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Abstract
Estimating high-dimensional covariance matrices
is crucial in various domains. This work con-
siders a scenario where two collaborating agents
access disjoint dimensions of m samples from a
high–dimensional random vector, and they can
only communicate a limited number of bits to
a central server, which wants to accurately ap-
proximate the covariance matrix. We analyze the
fundamental trade–off between communication
cost, number of samples, and estimation accuracy.
We prove a lower bound on the error achievable by
any estimator, highlighting the impact of dimen-
sions, number of samples, and communication
budget. Furthermore, we present an algorithm
that achieves this lower bound up to a logarith-
mic factor, demonstrating its near-optimality in
practical settings.

1. Introduction
Estimating the covariance matrix of a random vector from
its i.i.d samples is one of the primary problems in various
fields, such as financial mathematics, statistics, and machine
learning (Hotelling, 1933; Dahmen et al., 2000; Ledoit &
Wolf, 2003). Let {Z(i)}mi=1 = {Z(1),Z(2), . . . ,Z(m)} be
m i.i.d. samples of a random vector Z. Then its covariance
matrix can be estimated using sample covariance estimator,
as:

Ĉ =
1

m

m∑
i=1

Z(i)Z(i)⊤. (1)

For sub–Gaussian random vector Z (see Definition 5.2),
(Vershynin, 2018, Theorem 4.7.1) establishes some bounds
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on the operator norm of the estimation error of estimator
(1). For alternative assumptions on the covariance matrix
C = E[ZZ⊤], such as sparsity, low-rankness, and Toeplitz–
structure, various estimators have been reported in the liter-
ature (Huang et al., 2006; Furrer & Bengtsson, 2007; Bickel
et al., 2008; Bickel & Levina, 2008; El Karoui, 2008; Wu &
Pourahmadi, 2009; Chen et al., 2012). These estimators dif-
fer from the traditional sample covariance estimator. Also in
some studies, such as (Cai et al., 2010; 2013), the optimality
of some covariance matrix estimators is investigated.

In distributed settings, like federated learning (McMahan
et al., 2017), the data may be distributed among multiple
agents, with each agent having access to only a subset of the
data. One can imagine two classes of problems: (i) sample–
split (or horizontal split), where each agent has access to a
subset of samples. (ii) feature–split (or vertical split), where
each agent has access to a subset of dimensions (or features)
of all samples.

Extensive research papers explore the extension of core
machine learning algorithms to distributed scenarios with
sample-split settings. For example, the problem of dis-
tributed principal component analysis for dimension reduc-
tion in sample-split settings has been investigated in (Qu
et al., 2002; Bai et al., 2005; Balcan et al., 2014; Kannan
et al., 2014). In addition, the distributed gradient descent
algorithm in this setting has been studied in (Langford et al.,
2009; Zinkevich et al., 2010; Niu et al., 2011). Moreover,
the distributed support vector machine is studied in (Navia-
Vázquez et al., 2006; Zhu et al., 2007; Lu et al., 2008; Forero
et al., 2010).

In contrast, in the feature split setting each agent has access
to a subset of dimensions for all data points. This situation
can arise in medical data, where a part of the health data of
each patient is stored in a different database (Allaart et al.,
2022). Another example is when some weather stations
collect the weather information of various regions of a coun-
try, and we want to estimate the correlations between them,
without sending all of the information to a central server.
Some studies extend some machine learning tasks to the
vertical split setting, such as (Yang et al., 2019; Shen et al.,
2019; Hadar et al., 2019; Hadar & Shayevitz, 2019; Wu
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et al., 2020).

In this paper, we consider the problem of estimating the
covariance matrix in a vertical-split setting, under commu-
nication constraints. In particular, we consider a distributed
system consisting of two agents and a central server, where
Agent 1 and Agent 2 have access to d1 and d2 dimensions of
m i.i.d. samples of a random vector, respectively. The goal
is to estimate the covariance matrix on the central server.
Due to a limited communication budget, Agent 1 can send
messages with at most B1 bits to the central server. Sim-
ilarly, Agent 2 has a communication budget of B2 bits to
communicate with the master. Consequently, the central
server estimates the covariance matrix by processing the re-
ceived messages. The main questions here are twofold: (1)
Considering the agents’ limited communication budgets and
the restricted number of samples, what is the ultimate accu-
racy in the estimation? (2) How can this ultimate accuracy
be achieved?

This paper answers both of these questions. We will find
the fundamental information–theoretic lower–bound on the
accuracy of the covariance estimation. Additionally, we will
introduce a scheme for estimating the covariance matrix
while respecting the communication limits inherent in the
problem. We will prove that the estimation error of the
proposed scheme matches with the obtained lower bound
within a logarithmic factor in practical settings.

Prior works: Several research papers have studied the
problem of distributed covariance estimation with lim-
ited communication budgets, with some focusing on the
horizontal-split case (Zhang et al., 2013; Braverman et al.,
2016; Han et al., 2018), while others concentrate on vertical-
split cases (Hadar et al., 2019; Hadar & Shayevitz, 2019). In
particular, (Hadar et al., 2019) investigates the problem of
estimating the correlation ρ = E[XY ] between two scalar
(d1 = d2 = 1) Gaussian or binary random variables X,Y
in the vertical split settings, where only Agent 1 has limited
communication budget (i.e., B2 = ∞) and the number of
samples is unbounded (m = ∞). For this set-up, (Hadar
et al., 2019) characterizes the exact order of the optimal
communication budget for any estimation accuracy. (Hadar
& Shayevitz, 2019) proposes a solution for the case where
the objective is to estimate correlation E[XkY ] between a
vector X = [X1, · · · , Xd]

⊤ and a scalar Y (d1 > d2 = 1),
without any claim on its optimality. The proposed solution
in (Hadar & Shayevitz, 2019) outperforms the solutions
based on estimating the correlation E[XkY ], for each k,
separately.

Our contributions: In this paper, we address the problem
of distributed covariance matrix estimation, for the general
family of sub–Gaussian random vectors with finite num-
ber of samples, and limited communication budget between

agents and the central server.

Our main contributions are:

• We derive a near optimal trade–off curve between the
number of samples, communication budgets, the number of
dimensions each agent has access to, and the expected esti-
mation error in the distributed covariance matrix estimation
problem.

• We prove that any estimation algorithm with
parameters (m, d1, d2, B1, B2) has the error of

Ω

(
max

{√
d/m,

√
d1d2/Bmin, 2

−min{B1
d21

,
B2
d22

}})
,

where Bmin = min{B1, B2}.

• Interestingly, to achieve a satisfactory approximation, it
is necessary to increase the strength of the communication
link between the poor agent (the agent with low-dimensional
input) in proportion to the dimension of the rich agent.

• We also propose a scheme for achieving an
expected operator norm of the error matrix

Õ
(√

d/m+
√
max

{
d21/B1, d22/B2, d1d2/Bmin

})
.

• We extend the method used in (Hadar et al., 2019; Hadar &
Shayevitz, 2019) to a similar setting with our problem, and
show that the obtained result from their method is weaker
than ours.

The paper is structured as follows: In Section 2, we review
the notations. In Section 3, we present the problem formula-
tion formally. Section 4 is dedicated to reviewing the main
results. Section 5 reviews some definitions and lemmas
used in establishing the results. In Section 6, we prove the
lower-bound and compare it with the results of (Hadar et al.,
2019; Hadar & Shayevitz, 2019). In Section 7, we state
the achievable scheme. Finally, we conclude the paper in
Section 8.

2. Notations
We use uppercase bold symbols, like A, to denote matrices
and lowercase bold symbols, like v, for denoting vectors.
For any vector v = [v1, v2, · · · , vd]⊤, we define the ℓp-

norm as∥v∥p =
(∑d

i=1 v
p
i

)1/p
. For a matrix A ∈ Rm×n,

the operator norm and the Frobenius norm are denoted by
∥A∥op and ∥A∥F, respectively. A generic norm,∥.∥dist, is
defined, encompassing both operator and Frobenius norms
for flexibility.

3. Problem Formulation
We consider a system including a central server and two
agents, as shown in Fig. 1. The central server is inter-
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ested in estimating the covariance matrix C = E[ZZ⊤]
of a d-dimensional σ sub–Gaussian random vector Z ∼ P
(see Definition 5.2), from m i.i.d. samples Z(1), . . . ,Z(m).
However, the central server does not have direct access
to these samples. Rather, Agent 1 has full knowledge
of the first d1 dimensions of all m samples, denoted by
{X(i)}mi=1 = {Z(i)

[1:d1]
}mi=1, and Agent 2 is aware of the re-

maining d2 = d− d1 dimensions, denoted by {Y(i)}mi=1 =

{Z(i)
[d1+1:d]}

m
i=1. The central server aims to estimate C

by receiving up to B1 and B2 from agents one and two
respectively. We also define Bmin = min{B1, B2} and
dmin = min{d1, d2} and will use these notations through
this paper.

We refer to this problem of distributed covariance matrix
estimation (DCME) with parameters (σ,m, d1:2, B1:2) as
DCME(σ,m,B1:2, d1:2). More formally, this problem con-
sists of two encoder functions and one decoder function as
follows:

• Two encoder functions E1 : Rd1×m 7→ [1 : 2B1 ] and
E2 : Rd2×m 7→ [1 : 2B2 ], where encoder one maps
{X(i)}mi=1 to M1 = E1({X(i)}mi=1) and encoder two
maps {Y(i)}mi=1 to M2 = E2({Y(i)}mi=1).

• A decoder function D : [1 : 2B1 ] × [1 : 2B2 ] 7→
Sd×d
+ , where Sd×d

+ is the set of positive semi-definite
matrices of dimension d × d. The decoder function
maps (M1,M2) to Ĉ = D(M1,M2).

The distortion of a DCME scheme, under the dist norm,
where dist can be either the operator norm or Frobenius
norm, is quantified by the dist norm of the difference be-
tween the estimated covariance matrix Ĉ and the true covari-
ance matrix C, in other words, Ldist(Ĉ,C) =

∥∥Ĉ−C
∥∥
dist

.
The expected distortion of a DCME scheme is assessed by:

E
[
Ldist(Ĉ,C)

]
= E{Z(i)}m

i=1∼P⊗m

[∥∥Ĉ−C
∥∥
dist

]
. (2)

The objective is to design the encoding functions E1(.)
and E2(.) and the decoding function D(., .), minimizing
E
[
Ldist(Ĉ,C)

]
and characterize min E

[
Ldist(Ĉ,C)

]
as

a function of the parameters (σ,m, d1:2, B1:2).

4. Main Results
In this paper, we state two main theorems about the ex-
pected distortion of DCME(σ,m, d1:2, B1:2) scheme. The
first theorem presents a general lower bound for any
DCME(σ,m, d1:2, B1:2) scheme and the second one pro-
poses a DCME scheme which has an expected distortion
that is matched with the derived lower bound, in certain
practical regimes.

