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Abstract

This paper introduces a framework for formally establishing a connection
between a portion of an algebraic language and a Graph Neural Network
(GNN). The framework leverages Context-Free Grammars (CFG) to organize
algebraic operations into generative rules that can be translated into a GNN
layer model. As CFGs derived directly from a language tend to contain
redundancies in their rules and variables, we present a grammar reduction
scheme. By applying this strategy, we define a CFG that conforms to the
third-order Weisfeiler-Lehman (3-WL) test using MATLANG. From this
3-WL CFG, we derive a GNN model, named G2N2, which is provably
3-WL compliant. Through various experiments, we demonstrate the
superior efficiency of G2N2 compared to other 3-WL GNNs across numerous
downstream tasks. Specifically, one experiment highlights the benefits of
grammar reduction within our framework.

1 Introduction

In the last few years, the Weisfeiler-Lehman (WL) hierarchy, based on the eponymous
polynomial-time isomorphism test (Lehman and Weisfeiler (1968)), has been the most
common way to characterise the expressive power of Graph Neural Networks (GNNs) (Morris
et al. (2019); Bodnar et al. (2021b;a); Zhang et al. (2023b)). A founding result was the proof
that Message Passing Neural Networks (MPNNs) (Gilmer et al. (2017); Wu et al. (2020))
are at most as powerful as the first-order WL test (1-WL) (Morris et al. (2019); Xu et al.
(2019)). As a consequence of this result, many subsequent contributions have focused on
going beyond this 1-WL limit, to reach more expressive GNNs. For instance, subgraph-based
GNNs (Chen et al. (2020); Zhang and Li (2021); Zhao et al. (2022)) succeed to surpass 1-WL
expressive power but are still bounded by 3-WL (Frasca et al. (2022)).

One way to ensure k-WL expressive power is to mimic one iteration of the k-WL test (Maron
et al. (2019a)) for each GNN layer. Taking as root the colouring and hashing steps of the
k-WL algorithm, Maron et al. (2019a) shows that k-IGN, based on the basis of equivariant
operators defined for IGN (Maron et al. (2019b)), is as powerful as the k-WL test. Since
k-IGN works on k-th order tensors and since the cardinal of the basis is equal to the 2k-th
Bell number, it is limited in practice by both the layer input memory consumption and the
cardinal of IGN operator basis, even for k = 3 (Li et al. (2020)). Concurrently, Provably
Powerful Graph Network (PPGN) was also proposed in Maron et al. (2019a). It is able to
mimic the second-order Folklore WL test (2-FWL1) colouring and hashing steps with MLPs
that are coupled together with matrix multiplication. Since PPGN only relies on matrices, it
is a more tractable 3-WL architecture than 3-IGN (Zhang et al. (2023a)).

Taking an algebraic point of view, the groundbreaking paper Geerts (2020) reformulates the
1-WL and 3-WL tests as languages based on specific subsets of algebraic operations applied
on the adjacency matrix. These fragments of the matrix language MATLANG (Brijder
et al. (2019)) called ML (L1) and ML (L3) are shown to be as expressive as 1-WL and 3-WL
(Geerts (2020)). Derived from this result, a model called GNNML1 was proposed in Balcilar
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et al. (2020). GNNML1 is proven to be 1-WL equivalent since it is able to generate any
sentence of ML (L1). A more expressive model called GNNML3 was proposed in the same
paper. It is only shown to be more expressive than 1-WL. This is due to the lack of a
systematic procedure of deriving a GNN model from a given language fragment.

In this paper, we leverage this bottleneck by proposing a generic methodology to produce a
GNN from any fragment of an algebraic language, opening a new way to ensure expressiveness.
The rationale behind our framework is to instantiate a language fragment by a reduced set
of generative rules, translated into layer components of a GNN. Starting from the operations
set L3, we build an exhaustive Context-Free Grammar (CFG) able to generate ML (L3).
This CFG is reduced to remove unnecessary operations among the rules while keeping the
equivalence with 3-WL. From the variables of this reduced CFG, GNN inputs are easily
deduced. Then, the rules of the CFG determine the GNN layers update functions. As a result
of this methodology, we propose a new model called Grammatical Graph Neural Network
(G2N2) that is provably 3-WL.

The contributions of this work are the following : (i) A generic framework to design a GNN
from any fragment of an algebraic language; (ii) The instantiation of the framework on
ML (L3) resulting in G2N2, a provably 3-WL GNN; (iii); An experimental validation of
the set of rules; (iv) Numerous experiments demonstrating that G2N2 outperforms existing
3-WL GNNs on various downstream tasks.

The paper is structured as follows. Section 2 introduces the necessary background, by
defining MATLANG, its link with WL and CFGs. Section 3 describes our framework and
presents the resulting G2N2 architecture, which is experimentally evaluated in section 4.

2 From MATLANG and Weisfeiler-Lehman to Context-Free
Grammars and Languages

Let G = (V, E) be an undirected graph where V = [[1 , n]] is the set of n nodes and E ⊂ V ×V
is the set of edges. The adjacency matrix A ∈ {0, 1}n×n represents the connectivity of G.

Definition 2.1 (MATLANG (Brijder et al. (2019)))
MATLANG is a matrix language with an allowed operation set {+, ·,⊙, T,Tr,diag,1,×, f}
denoting respectively matrix addition, matrix and element-wise multiplications, transpose and
trace computations, diagonal matrix creation from a vector, column vector of 1 generation,
scalar multiplication, and element-wise function applied on a scalar, a vector or a matrix.
Restricting the set of operations to a subset L defines a fragment of MATLANG denoted
ML (L). s(X) ∈ R is a sentence in ML (L) if it consists of consistent consecutive operations
in L, operating on a given matrix X, resulting in a scalar value. As an example, s(X) =
1T

(
X2 ⊙ diag (1)

)
1 is a sentence of ML

(
{·, T,1,diag,⊙}

)
computing the trace of X2.

Equivalences between ML (L1) and ML (L3) with L1 = {·, T,1,diag}, L3 = {·, T,1,diag,⊙}
and respectively the 1-WL and 3-WL tests are shown in Geerts (2020): two graphs are
indistinguishable by the 1-WL (resp. 3-WL) test if and only if applying any sentence of
ML (L1) (resp. ML (L3)) to their adjacency matrices gives the same scalar. Adding {+,×, f}
does not improve the expressive power of the fragment (Geerts (2020)).

Transposed in a Machine Learning context, a MATLANG-based GNN will inherit the 3-WL
expressive power of ML (L3) if it is able to generate any sentence of the fragment while
learning the downstream task. To reach this objective, we will instantiate the fragment as a
Context Free Language, entirely described by a set of production rules2.

Definition 2.2 (Context-Free Grammar and Language)
A Context-Free Grammar (CFG) G is a 4-tuple (V,Σ, R, S) with V a finite set of variables,
Σ a finite set of terminal symbols, R a finite set of rules V → (V ∪ Σ)

∗
, S a start variable.

