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ABSTRACT

We propose and theoretically analyze an approach for planning with an approximate
model in reinforcement learning that can reduce the adverse impact of model error.
If the model is accurate enough, it accelerates the convergence to the true value
function too. One of its key components is the MaxEnt Model Correction (MoCo)
procedure that corrects the model’s next-state distributions based on a Maximum
Entropy density estimation formulation. Based on MaxEnt MoCo, we introduce
the Model Correcting Value Iteration (MoCoVI) algorithm, and its sampled-based
variant MoCoDyna. We show that MoCoVI and MoCoDyna’s convergence can be
much faster than the conventional model-free algorithms. Unlike traditional model-
based algorithms, MoCoVI and MoCoDyna effectively utilize an approximate
model and still converge to the correct value function.

1 INTRODUCTION

Reinforcement learning (RL) algorithms can be divided into model-free and model-based algorithms
based on how they use samples from the environment with dynamics P. Model-free algorithms
directly use samples from P to approximately apply the Bellman operator on value functions. At its
core, the next-state expectations Ex: . p .z q)[¢(X")] are estimated for a function ¢, such as the value
function, at all state-action pairs (x, a). Model-based reinforcement learning (MBRL) algorithms, on
the other hand, use samples from the environment to train a world model P to approximate P. The

world model P can be considered an approximate but cheap substitute of the true dynamics P, and is
used instead of P to solve the task.

The world model P often cannot be learned perfectly, and some inaccuracies between P and P is
inevitable. This error in the model can catastrophically hinder the performance of an MBRL agent,
especially in complex environments that learning an accurate model is challenging (Talvitie, 2017,
Jafferjee et al., 2020; Abbas et al., 2020). In some of these challenging environments, estimating the
next-state expectations accurately might be much easier than learning a model. Motivated by this
scenario, we aim to bridge the gap between model-based and model-free algorithms and ask: Can we

improve MBRL algorithms by using both the next-state expectations and the approximate model P2

In this paper, we consider a discounted MDP with the true dynamics P, and we suppose that we have
access to an approximate model P ~ P. At this level of abstraction, we do not care about how P is
obtained — it may be learned using a conventional Maximum Likelihood Estimate (MLE) or it might
be a low-fidelity and fast simulator of the true dynamics P. We further assume that for any function
¢ of states, we can obtain the next-state expectations E x/p(.|z,qa)[¢(X")] for all states x and actions

a. We consider this procedure costly compared to ones involving P which will be considered free.

We propose the MaxEnt Model Correction (MaxEnt MoCo) algorithm, which can reduce the impact
of model error on MBRL agents regardless of their planning algorithm. MaxEnt MoCo first estimates
Ex/wp(.|a,a)@i(X')] for all (z,a) and a set of measurement functions ¢;. The main idea is that
whenever the planning algorithm normally uses 75(|x7 a) for some state-action (z, a), a corrected
distribution p is calculated and used instead. The distribution p is obtained by minimally modifying
P(-|z, a) so that the next-state expectations E x/.p[¢; (X')] based on 7 are (more) consistent with the
estimated Ex/ p(.|z,0)[#:(X”)]. This procedure is known as Maximum Entropy density estimation
(Dudik et al., 2007) — hence the name MaxEnt MoCo. We show that if the true value function can
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be well-approximated by a linear combination of the measurement functions ¢;, the value function
estimated by MaxEnt MoCo can be significantly more accurate than the normally computed one

using P.

We also introduce Model Correcting Value Iteration (MoCoVI) (Section 4) and its sample-based
variant MoCoDyna (Section 5), which iteratively update the set of measurement functions ¢;. These
algorithms select their past value functions as the measurement functions, and execute MaxEnt MoCo
to get a new, more accurate value function. This choice of measurement functions proves to be
effective. We show that if the model is accurate enough, MoCoVI and MoCoDyna can converge to the
true value function, and the convergence can be much faster than a model-free algorithm that doesn’t
have access to a model. In this paper, we study the theoretical underpinnings of maximum entropy
model correction in RL. We provide theoretical analysis that applies to both finite and continuous
MDPs, and to the approximate versions of the algorithms with function approximation.

