any U,V € Tx M. The Riemannian gradient is
derived as gradf(X) = Vf(X) — Xsym(X T Vf(X)).

In (Gutman & Ho-Nguyen, 2023), a coordinate (subspace) descent algorithm has been developed for general manifolds,
via selecting proper subspaces for the tangent space. Although showing theoretical guarantees, the paper only provides
a concrete developments for Stiefel manifold (thus including the orthogonal manifold). The basis considered for the
tangent space of Stiefel manifold is {X Hy;}1<i<j<n U{ve) : X "0 = 0}repp), where Hy; = e;e] — eje. They show
along the direction of basis, the exponential retraction can be computed efficiently. That is, for basis X H;;, we compute
Retrx (tX H;;) = XG,;(t), which also leads to the Givens rotation. The projection of Riemannian gradient onto the basis
is given by (grad f(X), X H;;) X H;;. For basis vey, Retrx (ve))) = X + (cos([|v[)[X].,; +sin([Jv]|) oy — [X]. ;) el and
the projection of Riemannian gradient is (I,, — XX ")[V f(X)]. xe/ . This essentially updates j-th column by Riemannian
gradient descent over sphere. We notice that each coordinate update costs O(n) while the projection onto second basis costs

O(np).

Further, we highlight a recent paper (Yuan, 2023), which considers block coordinate descent updates for Stiefel manifold by
modifying k£ rows. The strategy is to decompose the the rows of the variable into two sets and solve for a subproblem that
updates k rows instead. Nevertheless, each subproblem can be difficult to solve in general.

B.3. SPD manifold

A recent work (Darmwal & Rajawat, 2023) develops coordinate (subspace) descent algorithm for symmetric positive
definite (SPD) manifold, i.e., S, = {X € R™™™ : X > 0}, with tangent space given by Tx S}, = {X € R"*" :
X € Sym(n)}. Optimization with SPD constraint is difficult as the cost of maintaining positive definiteness requires at
least O(n?). Under the affine-invariant metric (Bhatia, 2009), i.e., (U, V)x = tr(UX "1V X 1), the paper verifies that
the tangent space can be provided with an orthonormal basis LFE;; LT where LLT = X is the Cholesky decomposition
and E;; = (eiejT +ejel)/ V2 fori # j and e; ejT for : = j. The exponential retraction along the basis direction can be
simplified as Retrx (tLE;; L") = Lexpm(tE;;)L ", where the Cholesky factor of expm(¢E;;) has a simple form. Thus it
suffices to update the Cholesky factor. The coordinate descent then updates as Retrx (—n0LE;; L) where 6 is computed
as the coordinate derivative § = (gradf(X), LE;;L")x = (Vf(X), LE;; L") because the Riemannian gradient has the
form gradf(X) = XVf(X)X.

C. Other related works

This section summarizes the existing works for optimization under the respective manifold constraints. These methods
exploit the full gradient information and in general have advantage over CD methods.

Optimization on orthogonal, Stiefel, and Grassmann manifolds. Optimization with orthogonality constraint has been
widely studied. Apart from the Riemannian optimization approach, many recent works turn to infeasible methods, either
through converting the orthogonality constrained problem into an unconstrained counterpart in the Euclidean space (Xiao
et al., 2022; Lezcano Casado, 2019; Xiao & Liu, 2021; Xiao et al., 2023), or following a direction that leads to the same
critical point on the manifold (Gao et al., 2019; Ablin & Peyré, 2022; Ablin et al., 2023). We provide a through review
of these methods in Appendix section D. Although the per-iteration cost is smaller without using a retraction to ensure
feasibility, the methods are sensitive to the choice of stepsize and other parameters, mostly a regularization parameter. In the
experiment sections, we observe the infeasible methods either require careful tuning of multiple parameters or some stepsize
sequence to show good performance.

Optimization on hyperbolic, symplectic and SPSD manifold. Optimization over hyperbolic space  (n, p) has mostly
focused on the case where p = 1 (Nickel & Kiela, 2018; Wilson & Leimeister, 2018). Given the exponential map is
already efficient in this case, few works have explored more efficient alternatives to Riemannian optimization. Similarly
for the symplectic manifold, existing works (Gao et al., 2021b;a; 2022) have focused on the retraction-based Riemannian
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optimization approach. Optimization over SPD matrices has a long history and can be solved with semidefinite programming
if the objective is convex. For general cost functions and with additional rank constraint, many works (Vandereycken et al.,
2009; 2013; Massart & Absil, 2020) have defined Riemannian geometries for the constraint set to leverage the tools from
Riemannian optimization.