R completely describes a CFG with the convention that S is placed on the top left.

2Figure 7 in appendix A illustrates the process of sentence generation from a grammar.
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B is a Context-Free Language (CFL) if there exists a CFG G such that B = L(G) := {w,w ∈
Σ∗ and S

∗
=⇒ w} where S

∗
=⇒ w denotes that S can be transformed into w by applying

an arbitrary number of rules in G.

3 From ML(L3) to the 3-WL G2N2

In this section, the proposed generic framework is described and instantiated on the ML (L3)
fragment to generate our G2N2 model. As shown by Figure 1, 3 steps are involved:
(1) defining the exhaustive CFG that generates the language, (2) reducing the
exhaustive CFG, (3) translating the variables and the rules of the reduced CFG
into GNN input and model layer. To keep the expressive power of the language at each
step, the equivalence between the successive representations must be ensured.

Figure 1: Overview of the proposed framework instantiated on ML(L3).

3.1 From ML(L3) to the exhaustive CFG GL3

The first step of the framework translates the language fragment into an exhaustive CFG
(variables, terminal symbols and rules). For ML (L3), the variables of the exhaustive CFG
denoted GL3

are defined using the following proposition proved in appendix A.2.

Proposition 3.1
For any square matrix of size n2, operations in L3 can only produce square matrices of the
same size, row, or column vectors of size n or scalars.

In the context of our study, as in Geerts (2020), ML (L3) is applied on the adjacency matrix.
Thus, proposition 3.1 ensures that GL3

variables are restricted to square matrix (M), column
vector (Vc), row vector (Vr) and scalar (S). Once the variables defined, the production rules
of GL3

are obtained by enumerating all possible operations in ML (L3) that produce such
variables. The rule M → A is added in order to be compliant with Geerts (2020). All the
rules composing GL3

are synthesised in equation 1 where | denotes the classical OR operator

since a variable can be produced by different rules. They fully characterise the CFG3.

The following theorem ensures that the language generated by GL3
is ML (L3). Thus GL3

is
as expressive as ML (L3).

Theorem 3.1
For GL3

defined by

S → (Vr)(Vc) | diag (S) | SS | (S ⊙ S) (1)

Vc → (Vc ⊙ Vc) | MVc | (Vr)
T | VcS | 1

Vr → (Vr ⊙ Vr) | VrM | (Vc)
T | SVr

M → (M ⊙M) | MM | (M)T | diag (Vc) | (Vc)(Vr) | A

we have

L(GL3
) = ML (L3) .

3Elements that are not variables in the rule set are said to be terminal symbols.
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The full proof is provided in appendix (A.2). Its idea is the following. As any operation in
the rules of GL3

belongs to L3, it is clear that L(GL3
) ⊂ ML(L3). The reciprocal inclusion

is proven by induction over the number of ML (L3) operations.

Given the results of theorem 3.1, the next step reduces the CFG by exploiting the redundancies
in the exhaustive set of rules and variables.

3.2 From GL3
to r-GL3

An example of redundancy can be observed in the following proposition proved in the
appendix (see A.2).

Proposition 3.2
For any square matrix M , column vector Vc and row vector Vr, we have

M ⊙ (Vc · Vr) = diag (Vc)Mdiag (Vr)

The following theorem guarantees that the following reduced grammar preserves
expressiveness.

Theorem 3.2 (ML (L3) reduced CFG )
Let r-GL3

be defined by

Vc → MVc | 1 (2)

M → (M ⊙M) | MM | diag (Vc) | A

r-GL3
is as expressive as GL3

.

Proof. For any scalar S, S′, since diag (S), S ⊙ S′ and S · S′ produce a scalar, the only way
to produce a scalar from other variables is to pass through a vector dot product. Hence the
scalar variable S and its rules can be removed from GL3

without loss of expressive power.

Since diag (v)w = v ⊙ w for any vector v, w, the vector Hadamard product can be removed
from the vector rules. Proposition 3.2 allows to remove VcVr from the rules of M since
the results of subsequent mandatory operations MM or MVc can be obtained with other
combinations. At this stage, the following intermediate CFG i-GL3

is as expressive as GL3

since it can compute any vector of GL3
.

Vc → MVc | (Vr)
T | 1

Vr → VrM | (Vc)
T

M → (M ⊙M) | MM | (M)T | diag (Vc) | A

Since the remaining M rules preserve symmetry, (M)T, the variable Vr and its rules can be
removed. It conducts to r-GL3

defined in equation 2.

From these two steps, the resulting CFG r-GL3
possesses the expressive power of the fragment

ML (L3). The next step is a translation of r-GL3
into a GNN layer.

3.3 From r-GL3
to a G2N2 layer model

In r-G(L3), any vector Vc or matrix M is produced by applying a sequence of rules on A
and 1. As a consequence, every matrix or vector can be attained through an iterative rule
selection procedure using matrix and vector memories that store intermediate variables.
Figure 2 describes this procedure: each iteration starts by choosing a rule in r-G(L3) before
selecting corresponding inputs in the memories. Applying the selected rule produces a new
matrix or a new vector, which is added to the appropriate memory.

Translating this iterative procedure into a GNN based on a sequence of layers requires a
memory management strategy and a selection mechanism for both rules and inputs, while
taking into account learning issues related to downstream tasks.
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The matrix memory aims at storing the variables M produced by successive applications
of r-G(L3) rules. This memory is represented by a three order tensor C(l) where produced
matrices (i.e. edges embeddings in a GNN context) are stacked across layers on the third
dimension. In the same way, the vector memory is dedicated to the variables Vc that
correspond to nodes embeddings. It is as a matrix H(l) where produced vectors are stacked
on the second dimension. C(l) and H(l) are the input of the l-th GNN layer which produces
C(l+1) and H(l+1) as output, as depicted in Figure 3 describing a G2N2 layer. While the
memory of the iterative procedure grows with each iteration, a tractable GNN architecture
constrains the stacking dimension to be set to a given value at each layer.

In order to mimic the rule selection procedure of Figure 2, a G2N2 layer applies a selection
among the outputs produced by all the rules. Such a strategy enables to compute in
parallel several occurrences of any rule with multiple inputs. Hence, parameterised quantities
b⊙,b·,bdiag,bMVc

of the rules (M⊙M), (MM), diag (Vc), MVc are computed in parallel taking

as input linear combination Li of slices of C(l) and slices of H(l). These linear combinations
are able to select among inputs C(l) and H(l) through a learning paradigm.

Both the matrix rules outputs and the tensor C(l) (obtained through a skip connection which
guarantees the memory persistence) are fed to MLPM that produces the output tensor C(l+1)

with a selected third dimension size S(l+1). This MLP allows in the same time to simulate
the rule selection, to compress the matrix output of the layer to a fixed size and to learn a
point wise function for solving specific downstream tasks. It relates to the set of operations
{+,×, f} of MATLANG and does not modify the expressive power (Geerts (2020); Maron
et al. (2019a)). The output H(l+1) is provided similarly through MLPVc

. Figure 3 describes

the whole model of a G2N2 layer.