2 BACKGROUND

In this work, we consider a discounted Markov Decision Process (MDP) defined as
M= (X, AR, P,v) (Szepesviri, 2010). We use commonly used definitions and notations, summa-
rized in Appendix B. We briefly mention that we denote the value of a policy 7 by V™ and the optimal
value function by V*. Whenever we need to be explicit about the dependence of the value functions
to reward kernel R and the transition kernel P, we use V™ = V’T(R 73) and V* =V* (R P). For
any function ¢: X — R, we define P¢: X x A — Ras (Po)(z,a) £ [ P(da’|z,a)¢(x’) for all
(z,a) € X x A. We refer to the problem of finding V™ for a spec1ﬁc policy mpg as the Policy
Evaluation (PE) problem, and to the problem of finding an optimal policy as the Control problem.
In this paper, we assume an approximate model P Pis given. We define V™ and #* in the
approximate MDP M = (X, AR, P, «) similar to their counterparts in the true MDP M. We
assume the PE and control problems can be solved in M as it is a standard part of MBRL algorithms.

2.1 IMPACT OF MODEL ERROR

In MBRL, the agent relies on the approximate model P to solve the PE and Control problems (Sutton,
1990). A purely MBRL agent learns value functions and policies only using P, which means it
effectively solves the approximate MDP M = (X, AR, 75, ) instead of the true MDP M. The
advantage of this approach is that it only requires access to the cost-efficient P, hence avoiding costly
access to P (e.g., via real-world interaction). However, the model error can dramatically degrade
the agent’s performance (Talvitie, 2017; Jafferjee et al., 2020; Abbas et al., 2020). The extent of the
performance loss has been theoretically analyzed in prior work (Avila Pires and Szepesvari, 2016;
Talvitie, 2017; Farahmand et al., 2017; Farahmand, 2018). To characterize model errors and their
impact mathematically, we define the following error measure for each state-action pair (z, a):

€Model (T, @) \/DKL P(|z,a) | P(|z,a)). 2D
We note that the choice of KL divergence for quantifying the model error is a natural one. Indeed, in
conventional model learning (see e.g., Janner et al. 2019), a common choice of optimization objective
is the maximum likelihood estimation (MLE) loss, which minimizes the empirical estimate of the
KL-divergence of the approximate next-state distribution to the ground-truth. The following lemma
provides performance guarantees for an MBRL agent as a function of epjo4e1- Similar bounds have
appeared in recent work (Avila Pires and Szepesvari, 2016; Farahmand, 2018; Rakhsha et al., 2022).

Lemma 1. Suppose that P is the true environment dynamics, P is an approximation of P, and
lleModelllog = SUP. qex x A EModel (T, @) is the worst-case error between them. Let ¢, = W2/(1 -

7). We have IIV””E — Vo < 25 [P = PRV oo < 1l emodelllog IVl and

2cile Il
* 7'r 1 Model || 5o || *”
HV = 1—cilleModel |l Vo

Note that the model error impacts the PE solution through the term (P — 75“PE)V”"E. A similar
observation can be made for the Control problem. This dependence has been used in designing
value-aware losses for model learning (Farahmand et al., 2017; Farahmand, 2018; Voelcker et al.,
2022; Abachi et al., 2022) and proves to be useful in our work as well.
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2.2 MAXIMUM ENTROPY DENSITY ESTIMATION

Consider a random variable Z defined over a domain Z with unknown distribution p € M(Z), and
a set of measurement functions ¢; : Z — R fori = 1,2,...,d. Suppose that the expected values
¢i = Ep[¢i(Z)] of these functions under p are observed. Our goal is to find a distribution ¢ such
that E,[¢;(Z)] matches ¢; for all i. For example, if Z = R, ¢1(z) = z, and ¢2(z) = 22, we are
interested in finding a ¢ such that its first and second moments are the same as p’s.