D. Review of infeasible methods for optimization under orthogonality constraints

This section reviews various infeasible methods for solving optimization problems under orthogonality constraints, i.e.,
min f(X), stX'X=1I, 4)
Recall the first-order optimality conditions of the problem are

V(X) = XA,
XTX =1,

where A = AT is the Lagrangian multipliers. Because A is symmetric, we can compute A = X 'Vf(X) =
VA(X)TX = sym(Vf(X)"X) (by left-multiplying the first equation by X 7). Subsequently, the first condition be-
comes Vf(X) — XVf(X)TX = skew(Vf(X)X )X = 0, which in fact corresponds to the first-order condition of
Riemannian optimization (under the canonical metric). The augmented Lagrangian of (4) is given by

1 %
Lu(X,A) = F(X) = A XTX — 1) + LIXTX — 1|

and the Augmented Lagrangian Method (ALM) outlined in (Gao et al., 2019) considers alternately updating X and A.
However the numerical performance of ALM is sensitive to the choice of i, which has been empirically verified in (Gao
etal., 2019).

PLAM. Gao et al. (2019) propose an alternative update of the Lagrangian multipliers A by setting it to sym(V f(X) T X),
which is optimal at first-order stationarity, and the proximal linearized augmented Lagrangian (PLAM) algorithm takes the
update

Xpir = Xp — n(Vf(Xk) ~ Xpsym(V (X)) T X0) + Xk (X7 X — Ip)), (5)

which corresponds to the X1 = argminy (VL (Xy, Ak), X — Xg) + o0 | X — X ||? with Ay = sym(V f(X) " Xi).
However, the boundedness of the iterates cannot be expected without setting A to be sufficiently large and 7 to be sufficiently
small.

PCAL. Gao et al. (2019) further constrain the proximal linearized update in (5) to a redundant column-sphere constraint.
This is used to reduce the sensitivity of convergence to A, . The update can be implemented in a column-wise parallel
fashion as

(Xk)i = nVx, L,( Xk, Ag)

1(Xk)i =V x, Lon(X Ar) ||

(Xkt1)i =

PenCF Xiao et al. (2022) consider the merit function (used to analyze function value decrease in (Gao et al., 2019)) as an
exact penalty function to be minimized. Specifically, the merit function is given by

WX = J(X) — 4 lsym(X TV (X)), XTX — L)+ DXTX 1),

Without proper constraints, directly minimizing h(X) can be problematic because h(X) can be unbounded. Hence,
(Xiao et al., 2022) incorporates constraints to the minimization of h(X) (called PenC), including a ball, convex hull
of Stiefel/oblique manifold, which includes the orthogonality constraint set. Then the paper shows the first-order and
second-order critical points of PenC match those of the original problem (provided f3 is sufficiently large). Nevertheless, the
gradient Vh(X) involves second-order derivatives V2 f(.X). Hence, the paper similarly considers approximating VA (X)
with V£(X) — Xsym(Vf(X)"X) + BX(X T X — I,), which is the same as in (Gao et al., 2019) and then project the
update to the constraint set.
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Landing field Ablin et al. (2023) consider the update
X1 = X = (skew(Vf (Xe) X)X + AXk(X[] X, = 1)),

where the direction takes a combination of the Riemannian gradient and a landing direction orthogonal to the Riemannian
gradient.

ExPen Xiao & Liu (2021); Xiao et al. (2023) convert the constrained optimization problem to an unconstrained problem
by minimizing the following objective:
3 Lo Byt 2
h(X) = F(X(GIp = 3XTX)) + ZIXTX — 5%
It can be shown that when £ is sufficiently large, first-order and second-order critical points recover those of the original

problem. When compared to the framework of PCAL/PenC, the problem is now unconstrained and the gradient can be

computed as
3

2
where G(X) = Vf(Y)ly_x(z1,- 1 x7 x)- This allows unconstrained solvers to be directly applied.

Vh(X)=G(X)(51, - %XTX) — Xsym(X 'G(X)) +BX (XX — 1)

E. Additional developments and proofs for Section 3
E.1. Stiefel manifold

In the main text, we focus on the Euclidean metric on Stiefel manifold, i.e., (U, V)£ = (U, V), which leads to the Rieman-
nian gradient gradf(X) = Vf(X) — Xsym(X "V f(X)). We here review another popular metric on Stiefel manifold,
namely the canonical metric (Edelman et al., 1998), defined as (U, V) = (U, (I, — 2X X )V). The corresponding
Riemannian gradient is derived as grad f(X) = Vf(X) - XVf(X) T X.