Formally, the update equations are :

C(l+1) = MLPM (C(l)||L1(C(l))·L2(C(l))||L3(C(l))⊙L4(C(l))||diag(L6(H
(l)))), (3)

H(l+1) = MLPVc
(H(l)||L5(C(l)) · L7(H

(l))), (4)

where || is the concatenation. MLPM and MLPVc
are learnable MLPs, and Li are learnable

linear blocks acting on the third dimension of C(l) or the second dimension of H(l): L1,2 :

RS(l) → Rb
(l)
· , L3,4 : RS(l) → Rb

(l)
⊙ , L5 : RS(l) → Rb

(l)
MVc , L6 : Rf(l) → Rb

(l)
diag , L7 : Rf(l) →

RbMVc

(l)

, MLPM : RS(l)+b·
(l)+b⊙

(l)+bdiag
(l) → RS(l+1)

, and MLPVc
: Rf(l)+bMVc

(l)

→ Rf(l+1)

.

3.4 G2N2 architecture and its expressive power

Figure 4 depicts the global G2N2 architecture. The inputs are H(0) and C(0). H(0) of size
n× fn + 1 is the feature nodes matrix concatenated with 1. C(0)∈ Rn×n×(fe+1) is a stacking
on the third dimension of the adjacency matrix A and the extended adjacency tensor E of
size n× n× fe, where fe is the number of edge features.

After the last layer, permutation equivariant readout functions are applied on both H(lend)

and the diagonal and off-diagonal components of C(lend). Readout outputs are then fed to a
dedicated decision layer.

Figure 2: 4-step iterative procedure (1) Rule selection (2) Inputs selection: inputs relative
to the chosen rule are selected from matrix and/or vector memories (opaque matrices) (3)
Rule computation (4) Output storage: the produced output is stored into its relative memory.
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Figure 3: L1-L5 combine the S(l) slices of C(l) into 2b⊙, 2b· and bMVc
matrices. L6-L7

combine the f
(l)
n columns of H(l) into bdiag and bMVc

vectors. From the outputs of L1 -L7,
multiple occurrences of r-G(L3) rules (M ⊙M), (MM), (diag(Vc) and (MVc) are computed.
The obtained outputs and the layer inputs are fed to MLPM and MLPVc

providing the layer

outputs C(l+1) and H(l+1).

Figure 4: Model of G2N2 architecture from the graph to the output. Each layer
updates node and edge embeddings and readout functions are applied independently on H(k)

and the diagonal and the non-diagonal elements of C(k).

Theorem 3.3 (Expressive power of G2N2)
G2N2 is able to produce any matrix and vector of L(r-GL3

). It is as expressive as 3-WL.

Proof. We show that G2N2 at layer l can produce all matrices and vectors r-GL3
can produce,

after l iterations. It is true for l = 1. Indeed, at r-GL3
first iteration, we obtain the matrices

I, A, A2 and the vectors 1 and A1. Since any of Li(C(0)) for i ∈ [[1 , 5]] is a linear combination
of A and I, G2N2 can produce those vectors and matrices in one layer.

Suppose that there exists l > 0 such that G2N2 can produce any of the matrices and vectors r-
GL3

can after l iterations. We denote by Al the set of those matrices and by Vl the set of those
vectors. At the l+1-th iteration, we have Al+1 = {M⊙N,MN,diag (Vc) |M,N ∈ Al Vc ∈ Vl}
and Vl+1 = {MVc|M ∈ Ak, Vc ∈ Vl}. Let M,N ∈ Al and Vc ∈ Vl then by hypothesis G2N2

can produce M,N at layer l. Since L produces at least two different linear combinations of
matrices or vectors in respectively Al and Vl, MN , M ⊙N , MVc and diag (Vc) are reachable
at layer l + 1. Thus Al+1 is included in the set of matrices G2N2 can produce at layer l + 1
and Vl+1 is included in the set of vectors G2N2 can produce at layer l + 1.

3.5 Discussion : G2N2 in the 3-WL GNN literature

Positioning w.r.t Maron et al. (2019a) From PPGN layer description (see Figure 2 of
Maron et al. (2019a)), one can build the following CFG:

M → MM | diag (1) | A (5)
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where M → diag (1) and M → A represent inputs of the architecture as for G2N2. Compared
to r-GL3

, Vc variable and M → M ⊙ M , diag (Vc) and MVc rules are missing. As a
consequence, PPGN 3-WL expressive power is not formally inherited from ML (L3). As
stated in the introduction, it relies on PPGN ability to mimic 2-FWL colouring and hashing
steps. Its capacity to implement the colouring step relies on MLP universality. It explains that
PPGN can approximate the missing rules of r-GL3

. To guarantee such an approximation, a

certain width and depth for MLP are needed. G2N2 does not suffer from these computational
constraints since it only needs to provide linear combinations as arguments of the operations.

3-IGN processes on sets of third order tensors. As a consequence, it cannot be described by a
CFG derived from ML (L3). However, we can connect our approach with k-IGN. For k-IGN,
the expressive power is related to MLPs and to the basis of linear equivariant operators
defined in Maron et al. (2019b). In some ways, these operators can be linked to the algebraic
operations of our framework. An example of such a link is given in appendix A.3 for 2-IGN .

Positioning w.r.t Balcilar et al. (2021) In appendix A.1, we show that GNNML1
(Balcilar et al. (2021)) can be seen as the resulting GNN of our framework applied on ML (L1).
Concerning GNNML3, a CFG can also be deduced from its layer

Vc → C1Vc | · · · | CkVk | Vc ⊙ Vc | 1

where the matrices C1, · · · , Ck are defined using the adjacency matrix, exponential pointwise
function, and matrix Hadamard product. As some rules and variables are missing compared
to r-GL3

, it cannot formally inherit the expressive power of ML (L3).

4 Experiments

This section is dedicated to the experimental validation of both the framework and G2N2.
It answers 4 questions Q1-Q4. Q1 concerns the validation of the reduced grammars. Q2
and Q3 relate to performance of G2N2 on downstream regression/classification tasks. Q4
concerns the model spectral ability. Experimental settings are detailed in appendix C.

Q1: Is the reduction of grammar relevant and optimal?

This experiment aims at investigating the impact of the CFG reduction scheme through
the comparison of different models built using GL3

(see Figure 9 in appendix A), i-GL3
(see

Figure 10 in appendix A) and r-GL3
(see Figure 3). The comparison is completed by an

ablation study the aim of which is to investigate the importance of each rule of r-GL3
.