Z(i) =

[
X(i)

Y(i)

]
m

i=1

{
X(i)

}m

i=1

{
Y(i)

}m

i=1

E1

E2

M1

M2

D Ĉ

Figure 1. Setting of the problem DCME(σ,m,B1:2, d1:2). Z ∈
Rd is a σ–sub–Gaussian random vector with covariance matrix C.
X,Y contain the first d1 and the reminder d2 dimensions of Z,
respectively. The Ĉ is an estimation of C, with the constraint that
H(M1) ≤ B1 and H(M2) ≤ B2.

4.1. The Lower Bound

In the first theorem, we use a min–max argument to find a
lower bound on the expected distortion E

[
Ldist(Ĉ,C)

]
in

any DCME scheme with the parameters (σ,m, d1:2, B1:2).

Let P = subG(d)(σ) denote the family of σ–sub–Gaussian
d–dimensional distributions. Then the min–max error met-
ric under dist norm is defined as follows:

Mdist(σ,m, d1:2, B1:2) := inf
E1,E2,D

sup
P∈P

E
[
Ldist(Ĉ,C)

]
.

The main theorem on the lower bound is as follows:
Theorem 4.1. Consider the problem of
DCME(σ,m, d1:2, B1:2). Then, for any choice of the
encoder functions E1, E2 and the decoder function D,
Mdist(σ,m, d1:2, B1:2) is lower-bounded as:

Mop ≥
σ2

32
min

{
max

{√
d1d2
2Bmin

,

√
d

3m
,

8 · 2
−16B1

d21 , 8 · 2
−16B2

d22

}
, 2

}
, (3)

and

MF ≥σ2

32
min

{
max

{√
d1d2dmin

14Bmin
,

√
d2

42m
,

4
√
d1
7

· 2
−16B1

d21 ,
4
√
d2
7

· 2
−16B2

d22

}
,

√
d

7

}
. (4)

The above theorem states that given parameters
(σ,m, d1:2, B1:2), there is no DCME scheme that
can achieve an error with operator norm less than

O
(
σ2 max

{√
d1d2

Bmin
,
√

d
m , 2

−min{B1
d21

,
B2
d22

}})
, for any

distribution P ∈ subG(d)(σ).
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The proof of Theorem 4.1 can be found in Section 6.1.
Here, we highlight the main steps of the proof. To prove
Theorem 4.1, we first reduce the estimation problem to
a finite hypothesis testing problem between a family of
distributions {Pv}v∈V with the corresponding covariance
matrices {Cv}v∈V , where V is a set with finite cardinality.
Since Z is a sub–Gaussian random vector, we use Gaussian
distributions to pack the set of σ–sub–Gaussian distributions.
For any covariance matrix C, we consider the following
decomposition of it:

C =

[
CXX CXY

C
⊤
XY CYY

]
, (5)

where CXX = C[1:d1,1:d1], CXY = C[1:d1,d1+1:d], and
CYY = C[d1+1:d,d1+1:d]. Our lower bound is based on
finding separate lower bounds for approximating each part
of the true covariance matrix C. To do this, we introduce
two different families of Gaussian distributions.

Family with varying cross–covariance: The first fam-
ily of Gaussian distributions, denoted by {Pv}v∈V , has the
corresponding covariance matrices {Cv}v∈V . Through this
family, the self–covariance matrices Cv,XX and Cv,YY are
fixed for all v ∈ V . However, cross–covariance Cv,XY is
varying (See Lemma 6.2). In this setup, we apply some
strong data processing inequality (See Definition 5.6) to
obtain a lower bound on the error probability of the hypoth-
esis testing problem among the members {Pv}v∈V . The
first two terms, within max in (3) and (4), correspond to the
lower bound obtained by this packing.

Family with varying self–covariance: The second fam-
ily of Gaussian distributions, denoted by {Pu}u∈U , has
corresponding covariance matrices {Cu}v∈U . Through this
family, Cv,XY and Cv,YY are fixed for all u ∈ U , but,
Cv,XX is varying. (See Lemma 6.3). In this setup, we ap-
ply the classical data processing inequality (See Theorem
5.5) to obtain a lower bound for the error probability of the
hypothesis testing problem. The last two terms within max
in (3) and (4), correspond to the lower bound obtained by
this family of distributions.

In the next step, we derive a lower bound on the expected
distortion in terms of the separation of the distribution fam-
ily, i.e. ρdist := infv,v′∈V

v ̸=v′

{
∥Cv −Cv′∥dist

}
, and the error

probability of the hypothesis testing problem.
Corollary 4.2. Theorem 4.1 implies that any DCME with
distortion less than or equal to ε requires at least m =

Ω(σ
4d
ε2 ) samples and B1 = Ω(max{σ4d1d2

ε2 , d21log
σ2

ε })
and B2 = Ω(max{σ4d1d2

ε2 , d22log
σ2

ε }) bits of communica-
tion from Agents 1 and 2, respectively.
Remark 4.3 (Extension to more than two users). Consider
a scenario with K > 2 agents labeled as 1, 2, . . . ,K. We

define a subset of users, denoted as S ⊂ [K]. To establish a
lower bound, we assume that the agents in S collude, and
similarly, the agents in Sc = [K]\S also collude. This
allows us to create two super-agents, denoted as A and B.
The super-agent A has access to

∑
i∈S di dimensions and∑

i∈S Bi bits of communication budget, while the super-
agent B has access to

∑
i∈Sc di dimensions and

∑
i∈Sc Bi.

Then Theorem 4.1 gives a lower bound for the colluded
scenario which itself is a lower bound for the non-colluded
scenario. Maximizing such lower bounds over the choice of
subset S implies:

Mop ≥
σ2

32

√√√√√max
S⊂[K]
S̸=∅

{
(
∑

i∈S di)(
∑

i∈Sc di)

2min{
∑

i∈S Bi,
∑

i∈Sc Bi}

}
.

4.2. The Achievable Scheme

In the second theorem, we propose a
DCME(σ,m, d1:2, B1:2) scheme and find an upper
bound on its expected distortion. The details of the
achievable scheme can be found in Section 7. Here we
present the main idea.

Consider the decomposition (5) of C. Agent 1 can estimate
CXX using data points {X(i)}mi=1, and Agent 2 can estimate
CYY using data points {Y(i)}mi=1. Therefore they spend
parts of their communication budgets on reporting quantized
versions of CXX and CYY to the central server. They can
allocate the rest of their communication budgets to report
some quantized versions of {X(i)}mi=1 and {Y(i)}mi=1 to the
central server. Then, the central server can estimate CXY

with this received information and form some estimation Ĉ.
Theorem 4.4. Assume that m ≥ 9d, B1 ≥
15d1 max{d1, d2} log2(max{d1, d2}), and B2 ≥
15d2 max{d1, d2} log2(max{d1, d2}), then there ex-
ists a DCME whose expected distortion satisfies the
following inequality:

E
[
Lop(Ĉ,C)

]
= σ2O

(√
d

m
+ log2

(Bmin

d1d2

)√
max

{ d21
B1

,
d22
B2

,
d1d2
Bmin

})
.

We state the following corollary, which is a direct conse-
quence of Theorem 4.4.
Corollary 4.5. Consider DCME(σ,m, d1:2, B1:2). Then,
for any distortion ε, ε ≤ σ2/2, there exists a DCME scheme

with the expected distortion E
[
Lop(Ĉ,C)

]
≤ ε, if m ≥

τ dσ4

ε2 and

Bk ≥ τ ′
σ4dk max{d1, d2}

ε2
· log22

(σ2

ε
max{d1, d2}

)
,

for k = 1, 2 and some constants τ, τ ′.
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We call a DCME(σ,m, d1:2, B1:2) problem as η–
homogeneous if the 1

η
B2

d2
≤ B1

d1
≤ ηB2

d2
, for some

constant η, meaning they are approximately equal. This
category is relevant in real-world scenarios where the
communication load dedicated to each agent is proportional
to the number of dimensions it handles. Comparing
Theorems 4.1 and 4.4, we conclude the following corollary:

Corollary 4.6 (Tightness for the homogeneous case.). In
an η–homogeneous DCME(σ,m, d1:2, B1:2) setting, the ex-
pected distortion of the proposed achievable scheme attains:

E[Lop(Ĉ,C)] = σ2O

(√
d

m
+ log2

(
Bmin

d1d2

)√
η
d1d2
Bmin

)
.

This expression matches with the established lower bound,
up to a logarithmic term, implying that the proposed DCME
scheme performs near-optimum.

5. Preliminaries
5.1. Sub–Gaussian Random Variables

Sub–Gaussian random variables, as formally defined in Def-
inition 5.1, are a family of random variables whose tails
decay faster than the tail of a Gaussian distribution.

Definition 5.1 (Sub–Gaussian Random Variable (Wain-
wright, 2019, Definition 2.2)). A random variable X is
said to be σ–sub–Gaussian if:

E
[
eλ(X−E[X])

]
≤ exp

(λ2σ2

2

)
, for all λ ∈ R.

The definition of sub–Gaussian variables can be extended
to random vectors as follows:

Definition 5.2 (Sub–Gaussian Random Vector (Wainwright,
2019, Section 6.3)). A random vector X ∈ Rd is called
sub–Gaussian with parameter σ if for all v ∈ Sd−1, v⊤X
is a σ–sub–Gaussian random variable, where Sd−1 = {u ∈
Rd : ∥u∥ = 1} is the d-dimensional unit sphere.

Some properties of sub–Gaussian random variables are
listed in Appendix A.2.

5.2. Packing and Covering Numbers

Definition 5.3 (Covering Number (Wainwright, 2019, Def-
inition 5.1)). A set {x1, x2, . . . , xN} ⊆ K is called a ϵ–
covering set with respect to a metric d if for all x ∈ K,
there exists some j ∈ [N ] such that d(x, xj) ≤ ϵ. The cov-
ering number N (K, d, ϵ) is the cardinality of the smallest
ϵ–covering set of set K, for the metric d.

Definition 5.4 (Packing Number (Wainwright, 2019, Def-
inition 5.4)). A set {x1, x2, . . . , xM} ⊆ K is called a ϵ–
packing set with respect to a metric d if d(xi, xj) > ϵ for

all distinct i, j ∈ [M ]. The packing number M(K, d, ϵ) is
the cardinality of the largest ϵ–packing set of set K, with
respect to the metric d.

5.3. Strong Data Processing Inequality

Theorem 5.5 (Data Processing Inequality (Cover, 1999,
Theorem 2.8.1)). If U −
−X −
− Y forms a Markov chain,
then:

I(U ;Y ) ≤ I(U ;X).

Strong Data Processing Inequality is a refined version of
the data processing inequality.