There exists a variety of retractions for the Stiefel manifold, including the QR retraction Retr%; (tU) = qf (X + tU) where
qf(A) extracts the g-factor from the thin QR decomposition. The Cayley retraction (Wen & Yin, 2013; Zhu, 2017) is
Retr§ (tU) = (I — tW)~1(I + LW)X, where U = WX for some W € Skew(n). The exponential retraction is given by

Retr{(0) = [X U] expm( {X;U _)g:g D {e"pm(BXTU)] .

Here we verify the same coordinate derivative is recovered under the canonical metric.

Lemma E.1. Let B, = H;; X for 1 < i < j < n, then we have 0 = (grad f(X), Bo)% = (gradof(X), Bo)§ =
(VA(X),Be) = [VH(X)X T = XVF(X) ]

Proof of Lemma E.1. Recall the grad f(X) = Vf(X) — Xsym(X " Vf(X)). Then
0 = (grad f(X), B)E = (VF(X) — Xsym(X TV (X)), Hyy X) = (V(X), Hy X) = 2[skew(V (X)X )],

where we use the fact that skew-symmetric matrix is orthogonal to symmetric matrix with respect to the Euclidean inner
product. Similarly for the canonical metric,

0 = (grade F(X). BS = (VF(X) = XVFOXT (I = 5 XXT)H;X)

= (Vf(X) = Xsym(X "V f(X)), H; X)
= (Vf(X), Hi; X).

This verifies 6 is the same under the two metrics. O

E.2. Grassmann manifold

Proof of Proposition 3.2. Tt suffices to verify that Vf(XQ) = Vf(X)Q as the Euclidean inner product
(VIX)Q,H;; XQ) = (Vf(X),H;;X). We start by noticing f(X) = f(XQ) for any Q@ € O(p). Then taking
derivative on both sides gives Vf(X) = Vf(XQ)Q " and thus Vf(XQ) = V(X)Q. O

16



Riemannian Coordinate Descent Algorithms on Matrix Manifolds

E.3. Hyperbolic manifold
E.3.1. PROOFS

Proof of Proposition 3.3. By the decomposition, we can express A = XQ + X ;, K + X .S for some Q2 € Skew(p), S €
Sym(p), K € R(=P)*P_ Left-multiplying X ' J gives X ' JA = —Q — S. Summing both sides with the transposes yields
S = —sym(X " JA). Hence the projection to TxH(d,r) is given by Projy (A) = A + Xsym(X " JA).

From the definition of Riemannian gradient, we have Df(X)[U] = (Vf(X),U)r = (JVf(X),U)r =
(JVf(X),Projx(U))z = (Projx(JVf(X)),U),, where we use the self-adjoint property of orthogonal projec-
tion with respect to the metric. Thus the Riemannian gradient is gradf(X) = Projx(JVf(X)) = JVf(X) +
Xsym(X TV f(X)). O

Proof of Proposition 3.4. First, we see ¢(0) = X and we compute ¢’ (t) = expm(¢W.J)W JX and hence ¢/(0) = WJX =
U. The only part left is to show ¢(t) € H(n, p). This can be verified by showing expm(¢WJ) is a Lorentz transform. To
see this, let L(t) := expm(tWJ) " Jexpm(¢W J). Then we have

L'(t) = (W Jexpm(tW.J)) " Jexpm(tW.J) 4 expm(tW.J) " JW Jexpm(tW.J)
= expm(tW.J) " (JW T+ JWJ)expm(tW.J) =0, Vt.

Thus L(t) = L(0) = J,Vt. This completes the proof as c(t) = expm(tW.J)X € H(n,p) because c(t)" Je(t)

XTLHX =XTJX = —1I, O

Proof of Lemma 3.5. For the case where i,j # 1, we can see H”J = HZJ and thus expm(@HU) leads to the Givens

rotation. However in the case where i = 1, H;;J = E;; = ezej + eje; . Thus, it remains to show expm(0E;;) can

be simplified. To this end, we see E?f = (E“ + Ej;), E2t b= E;;, fort € N. Then we can show expm(§E;;) =
4 3 5

I+9EZ]+ 2,92E2 193Ei3j+"' = §Zk;&i,jEkk+(1+ a7 “r%“r"')%(Eii-i-Ejj)-i-(e—‘r%—l—%—i-'“)Eij =

1S iy B+ 2O By + Eyy) + sinh(0) B O

E.3.2. A CANONICAL-TYPE METRIC

In addition to the Euclidean metric, we define the canonical metric on hyperbolic manifold as for U,V € Tx H(n, p),
1 1
U V)x =—tx(U"(J + 5JXXTJ)V) = —tr(XQu + Xy, K,) T (J + §JXXTJ)(XQ7J + X, K,))

1
= gtr(QIQy) + tr(K;rKv).