We use a graph regression benchmark called QM9 which is composed of 130K small molecules
(Ramakrishnan et al. (2014); Wu et al. (2018)). For this study, we focus on the regression
target R2, which is known to be the most difficult to predict. As in Maron et al. (2019a),
the dataset is randomly split into training, validation, and test sets with a respective ratio
of 0.8, 0.1 and 0.1. The edge and vector embeddings are always of size 32.

The results are presented in Figure 5 where each model is represented in a 2-D space using
the Mean Absolute Error (MAE) of the best validation model on the test set and the
number of parameters of the model. These results corroborate the theoretical results of
section 3, discussed in greater detail in appendix A.5: the MAE scores are comparable for
G(L3), i-G(L3) and r-G(L3) while the number of parameters is divided by 2 when reducing
from G(L3) to r-G(L3). As expected, removing rules in r-G(L3) leads to a drop of MAE
performance. It also offers insights into the weights of each operation in the model and
enables informed pruning of the GNN if the expressiveness is not required.

Q2: Does G2N2 perform better than other 3-WL GNNs for regression?

For this second question, we also use the dataset QM9, but we consider the 12 regression
targets. The dataset is randomly split into training, validation, and test sets with the
same ratio as in Q1. The experimental settings are detailed in appendix C. G2N2 results
are compared to those in Huang et al. (2023); Maron et al. (2019a) including 1-GNN and
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Figure 5: Comparison of model size and MAE performance on the QM9 R2 target for GNNs
derived from G(L3). Each GNN model is denoted by its set of rules. Over-reduced grammar
from r-G(L3) are denoted with a \, whereas ∪ denotes the addition of a rule to the set.

1-2-3-GNN (Morris et al. (2019)), DTNN (Wu et al. (2018)), DeepLRP (Chen et al. (2020)),
NGNN (Zhang and Li (2021)), I2-GNN (Huang et al. (2023)) and PPGN Maron et al.
(2019a). The metric is the MAE of the best validation model on the test set. The mean
epoch duration is measured on the same device for comparison between G2N2 and PPGN.

As in Maron et al. (2019a), we made two experiments. The first one consists in learning one
target at a time while the second learns every target at once. In the first experiment, we

have S(l) = f
(l)
n = 64 and in the second S(l) = f

(l)
n = 32. Partial results focusing on the two

best models are given in Table 1. Complete results and experiment settings are given in
appendix C. In both cases, G2N2 obtains the best results while learning faster.

Table 1: Results on QM9 dataset focusing on the best methods. On the left part, each target
is learned separately while on the right side all targets are learned at the same time. The
metric is MAE, the lower, the better. Complete results can be found in Table 4.

Target PPGN G2N2

µ 0.0934 0.0703
α 0.318 0.127
ϵhomo 0.00174 0.00172
ϵlumo 0.0021 0.00153
∆ϵ 0.0029 0.00253
R2 3.78 0.342
ZPVE 0.000399 0.0000951
U0 0.022 0.0169
U 0.0504 0.0162
H 0.0294 0.0176
G 0.024 0.0214
Cv 0.144 0.0429
T / ep 129 s 98 s

PPGN G2N2

0.231 0.102
0.382 0.196
0.00276 0.0021
0.00287 0.00211
0.0029 0.00287
16.07 1.19
0.00064 0.0000151
0.234 0.0502
0.234 0.0503
0.229 0.0503
0.238 0.0504
0.184 0.0707
131 s 57 s

Q3: Does G2N2 perform better than other 3-WL GNNs for classification?

For graph classification, we evaluate G2N2 on the classical TUD benchmark (Morris et al.
(2020)), using the evaluation protocol of Xu et al. (2019). Results of GNNs and Graph Kernel
are taken from Bouritsas et al. (2022). Since the number of node and edge features is very
different from one dataset to another, the parameter settings for each of the 6 experiments
related to these datasets can be found in Table 5 of appendix C. Partial results focusing on
G2N2 performance are given in Table 2. Complete results can be seen in Table 6 of appendix
C. G2N2 achieves better than rank 2 for five of the six datasets.
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Table 2: Results of G2N2 on TUD dataset compared to the best GNN competitor. The
rank of G2N2 within GNNs is in parentheses. The metric is accuracy, the higher, the better.
Complete results can be seen in Table 6.

Dataset G2N2 rank Best GNN competitor

MUTAG 92.5±5.5 1(1) 92.2±7.5
PTC 72.3±6.3 1(1) 68.2±7.2
Proteins 80.1±3.7 1(1) 77.4±4.9
NCI1 82.8±0.9 5(3) 83.5±2.0
IMDB-B 76.8±2.8 3(3) 77.8±3.3
IMDB-M 54.0±2.9 2(2) 54.3±3.3

Q4: Can G2N2 learn band-pass filters in the spectral domain?

As shown in Balcilar et al. (2020), the spectral ability of a GNN and particularly its ability
to operate as band-pass filter is an important property of a model for certain downstream
tasks. In order to assess the spectral ability of G2N2 and answer Q4, we use the protocol and
node regression dataset of Balcilar et al. (2021). R2 score is used to compare performance.

Table 3 reports the comparison of G2N2 to CHEBNET (Hammond et al. (2011)), PPGN
and GNNML3, citing the results from Balcilar et al. (2021). CHEBNET and GNNML3
are spectrally designed and manage to learn low-pass, high-pass, and band-pass filters. For
the three filter types, G2N2 reaches comparable performance. In appendix B, a theoretical
analysis shows that a 3-WL GNN is able to approximate any type of filter.

As shown in the table, PPGN fails to learn band-pass filters. This result which contradicts the
previous theoretical result is related to memory and complexity issues. Hence, as explained
before, PPGN needs a deeper and wider architecture for this task that can not be reached
for 900 node graphs (Balcilar et al. (2021)).

Table 3: R2 score on spectral filtering node regression. Results are a median of 10 runs.

Method Low-pass High-pass Band-pass

CHEBNET 0.9995 0.9901 0.8217
GNNML3 0.9995 0.9909 0.8189
PPGN 0.9991 0.9925 0.1041
G2N2 0.9996 0.9994 0.8206

5 Conclusion

Designing provably expressive GNNs has been the target of many recent works. In this paper,
we have proposed a new theoretical framework for designing such models. Taking as input a
language fragment, i.e. a set of algebraic operations, the framework uses reduced Context
Free Grammars to drive the generation of graph neural architectures with provable expressive
power. The framework provides insights about the importance of algebraic operations in the
resulting model, as shown by the experimental grammar ablative study. Such results can be
useful for improving the performance vs. computational cost trade-off for a given task.

Through the application of the framework to ML (L3) fragment, the paper also proposed the
provably 3-WL G2N2 model. In addition to these theoretical guarantees, G2N2 is also shown
to be efficient for solving graph learning downstream tasks through several experiments on
regression, classification and spectral filtering benchmarks. In all cases, G2N2 outperforms
3-WL GNNs, while being more tractable.