In general, there are many densities that satisfy these constraints. Maximum entropy (MaxEnt) princi-
ple prescribes picking the most uncertain distribution as measured via (relative) entropy that is consis-
tent with these observations (Jaynes, 1957). MaxEnt chooses ¢* = argmaxg (4. (zy=4, H(q), where

H (q) is the entropy of ¢, or equivalently, it minimizes the KL divergence (relative entropy) between
q and the uniform distribution (or Lebesgue measure) u, i.e., ¢* = argming (4, (7))=5, Dxr( ¢ [ v ).

In some applications, prior knowledge about the distribution q is available. The MaxEnt principle can
then be generalized to select the distribution with the minimum KL divergence to a prior p:

*

q¢"= argmin Dxr(qllp). 2.2)
Eq[pi(Z)]=ds

This is called the Principle of minimum discrimination information or the Principle of Minimum

Cross-Entropy (Kullback, 1959; Shore and Johnson, 1980; Kapur and Kesavan, 1992), and can be

viewed as minimally correcting the prior p to satisfy the constraints given by observations ¢;. In line

with prior work, we call density estimation under this framework MaxEnt density estimation whether

or not the prior is taken to be the uniform distribution (Dudik et al., 2004; Dudik et al., 2007).

While the choice of KL divergence is justified in various ways (e.g., the axiomatic approach of Shore
and Johnson 1980), the use of other divergences has also been studied in the literature (Altun and
Smola, 2006; Botev and Kroese, 2011). Although we focus on KL divergence in this work, in
principle, our algorithms can also operate with other divergences provided that solving the analogous
optimization problem of the form (2.2) is computationally feasible.

Problem (2.2) and its variants have been studied in the literature; the solution is a member of the
family of Gibbs distributions:

d
A (A) = / Aﬁ(dz) - exp (Z Aigi(z) — A/\>7 (2.3)
€ i=1

where A C Z, A\ € R?, and A, is the log normalizer, i.e., Ay = log [ p(dz) - exp (Zd 1 )\iqbi(z)).

1=

The dual problem for finding the optimal A takes the form

d d
A= argminlog/ﬁ(dz)exp (Z /\i¢i(z)> — Z)\iéi . 2.4)
i—1 i=1

AERE

Iterative scaling (Darroch and Ratcliff, 1972; Della Pietra et al., 1997), gradient descent, Newton,
and quasi-Newton methods (see Malouf, 2002) have been suggested for solving this problem. After

finding \*, if Var[exp(}_, Xi¢i(Z))] for Z ~ pis small, e.g. when p has low stochasticity, A% can
be estimated with samples from p. Then, one can sample from ¢* by sampling from Zy ~ p and
assign the importance sampling weight exp (Z?Zl M i(Zo) — Ax~ ). In general algorithms such

Markov Chain Monte Carlo can be used for sampling (Brooks et al., 2011). When the observations
¢; are empirical averages, Maximum entropy density estimation is equivalent to maximum likelihood
estimation that uses the family of Gibbs distributions of the form (2.3) (Della Pietra et al., 1997).

3 MAXIMUM ENTROPY MODEL CORRECTION

As discussed in Section 2.2, MaxEnt density estimation allows us to correct an initial estimated
distribution of a random variable using the expected values of some functions of it. In this section,
we introduce the MaxEnt Model Correction (MaxEnt MoCo) algorithm, which applies this tool to

correct the next-state distributions in the approximate model P towards the true distributions in P.
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We assume that for any function ¢: X — R, we can obtain (an approximation of) P¢. This operation
is at the core of many RL algorithms. For instance, each iteration k of Value Iteration (VI) involves
obtaining PV}, for value function V}. This procedure can be approximated when samples from P are
available with techniques such as stochastic approximation (as in TD Learning) or regression (as in
fitted value iteration). Due to its dependence on the true dynamics P, we consider this procedure
costly and refer to it as a query. On the other hand, we will ignore the cost of any other calculation
that does not involve P, such as calculations and planning with P. In Section 3.1, we consider
the exact setting where similar to the conventional VI, we can obtain P¢ exactly for any function
¢: X — R . Then in Section 3.2, we consider the case that some error exists in the obtained Po,
which resembles the setting considered for approximate VI.