Definition 5.6 (Strong Data Processing (SDPI) Coefficient
or Rate of Information Bottleneck (Anantharam et al.,
2013)). Let X and Y be random variables with joint distri-
bution (X,Y ) ∼ pX,Y (x, y). We define:

s(X;Y ) = sup
U :U−
−X−
−Y
I(U ;X)>0

I(U ;Y )

I(U ;X)
.

The SDPI constant has tensorization property, which is
stated in (Polyanskiy & Wu, 2023, Proposition 33.11):

s(X⊗n;Y ⊗n) = s(X;Y ). (6)

In (Kim et al., 2017), the SDPI constant is derived for multi-
variate normal distribution.

Lemma 5.7 ((Kim et al., 2017, Section 2.6)). If (X,Y) ∼

N
(
µ,C =

[
CXX CXY

CYX CYY

])
, then we have:

s(X;Y) =
∥∥∥C−1/2

XX CXYC
−1/2
YY

∥∥∥2
op
.

6. Proof of the Lower Bound
6.1. Proof of Theorem 4.1

We use Fano’s method to lower bound the
Mdist(σ,B1, B2, d1, d2,m). This method, first intro-
duced in (Khas’ minskii, 1979), has undergone extensive
development in various papers (Ibragimov & Has’ Minskii,
1981; Birgé, 1983; Yu et al., 1997; Yang & Barron, 1999;
Birgé, 2005; Raskutti et al., 2011; Guntuboyina, 2011;
Candes & Davenport, 2013; Duchi & Wainwright, 2013;
Polyanskiy & Wu, 2023). We adopt the version described
in (Duchi, 2021, Section 7.4) and adapt it to the distributed
covariance matrix estimation (DCME) problem.

We consider a family of distributions {Pv}v∈V ⊂
subG(d)(σ) indexed by a finite set V . For each v ∈ V ,
let Cv := EX∼Pv [XX⊤] denote the corresponding covari-
ance matrix. For this set, we define the separation ρ with

5
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respect to the dist norm metric on the space of covariance
matrices as:

ρdist := inf
v,v′∈V
v ̸=v′

{∥∥Cv −Cv′
∥∥
dist

}
.

Lemma 6.1, a direct consequence of (Duchi, 2021, Proposi-
tion 7.10), establishes a fundamental bound in the context
of distributed covariance matrix estimation:

Lemma 6.1. Consider a set V with separation ρ, and a
corresponding set of distributions {Pv}v∈V . Assume a ran-
dom variable V ∈ V is chosen uniformly, and given V = v,
samples {Z(i)}mi=1 are drawn i.i.d. from Pv. In addition,
assume that Agents 1 and 2 access {X(i) = Z

(i)
[1:d1]

}mi=1

and {Y(i) = Z
(i)
[d1+1:d]}

m
i=1, respectively. For any DCME

scheme with parameters (σ,m, d1:2, B1:2), we have:

inf
E1,E2,D

sup
P∈P

E
[
Ldist(Ĉ,C)

]
≥ ρdist

2

[
1− I(V ;M1,M2) + 1

log2(|V|)

]
.

We proceed by first establishing two lemmas that utilize
Lemma 6.1 with specific distribution families {Pv}v∈V .
These lemmas will then pave the way for deriving the main
theorem regarding the min–max lower bound.

Lemma 6.2. Consider a set V and a corresponding set of
distributions {Pv}v∈V , where Pv = N (0,Cv) and:

Cv =

[
σ2

2 Id1
δDv

δD⊤
v

σ2

2 Id2

]
,

and Dv is some matrix in Rd1×d2 . Define:

βdist

(
{Dv}v∈V

)
=

√
1 + 1{dist=F} inf

v,v′:v ̸=v′
∥Dv −Dv′∥dist

max
v∈V

{
∥Dv∥op

} .

Then, the following lower bound on Mdist hold:

Mdist ≥
σ2

16
βdist

(
{Dv}v∈V

)
min


√

log2(|V|)
Bmin

, 2

 .

Furthermore, considering a set of distributions {Pv}v∈V ,
where Pv = N (0,C′

v) and:

C′
v =

[
σ2

2 Id/2 δD′
v

δD′⊤
v

σ2

2 Id/2

]
,

and D′
v is some matrix in Rd/2×d/2, we have the following

lower bound on Mdist:

Mdist ≥
σ2

8
√
2
βdist

(
{D′

v}v∈V
)
min

{√
2 log2(|V|)

3md
, 1

}
.

Proof. The complete proof is stated in Appendix B.1. Here,
we highlight some fundamental steps of the proof, briefly.

• Cv is the covariance matrix of a σ2–sub–Gaussian ran-
dom vector Z, therefore 0 ⪯ Cv ⪯ σ2I. This forces δ to
satisfy the condition δ ≤ σ2

2max
v∈V

{∥Dv∥op}
.

• The separation of set V is:

ρdist =
√

1 + 1{dist=F}δ inf
v,v′:v ̸=v′

∥Dv −Dv′∥dist .

• The vector Z ∼ N (0,Cv) has the same marginal dis-
tribution over the first d1 dimensions and the second d2

dimensions, for all v ∈ V . Therefore X =
{
X(i)

}m

i=1
is

independent from V . Similarly Y =
{
Y(i)

}m

i=1
is indepen-

dent from V . Subsequently, M1 and M2 are also indepen-
dent from V . This implies I(V ;M1,M2) ≤ I(M1;M2|V ).

• Using SDPI: We now utilize SDPI to bound
I(M1;M2|V ). For any V = v, M1 −
− X −
− Y −
− M2

forms a Markov Chain. Then

I(M1;M2|V = v) ≤ I
(
M1;Y|V = v

)
(a)
≤ sv (X;Y) I

(
M1;X|V = v

)
(b)
≤ sv (X;Y)B1,

where in (a), sv (X;Y) is the SDPI coefficient (Definition
5.6) for the joint distribution pX,Y, given V = v. In addition,
(b) holds due to (6). From Lemma 5.7 we have:

sv (X;Y) =
∥∥∥C−1/2

v,XXCv,XYC
−1/2
v,YY

∥∥∥2
op

=

(
2δ

σ2

)2

∥Dv∥2op .

We obtain a similar upper bound on I(M1;M2|V = v) w.r.t.
B2. In summary, we have:

I(M1;M2|V = v) ≤
(
2δ

σ2

)2

Bmin max
v∈V

{
∥Dv∥2op

}
.

• Setting δ = σ2

4max
v∈V

{∥Dv∥op}
min

{√
log2(|V|)
Bmin

, 2

}
, gives

the first term the in lower bound.

• Assuming δ ≤ σ2

2
√
2max

v∈V
{∥D′

v∥op
}

, and defining X′ ={
Z

(i)
[1:d/2]

}m

i=1
and Y′ =

{
Z

(i)
[d/2+1:d]

}m

i=1
, we can derive

another upper bound on I(V ;M1,M2) due to data pro-
cessing inequality and the Markov Chain V −
− (X,Y) =
(X′,Y′)−
− (M1,M2):

I(V ;M1,M2) ≤ I
(
V ;X′,Y′)

≤ 2mdδ2

ln(2)σ4
max
v∈V

{∥∥D′
v

∥∥2
op

}
.

6



Fundamental Limits of Distributed Covariance Matrix Estimation Under Communication Constraints

If we set δ = σ2

2
√
2max

v∈V
{∥D′

v∥op
}
min

{√
log2(|V|)
12md , 1

}
, the

second lower bound is derived.
Lemma 6.3. For the set U , we consider the set of distribu-
tions {Pu}u∈U , where Pu = N (0,Cu) and:

Cu =


σ2

2 Id1/2 δDu 0 0

δD⊤
u

σ2

2 Id1/2 0 0

0 0 σ2

2 Id2/2 0

0 0 0 σ2

2 Id2/2

 ,

where Du is some matrix in Rd1/2×d1/2. If we define:

βdist({Du}u∈U ) =

√
1 + 1{dist=F} inf

u,u′:u̸=u′
∥Du −Du′∥dist

max
u∈U

{
∥Du∥op

} ,

then we have this lower bound on Mdist:

Mdist ≥
σ2

2
βdist

(
{Dv}v∈V

) [
1− B1 + 1

log2(|U|)

]
.

Proof. The proof is presented in Appendix B.2.

Now we are ready to state the proof of Theorem 4.1.

Proof. We use Lemmas 6.2 and 6.3 with three appro-
priate sets {Dv}v∈V , {D′

v}v∈V , and {Du}u∈U to prove
the theorem. In Appendix A.5 we introduce the ~.~dist

of a vectorized matrix and the packing and covering
sets of the unit ~.~op ball of matrices under the dist
norm. We set the {Dv}v∈V as the ϵ–packing points of
B(d1d2)

~.~op
(1) (see Equation (21)), under ~.~dist norm. Thus

inf
v,v′:v ̸=v′

∥Dv −Dv′∥dist ≥ ϵ, max
v∈V

{∥Dv∥2op} ≤ 1, and

from (22) and (28), log2(|V|) ≥ d1d2 log2
(
νdist

ϵ

)
, where:

ν
(d1,d2)
dist =

{
1 if dist = op
√
dmin

14 if dist = F
.

We set ϵ = ν
(d1,d2)
dist /2. Using Lemma 6.2, we have the

following min–max lower bound:

Mdist ≥
σ2

16
κ
(d1,d2)
dist min

{
1

2

√
d1d2
Bmin

, 1

}
,

where κ
(d1,d2)
dist =

√
1 + 1{dist=F}ν

(d1,d2)
dist . We set

the {D′
v}v∈V as the ϵ′–packing points of B(d2/4)

~.~op
(1)

(see Equation (21)), under ~.~dist norm. Thus
inf

v,v′:v ̸=v′

∥∥D′
v −D′

v′

∥∥
dist

≥ ϵ′, max
v∈V

{
∥∥D′

v

∥∥2
op
} ≤ 1, and

from (22) and (28), log2(|V|) ≥ d2

4 log2

(
ν′
dist

ϵ′

)
, where:

ν
′(d)
dist =

1 if dist = op√
d/2

14 if dist = F
.

We set ϵ′ = ν
′(d)
dist /2. Using Lemma 6.2, we have the follow-

ing min–max lower bound:

Mdist ≥
σ2

16
κ

′(d)
dist min

{√
d2/4

3md
,
1√
2

}

≥ σ2

32
κ

′(d)
dist min

{√
d

3m
,
√
2

}
,

where κ
′(d)
dist =

√
1 + 1{dist=F}ν

′(d)
dist . If we define the

set {Du}u∈U as the ϵ–packing points of B(d2
1/4)

~.~op
(1), un-

der ~.~dist norm, we have inf
u,u′:u ̸=u′

∥Du −Du′∥dist ≥ ϵ,

max
u∈U

{∥∥Du

∥∥
op

}
≤ 1, and log2(|U|) ≥

d2
1

4 log2

(
ν
(d1/2)

dist

ϵ

)
,

where:

ν
(d1/2)
dist =

1 if dist = op
√
d1

14
√
2

if dist = F
.