Beyond these results, we are convinced that our contributions open the door to the design of
models surpassing 3-WL, taking as root a language manipulating tensors of greater order
(Geerts and Reutter (2022)). Moreover, the framework is not limited to GNN models since
many other learning paradigm can be modeled with algebraic languages.
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This appendices provide additional content to the main paper G2N2: Weisfeiler and Lehman
go grammatical.

A CFG and GNN

A.1 From ML(L1) to 1-WL GNN

In this subsection, the reduction framework described in section 3 is applied to the fragment
ML (L1) as shown by Figure 6.

Figure 6: Overview of the proposed framework instantiated on ML (L1).

To determine the variables of the CFG, the following proposition is necessary.

Proposition A.1
For any square matrix of size n2, operations in L1 can only produce square matrices of size
n2, row or column vectors of size n or scalars.

Proof. Let M be a square matrix of size n2, we first need to prove that L1 can produce
square matrices of size n2, row and column vectors of size n and scalars.

Yet 1 := 1(M) is a column vector of size n, 1T is a row vector of size n, 1T · 1 is a scalar
and M is a square matrix of size n2.

Then let N ∈ Rn×n, v ∈ Rn, w ∈ (Rn)
∗
, and s ∈ R be words of ML (L1), we have

M ·N ∈ Rn×n M · v ∈ Rn w ·M ∈ (Rn)
∗

w · v ∈ R
v · w ∈ Rn×n 1(v) ∈ Rn vT ∈ (Rn)

∗
1(w) ∈ R

MT ∈ Rn×n wT ∈ Rn s · w ∈ (Rn)
∗

diag (s) ∈ R
diag (v) ∈ Rn×n 1(M) ∈ Rn s · s ∈ R

v · s ∈ Rn 1(s) ∈ R

Since this is an exhaustive list of all operations ML (L1) can produce with these words, we
can conclude.

Theorem A.1 (ML (L1) reduced CFG )
The following CFG denoted r-GL1

is as expressive as 1-WL.

Vc → diag (Vc)Vc | AVc | 1 (6)

Proof. Proposition A.1 leads to only four variables. M for the square matrices, Vc for the
column vectors, Vr for the row vectors and S for the scalars. We define a CFG GL1

where
the rules of a given variable is every possible operation in ML (L1) that produce this variable:

S → (Vr)(Vc) | diag (S) | SS (7)

Vc → MVc | (Vr)
T | VcS | 1

Vr → VrM | (Vc)
T | SVr

M → MM | (M)T | diag (Vc) | (Vc)(Vr) | A
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As any operation in the rules of GL1
belongs to L1, it is clear that L(GL1

) ⊂ ML(L1). For
the other inclusion, a simple inductive proof on the maximal number of rules shows that any
sentence produced by ML (L1) can be derived from GL1

. We have then ML (L1) = L(GL1
).

For any scalar s, s′, since diag (s) and s · s′ produce a scalar, the only way to produce a scalar
from another variable is to pass through a vector dot product. It implies that to generate
scalars, we only need to be able to generate vectors. We can then reduce GL1

by removing
the scalar variable S and setting Vc as starting variable.

Vc → MVc | (Vr)
T | 1

Vr → VrM | (Vc)
T

M → MM | (M)T | diag (Vc) | (Vc)(Vr) | A
To ensure that the start variable is Vc, a mandatory subsequent operation will be MVc for
any matrix variable M . As a consequence, by associativity of the matrix multiplication,
MM and (Vc)(Vr) can be removed from the rule of M .

Vc → MVc | (Vr)
T | 1

Vr → VrM | (Vc)
T

M → (M)T | diag (Vc) | A

Since diag produces symmetric matrices and A is symmetric, (M)T does not play any role
here. As a consequence, we can then focus on the column vector and we obtain r-GL1

.

Figure 7 shows how the CFG GL1
produces the sentence 1TA1.

Figure 7: GL1
generating the sentence 1TA1. From the starting variable, Variables are

replaced by applying rules until only terminal symbols remain.

A.2 Proofs of section 3

This subsection is dedicated to proof of propositions and theorem of section 3.

Firstly, we prove proposition 3.1.

Proof. Since L1 ⊂ L3, we only need to check the rule associated with the matrix Hadamard
product can produce. Let M ∈ Rn×n and N ∈ Rn×n be words ML (L3) can produce, we
have M ⊙N ∈ Rn×n. We can conclude.

Secondly, we prove proposition 3.2.

Proof. Let M be a square matrix, Vc, Vr be respectively column and row vectors, we have
for any i, j,

(M ⊙ (Vc · Vr))i,j = Mi,j(Vc · Vr)i,j

= (Vc)iMi,j(Vr)j

=
∑
l

diag (Vc)i,l Ml,j(Vr)j

= (diag (Vc)M)i,j(Vr)j

=
∑
l

(diag (Vc)M)i,ldiag (Vr)l,j

= (diag (Vc)Mdiag (Vr))i,j

We only use the scalar product commutativity here.
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Eventually, we prove theorem 3.1.

Proof. As any operation in the rules of GL3
belongs to L3, it is clear that L(GL3

) ⊂ ML(L3).

Let k be a positive integer, we denote by Mk
L3
, V ckL3

, V rkL3
and Sk

L3
the set of matrices,

column vectors, row vectors and scalars that can be produce with at most k operation in L3

from A. We also denote by Mk
G, V ckG, V rkG and Sk

G the set of matrices, column vectors, row
vectors and scalars that can be produce with at most k rules applied in GL3

.

For k = 0, we have V c0L3
= V r0L3

= S0
L3

= ∅, and thus V c0L3
⊂ V c0G, V r0L3

⊂ V r0G and

S0
L3

⊂ S0
G. Moreover M0

L3
= {A} and M0

G = {A}.

Let suppose that there exists k ⩾ 0 such that Mk
L3

⊂ Mk
G, V ckL3

⊂ V ckG, V rkL3
⊂ V rkG and

Sk
L3

⊂ Sk
G. Then since GL3

rules is composed of the exhaustive operations in L3, we have

that Mk+1
L3

⊂ Mk+1
G , V ck+1

L3
⊂ V ck+1

G , V rk+1
L3

⊂ V rk+1
G and Sk+1

L3
⊂ Sk+1

G By induction, we

have that L(GL3
) ⊂ ML(L3) and we can conclude that L(GL3

) = ML (L3).

A.3 CFG to describe existent architectures

The following examples show how CFG can be used to characterise GNNs.

Proposition A.2 (GCN CFG)
The following CFG, strictly less expressive than ML(L1), represents GCN (Kipf and Welling
(2017))

Vc → CVc | 1 (8)

where C = diag ((A+ I)1)
− 1

2 (A+ I)diag ((A+ I)1)
− 1

2

In GCN, the only grammatical operation is the message passing given by CVc where C is
the convolution support. The other parts of the model are linear combinations of vectors
and MLP, that correspond to +,×, and f in the language. Since +,×, and f do not affect
the expressive power of the language (Geerts (2020)), they do not appear in the grammar.
Actually, any MPNN based on k convolution support Ci included in ML (L1) can be described
by the following CFG which is strictly less expressive than ML (L1):

Vc → C1Vc | · · · | CkVc | 1 (9)

GNNML1 is an architecture provably 1-WL equivalent (Balcilar et al. (2021)) with the
following node update.