3.1 EXxAcT FORM

In this section, we assume that for any function ¢: X — R, we can obtain P¢ exactly. We show that
in this case, MaxEnt density estimation can be used to achieve planning algorithms with strictly better
performance guarantees than Lemma 1. To see the effectiveness of MaxEnt density estimation to
improve planning, consider the idealized case where the true value function V™ for the PE problem
is known to us. Consequently, we can obtain PV ™ by querying the true dynamics P. Assume that
we could perform MaxEnt density estimation (2.2) for every state = and action a. We minimally

change P(-|z, a) to a new distribution P(-|z, @) such that Ex p(fe,a) VX)) = (PV™™) (2, a).

We then use any arbitrary planning algorithm using the new dynamics P instead of P, which means
we solve MDP M = (X, A, R,P) instead of M. Due to the constraint in finding P, we have
PVTE = PV therefore r™ 4 yPTPEVTE — pTPE A PTREYTRE — VTPE In other words, Ve
satisfies the Bellman equation in M. This means that MaxEnt MoCo completely eliminates the impact
of the model error on the agent, and we obtain the true value function V™. The same argument can
be made for the Control problem when we know V* and correction is performed via constraints given
by PV*. The true optimal value function V* satisfies the Bellman optimality equation in M, and it
can consequently be shown that the optimal value function V* and policy 7* in M match V* and 7*.

In practice, the true value functions V™ or V* are unknown — we are trying to find them after all.
In this case, we do the correction procedure with a set of measurement functions ¢1, . . ., ¢4 with
¢;: X — R. The set of measurement functions can be chosen arbitrarily. As shall be clear later, we
prefer to choose them such that their span can approximate the true value function V™ or V'* well.
In this section and Section 3.2, we focus on the properties of model error correction for any given
set of functions. In Sections 4 and 5, we will introduce techniques for finding a good set of such
functions.

Now, we introduce the MaxEnt MoCo algorithm. In large or continuous MDPs, it is not feasible to
perform MaxEnt density estimation for all z, a. Instead, we take a lazy computation approach and
calculate P(+|z, a) only when needed. The dynamics P : X x A — M(X) is never constructed as a
function of states and actions by the agent, and it is defined only for the purpose of analysis. First,
we obtain P¢; fori = 1,2, ..., d through d queries to the true dynamics P. Then, we execute any
planning algorithm that can normally be used in MBRL to solve the approximate MDP M. The only
modification is that whenever the planning algorithm uses the distribution P(-|z, a) for some state
2 and action a, e.g. when simulating rollouts from (x, a), we find a corrected distribution P(:|z, a)
using MaxEnt density estimation and pass it to the planning algorithm instead of 75( |, @) that would
normally be used. The new distribution P(+|z, a) is given by

P(|z,a) £ argmin Dx(q || P(-|z,a)), (P1)
gEM(X)
such that Exvng[di(X')] = (Poi)(z,a)  (i=1,2,...,d).

As discussed in Section 3, the optimization problem (P1) can be solved through the respective convex
dual problem as in (2.4). Also note that the dual problem only has d parameters, which is usually

small, and solving it only involves P that is considered cheap.

'For a reference, in our experiments d < 3. Even if d is large, specialized algorithms have been developed to
efficiently solve the optimization problem (Dudik et al., 2007).
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We now analyze the performance of MaxEnt MoCo in PE. Let V™ be the value function of mpg in
MDP M = (X, A,R,P,~). We will show that the error of MaxEnt MoCo depends on how well
V™ can be approximated with a linear combination of the measurement functions. To see this, first
note that the constraints in (P1) mean that (P™t — P™E )¢, = 0. Thus, for any w € R? we can write
the upper bound on ||V — V™ ||, that is given in Lemma 1 as

d
v TPE __ DTPE TPE _ v TPE __ DTPE TPE __ h.
e (G L N I_WH(P PNV ;wzqﬁl) 3.1

o0

<

)
oo

V2 - i d
T sup \/ Dxr( P(:|z,a) | P(:|z,a) ) HV e E w;d;
z,a i=1

where the last inequality is proved similar to the proof of the second inequality in Lemma 1. Now,
from the general Pythagoras theorem for KL-divergence (see Thm. 11.6.1 of Cover and Thomas
2006), for any (x, a), we have