The normal space under the canonical metric is the same as that for the Euclidean metric Nx H(d,r) = {XS : S € Sym(p)}
and thus the orthogonal projection can be derived also to be the same. The Riemannian gradient can be derived as follows.

Proposition E.2. The orthogonal projection of A € R"*P to TxH(n, p) is given by Projy (A) = A + Xsym(X T JA).

The Riemannian gradient with respect to the canonical metric is gradf(X) = —JVf(X) — XVf(X)'X =
2skew(JV f(X)X ) JX.

Proof of Proposition E.2. First we notice that (J + 3JXXTJ)~! = J — XX . This implies (U, V) = tr(U"V) =
tr(UT(J — XX)(J + 2JXXTI)V) = —((J - XXT)U V)x. Then by definition of Riemannian gradient, we
have (Vf(X),U) = ((J - XX)VF(X),U)x = (Projx((XXT — J)Vf( )),U)x. Hence, gradf(X) =
Projy (XXT — 1)V (X)) = (XXT — )V f(X) = ~JVJ(X) — XV(X) X. o

E.3.3. CAYLEY RETRACTION

Motivated by the Cayley transform for (generalized) Stiefel manifold, we define the Cayley transform for generalized
hyperbolic manifold as follows. Then in Proposition E.4, we show the Cayley transform naturally leads to a valid retraction
on the generalized hyperbolic manifold.

Definition E.3. For X € H(d,r) and U = WJX € TxH(d,r), the Cayley transform is defined as Cay x (U) =
(I — iWJ)~Y(I + $WJ)X, which is well-defined if I — W J is nonsingular.
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Proposition E.4 (Cayley retraction). For X € H(d,r) and U € TxH(d,r), The map Retr$§ (tU) = Cay  (tU) =
- %WUJ)*l(I + %WUJ)X is a retraction, where Wy = XU T Py — P;UXT, with Px = I,, + %JXXT.

Proof of Proposition E.4. First, because U € TxH(d,r), we can express U = WJX for some W € Skew(n). Since
H(d,r) is an embedded submanifold of R4*", let the curve ¢(t) = Retr$ (tU) and we have ¢(0) = X and

= %(I— %WJ)*WJ(XJFC(t))

with ¢/(0) = WJX = U. It remains to show c(t) € H(d, r). First we notice that
c(t) = (I - %WJ)‘l(I + %WJ)X =(J - %JWJ)‘l(J + %JWJ)X.
Then
)T Je(t) = XT(J + %JWTJ)(J - %JWTJ)*IJ(J - %JWJ)*(J + %JWJ)X

t t t t
=X (J=2JWJI)(J + 5JWJ)—lJ(J - §JWJ)‘1(J + 5JWJ)X

2

t t t t
=X"(I~- I+ 5JW)—l(I — 5JW)—l(I +5IW)JX
=X"JX =1,

where the second equality uses the fact that W € Skew(d) and the last equality is due to (/ + A)(I — A) = (I — A)(I+ A)
for any A.

Finally we can verify that Wy = XU " Px — P{UX " where Px = I,, + $ JX X T satisfies Wy JX = U. That is,
1 1 1
WyJX = 5XUTJX + (I, + 5XXTJ)U =U+ 5X(UTJX +XTJU)=U
where we use U € TxH(n,p). O

E.4. Symplectic manifold
E.4.1. REVIEW OF CANONICAL METRIC AND RETRACTIONS

The canonical metric of symplectic manifold is developed in (Gao et al., 2021b), as (U, V) x = %(Su, Sy) + (Ky, Ky)
for some chosen p > 0, where U = XQ,S, + Q, X, K, and V = XQ,S, + 2, X K,. The Riemannian gradient
associated with the metric is grad, f(X) = pXQ,sym(Q) X 'V f(X)) + Q, X, X[ Q, Vf(X). The quasi-geodesic
retraction is derived by replacing the covariance derivative with the Euclidean derivative, given by Retr™(tU) =