H(l+1) = H(l)W (l,1) +AH(l)W (l,2) (10)

+H(l)W (l,3) ⊙H(l)W (l,1).

Where H(l) is the matrix of node embedding at layer l and W (l,i) are learnable weight
matrices. For any vector v, w, since diag (v)w = v ⊙ w, the following CFG that describes
GNNML1 is equivalent to r-GL1

.

Vc → Vc ⊙ Vc | AVc | 1 (11)

From r-GL3
to MPNNs and PPGN We have already shown that most MPNNs can

be written with operations in r-GL1
, since L1 ⊂ L3 it stands for r-GL3

. PPGN can also
be written with r-GL3

. Indeed, at each layer, PPGN applies the matrix multiplication on
matched matrices on the third dimension, an operation included in r-GL3

. The node features
are stacked on the third dimension as diagonal matrices, the diag operation is also included
in r-GL3

. As all operations in PPGN are included, r-GL3
generalises PPGN layer. Actually,

the following CFG describes the PPGN layer :

M → MM | diag (1) | A (12)
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Figure 8: Partition of four indices tuples.

2-IGN CFG For p ∈ [[1 , 15]], we define Bp ∈ (Rn)4 as follow, Bp =

{
1 if (i, j, k, l) ∈ αp,

0 if not.
.

Where (αp) corresponds to the 15 manners to partition four elements that can be seen in
Figure 8.

As shown in Maron et al. (2019b), (Bp) is a basis of the set of equivariant linear operators

from (Rn)2 to (Rn)2. For the proof in the paper, two isomorphisms vec : (Rn)2 → Rn2

and mat : (Rn)4 → (Rn2

)2 was defined for any tensor T ∈ (Rn)4, matrices M ∈ (Rn2

)2,

N ∈ (Rn)2 and vector v ∈ Rn2

.

mat(T )i,j = Ti//n,i%n,j//n,j%n

mat−1(M)i,j,k,l = Min+j,kn+l

vec(N)i = Ni//n,i%n

vec−1(v)i,j = vin+j

We can then define the binary operation ·̃ as follow
T ·̃N = vec−1(mat(T )vec(N))

Actually, we obtain the following operation

(T ·̃N)i,j =
∑
k,l

Ti,j,k,lNk,l

We have all we need to proceed on writing 2-IGN as a grammar. The idea is to compute the
basis operator to any matrices with a set of rules.

(B1̃·N)i,j =
∑
k,l

(B1)i,j,k,lNk,l

=

{
Ni,i if i = j,

0 if not.

It is pretty easy to see that

B1̃·N = N ⊙ I

(B2̃·N)i,j =
∑
k,l

(B2)i,j,k,lNk,l

=

{∑
l ̸=i Ni,l if i = j,

0 if not.
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Here, it is a sum over the matrix line avoiding the diagonal.

B2̃·N = diag ((N ⊙ J)1)

(B3̃·N)i,j =
∑
k,l

(B3)i,j,k,lNk,l

=

{∑
l ̸=i Nl,i if i = j,

0 if not.

Here, it is a sum over the matrix column avoiding the diagonal.

B3̃·N = diag
(
(N ⊙ J)T1

)

(B4̃·N)i,j =
∑
k,l

(B4)i,j,k,lNk,l

=

{
Nj,j if i ̸= j,

0 if not.

It is the projection of the corresponding column diagonal element.

B4̃·N = (11T(N ⊙ I))⊙ J

(B5̃·N)i,j =
∑
k,l

(B5)i,j,k,lNk,l

=

{
Ni,i if i ̸= j,

0 if not.

It is the projection of the corresponding line diagonal element.

B5̃·N = ((N ⊙ I)11T)⊙ J

(B6̃·N)i,j =
∑
k,l

(B6)i,j,k,lNk,l

=

{∑
l ̸=k Nk,l −

∑
l Ni,l −

∑
l Nl,i if i = j,

0 if not.

One can recognise B2 and B3.

B6̃·N = (1(N ⊙ J)1T)I− B2̃·N − B3̃·N

(B7̃·N)i,j =
∑
k,l

(B7)i,j,k,lNk,l

=

{∑
l ̸=i Ni,l −Ni,j if i ̸= j,

0 if not.

It is just a sum over the line avoiding the element.

B7̃·N = (11T(N ⊙ J)−N)⊙ J

17



(B8̃·N)i,j =
∑
k,l

(B8)i,j,k,lNk,l

=

{∑
l Nl,i −Nj,i if i ̸= j,

0 if not.

It is just a sum over the column corresponding to the line avoiding the transpose element.

B8̃·N = ((N ⊙ J)11T −NT)⊙ J

(B9̃·N)i,j =
∑
k,l

(B9)i,j,k,lNk,l

=

{∑
l ̸=i Nj,l −Nj,i if i ̸= j,

0 if not.

It is just a sum over the line corresponding to the column avoiding the transpose element.

B9̃·N = (11T(N ⊙ J)−NT)⊙ J

(B10̃·N)i,j =
∑
k,l

(B10)i,j,k,lNk,l

=

{∑
l Nl,j −Ni,j if i ̸= j,

0 if not.

It is just a sum over the column avoiding the element.

B10̃·N = ((N ⊙ J)11T −N)⊙ J

(B11̃·N)i,j =
∑
k,l

(B11)i,j,k,lNk,l

=

{∑
l Nl,l −Ni,i −Nj,j if i ̸= j,

0 if not.

It is just a sum over the diagonal avoiding the two corresponding diagonal elements.

B11̃·N = (1T(N ⊙ I)1)J − B3̃·N − B4̃·N

(B12̃·N)i,j =
∑
k,l

(B12)i,j,k,lNk,l

=

{∑
l Nl,l −Ni,i if i = j,

0 if not.

It is just a sum over the diagonal avoiding the corresponding diagonal element.

B12̃·N = (1T(N ⊙ I)1)J − (11T(N ⊙ I))⊙ I

(B13̃·N)i,j =
∑
k,l

(B13)i,j,k,lNk,l

=

{
Ni,j if i ̸= j,

0 if not.
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It selects the non-diagonal.

B13̃·N = N ⊙ J

(B14̃·N)i,j =
∑
k,l

(B14)i,j,k,lNk,l

=

{
Nj,i if i ̸= j,

0 if not.

It selects the transpose non-diagonal.