Dx( P(-|z,a) || P(|a,a) ) < Dx( P(|z,a) | P(|z,a)). (32

This inequality is of independent interest as it shows that MaxEnt MoCo is reducing the MLE loss
of the model. It is worth mentioning that since P is not constructed by the agent, this improved
MLE loss can go beyond what is possible with the agent’s model class. A feature that is valuable in
complex environments that are hard to model. Inequalities (3.2) and (3.1) lead to an upper bound on
[|[Vee — V7eE || . We have the following proposition:

Proposition 1. Suppose that P is the true environment dynamics, Pisan approximation of P, and
€Model is defined as in (2.1). Let ¢; = vv/2/(1 — ) as in Lemma 1. Then,

)
o0

d
[V7re = VeE|| < erllentodetll o wiélﬂgd HVW”E - lez¢z
P

HV* oy 2¢1 || emodel || oo

< ———2— inf
S 1-— Cl||€ModelHoo weR4

d
V= w;
> widi||
i=1
The significance of this result becomes apparent upon comparison with Lemma 1. Whenever the
value function can be represented sufficiently well within the span of the measurement functions

¢; } used for correctin, ”ﬁ, the error between the value function V™ of the modified dynamics P
g y

compared to the true value function V7 is significantly smaller than the error of the value function

V™ obtained from P — compare inf,,cga ||V ™ — Zle w0 | 0o With |[VTPE|| .

3.2 APPROXIMATE FORM

In the previous section, we assumed that the agent can obtain P¢; exactly. This is an unrealistic
assumption when we only have access to samples from P such as in the RL setting. Estimating
P, from samples is a regression problem and has error. We assume that we have access to the
approximations ¢;: X x A — R of P¢; such that ¢; ~ P¢; with the error quantified by equery-
Specifically, for any (z,a), we have equery (7, a) = ||[%(x,a) — (P¢)(x,a)||2 where ¢p: X — R?
and: X x A — R are the d-dimensional vectors formed by ¢; and v; functions.

When the observations are noisy, MaxEnt density estimation is prone to overfiting (Dudik et al.,
2007). Many techniques have been introduced to alleviate this issue including regularization (Chen
and Rosenfeld, 2000a; Lebanon and Lafferty, 2001), introduction of a prior (Goodman, 2004),
and constraint relaxation (Kazama and Tsujii, 2003; Dudik et al., 2004). In this work, we use é%
regularization (Lau, 1994; Chen and Rosenfeld, 2000b; Lebanon and Lafferty, 2001; Zhang, 2004;
Dudik et al., 2007) and leave the study of the other approaches to future work.

The regularization is done by adding 13 H)\H; to the objective of the dual problem (2.4). This pushes
the dual parameters to remain small. The hyperparameter 5 controls the amount of regularization.
Smaller ( leads a solution closer to the original one. Notice that with extreme regularization when
B8 — oo, we get A = 0, which makes the solution of MaxEnt density estimation the same as the
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initial density estimate p. The regularization of the dual problem has an intuitive interpretation in the
primal problem. With the regularization, the primal problem (P1) is transformed to

d
P(fo,0) 2 argmin Dra(q | Pllz.)) + 35 Y- (Bromglai(X)) ~ ilzi)) . ¢
q i=1

We now have introduced a new hyperparameter 3 to MaxEnt MoCo. As 3 — 0, the solution converges
to that of the constrained problem (P1), because intuitively, 5 controls how much we trust the noisy
observations ;. Smaller values of 5 means that we care about being consistent with the queries more
than staying close to P, and larger values of 5 shows the opposite preference. It turns out the impact
of the choice of 3 is aligned with this intuition. As ||entodel|| o, increases or [|€query ||, decreases, we
should rely on the queries more and choose a smaller 5. We provide the analysis for a general choice
of /3 in the supplementary material, and here focus on when 5 = ||€Query || oo/ ||€Model |00 -