Now if we set ϵ = ν
(d1/2)
dist · 2

−16B1
d21 and use Lemma 6.3, we

have this min–max lower bound:

Mdist ≥
σ2

4
· κ(d1/2)

dist · 2
−16B1

d21 ,

where κ
(d1/2)
dist =

√
1 + 1{dist=F}ν

(d1/2)
dist . Similarly, we

write:

Mdist ≥
σ2

4
· κ(d2/2)

dist · 2
−16B2

d22 .

The final result is obtained.

6.2. Comparison of the Proof Methods with a Naı̈ve
Extension of (Hadar et al., 2019)

In (Hadar et al., 2019), the authors consider the special
case where m = ∞ and B2 = ∞, thus the central server
can access the stream Y = {Yi}∞i=1. For simplicity, we
assume σ = 1, throughout this section. The goal of that
work is to approximate the covariance c = E[XY ] between
jointly normal random variables X and Y . They consid-
ered the expected squared error function as the distortion.
The derivation of the lower bound on the error is based on
the combination of the Bayesian Cramer-Rao (BCR) lower
bound and the strong data processing inequality. We review
a brief description of their converse method (as given in
(Polyanskiy & Wu, 2023, Chapter 33.6)) before compar-

ing the methods. Let P (c) = N
(
0,

[
1 c
c 1

])
. Also let

L(ĉ, c) = (ĉ − c)2. It is known that the min–max error
satisfies

min
ĉ

max
c

E[L(ĉ, c)] ≥ 1 + o(1)

JF (0)

7
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where JF (c) is the Fisher information of the family {P (c) :
c ∈ [−1, 1]}. Then they proceed by observing that the
Fisher information can be bounded by using the strong
data processing inequality and Taylor approximation of the
Kullback–Leibler (KL) divergence.

In particular, one can infer the following inequality from the
calculation in (Polyanskiy & Wu, 2023):

c2JF (0) + o(c2) ≤ κ · s(X;Y|c)B1, (7)

where κ is a constant. This inequality and the identity
s(X;Y|c) = c2 implies minĉ maxc E[L(ĉ, c)] = Ω(B−1

1 ).

One can readily extend this method to the case where d1 is
arbitrary and d2 = 1, using the multivariate BCR. To this
end, let c = E[YX] and L(ĉ, c) = ∥ĉ− c∥22. In this case,
the multi-variate counterpart of (7) is:

c⊤JF (0)c+ o(∥c∥2) ≤ κ · s(X;Y|c)B1, (8)

where JF is the Fisher information matrix. Lemma 5.7
yields s(X;Y|c) = ∥c∥2. This implies JF (0) ⪯ κB1Id1 .
The multivariate BCR (Polyanskiy & Wu, 2023, Theorem
29.4) states that:

min
ĉ

max
c

E[L(ĉ, c)] ≥ (1 + o(1))tr
[
JF (0)

−1
]

≥ (1 + o(1))
d1
κB1

(9)

Ignoring the little difference between the square error here
and the distortion based on the operator norm (which is the
root of the square error) in our setting, the order of error
using both approaches is matched.

The main difficulty arises in the case d1 > 1, d2 > 1. In this
regime, we aim to approximate the cross-covariance CXY,
which is a matrix. Here, to apply multivariate BCR, we need
to vectorize that matrix. Let cXY = vec(CXY) and ĉXY =

vec(ĈXY). Also, BCR gives a lower bound on the squared
error loss. In the matrix space, this loss is the squared
Frobenius norm LF(ĈXY,CXY) :=

∥∥ĈXY −CXY

∥∥2
F
=∥∥ĉXY − cXY

∥∥2. We also consider the family of normal dis-

tributions PC = N
(
0,

[
Id1

C
C⊤ Id2

])
characterized with

cross-covariance matrix C. In this case, the counterpart of
(8) is:

c⊤XYJF (0)cXY + o(∥cXY∥2) ≤ κ · s(X;Y|cXY)B1

(a)
≤ κ ·

∥∥CXY

∥∥2
op
B1 ≤ κ ·

∥∥CXY

∥∥2
F
B1, (10)

where (a) is true due to Lemma 5.7 and the Fisher informa-
tion matrix is defined with respect to the vectorization of
the cross–covariance matrix. The inequality (10) results in

JF (0) ⪯ κB1Id1d2
. Then similar calculation to (9) implies:

min
ĈXY

max
CXY

E[LF(ĈXY,CXY)] = Ω

(
d1d2
κB1

)
, (11)

which is weaker than our lower bound on Frobenius distor-
tion (see the first term in (4), which corresponds to approx-
imation error for cross covariance matrix) by a factor of
dmin.

7. Statement of Achievable Scheme and Proof
of Theorem 4.4

In this section, we propose a near-optimal achievable DCME
scheme and find an upper bound on its expected distortion.

Means do not matter. If the random vectors Z(i) do
not have a zero mean, we can redefine them as Z

′(i) =
1√
2
(Z(2i−1) −Z(2i)), which will have zero mean and retain

the same covariance matrix as Z(i). Therefore, we can use
the samples {Z′(i)}m/2

i=1 in place of {Z(i)}mi=1. Hence, we
can assume without loss of generality that E[Z] = 0.

The scheme is divided into two parts, in which we separately
approximate the self–covariance matrices CXX,CYY and
the cross–covariance matrix CXY (see (5)).

Empirical estimation for Self–covariance matrices.
Each agent can estimate its self-covariance matrix from
its data using an empirical covariance estimator. More
precisely, Agent 1 estimate CXX using C̃XX =
1
m

∑m
i=1 X

(i)X(i)⊤ and similarly, Agent 2 can estimate
CYY using C̃YY = 1

m

∑m
i=1 Y

(i)Y(i)⊤.

Quantization of estimated self-covariance matrices.
The empirical self–covariance matrix CXX lies in the ball
Bd2

1

~.~op
(τσ2) with high probability for some constant τ > 0.

To quantize it, Agent 1 finds an ϵ-covering of this ball with
2B1/2 points with smallest possible ϵ. Then if its empirical
estimation CXX lies in the ball Bd2

1

~.~op
(τσ2), the Agent 1

quantizes CXX to B1/2 bits, by finding the nearest point
in the covering to the empirical estimation. If the empirical
estimation C̃XX lies outside the ball, Agent 1 declares an
error. Agent 2 similarly quantized its empirical estimation.

Quantization of Data for approximating the
cross–covariance. Choosing number n =

min
{
min{B1

d1
, B2

d2
}/ log2

(min{B1,B2}
d1d2

)
,m
}

, we de-

fine matrices X ∈ Rd1×n and Y ∈ Rd2×n as X =
[X(1),X(2), . . . ,X(n)] and Y = [Y(1),Y(2), . . . ,Y(n)].
The empirical estimator for CXY using the first n samples
is C̃XY = 1

nXY
⊤. This guides agent 1 to quantize

the whole block of its data X to B1/2 bits, and Agent 2

8
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does a similar quantization on its data. To do this, it is
well-known that X lies in the ball Bnd1

~.~op
(τσ

√
d1 + n) with

high probability. To quantize it, Agent 1 finds an ϵ-covering
of this ball with 2B1/2 points with smallest possible ϵ.
Then if X lies in the ball Bnd1

~.~op
(τσ

√
d1 + n), the agent 1

quantizes X to B1/2 bits, by finding the nearest point X̂ in
the covering to the empirical estimation. If the empirical
estimation X lies outside the ball, agent 1 declares an error.
Similarly, agent 2 finds a quantization Ŷ of Y using B2/2
bits.

Estimation of the cross–covariance at the central server.
upon receiving X̂ and Ŷ, the central server estimates CXY

as ĈXY = 1
n X̂Ŷ

⊤
. The central server returns Ĉ = 0 if it

receives any error. Otherwise, it computes:

Ĉ∗ =

 ĈXX
1
n X̂Ŷ

⊤

1
n ŶX̂

⊤
ĈYY

 .

If Ĉ∗ is not positive semi-definite, we modify it ac-
cordingly. By decomposing Ĉ∗ into its spectral form,
Ĉ∗ =

∑r
i=1 λiviv

⊤
i , we define Ĉ∗+ as: Ĉ∗

+ =∑r
i=1 λi1{λi≥0}viv

⊤
i .

The analysis of this DCME scheme is based on the concen-
tration inequalities for the operator norm of random matrices
(e.g. (Vershynin, 2018)) and is deferred to Appendix D.

8. Conclusion
This paper studied the problem of estimating the covari-
ance matrix in a vertical split setting, with a constrained
communication budget. We established a min—max lower
bound for the expected distortion of a DCME problem in
Theorem 4.1, which we defined in Section 3. We also pro-
posed a scheme to solve the DCME problem and derived an
upper bound for its expected distortion in Theorem 4.4. We
noted that in some realistic scenarios, the proposed scheme
achieves the min—max error, up to a logarithmic factor.

Impact Statement
This work delves into the machine learning domain, specifi-
cally focusing on improving covariance matrix estimation.
Covariance matrices play a pivotal role in diverse applica-
tions like principal component analysis, offering valuable
insights into data relationships. Our approach advocates
for communication efficiency. Estimating the covariance
matrix within finite communication constraints not only
conserves bandwidth but also contributes to lower energy
consumption by reducing the computational burden on elec-
tronic chips. These environmental and economic benefits
constitute additional valuable impacts of our work.
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A. Some Preliminary Lemmas, Corollaries, and Propositions
A.1. A Lemma from Linear Algebra

Lemma A.1. Consider the matrix A ∈ Rm×n and define matrix B ∈ R(m+n)×(m+n) as follows:

B =

[
0 A
A⊤ 0

]
.

If we denote the singular value decomposition of A as A =
∑r

i=1 σiuiv
⊤
i , then the eigenvalues and eigenvectors of B are:

{±σi}ri=1 ,

{
1√
2

[
±ui

vi

]}r

i=1

Proof. From the singular value decomposition of A, we have:

Avi = σiui, A⊤ui = σivi.

We write:

1√
2
B

[
±ui

vi

]
=

1√
2

[
0 A
A⊤ 0

] [
±ui

vi

]

=
1√
2

[
Avi

±A⊤ui

]

=
σi√
2

[
ui

±vi

]
=

±σi√
2

[
±ui

vi

]
.

This completes the proof.

A.2. Some Properties of Sub–Gaussian Random Variables

To study some of the properties of sub–Gaussian random variables, it is necessary to be familiar with another family of
random variables. This family of random variables is an extension of the class of sub–Gaussian random variables and is
called sub–Gamma random variables.