B14̃·N = NT ⊙ J

(B15̃·N)i,j =
∑
k,l

(B15)i,j,k,lNk,l

=


∑

k ̸=l Nk,l −
∑

i ̸=l Ni,l

−
∑

i ̸=l Nl,i −
∑

j ̸=l Nj,l

−
∑

j ̸=l Nl,j −Ni,j −Nj,i if i ̸= j,

0 if not.

It is in fact a composition of other elements of the basis.

B15̃·N =(1T(N ⊙ J)1)J − B7̃·N − B8̃·N
− B9̃·N − B10̃·N + B13̃·N + B14̃·N

From all this, we can deduce the following grammar that generates 2-IGN:

M → Vc1
T | M ⊙ J | M ⊙ I | A

Vc → MVc | 1

As one can see, there is less operation in the CFG than operators in the basis.

A.4 GNNs derived from different Grammars

This subsection is dedicated to a description of GNNs derived from different grammars of
Q1 experiment (section 4).

Figure 9 depicts a layer of a GNN derived from the exhaustive CFG GL3
. The resulting

architecture inherits 3-WL expressive power from theorem 3.1. In Figure 10, a GNN derived
from i-GL3

, the CFG obtain during the reduction process of the framework of section 3, is

described. Since T is missing in r-G(L3, Figure 11 describes a GNN derived from a grammar
containing r-G(L3) and MT.

A.5 G2N2 expressiveness at fixed depth

The following proposition ensures that for architectures with at most three layers, the GNN
derived from the exhaustive CFG G(L3), called E-G2N2, and G2N2 have the same expressive
power.

Proposition A.3 (Graph isomorphism (WL) expressiveness at fixed depth)
Let k ∈ {1, 2, 3}, G2N2 and E-G2N2 have the same separative power after k layers.

Proof. Remark that, for scalars s and s′, if ss′ separates two graphs then s or s′ already
separate those graphs.
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Figure 9: Layer of a GNN derived from GL3
.

Figure 10: Layer of a GNN derived from i-GL3
.
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Figure 11: Layer of a GNN derived r-GL3
∪ {MT}.

We denote by M
(k)
G , V

(k)
cG and S

(k)
G , respectively the set of matrices, vectors and scalars that

G2N2 can compute at layer k. We also denotes by M
(k)
E , V

(k)
cE , V

(k)
rE and S

(k)
E , respectively

the set of matrices, column and row vectors and scalars that E-G2N2 can compute at layer
k. Remark that thanks to the skip connection in both layer, these sets are increasing for

inclusion with respect to k. For example S
(k)
G ⊂ S

(k+1)
G .

We will show that S
(k)
G = S

(k)
E for k ∈ {1, 2, 3}.

First of all we have that M
(0)
E = M

(0)
G = {A} and V

(0)
cE = V

(0)
rE = V

(0)
cG = {1} by construction

of the architectures.

Let compare two architectures with only one layer, we have that V
(1)
cE = V

(1)
rE = V

(1)
cG since

1 ⊙ 1 = 1, but M
(1)
E = M

(1)
G ∪ {vwT , v, w ∈ V

(0)
cG }. Since {vwT , v, w ∈ V

(0)
cG } = 11T and

this matrix can be approximated by the bias of any of the matrix linear of G2N2, we have

M
(1)
E = M

(1)
G . Thus S

(1)
E = S

(1)
G .

Let compare two architectures with two layers, we have that V
(2)
cE = V

(2)
rE = V

(2)
cG since like

in Maron et al. (2019a) the vector Hadamard product can be approximated with a multi

layer perceptron, but M
(2)
E = M

(2)
G ∪ {vwT , v, w ∈ V

(1)
cG }. Let N = vwT , v, w ∈ V

(1)
cG }, then

applying a readout function on N would result in

1TN1 = 1T v︸︷︷︸
∈S

(1)
G

wT 1︸︷︷︸
∈S

(1)
G

.

From that we have that S
(2)
E = S

(2)
G since the final decision multilayer perceptron can

approximate ss′ for any scalar s, s′. So our hypothesise is true for k = 2.

Assume that we compare architectures with k = 3 layers.

Since M
(2)
E = M

(2)
G ∪ {vwT , v, w ∈ V

(1)
cG }, we have for the matrix case,

M
(3)
E = M

(3)
G ∪ {vwT , v, w ∈ V

(2)
cG }

∪ {M(vwT ) or (vwT )M,M ∈ M
(2)
E , v, w ∈ V

(1)
cG }

∪ {M ⊙ (vwT ),M ∈ M
(2)
E , v, w ∈ V

(1)
cG }.
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We have three cases here. For N ∈ {vwT , v, w ∈ V
(2)
cG }, it is the same situation than for

k = 2.

For N = M(vwT ), M ∈ M
(2)
E , v, w ∈ V

(1)
cG , either M ∈ M

(2)
G or M ∈ {vwT , v, w ∈ V

(1)
cG }.

In the first case Mv ∈ V
(3)
cG and since V

(1)
cG ⊂ V

(3)
cG , we are in the same case than for k = 2. In

the second case, there exists v′ and w′ ∈ V
(1)
cG ⊂ V

(2)
cG such that M = v′(w′)T , which means

that after the readout function, we have

1TN1 = 1T v′︸︷︷︸
∈S

(2)
G

(w′)T v︸ ︷︷ ︸
∈S

(3)
G

wT 1︸︷︷︸
∈S

(2)
G

.

For N = M ⊙ (vwT ), M ∈ M
(2)
E , v, w ∈ V

(1)
cG , either M ∈ M

(2)
G or M ∈ {vwT , v, w ∈ V

(1)
cG }.

In the first case, we have that 1T (M ⊙ (vwT ))1 ∈ S
(3)
G . Indeed,

1T (M ⊙ (vwT ))1 = vTMw = 1T (v ⊙Mw)︸ ︷︷ ︸
∈V

(3)
cG

We have for the vector case,

V
(3)
cE = V

(3)
rE = V

(3)
cG ∪ {vwT v′, v, w ∈ V

(1)
cG , v′ ∈ V

(2)
cG }.

Since wT v′ ∈ S
(3)
G for all w, v′ ∈ V

(2)
cG , we have that S

(3)
E = S

(3)
G .

B Spectral response of ML(L3)

The graph Laplacian is the matrix L = D − A (or L = I−D− 1
2AD− 1

2 for the normalised
Laplacian) where D is the diagonal degree matrix. Since L is positive semidefinite, its
eigendecomposition is L = Udiag (λ)UT with U ∈ Rn×n orthogonal and λ ∈ Rn

+. By
analogy with the convolution theorem, one can define graph filtering in the frequency domain
by x̃ = Udiag (Ω(λ))UTx where Ω is the filter applied in the spectral domain.

Lemme B.1
Given A the adjacency matrix of a graph, ML(L3) can compute the graph Laplacian L and
the normalised Laplacian Ln of this graph.