QW Q,UQ,U expm(t, W)
[X, U]expm(t { L, —o, W ) 0

—1
derived to be Retr¢™ (tU) = (Ign - %Sx,UQn) (Ign + %SXUQH)X where Sy, = GxU(XQ,) "+ XQ9,(GxU) T,

Gx = Ip — $Xw,XTQ). In (Gao et al., 2022), a SR decomposition based retraction is proposed. That is, let
Py, = €1, €3, ..., €2p_1, €2, ..., €2,] Where e; is the j-th basis vector of R?”. Then denote a congruence matrix set as
T (Pop) = { P}, RPy, : R € R?P*P is upper triangular}. Then the Retr; (tU) = sf(X + tU) where A = SR is the SR
decomposition of A € R?"*2??_ with S € Sp(2n, 2p) and R € Ts,(P,) and sf(A) extracts the S factor.

] where W = X TQ,U. The symplectic Cayley retraction is

E.4.2. PROOFS

The proof of Proposition 3.6 follows immediately from the following Lemma.

Lemma E.5. For any S € Sym(2n), we have expm(t(2,,S), expm(tS€Q,,) € Sp(n,n).
Proof of Lemma E.5. The proof follows from (Gao et al., 2021b, Proposition 4.6). O
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Proof of Proposition 3.6. Similar to the previous sections, let ¢(t) := Retrx (tU) and we have ¢(0) = X and ¢/(0) =
S, X = U. Finally from Lemma E.5, we have ¢(t) T Q,,¢(t) = X Texpm(tSQ,,) " Q,expm(t5Q,) X = X TQ, X = Q,,
which verifies ¢(t) € Sp(n, p) O

Eiji Eijo

Ela2 Eigs

Proof of Proposition 3.7. We can partition the basis E;; = {
15,2

] € {0,1}*"*2" where E;j 1, E;j3 € Sym(n)
and F;; > € {0,1}"*"™. Hence E;;{), = [ E”’2 l—]rl] and the aim is to express expm(6E;;€,,) in compact form.
—i5,3 5,2

For 1 < i < j < n, we have E;; 2, E;; 3 = 0 and thus we obtain exp(0E;;Q2,) = I + 0E;;Q,, + i;(Eian)Q + =
I+0E;;Q,. Similarly forn+1 <i < j < 2n, we have E;; 1, E;; o = 0 and expm (6 E;;Q,,) = I 4+ 60 E;;€,,. This verifies
Vi<i<j<norn+1<i<j<2n

RetrX (HE”QTLX) =X + GEUQTLX

Forl <i<n <j<2n,wehave E;;; = FE;;3 = 0and E;; > = eie;n. Then E;;Q, = {_%jg EQ } We first
ij,2

notice that for k = 2, 3,4, ...

T . . . T . . .
e ifi=j53—n €i€; ifi=35—n
E.. k _ e»e.T_ k _ €i€ ET k_ e eTk: o
(Ei.2) (¢i€j-n) 0, otherwise (Eij2) (ej-nei) 0, otherwise
This suggests for k = 2, 3,4, ...,
(B¢ = (=Dkee] +enrien,;, ifi=j—n
we 0, otherwise

I+ (e % —1)eie] +(e? —eypie),;, ifi=j—n

and expm(0E;;Q,) = .
I+ 0E;;Q,, otherwise

This verifies for 1 < i <n < j < 2n,

X+ (e = 1ee] X + (e — Venyie, X, ifi=j—n

RetrX(GE”QnX) = .
X +0E;;Q,X, otherwise

The proof is now complete. ]

E.5. Doubly stochastic manifold

For the doubly stochastic manifold, the retraction applies the Sinkhorn algorithm (Knight, 2008) for matrix balancing, i.e.,
Retrx (tU) = SK(X ® exp(tU @ X)), where U is a tangent vector belonging to the tangent space TxII(x, v) and the
Sinkhorn algorithm SK(U) iteratively normalize rows and columns of U according to the given marginals (Shi et al., 2021;
Cardoso & Leite, 2010).