Theorem 1. Let c; = yv/2/(1 — ), ca = 37Vd/(1 — ), and B = ||eQuery || oo/ |eModel || 0. FOT
any Wmax > 0, we have

Ve _ ‘77\'[’5” <3 inf
H o < Cc1 ||6Model||oo le‘;r%wmax

+ 2 ||6Query||Oo * Wmax
oo

d
V=N wig;
i=1

d
V=Y wig
i=1

6Cl ||€Modcl Hoo 202 ||6Query ||oo

HV* _ V‘Tr*

+

oo 1 —3c1||emodel || o e

o 11— 361 ||€M0del||oc H7U||°o§w1nax

The above theorem shows that the error in the queries contribute an additive term to the final
bounds compared to the exact query setting analyzed in Proposition 1. This term scales with wy,,x,
which can be chosen arbitrarily to minimize the upper bound. Larger values of w,,x allow a better
approximation of V" and V* in the infimum terms, but amplify the query error equery. Thus,
if V™ (or V*) can be approximated by some weighted sum of the measurement functions using
smaller weights, wy,,x can be chosen to be smaller. Unlike the exact case discussed in Proposition 1,
the choice of measurement functions is important beyond the subspace generated by their span.
Therefore, transformations of the measurement functions such as centralization, normalization, or
orthogonalization might improve the effectiveness of MaxEnt Model Correction.

One limitation of the results of Theorem 1 is that they depend on the £ norm of €nrodel and equery -

However, if the functions P and 1); are estimated with function approximation, their error is generally
controlled in some weighted £, norm. Thus, error analysis of RL algorithms in weighted £, norm
is essential and has been the subject of many studies (Munos, 2003; 2007; Farahmand et al., 2010;
Scherrer et al., 2015). We do provide this analysis for MaxEnt MoCo, but to keep the main body of
the paper short and simple, we defer them to the supplementary material.

4 MODEL CORRECTING VALUE ITERATION

In the previous section, we introduced MaxEnt model correction for a given set of measurement
functions ¢1, ..., $4. We saw that a good set of functions is one that for some w € R?, the true
value function V™" or V* is well approximated by > _, w;¢;. In this section, we introduce the Model
Correcting Value Iteration (MoCoVI) algorithm that iteratively finds increasingly better measurement
functions. We show that if the model is accurate enough, MoCoVI can utilize the approximate model
to converge to the true value function despite the model error, and do so with a better convergence rate
than the conventional VI. Since MoCoVI calls the MaxEnt MoCo procedure iteratively, we introduce
a notation for it. If P is the corrected dynamics based on the set of measurement functions ® and
their query results ¥, and V™ V* 7* are the respective V™ V* 7* in M = (X, A, R, P), we
define MoCoj™ (R, P,®, ) £ V™ and MoCoj(R, P,®, W) £ (V*,7*) to be the solution of PE
and Control problems obtained with MaxEnt MoCo.

To start with, consider the PE problem and assume that we can make exact queries to P. We set

O1,...,04: X — R to be an arbitrary initial set of measurement functions, with query results
1; = Po; for 1 < i < d. We perform the MaxEnt MoCo procedure using ¢1.4 and 1.4 to obtain
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Vo = MoCop™ (R, P, $1.q,11:q). In the next iteration, we set ¢4, = Vy.2 Then, we query P at
@d+1 to obtain Y441 = Peogay1. By executing MaxEnt MoCo with the last d queries, we arrive at
Vi = MOCOEPE (R, P, p2.4+1,%2.4+1)- We can use Proposition 1 to bound the error of V;.