Definition A.2 ((Boucheron et al., 2013, Chapter 2.4)). A random variable X is called (σ, α)–sub–Gamma, if:

E
[
eλ(X−E[X])

]
≤ exp

( λ2σ2

2(1− α|λ|)

)
,

for all λ, |λ| < 1
α .

We state and prove some properties of sub–Gaussian and sub–Gamma random variables.

Lemma A.3 ((Boucheron et al., 2013)). Consider an independent sequence {Xi}mi=1 of random variables,

• if Xi, i ∈ [m] is a σi–sub–Gaussian random variable, then
n∑

i=1

Xi is

√
n∑

i=1

σ2
i –sub–Gaussian.

• if Xi, i ∈ [m] is a (σi, αi)–sub–Gamma random variable, then
n∑

i=1

Xi is
(√ n∑

i=1

σ2
i ,max

i
{αi}

)
–sub–Gamma.

12
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Lemma A.4. Any (σ, α)–sub–Gamma random variable X satisfies the following inequality:

P [X ≥ t] ≤ exp
( −t2

2(σ2 + αt)

)
≤ exp

( 1

2(σ2 + α)
min{t, t2}

)

Proof. Some variations of this lemma are presented in different papers. For completeness, we prove it here. We write:

P[X ≥ t]
(a)
= P

[
eλX ≥ eλt

]
(b)
≤ e−λt E

[
eλX

]
(c)
≤ exp

(
− λt+

λ2σ2

2(1− α|λ|)

)
.

Note that (a) holds when λ > 0, (b) is derived from Markov’s inequality, and (c) follows from Definition A.2, assuming
|λ| < 1

α . Now we set λ = t
σ2+tα , which satisfies the criteria 0 < λ < 1

α . Thus:

P[X ≥ t] ≤ exp
(
− λt+

λ2σ2

2(1− α|λ|)

)∣∣∣∣∣
λ= t

σ2+tα

= exp
( −t2

2(σ2 + αt)

)
.

Note that if t ≤ 1, we have: σ2 + α ≥ σ2 + αt, therefore:

t2

2(σ2 + αt)
≥ t2

2(σ2 + α)
(0 < t ≤ 1).

On the other hand, if t ≥ 1, we have: t(σ2 + α) ≥ σ2 + α, therefore:

t2

2(σ2 + αt)
≥ t

2(σ2 + α)
(t ≥ 1).

Thus:

t2

2(σ2 + αt)
≥ 1

2(σ2 + α)
min{t, t2}.

and the second inequality is proved.

Lemma A.5 (A maximal inequality for sub–Gamma Random Variables (Boucheron et al., 2013, Corollary 2.6)). Let
{Xi}ni=1 be a sequence of centered sub–Gamma random variables with the same parameters (σ, α). Then:

E
[
max
i∈[n]

Xi

]
≤ σ

√
2 ln(n) + α ln(n). (12)

Lemma A.6. Assume that X,Y are centered sub–Gaussian random variables with parameters σ1 and σ2, respectively.
Then XY − E[XY ] is a sub–Gamma random variable with parameters (5σ1σ2, 2.5σ1σ2).

13
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Proof. We write:

E
[
eλ(XY−E[XY ])

]
= 1 + λE

[
(XY − E[XY ])

]
+

+∞∑
k=2

λk E
[
(XY − E[XY ])k

]
k!

= 1 +

+∞∑
k=2

λk

k!
E
[
(XY − E[XY ])k

]
≤ 1 +

+∞∑
k=2

|λ|k

k!
E
[
|XY − E[XY ]|k

]
= 1 +

+∞∑
k=2

|λ|k

k!
∥XY − E[XY ]∥kk (13)

≤ 1 +

+∞∑
k=2

|λ|k

k!

(
∥XY ∥k + ∥E[XY ]∥k

)k
(14)

= 1 +

+∞∑
k=2

|λ|k

k!

((
E
[
|XY |k

] ) 1
k

+ |E[XY ]|

)k

≤ 1 +

+∞∑
k=2

|λ|k

k!

((
E
[
X2k

]
E
[
Y 2k

] ) 1
2k

+
√

E[X2]E[Y 2]

)k

(15)

≤ 1 +

+∞∑
k=2

(|λ|σ1σ2)
k

((
2k+1k!

) 1
k + 1

)k

k!
(16)

≤ 1 +

+∞∑
k=2

(|λ|σ1σ2)
k.2.(2.5)k (17)

= 1 +
25(λσ1σ2)

2

2(1− 2.5|λ|σ1σ2)
(18)

≤ exp

(
25(λσ1σ2)

2

2(1− 2.5|λ|σ1σ2)

)
, (19)

where

• in (13) for a random variable Z, ∥Z∥k := E1/k[|Z|k] is the Lk norm of the random variable Z,

• (14) follows directly from the application of Minkowski’s inequality (also known as the triangle inequality) to the Lk

norm.

• (15) follows from Cauchy–Schwarz inequality,

• in (16), we use the following upper bound for the 2k-th moment of a σ–sub–Gaussian random variable Z (see
(Boucheron et al., 2013, Theorem 2.1)),

E[Z2k] ≤ 2(2σ2)kk!,

• (17) follows from the fact that the function h[k] :=

(
(2k+1k!)

1
k +1

)k

(2.5)kk!
is a decreasing function on {2, 3, · · · } and takes

its maximum at k = 2, which is equal to 2 (see Figure 2).

Finally, (19) implies that XY − E[XY ] is a (5σ1σ2, 2.5σ1σ2)–sub–Gamma random variable.
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5 10 15 20

0.5

1

1.5

2

k

h[k]

Figure 2. Diagram of the function h[k] :=

(
(2k+1k!)

1
k +1

)k

(2.5)kk!
.

Corollary A.7. Let {(Xi, Yi)}mi=1 be a sequence of i.i.d. pairs of random variables where Xi’s and Yi’s are σ1 sub–Gaussian
and σ2 sub–Gaussian, respectively. If we define Zi = XiYi − E[XiYi], then we have:

P
[
1

m

m∑
i=1

Zi ≥ 10σ1σ2t

]
≤ exp

(
−m.min{t, t2}

)
.

Proof. We know from Lemma A.6 that Zi = XiYi − E[XiYi] is a (5σ1σ2, 2.5σ1σ2)–sub–Gamma random variable.

Therefore, using Lemma A.3, we conclude that
m∑
i=1

Zi is a (5σ1σ2
√
m, 2.5σ1σ2)–sub–Gamma random variable. Thus,

P
[
1

m

m∑
i=1

(XiYi − E[XiYi]) ≥ 10σ1σ2t

]
= P

[ m∑
i=1

Zi ≥ 10mσ1σ2t

]
≤ exp

( −100m2σ2
1σ

2
2t

2

2(25σ2
1σ

2
2m+ 25σ2

1σ
2
2mt)

)
= exp

(−2mt2

1 + t

)
≤ exp

(
−m.min{t, t2}

)
.

(20)

A.3. An Important Relation Between the Packing and the Covering Numbers of a Set

The packing and covering numbers are defined in Section 5.2. There is an important relation between the packing and the
covering numbers of a set, which is stated in the following lemma:

Lemma A.8 ((Wainwright, 2019, Lemma 5.5)). For all ϵ > 0, the packing and covering numbers are related as follows:

M(K, d, 2ϵ) ≤ N (K, d, ϵ) ≤ M(K, d, ϵ).

A.4. Finding Upper Bound on Operator Norm of Matrices, Using Covering Nets

The following lemma is useful in finding an upper bound for the operator norm of a random matrix.

Lemma A.9 ((Vershynin, 2018, Exercise 4.4.3)). Let A be a m × n matrix. We define the sets Sm−1 = {u ∈ Rm−1 :

∥u∥ = 1},Sn−1 = {v ∈ Rn−1 :∥v∥ = 1}. We fix an arbitrary ϵ > 0 and denote ϵ–covering set of Sm−1 by N (m)
ϵ and
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ϵ–covering set of Sn−1 by N (n)
ϵ . We have:

∥A∥op ≤
1

1− 2ϵ
max

u∈N (m)
ϵ ,v∈N (n)

ϵ

{
u⊤Av

}
.

A.5. Packing and Covering in Matrix Spaces

Consider the family of matrices defined as follows:

A = {A ∈ Rm×n :∥A∥op ≤ r}.

We vectorize each member of this family as:

a = vec(A) = [A11, A12, . . . , A1n, A21, . . . , Amn]
⊤.

We convert the dist norm on the matrix space Rm×n to a norm on Rmn via ~a~dist =∥A∥dist. Now we define the ball of
radius r under norm ~.~op as:

B(mn)
~.~op

(r) =
{
x ∈ Rmn : ~x~op ≤ r

}
=
{
vec(A) : A ∈ Rm×n,∥A∥op ≤ r

}
. (21)

We consider an ϵ–covering net for B(mn)
~.~op

(r) under the norm ~.~dist, where dist can denote Frobenius or operator norm.

• Consider the case dist = op, in this case, from (Wainwright, 2019, Lemma 5.7), we have:(
r

ϵ

)mn

≤ N (B(mn)
~.~op

(r),~.~op , ϵ) ≤
(
1 +

2r

ϵ

)mn

≤
(
3r

ϵ

)mn

.

From Lemma A.8 we conclude:(
r

ϵ

)mn

≤ N (B(mn)
~.~op

(r),~.~op , ϵ) ≤ M(B(mn)
~.~op

(r),~.~op , ϵ) ≤ N (B(mn)
~.~op

(r),~.~op , ϵ) ≤
(
1 +

4r

ϵ

)mn

(22)

Matrix quantization scheme: We quantize matrix A, whose operator norm is at most r, under the norm ~.~op,

with the matrices corresponding to the covering points of B(mn)
~.~op

(r) . Note that the number of these points is less than(
3r
ϵ

)mn
, so we can send the index of the quantized matrix using at most mn log2(

3r
ϵ ) bits. Furthermore, if we denote

the output of the quantization with Qop(A), we have:∥∥A−Qop(A)
∥∥
op

≤ ϵ.

• In the case dist = F, we only find a lower bound on the packing number M(B(mn)
~.~op

(r),~.~F , ϵ).