E.5.1. PROOFS

Proof of Proposition 3.9. In fact, we can show for any H; i = (e; — €;)(ex — ;)" fori # j, k # I. The coordinate
Sinkhorn is a valid retraction along the direction H; ;. Let ¢(t) = c¢SK(X ©® exp(tH;jr; @ X)) and we can immediately
see ¢(0) = X. Also, Let X = X Oexp(tH;jr @ X). Then X differs with X in only the entries at (, k), (4, k), (4, 1), (k, 1),
which forms the 2 x 2 sub-matrix that we wish to balance. Also, by definition, the marginals are given by fi :== ([X];x +
[XTits [ X5k + [X]50) and 7 == ([X]ik, + [X]jks [X]it + [Xj1]). It readily holds that i" 15 = " 15. For notational purposes,
for any matrix A € R™*", let A;;;,; € R™*" be the matrix that zeros out the entries except for the 2 x 2 sub-matrix. Also,
[[A]m (Al
[Alje [Alj -
; With marginals /i, 7 with other entries of X unchanged. This is well-defined as the Sinkhorn algorithm

we denote A” ikl = } that extracts the corresponding 2 x 2 sub-matrix. Then ¢SK (X ) reduces to performing

Sinkhorn on )?fjk
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converges to the unique doubly stochastic matrix of the form diag(u ) i jk ,diag(v) for some positive vectors u, v (Sinkhorn,

1967). This verifies that CSK()N( ) results in a doubly stochastic matrix, which remains on the manifold. Lastly, it remains to
show that ¢/(0) = H,j;. For this, we first have

Z(0) = lim c(t) —c(0)  SK(X @exp(tHiju @ X)) — X cSK(X + tHijp) — X

t—0 t t t ’

where we use the first-order approximation of the exponential operations. Notice that cSK(X + tH,;x;) only modifies the
22 sub-matrix of X by SK(X?, 1, +tH?,,). From (Douik & Hassibi, 2019; Shi etal., 2021), we have SK (X7, +tH ;) ~

X7 + tH]j,,. This suggests limy o (SK(X7,, +tH? ) — X0p)/t = HYjyy, which verifies ¢/ (0) = Hyjp. O

Lemma E.6. Given a positive 2 X 2 matrix A = {Z Z] , the Sinkhorn algorithm on A with marginals p = [p1,p2],q =

Cci11a C12b

] where c15 = p1/(ka + b), cas = pa/ (ke + d), 11 = Kc1a, €a1 = Keag where K
Co1C ngd

[q1,q2] € Az converges to [

is the positive root of the equation qzack?® + ((bc + ad)gs — bepy — adpz)li —bdg, = 0.

Proof of Lemma E.6. Sinkhorn algorithm converges to the unique doubly stochastic matrix of the form diag(u)Adiag(v)
for u = [uy, us],v = [v1,v2]. From the constraints, diag(u)Adiag(v)1s = p and diag(v)A T diag(u)1ls = ¢ we need to
solve the quadratic problem

(uv1)a + (u1v2)b = py
(ugv1)c + (ugve)d = po ©)
(urv1)a + (ugvr)e = @1
(u1v2)b + (ugv2)d = ¢o

Let c11 = u1v1, c12 = U1V, C21 = U2V1, C22 = Uv2 Which transforms (6) into a set of linear equations for the variables
11, C12, C21, C22. The equation system, however, is under-determined and has many solutions. The unique solution that is
sought should satisfy c11/c12 = ¢21/co2 = k. To this end, from the first two equations, we obtain

c12 =p1/(ka+b), coo=p2/(kc+d).

Substituting the expressions to the last equation yields Hl;pib + Hdcpf = = g2, which we solve for x as the positive root of

g2ack® + ((be + ad)gz — bepy — adps)k — bdgy = 0. O

F. Formal developments and proofs for Section 4
F.1. Developments

Assumption F.1. Consider a neighbourhood X C M that contains a critical point.

F.1.1 The basis and its projection are bounded. Let the projection onto the basis By, x be Pp, (U) == (U,Bi,x)xBe,x.
There exists constant ¢, ¢, > 0 such that VX € X, U € Tx M, !l € Z, || By, X||X < and Y, 7 [|Ps, Ul% >
A

F.1.2 The objective f is retraction L-smooth in X', i.e., f(Retrx (U)) — f(U) — (grad f(X),U)x < £|U[%.VX € X
and U € T'x M such that Retrx (U) € X.