Proof. ML(L3) can produce A2 ⊙ I which is equal to D. Thus it can compute L = D −A.
For the normalised Laplacian, since the point-wise application of a function does not improve
the expressive power of ML (L3) (Geerts (2020)), D− 1

2 is reachable by ML (L3). Thus, the

normalised Laplacian D− 1
2LD− 1

2 can be computed.

As in Balcilar et al. (2020), we define the spectral response ϕ ∈ Rn of C ∈ Rn×n as
ϕ(λ) = diagonal(UTCU) where diagonal extracts the diagonal of a given square matrix.
Using spectral response, Balcilar et al. (2020) shows that most existing MPNNs act as low-
pass filters while high-pass and band-pass filters are experimentally proved to be necessary
to increase model expressive power.

Theorem B.2
For any continuous filter Ω in the spectral domain of the normalised Laplacian, there exists
a matrix in ML(L3) such that its spectral response approximate Ω.

Proof. The spectrum of the normalised Laplacian is included in [0 , 2], which is compact.
Thanks to Stone-Weierstraß theorem, any continuous function can be approximated by a

22



polynomial function. We just have to ensure the existence of a matrix in ML (L3) such that
its spectral response is a polynomial function.

For k ∈ N, the spectral response of Lk is λk since we have

UTLkU = UT(Udiag (λ)UT)kU

= UTUdiag (λ)
k
UTU = diag (λ)

k

From Lemma B.1, ML (L3) can compute L, and thus it can compute Lk for any k ∈ N.
Since ML (L3) can produce all the matrices with a monome spectral response and since the
function that gives the spectral response to a given matrix is linear, ML (L3) can produce
any matrices with a polynomial spectral response.

This section shows that a 3-WL GNN should be able to approximate any type of filter.

C Experiments

C.1 Experimental setting

In the experiments, all the linear blocks of a layer are set at the same width S(l) = b
(l)
⊗ =

b
(l)
⊙ = b

(l)
diag. This means that MLP

(l)
M takes as input a third order tensor of dimensions

n× n× 4S(l) and MLP
(l)
Vc

takes as input a matrix of dimensions n× 2S(l). At each layer, the
MLP depth is always 2 and the intermediate layer doubled the input dimension.

C.2 QM9

For this experiment, there are 4 edge attributes and 11 node features. We use 3 layers

with S(l) = f
(l)
n = 64 when learning one target at a time and S(l) = f

(l)
n = 32 in

the other experiment for l ∈ {1, 2, 3}. The vector readout function is a sum over the
components of H(3) and the matrix readout function is a sum over the components of the
diagonal and the off-diagonal parts of C(3). Finally, 3 fully connected layers, with respective
dimension(512/256/(1 or 12)) are applied before using an absolute error loss. Complete
results on this dataset can be found in Table 4.

Table 4: Results on QM9 dataset predicting each target at a time. The metric is MAE, the
lower, the better.

Target 1-GNN 1-2-3-GNN DTNN Deep LRP NGNN I2-GNN PPGN G2N2

µ 0.493 0.476 0.244 0.364 0.428 0.428 0.0934 0.0703
α 0.78 0.27 0.95 0.298 0.29 0.230 0.318 0.127
ϵhomo 0.00321 0.00337 0.00388 0.00254 0.00265 0.00261 0.00174 0.00172
ϵlumo 0.00355 0.00351 0.00512 0.00277 0.00297 0.00267 0.0021 0.00153
∆ϵ 0.0049 0.0048 0.0112 0.00353 0.0038 0.0038 0.0029 0.00253
R2 34.1 22.9 17.0 19.3 20.5 18.64 3.78 0.342
ZPVE 0.00124 0.00019 0.00172 0.00055 0.0002 0.00014 0.000399 0.0000951
U0 2.32 0.0427 2.43 0.413 0.295 0.211 0.022 0.0169
U 2.08 0.111 2.43 0.413 0.361 0.206 0.0504 0.0162
H 2.23 0.0419 2.43 0.413 0.305 0.269 0.0294 0.0176
G 1.94 0.0469 2.43 0.413 0.489 0.261 0.024 0.0214
Cv 0.27 0.0944 2.43 0.129 0.174 0.0730 0.144 0.0429

C.3 TUD

The parameter setting for each of the 6 experiments related to this dataset can be found in
Table 5. Complete results on this dataset are given in Table 6.

23



Table 5: G2N2 parameters detail for each dataset in our experiments on TU

parameters MUTAG PTC Proteins NCI1 IMDB-B IMDB-M

node features 7 22 3 37 1 1
edge features 6 0 0 0 0 0
# of G2N2 layer = lm 3 3 3 3 3 3

f
(l)
n l ∈ [[1 , lm]] 16 32 32 64 32 32

S(l) l ∈ [[1 , lm]] 16 32 32 64 32 32
readout dimension 256/128/1 512/256/1 512/256/1 128/64/1 512/256/1 512/256/3
loss BCEloss BCEloss BCEloss BCEloss BCEloss CEloss

Table 6: Results on TUD dataset. The metric is accuracy, the higher, the better.

Dataset MUTAG PTC Proteins NCI1 IMDB-B IMDB-M

WL kernel (Shervashidze et al. (2011)) 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 73.8±3.9 50.9±3.8
GNTK (Du et al. (2019)) 90.0±8.5 67.9±6.9 75.6±4.2 84.2±1.5 76.9±3.6 52.8±4.6
DGCNN (Zhang et al. (2018)) 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 70.0±0.9 47.8±0.9
IGN (Maron et al. (2019b)) 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.0±5.5 48.7±3.4
GIN (Xu et al. (2019)) 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 75.1±5.1 52.3±2.8
PPGNs (Maron et al. (2019a)) 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 73.0±5.8 50.5±3.6
Natural GN (de Haan et al. (2020)) 89.4±1.60 66.8±1.79 71.7±1.04 82.7±1.35 74.8±2.01 51.3±1.50
WEGL (Kolouri et al. (2020)) N/A 67.5±7.7 76.5±4.2 N/A 75.4±5.0 52.3±2.9
GIN+GraphNorm (Cai et al. (2021)) 91.6±6.5 64.9±7.5 77.4±4.9 82.7±1.7 76.0±3.7 N/A
GSNs (Bouritsas et al. (2022)) 92.2±7.5 68.2±7.2 76.6±5.0 83.5±2.0 77.8±3.3 54.3±3.3
G2N2 92.5±4.3 72.3±6.3 80.1±3.7 82.8±0.9 76.8±2.8 54.0±2.9

C.4 Spectral dataset

This dataset is composed of three 2D grids of size 30x30, for respectively training, validation,

and testing. We use 3 layers of G2N2 with S(l) = 32 and f
(l)
n = 32 for l ∈ {1, 2, 3}. Our

readout function is the identity over the last node embedding and a sum over the line of
the last edge embedding. We finally apply two fully connected layers on the output of the
readout function and then use Mean Square Error (MSE) loss to compare the output to the
ground truth.
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