Lemma A.10. For M(B(mn)
~.~op

(1),~.~F , ϵ), we have:

M(B(mn)
~.~op

(1),~.~F , ϵ) ≥

(√
min{m,n}

14ϵ

)mn

Proof. Let A = {A1, · · · ,AM} be a maximal ϵ–packing of the ball B(mn)
~.~op

(1). Then A is also an ϵ–covering. In
particular:

B(mn)
~.~op

(1) ⊆
M⋃
i=1

B(mn)
~.~F

(Ai; ϵ),

where B(mn)
~.~F

(A; ϵ) = {vec(B) :
∥∥B−A

∥∥
F
≤ ϵ} is the Frobenius ball with center A and radius ϵ. The proof follows

a probabilistic argument which is similar to the volume argument usually used to prove packing numbers.
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Let G = [gij ]m×n be a random matrix with independent gij ∼ N
(
0, 1

4(
√
m+

√
n)2

)
elements. It follows from

(Vershynin, 2018, Theorem 7.3.1) that E
[
∥G∥op

]
≤ 1

2 . Thus Markov inequality yields:

P
[
vec(G) ∈ B(mn)

~.~op
(1)

]
= P

[
∥G∥op ≤ 1

]
= 1− P

[
∥G∥op > 1

]
≥ 1− 1

2
=

1

2
. (23)

On the other side, union bound gives:

P
[
vec(G) ∈ B(mn)

~.~op
(1)

]
≤

M∑
i=1

P
[
vec(G) ∈ B(mn)

~.~F
(Ai; ϵ)

]
. (24)

We now proceed to find an upper bound on the inner term in the summation. Observe:

P
[
vec(G) ∈ B(mn)

~.~F
(Ai; ϵ)

]
=

∫
B(mn)

~.~F
(Ai;ϵ)

(
4(
√
m+

√
n)2

2π

)mn
2

exp
(
−2(

√
m+

√
n)2 ∥G−Ai∥2F

)
dG

≤
∫
B(mn)

~.~F

(
4(
√
m+

√
n)2

2π

)mn
2

dG

=

(
4(
√
m+

√
n)2

2π

)mn
2

Vol
(
B(mn)

~.~F
(Ai; ϵ)

)

=

(
2ϵ2(

√
m+

√
n)2

π

)mn
2

Vol
(
B(mn)

~.~F
(Ai; 1)

)
,

(25)

where we have used the density formula for normal distribution. Now we view B(mn)
~.~F

(Ai; 1) as a mn-dimensional
euclidean ball. It is well known that the volume of this ball is given by

Vol
(
B(mn)

~.~F
(Ai; 1)

)
=

π
mn
2

Γ(1 + mn
2 )

.

Using the bound Γ(1 + x) >> (xe )
x, in (25), we obtain:

P
[
vec(G) ∈ B(mn)

~.~F
(Ai; ϵ)

]
≤

(
4eϵ2(

√
m+

√
n)2

mn

)mn
2

≤

(
16eϵ2 max{m,n}

mn

)mn
2

=

(
16eϵ2

min{m,n}

)mn
2

.

(26)

Putting (23), (24) and (26) together yields:

M ≥ 1

2

(
min{m,n}

16eϵ2

)mn
2

≥

(√
min{m,n}
8
√
eϵ

)mn

≥

(√
min{m,n}

14ϵ

)mn

. (27)

This concludes the proof.

From Lemma A.10, we conclude that:

M(B(mn)
~.~op

(r),~.~F , ϵ) ≥

(
r ·
√

min{m,n}
14ϵ

)mn

. (28)
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B. Materials for Completing the Proof of Theorem 4.1
B.1. The Detailed Proof of Lemma 6.2

Proof. First, we know that Cv is the covariance matrix of a σ2–sub–Gaussian random vector Z. So we must have Cv ⪰ 0.
Also from Definition 5.2, for all vectors u with ∥u∥2 = 1, the random variable u⊤Z is σ2–sub–Gaussian, therefore
Var[u⊤Z] ≤ σ2. This implies that for all u with∥u∥2 = 1:

Var[u⊤Z] = E[u⊤ZZ⊤u] = u⊤Cvu ≤ σ2.

Therefore we must have∥Cv∥op ≤ σ2.

We write Cv as Cv = σ2

2 I +

[
0 δDv

δD⊤
v 0

]
. From Lemma A.1, the eigenvalues of Cv are σ2

2 ± δσi(Dv). Therefore it

suffices to impose the constraint δ ≤ σ2

2max
v∈V

{∥Dv∥op}
, to ensure the constraints Cv ⪰ 0 and∥Cv∥op ≤ σ2are satisfied.

Then, we write:

ρ = inf
v,v′:v ̸=v′

∥Cv −Cv′∥dist

= inf
v,v′:v ̸=v′

∥∥∥∥∥∥
[

0 δ(Dv −Dv′)
δ(Dv −Dv′)⊤ 0

]∥∥∥∥∥∥
dist

(a)
=


δ inf
v,v′:v ̸=v′

∥Dv −Dv′∥dist when dist = op
√
2δ inf

v,v′:v ̸=v′
∥Dv −Dv′∥dist when dist = F

=
√

1 + 1{dist=F}δ inf
v,v′:v ̸=v′

∥Dv −Dv′∥dist ,

where (a) is true due to Lemma A.1. Also we derive an upper bound for I(V ;M1,M2):

I(V ;M1,M2) = I(V ;M1) + I(V ;M2|M1)

(a)
= I(V ;M2|M1)

≤ I(V ;M2|M1) + I(M1;M2)

= I(V ;M2) + I(M1;M2|V )

(b)
= I(M1;M2|V ),

(29)

where (a) and (b) are true because for all v ∈ V , the vector Z ∼ N (0,Cv) has the same marginal distribution over

the first d1 dimensions and the second d2 dimensions. Therefore X =
{
X(i)

}m

i=1
is independent from V and similarly,

Y =
{
Y(i)

}m

i=1
is also independent from V . We conclude that M1 and M2 are independent from V .

Now we upper-bound the I(M1;M2|V = v). Note that the Markov chain of the problem is: M1 −
− X−
− Y −
−M2. We
write:

I(M1;M2|V = v) ≤ I
(
M1;Y|V = v

)
(a)
≤ s

(
X;Y|V = v

)
I
(
M1;X|V = v

)
(b)
≤ s

(
X;Y|V = v

)
B1,

where in (a), s
(
X;Y|V = v

)
is the SDPI constant (Definition 5.6) for the joint distribution pX,Y, when V = v. In addition,

(b) holds due to (6). From Lemma 5.7 we have:

s
(
X;Y|V = v

)
=
∥∥∥C−1/2

v,XXCv,XYC
−1/2
v,YY

∥∥∥2
op

=

(
2δ

σ2

)2

∥Dv∥2op .
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Therefore:

I(M1;M2|V = v) ≤
(
2δ

σ2

)2

B1∥Dv∥2op . (30)

The second upper bound is very similar to the first one:

I(M1;M2|V = v) ≤
(
2δ

σ2

)2

B2∥Dv∥2op . (31)

Therefore, from (29), (30), and (31) we have:

I(V ;M1,M2) ≤
(
2δ

σ2

)2

min{B1, B2}
1

|V|
∑
v∈V

∥Dv∥2op

≤
(
2δ

σ2

)2

min{B1, B2}max
v∈V

{
∥Dv∥2op

}
.

Then from Lemma 6.1 we write:

Mdist ≥
ρ

2

[
1− I(V ;M1,M2) + 1

log2(|V|)

]

≥

√
1 + 1{dist=F}δ inf

v,v′:v ̸=v′
∥Dv −Dv′∥dist

2

1− 2
(

2δ
σ2

)2
min{B1, B2}max

v∈V

{
∥Dv∥2op

}
log2(|V|)

 .

We set δ = σ2

4max
v∈V

{∥Dv∥op}
min

{√
log2(|V|)

min{B1,B2} , 2

}
, obviously this value of δ satisfies the criteria δ ≤ σ2

2max
v∈V

{∥Dv∥op}
.

Therefore we have:

Mdist ≥
√
1 + 1{dist=F}σ

2

16
·

inf
v,v′:v ̸=v′

∥Dv −Dv′∥dist

max
v∈V

{
∥Dv∥op

} min


√

log2(|V|)
min{B1, B2}

, 2

 .

The proof of the first inequality is completed.

For the second inequality, first note that we have:

ρ′ = inf
v,v′:v ̸=v′

∥∥C′
v −C′

v′

∥∥
dist

= inf
v,v′:v ̸=v′

∥∥∥∥∥∥
[

0 δ(D′
v −D′

v′)
δ(D′

v −D′
v′)⊤ 0

]∥∥∥∥∥∥
dist

(a)
=


δ inf
v,v′:v ̸=v′

∥∥D′
v −D′

v′

∥∥
dist

when dist = op
√
2δ inf

v,v′:v ̸=v′

∥∥D′
v −D′

v′

∥∥
dist

when dist = F

=
√

1 + 1{dist=F}δ inf
v,v′:v ̸=v′

∥∥D′
v −D′

v′

∥∥
dist

,

(32)

Now we define Z =
{
Z(i)

}m

i=1
, X′ =

{
Z

(i)
[1:d/2]

}m

i=1
and Y′ =

{
Z

(i)
[d/2+1:d]

}m

i=1
, then try find another upper bound for

I(V ;M1,M2), due to the Markov chain of the problem, which is M1 −
−X−
−Y −
−M2. Note that with the second set of
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distributions, X′ and Y′ are independent from V , and we have:

I(V ;M1,M2) ≤ I(V ;X,Y)

= I(V ;Z)

= I(V ;X′,Y′)

= I(V ;X′) + I(V ;Y′|X′)

= I(V ;Y′|X′)

≤ I(V ;Y′|X′) + I(X′;Y′)

= I(V ;Y′) + I(X′;Y′|V )

= I(X′;Y′|V ).

(33)

We can write:

I(X′;Y′∣∣V = v) = m I
(
Z[1:d/2];Z[d/2+1:d]|V = v

)
= m

[
h(Z[1:d/2]|V = v) + h(Z[d/2+1:d]|V = v)− h(Z[1:d/2],Z[d/2+1:d]|V = v)

]
(a)
=

m

2
log2

det
{

σ2

2 Id/2

}
det
{

σ2

2 Id/2

}
det {C′

v}


=

m

2

2rv log2(
σ2

2
)−

rv∑
i=1

log2

(
σ4

4
− δ2σ2

i (D
′
v)

)
(b)
≤ −mrv

2
log2

1−
4δ2
∥∥D′

v

∥∥2
op

σ4


(c)
≤

4mrvδ
2
∥∥D′

v

∥∥2
op

ln(2)σ4

≤
2mdδ2

∥∥D′
v

∥∥2
op

ln(2)σ4
,

(34)

where (a) is true duo to the (Cover, 1999, Theorem 8.4.1) and rv = rank(D′
v). Also (b) and (c) are true because

g(x) = − log2(1− x) = log2(
1

1−x ) is an increasing function, and simply we have for all x ∈ [0, 1/2]: log2(
1

1−x ) <
2x

ln(2) ,

and we assume that δ ≤ σ2

2
√
2max

v∈V
{∥D′

v∥op
}

.

Therefore, from (33) and (34) we have:

I(V ;M1,M2) ≤
2mdδ2

ln(2)σ4

1

|V|
∑
v∈V

∥∥D′
v

∥∥2
op

≤ 2mdδ2

ln(2)σ4
max
v∈V

{∥∥D′
v

∥∥2
op

}
.