Remark F.2. Assumption F.1.1 requires the basis has a bounded norm and the projection of any tangent vector onto the
basis does not vanish. Such an assumption is manifold-specific and we can verify that || By, x||% has an upper bound
(e.g., for Stiefel and Grassmann, 2 <||H;||% = 2). Then we note that the second requirement trivially holds for
orthonormal basis due to the decomposition of U and Jensen’s inequality. For non-orthonormal basis, this assumption also
holds as long as projection of a tangent vector does not vanish. Assumption F.1.2 can also be satisfied by the compactness

2
of the domain, e.g., we can take L in Assumption F.1.2 to be L = maxxcx verx M:|U|x=1 W. These are all
reasonable assumptions within a compact neighbourhood X'.
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Theorem 4.1 (Formal). Under Assumption F.1, consider RCD algorithm with S = 1 and {j, selected uniformly at random

21 T|A
from I. Then suppose ) = L%b it satisfies Ming<p<x—1 E||gradf(Xk)\\§(k < % where Ag == f(Xo) — f*.

To analyze the cyclic variant, we further require the assumption that bounds the difference between Riemannian distance
and distance induced by general retraction. In addition, we require the gradient Lipschitzness.

Assumption F.3. Under the same settings as in Assumption F.1,

E3.1 Forall X,Y = Retrx (U) € X, there exists constants 9o, 1 > 0 such that 9| U||% < dist*(X,Y) < 9||U|%.

F.3.2 The objective has retraction L,-Lipschitz gradient, i.e., ||gradf(X) — Tixgradf(Y)||% < L,|U|%, VX,Y =
Retrx (U) € X and Ty is the an isometric vector transport that satisfies (7T U, Tx V)y = (U,V)x, VX,Y €
X, U,V eTxM.

F.3.3 For any fixed coordinate index ¢ € Z, there exists a constant v > 0 such that for all X,Y € X,V € Ty M,
|‘PB,XT)2(V||§( > U‘lpB/YV||§/

Remark F.4. Assumption F.3.1 bounds the difference Riemannian distance (relating to inverse exponential map) and the
inverse retraction. Because retraction is a first-order approximation to the exponential map, this assumption naturally holds
when the domain is sufficiently small (see (Huang et al., 2015; Sato et al., 2019)). Assumption F.3.2 is further required
because when general retraction is used, gradient Lipschitzness is not equivalent to function smoothness. Assumption F.3.3
further claims that the difference between the same coordinate basis on different tangent spaces is bounded. We note that the
RHS is identical to || P7x 5 “,7;3( V|| due to the isometric vector transport. Then it reduces to whether TyX By y and By x
are related, which is expected because due to the compactness of the domain, X is bounded from Y. This allows to establish
the convergence for cyclic selection of basis.

Theorem 4.2 (Formal). Under Assumption F.1 and consider RCD algorithm with S = |I| and ¢;, = s+1fors =0, ...,|Z|—1.
Then selecting n = L%b gives minp<p<x—1 ||grad f(Xg)|| x, < Cﬁo, where C = 4Lc§c§1v’1(1+|I|2cb71L*2L91911961).

Theorem 4.3 (Formal). Under Assumption F.1, F.3 and further let wg,wy > 0, such that for any fixed epoch k,
wo(Vf(X}), By )* <0V F(XE), Bes) <wi{Vf(X}), Be;)? Vs < Siax — 1.

(Randomized). Consider RCDlin algorithm with 1 < S < Syax and U3, selected uniformly at random from I. Then choosing

2LcE e twy 2w?|T|A
E— 1 i 2 b o "1 0
1= ey We obtain mino<p<x—1,0<s<5-1 Ellgradf(Xg)ll%;: < Pl .

(Cyclic). Suppose Smax > |I| and consider RCDlin algorithm with S = |I| and ¢; = s + 1 for s = 0,...,|Z] —
1. Then choosing n = #?d% we have ming< <k _1 ||gradf(X,‘2)H?X§ < Cﬁ“, where C' = 4Lc§w%w0_2c;11/_1(1 +
[Z[2ey ' L2 Ly010y").

Remark F.5. We finally remark that the proof ideas of cyclic and randomized RCD follow from classic developments of
coordinate descent (Wright, 2015) in the Euclidean space by showing sufficient descent in the objective function. On general
manifolds, in order to generalize the proof ideas, we further require the assumptions outlined in Assumption F.1, F.3. In
particular, for cyclic selection rule, we require Assumption F.3.3 to relate bases from different tangent spaces. Similar

assumptions have been considered in (Gutman & Ho-Nguyen, 2023) for showing convergence of deterministic subspace
descent algorithms on manifolds (see (C, r)-norm condition).