Then from Lemma 6.1 we write:

Mdist ≥
ρ

2

[
1− I(V ;M1,M2) + 1

log2(|V|)

]

≥

√
1 + 1{dist=F}δ inf

v,v′:v ̸=v′

∥∥D′
v −D′

v′

∥∥
dist

2

[
1− 6mdδ2

σ4 log2(|V|)
max
v∈V

{∥∥D′
v

∥∥2
op

}]
.
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We set δ = σ2

2
√
2max

v∈V
{∥D′

v∥op
}
min

{√
log2(|V|)
12md , 1

}
, obviously this value of δ satisfies the criteria δ ≤ σ2

2
√
2max

v∈V
{∥D′

v∥op
}

.

Therefore we have:

Mdist ≥
√
1 + 1{dist=F}σ

2

8
·

inf
v,v′:v ̸=v′

∥∥D′
v −D′

v′

∥∥
dist

max
v∈V

{
∥D′

v∥op
} min

{√
log2(|V|)
3md

,
1√
2

}
.

The proof of the second part is completed.

B.2. Proof of Lemma 6.3

Proof. Same as Lemma 6.2, we must have Cu ⪰ 0 and ∥Cu∥op ≤ σ2. Note that the eigenvalues of Cu are{
σ2

2 ± δσi(Du)
}rank(Du)

i=1
. Thus for satisfying conditions Cu ⪰ 0 and∥Cu∥op ≤ σ2, we must have δ

∥∥Du

∥∥
op

≤ σ2

2 , which

results in δ ≤ σ2

2max
u∈U

{∥∥Du

∥∥
op

} .

Then, we write:

ρ = inf
u,u′:u̸=u′

∥Cu −Cu′∥dist

= inf
u,u′:u̸=u′

∥∥∥∥∥∥∥∥∥


0 δ(Du −Du′) 0 0

δ(Du −Du′)⊤ 0 0 0
0 0 0 0
0 0 0 0


∥∥∥∥∥∥∥∥∥
dist

= inf
u,u′:u̸=u′

∥∥∥∥∥∥
[

0 δ(Du −Du′)
δ(Du −Du′)⊤ 0

]∥∥∥∥∥∥
dist

(a)
=
√
1 + 1{dist=F}δ inf

u,u′:u ̸=u′
∥Du −Du′∥dist ,

(35)

where (a) is true due to Lemma A.1.

We also derive an upper bound for I(U ;M1,M2):

I(U ;M1,M2) = I(U ;M1) + I(U ;M2|M1)

≤ I(U ;M1) + I(U ;M2|M1) + I(M1;M2)

= I(U ;M1) + I(U,M1;M2)

= I(U ;M1) + I(U ;M2) + I(M1;M2|U)

≤ I(U ;M1) + I(U ;Y) + I(X;Y|U)

= I(U ;M1)

≤ B1

(36)

Therefore, we set δ = σ2

2max
u∈U

{∥∥Du

∥∥
op

} ans from Lemma 6.1 we have:

Mdist(σ,B1, B2, d1, d2,m) ≥ ρ

2

[
1− I(U ;M1,M2) + 1

log2(|U|)

]

≥
√
1 + 1{dist=F}σ

2

2

[
1− B1 + 1

log2(|U|)

] inf
u,u′:u ̸=u′

∥Du −Du′∥op

max
u∈U

{∥∥Du

∥∥
op

} .
(37)
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C. Materials for Completing the Proof of Theorem 4.4
C.1. Two Lemmas and One Proposition That Are Useful in Proving Theorem 4.4

Lemma C.1. Assume that X ∈ Rd1 is a zero mean, sub–Gaussian vector with parameter sigma1, and we have m
i.i.d. samples from X as {X(i)}mi=1. Also assume that Y ∈ Rd2 is a zero mean, sub–Gaussian vector with parameter
sigma2, and we have m i.i.d. samples from Y as {Y(i)}mi=1. Consider the cross–covariance matrix CXY ∈ Rd1×d2 as

C = E[XY⊤] and assume that we use the estimator C̃XY = 1
m

m∑
i=1

X(i)Y(i)⊤. Then we have:

P
[∥∥C̃XY −CXY

∥∥
op

≥ 10σ1σ2t
]

≤ (9)d1+d2 exp
(
−m.min

{
t, t2

})
,

and:

P
[∥∥C̃XY

∥∥
op

≥ 11σ1σ2

]
≤ min

{
1, exp

(
3(d1 + d2)−m

)}
.

Proof. We use Lemma A.9 with ϵ = 1
4 and write:

P
[∥∥C̃XY −CXY

∥∥
op

≥ t
]
≤ P

[
max

u∈N (d1)

1/4
,v∈N (d2)

1/4

u⊤(C̃XY −CXY)v ≥ t

2

]

≤
|N (d1)

1/4
|∑

j=1

|N (d2)

1/4
|∑

k=1

P
[
u(j)⊤(C̃XY −CXY)v(k) ≥ t

2

]
,

(38)

where we denote the 1/4–covering points of Sd1−1 by {u(j)}
|N (d1)

1/4
|

j=1 and the 1/4–covering points of Sd2−1 by {v(k)}
|N (d2)

1/4
|

k=1 .

We also know from (Vershynin, 2018, Corollary 4.2.13) that N (d)
1/4 ≤ 9d.

We have:

P
[
u(j)⊤(C̃XY −CXY)v(k) ≥ t

2

]
= P

[
u(j)⊤(

1

m

m∑
i=1

X(i)Y(i)⊤ − E[XY⊤])v(k) ≥ t

2

]

= P
[
1

m

m∑
i=1

(u(j)⊤X(i))(v(k)⊤Y(i))− E
[
(u(j)⊤X(i))(v(k)⊤Y(i))

]
≥ t

2

]
.

(39)

We know that X(i) is a σ1–sub–Gaussian vector, therefore, from Definition 5.2, we conclude that Ui = u(j)⊤X(i) is a
σ1–sub–Gaussian random variable. Similarly we conclude that Vi = v(k)⊤Y(i) is a σ2–sub–Gaussian random variable.
Therefore, from Lemma A.6, UiVi − E[UiVi] is a (σ = 5σ1σ2, α = 2.5σ1σ2)–sub–Gamma random variable. Corollary
A.7 yields:

P
[
u(j)⊤(C̃XY −CXY)v(k) ≥ t

2

]
= P

[
1

m

m∑
i=1

(u(j)⊤X(i))(v(k)⊤Y(i))− E
[
(u(j)⊤X(i))(v(k)⊤Y(i))

]
≥ t

2

]

= P
[
1

m

m∑
i=1

(UiVi − E[UiVi]) ≥
t

2

]
≤ exp

(
−m.min

{ t

10σ1σ2
,
( t

10σ1σ2

)2})
.

(40)
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Therefore we combine (38), (39), and (53) and write:

P
[∥∥C̃XY −CXY

∥∥
op

≥ t
]
≤

|N (d1)

1/4
|∑

j=1

|N (d2)

1/4
|∑

k=1

P
[
u(j)⊤(C̃XY −CXY)v(k) ≥ t

2

]

≤ (9)d1+d2 exp

(
−m.min

{ t

10σ1σ2
,
( t

10σ1σ2

)2})
.

(41)

Thus:

P
[∥∥C̃XY

∥∥
op

≥ 11σ1σ2

]
≤ P

[∥∥C̃XY −CXY

∥∥
op

+
∥∥CXY

∥∥
op

≥ 11σ1σ2

]
≤ P

[∥∥C̃XY −CXY

∥∥
op

≥ 10σ1σ2

]
≤ min

{
1, exp

(
(d1 + d2) ln(9)−m

)}
≤ min

{
1, exp

(
3(d1 + d2)−m

)}
.

(42)

We have the following proposition, directly from Lemma C.1.

Proposition C.2. Assume that X ∈ Rd1 is a zero mean, σ2
1–sub–Gaussian vector, and we have m i.i.d. samples from X as

{X(i)}mi=1. Also assume that Y ∈ Rd2 is a zero mean, σ2
2–sub–Gaussian vector, and we have m i.i.d. samples from Y as

{Y(i)}mi=1. Consider the cross–covariance matrix CXY ∈ Rd1×d2 as C = E[XY⊤] and assume that we use the estimator

C̃XY = 1
m

m∑
i=1

X(i)Y(i)⊤. Then we have:

E
[∥∥C̃XY −CXY

∥∥
op

]
≤

32σ1σ2 max

{√
d1 + d2

m
,
d1 + d2

m

}
. (43)

Proof. Lemma A.9 with ϵ = 1
4 implies that:

E
[∥∥C̃XY −CXY

∥∥
op

]
≤ 2E

 max
u∈N (d1)

1/4
,v∈N (d2)

1/4

u⊤(C̃XY −CXY)v

 (44)

= 2E

 max
u∈N (d1)

1/4
,v∈N (d2)

1/4

1

m

m∑
i=1

{
(u⊤X(i))(v⊤Y(i))− E

[
(u⊤X(i))(v⊤Y(i))

]} (45)

Let

Zu,v =
1

m

m∑
i=1

{
(u⊤X(i))(v⊤Y(i))− E

[
(u⊤X(i))(v⊤Y(i))

]}
Using similar reasoning to the one used in establishing (40), we conclude that Zu,v is a ( 5σ1σ2√

m
, 2.5σ1σ2

m )–sub–Gamma
random variable. Now, we invoke Lemma A.5 to obtain:

E
[∥∥C̃XY −CXY

∥∥
op

]
≤ 2E

 max
u∈N (d1)

1/4
,v∈N (d2)

1/4

Zu,v

 (46)

≤ 10σ1σ2

√
2 ln

(
|N (d1)

1/4 |.|N (d2)
1/4 |

)
m

+ 5σ1σ2

ln
(
|N (d1)

1/4 |.|N (d2)
1/4 |

)
m

(47)
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≤ 10σ1σ2

√
2(d1 + d2) ln(9)

m
+ 5σ1σ2

(d1 + d2) ln(9)

m
(48)

≤ 32σ1σ2 max

{√
d1 + d2

m
,
d1 + d2

m

}
(49)

Lemma C.3. Let A be a d× n random matrix whose columns Ai are independent, mean zero, σ2–sub–Gaussian random
vectors. Then,

∥A∥op ≤ 6σ
√
d+ n,

with probability at least 1− exp
(
− 2(d+ n)

)
.

Proof. We use Lemma A.9 with ϵ = 1
4 and write:

P
[
∥A∥op ≥ t

]
≤ P

[
max

u∈N (d)

1/4
,v∈N (n)

1/4

u⊤Av ≥ t

2

]

≤
|N (d)

1/4
|∑

i=1

|N (n)

1/4
|∑

j=1

P
[
u(i)⊤Av(j) ≥ t

2

]
,

(50)

where we denote the 1/4–covering points of Sd−1 by {u(i)}
|N (d)

1/4
|

i=1 and 1/4–covering points of Sn−1 by {v(j)}
|N (n)

1/4
|

j=1 .

We rewrite u(i)⊤Av(j) as:

u(i)⊤Av(j) =

n∑
k=1

v
(j)
k u(i)⊤Ak, (51)

where v
(j)
k is the k–th element of v(j). Therefore, from Definition 5.2 and Lemma A.3, u(i)⊤Av(j) is a sub–Gaussian

random variable with parameter σ. Therefore we write:

P
[
u(i)⊤Av(j) ≥ t

2

]
≤ exp

(−t2

8σ2

)
. (52)

We know from (Wainwright, 2019, Lemma 5.7) that:

N (d)
1/4 ≤ 9d, N (n)

1/4 ≤ 9n. (53)

Then from (50), we have:

P
[
∥A∥op ≥ t

]
≤

|N (d)

1/4
|∑

i=1

|N (n)

1/4
|∑

j=1

P
[
u(i)⊤Av(j) ≥ t

2

]

≤ 9n+d exp
(−t2

8σ2

)
.

(54)

Setting t = 6σ
√
d+ n implies,

P
[
∥A∥op ≥ 6σ

√
d+ n

]
≤ 9n+d exp

(−9(d+ n)

2

)
≤ exp

(
− 2(n+ d)

)
.

(55)
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D. Detailed Proof of Theorem 4.4 and Corollary 4.5

Proof. We define events E1,1, E2,1, E1,2, and E2,2 as ”Receiving error from Agent 1, when
∥∥C̃XX

∥∥
op

> 11σ2.”, ”Receiving

error from Agent 2, when
∥∥C̃YY

∥∥
op

> 11σ2.”, ”Receiving error from Agent 1, when∥X∥op ≥ 6σ
√
d1 + n.”, and ”Receiving

error from Agent 2, when∥Y∥op ≥ 6σ
√
d2 + n.”, respectively. We also define event E as E = E1,1 ∨ E2,1 ∨ E1,2 ∨ E2,2.

We write:

E
[∥∥Ĉ−C

∥∥
op

]
= E

[∥∥Ĉ−C
∥∥
op

| E
]
P [E] + E

[∥∥Ĉ−C
∥∥
op

| Ec
]
P [Ec] (56)

We find an upper bound for every term of (56).

E
[∥∥Ĉ−C

∥∥
op

| E
]
= E

[∥∥C∥∥
op

| E
]

≤ σ2.
(57)

From Lemma C.1, we have:

P
[∥∥C̃XX

∥∥
op

≥ 11σ2
]
≤ min

{
1, exp

(
6d1 −m

)}
,

P
[∥∥C̃YY

∥∥
op

≥ 11σ2
]
≤ min

{
1, exp

(
6d2 −m

)}
.

Also Lemma C.3 yields:

P
[
∥X∥op ≥ 6σ

√
d1 + n

]
≤ exp

(
−2(d1 + n)

)
,

P
[
∥Y∥op ≥ 6σ

√
d2 + n

]
≤ exp

(
−2(d2 + n)

)
Therefore we can upper-bound P [E]:

P [E] ≤ P[E1,1] + P[E2,1] + P[E1,2] + P[E2,2]

= P
[∥∥C̃XX

∥∥
op

≥ 11σ2
]
+ P

[∥∥C̃YY

∥∥
op

≥ 11σ2
]

+ P
[∥∥X∥∥

op
≥ 6σ

√
d1 + n

]
+ P

[∥∥Y∥∥
op

≥ 6σ
√

d2 + n
]

≤ exp
(
6d1 −m

)
+ exp

(
6d2 −m

)
+ exp

(
− 2(d1 + n)

)
+ exp

(
− 2(d2 + n)

)
≤ 2 exp

(
6d−m

)
+ 2 exp(−2n).

(58)

Note that if m ≥ 9d, then 2 exp
(
6d−m

)
≤ 1

4 . Also if n ≥ 2, then 2 exp(−2n) ≤ 1
4 . If both of these constraints are met,

we have:

P [E] ≤ 2 . (9)d exp
(−m

100

)
+ 2 exp(−2n) ≤ 1

2

P [Ec] ≥ 1

2
.

(59)
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Now we find an upper bound for E
[∥∥Ĉ−C

∥∥
op

| Ec
]
:

E
[∥∥Ĉ−C

∥∥
op

| Ec
]
≤

E
[∥∥Ĉ∗

+ −C
∥∥
op

]
P [Ec]

≤ 2E
[∥∥Ĉ∗

+ −C
∥∥
op

]
= 2E

[∥∥Ĉ∗
+ − Ĉ∗ + Ĉ∗ −C

∥∥
op

]
≤ 2E

[∥∥Ĉ∗
+ − Ĉ∗∥∥

op

]
+ 2E

[∥∥Ĉ∗ −C
∥∥
op

]
= 2E

[∣∣λmin(Ĉ
∗)
∣∣1{λmin(Ĉ∗)<0}

]
+ 2E

[∥∥Ĉ∗ −C
∥∥
op

]
≤ 2E

[∣∣λmin(Ĉ
∗)− λmin(C)

∣∣1{λmin(Ĉ∗)<0}

]
+ 2E

[∥∥Ĉ∗ −C
∥∥
op

]
(a)
≤ 4E

[∥∥Ĉ∗ −C
∥∥
op

]
,

(60)

where (a) is a consequence of Weyl’s inequality (Johnson & Horn, 1985, Section 4.3). Then:

E
[∥∥Ĉ∗ −C

∥∥
op

]
= E


∥∥∥∥∥∥
 ĈXX

1
n X̂Ŷ

⊤

1
n ŶX̂

⊤
ĈYY

−

[
CXX CXY

C⊤
XY CYY

]∥∥∥∥∥∥
op


= E


∥∥∥∥∥∥
 ĈXX −CXX

1
n X̂Ŷ

⊤
−CXY

1
n ŶX̂

⊤
−C⊤

XY ĈYY −CYY

∥∥∥∥∥∥
op


≤ E

[∥∥ĈXX −CXX

∥∥
op

]
+ E

[∥∥ĈYY −CYY

∥∥
op

]
+ E

[∥∥∥ 1
n
X̂Ŷ

⊤
−CXY

∥∥∥
op

]
(61)

We use matrix quantization scheme defined in Appendix A.5 to quantize matrices C̃XX, C̃YY, X, and Y. Therefore, we
can use the relation between communication load and the resolution of this quantization, which is stated in Appendix A.5.

• Quantization of C̃XX ∈ Rd1×d1 : r = 11σ2, therefore:

d21 log2

(
6σ2

ϵ′1

)
= B′

1 =
B1

2
⇒ ϵ′1 = 33σ2 · 2

−B1
2d21 . (62)

• Quantization of C̃YY ∈ Rd2×d2 : r = 11σ2, therefore:

d22 log2

(
6σ2

ϵ′2

)
= B′

2 =
B2

2
⇒ ϵ′2 = 33σ2 · 2

−B2
2d22 . (63)

• Quantization of X ∈ Rd1×n: r = 6σ
√
d1 + n, therefore:

nd1 log2

(
18σ

√
d1 + n

ϵ′′1

)
= B′′

1 =
B1

2
⇒ ϵ′′1 = 18σ

√
d1 + n · 2

−B1
2nd1 . (64)

• Quantization of Y ∈ Rd2×n: r = 6σ
√
d2 + n, therefore:

nd2 log2

(
18σ

√
d2 + n

ϵ′′2

)
= B′′

2 =
B2

2
⇒ ϵ′′2 = 18σ

√
d2 + n · 2

−B2
2nd2 . (65)
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From Proposition C.2, we have:

E
[∥∥C̃XX −CXX

∥∥
op

]
≤ 32σ2

√
2d1
m
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{√
2d1
m

, 1

}
,

E
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∥∥
op

]
≤ 32σ2

√
2d2
m

max

{√
2d2
m

, 1

}
.

(66)

We also have:

E

[∥∥∥∥ 1nXY⊤ −CXY

∥∥∥∥
op

]
≤ 32σ2 max


√
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n ,
d1+d2

n


= 32σ2

√
d

n
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{√
d

n
, 1

}
.

(67)

From (66) and (62) we write:

E
[∥∥ĈXX −CXX
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]
= E
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op

]
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op

]
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]
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√
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m
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m

, 1

}
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−B1
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√
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m
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{√
2d1
m

, 1

}
.

(68)

From (66) and (63) we write:

E
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]
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√
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√
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m
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}
.

(69)
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From (67), (64), and (65) we write:

E
[∥∥∥ 1

n
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⊤
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]
= E
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n
X̂Ŷ
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n
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n
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E
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op

]
+
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n
E
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E
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√
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n
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d

n
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(d1 + n)(d2 + n)
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2
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2n min{B1

d1
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B2
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}
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+ 32σ2

√
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n
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d

n
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(70)

If we set:

n = min

 min{B1

d1
, B2

d2
}

log2
(min{B1,B2}

d1d2

) ,m
 , (71)

We have:

2
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2
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√
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(72)

d1 + n

n
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n

= 1 + d1 max
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Similarly:

d1 + n

n
≤ 2 log2
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Thus:
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(76)

Note that B1 ≥ 15d1 max{d1, d2} log2(max{d1, d2}), B2 ≥ 15d2 max{d1, d2} log2(max{d1, d2}). The function g(B) =
B

log2(B) is an increasing function in the interval [e,+∞), Therefore we write:

B1

log2(B1)
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∣∣∣∣
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This yields B1
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≥ d log2(B1). Similarly we conclude that B2
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≥ d log2(B2). Therefore we have:
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Therefore
min{B1
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) ≥ d, also we have m ≥ 9d ≥ d, thus we conclude that n ≥ d. Now we have:
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From assumption m ≥ 9d we have:
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Finally:
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Note that m ≥ 9d, therefore exp(6d−m) ≤
√

d
m . We also have:
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Thus we have:
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From the assumption B1 ≥ 15d1 max{d1, d2} log2(max{d1, d2}), and B2 ≥ 15d2 max{d1, d2} log2(max{d1, d2}), we
conclude:

min{B1, B2} ≥ 15min{d1, d2}max{d1, d2} log2(max{d1, d2}) = 15d1d2 log2(max{d1, d2}), (84)
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≥ 1. Thus we can simplify the upper bound more:
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Assuming ε ≤ σ2

2 , if we set:
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then we have:
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Therefore, we can write:

E
[∥∥Ĉ−C

∥∥
op

]
≤ 388

ε√
τ
+ 132ε+ 4192

ε√
τ ′
. (91)

The proof of Theorem 4.4 and Corollary 4.5 is completed.
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