F.2. Proofs

Proof of Theorem 4.1. Because S = 1 and by retraction L-smoothness, we have

n*607 L
2

F(Xpt1) = f(Xk) < —nlgrad f(Xy), Or. B, ) x,, +

2 202
2 HB/AHE n ekL 2
e e E

1Pp,, gradf(Xk)|%,
2Lc? ’

1Be, I,

IN
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where we use the assumption || By, |3 X, < b, and choose ) = Taklng expectation with respect to ¢y, we have

B [f(Xis1)] = f(Xk) < =575 [IIP5,, gradf (X[ %, ]

1
2L2

<—— df(X .
= 2|I|[c§”gra f( k)HXk
[elescoping this inequality and taking full expectation yields

2Lcge, M Z|Ag

K—
— Z Ellgrad f(X5)[%, < © :
k=0

K

where we let Ag = f(Xo) — f*. O

Lemma F.6. Under Assumption F.1.1, we have | Pp, . Ul|x < c||U|x, VX € X, £ € T.

Proof of Lemma F6. |Pp, (Ul% < (U, Bo(X))% = cb<<U,Bg(X)>XBg(X),U>X < a||PB, xUllx||U||x. Can-

celling || Pp, , Ul|x on both sides completes the proof. O

Proof of Theorem 4.2. We first focus on a single epoch k and for notation simplicity, we let T)?fik = Ts—0 and T = Toos-
Similarly from retraction L-smoothness,

s s 1 s
FOXGHY = F(Xp) < *TC%”PB@ gradf(Xk)Hg(.;

with stepsize ) = L%b Summing over s = 0, ..., S — 1, we can bound
S5—1

1
F(Xren) = f(X0) € =57 D [Py, grad f(X) 5 -

"
Then it remains to bound the RHS. From L,-Lipschitz,
lgradf (X7) — To-ssgrad f(Xi) % < LgllRetry; (X%, < Loty ' dist® (Xx, X))

< Ly (Y dist(x] 7, X))

j=1
s—1
< nPLy0 0y SZ“PB (grad F(XD)I%,
7=0

where we use Assumption F.3 and triangle inequality of Riemannian distance.

Now we can show

1Py, Tosetrad f(Xe)[%; < 20Ps,, Toossgradf(Xi) — P, gradf(X7) | +2/Ps,, gradf(XD) %

< 26y|| Tossgrad f (Xi) — grad f(X})|%; + 2| P, sradf (XP)%;
s—1

< 2e0° Lyt 05 'S 3 [P, (gradf (X)) + 20Pp,; grad f(X7) %,
7=0
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where the second inequality is due to Lemma F.6. Summing this inequality from s = 0, ..., S — 1 gives

S—1

D 1P, Toosgrad f(Xi)[%;

= S—1 S—1s—1 )

<2 ;) 1P, grad f(X7) |5 + 2¢0n” L9195 |Z] ; ;0 1P, (grad (X)) | x;
S—1

<21+ [ZPean’Ly0195 ") Y |IPs,, srad f (X)),
s=0

where we notice S = |Z|. Also due to the cyclic selection of 5, we can see the LHS is

S—1
D Pr,, Toossgrad f(Xi) 3 = v ) 1P, v, grad f (Xi) %, = cpvllgrad f(Xp)lI%, .
s=0 LeT

where we use Assumption F.1.1 and F.3.3. Combining with previous results, we finally obtain

5-1
1 1
f(Xit1) = f(Xg) < Y Z ||PB[zgradf(X,‘:)H§(i < —6||gradf(Xk)H§(,c,
b s=0

where C == 4Lcic, "o (1 + |Z|2¢, ' L™2Ly019; ). Telescoping this inequality completes the proof. O
Proof of Theorem 4.3. For the randomized setting, by retraction L-smoothness,

72037 L

FOXPEY = F(X}) < —nlgrad f(X}), 03 Be: ) x; +

2
2ns2
n°0:°L
(RITW

772wa
2

(| Be;

2
Xi

—n0i(Vf(X}), Bey) +

IN

—nwo(V f(Xk), B ) +

2,2
nwo n wlL S 2
( - T) IV F(XR), Beg ) Beg || x5
Wi

2, 2
2Lcjwy

IV F(XR), Be;) Be;

2 3
X3

IN

1Ps, grad (XD

where we choose n = 0. The second inequality follows from the assumption wo(Vf(X}),Be:)* <

1
05 (Vf(X}), Be:) < wi(Vf(X}), Be:)? and the third inequality is due to Assumption F.1.1. Following the similar
proof strategy, we obtain the desired result. For the cyclic setting, the bound also readily follows by using the above
result. [
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