. d
W2 inf,epa|| V7 — 370 wid14i
< —— - ||émodel || o, -

<~ 1_7 HVWPE_%HOO

Ve — WA =V = Vol

As Z?:l w;¢1 44 18 equal to Vg with the choice of wq.4—1 = 0 and wg = 1, the fraction above is less
than or equal to 1. Generally, the fraction gets smaller with larger d and better measurement function,
leading to a more accurate V7. If the model is accurate enough, the new value function V; is a more
accurate approximation of V™™ than the initial V{y. By repeating this procedure, we may converge to
the true value function V™%,

We now introduce MoCoVI based on the above idea. We start with an initial set of measurement
functions ¢1, . . ., ¢4 and their query results /1, . . ., 14 such that i; = P¢,; for 1 < i < d. Ateach
iteration k > 0, we execute MaxEnt MoCo with ¢y 1.5+4 and ©x41.5+4 to obtain Vi, (and 7). In
the end, we set ¢x1q+1 = Vi and query P to get the new query result. That is, for any £ > 0

Vio = MoCoF™ (R, P, it 1ksds Yhirikra) OF Vi, T = MoCO5(R, P, bktthyds Ykt 1:k+a)s
Prtart = Vi s Yktdr1 ® POrtdtr-

The choice of value functions can be motivated from two viewpoints. First, it has been suggested that
features learned to represent the past value function may be useful to represent the true value functions
as well (Dabney et al., 2021). This suggests that the true value function may be approximated with
the span of the past value functions. A property shown to be useful in Theorem 2. Second, this
choice means that the corrected transition dynamics P at iteration k will satisfy PVj,_; =~ PVj,_;
fori=1,2,...,d. This property has been recognized to be valuable for the dynamics that is used
for planning in MBRL, and implemented in value-aware model learning losses (Farahmand et al.,
2017; Farahmand, 2018; Abachi et al., 2020; Voelcker et al., 2022; Abachi et al., 2022). However,
practical implementations of these losses has been shown to be challenging (Voelcker et al., 2022;
Lovatto et al., 2020). In comparison, MoCoVI works with any model learning approach and creates
this property through MaxEnt density estimation. The next theorem provides convergence result of
MoCoVI in supremum norm based on the analysis in Theorem 1.

Theorem 2. Let K > 1. Assume €3y,.,,(z,a) = Vd - sup;>ol(Pi)(x,a) — Yi(x,a)| and B =
lleQuery loo /|| €Model || - Let ¢1, o be as in Theorem 1 and wymax > 1. Define V'8t = V™r for
PE and V'8t — V'* for Control. Finally, let

"= 3c1|e |- max 0F )| o Cwrman HVtM&er_Z?Zl Withillos
V= S |€Modellloo * | TAX [Vtareet — Vil

We have
Ve _ Y < ~'K Ve VL 1- ’VIK 0
|| K”oo =7 || OHoo + 1_ ’Y/ CQ||€QucryHoowmax;

1—+'K 202H€(§uery’|oo

1—+" 1=3c|lemodel|l oo

27/K

3cq || €Model ||oo

Ve =V, <

0071_

VT = Vol +

ax-

This result should be compared with the convergence analysis of approximate VI. Notice that both
MoCoVI and VI query P once per iteration, which makes this comparison fair. According to Munos

(2007), [|[V* — V7= || for VI is bounded by %HV* — Wl + M&%pHGQueWHO@. Here we
considered the error in applying the Bellman operator equal to the query error. In VI, the initial error

[[V* — V|| ., decreases with the rate O (WK ) In comparison, for MoCoV1, the initial error decreases
with the rate O ('y’ k) While the convergence rate of VI is tied to the fixed parameter v and become
undesirable if v is close to 1, the rate of MoCoVI improves with more accurate models. Consequently,
the convergence rate of MoCoVI can be much faster than VI if the model is accurate enough.

?According to the discussion after Theorem 1, it might be beneficial to set ¢4+ 1 to some linear transformations
of V4 in presence of query error. For the sake of simplicity of the results, we don’t consider such operations.
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Algorithm 1 MoCoDyna(7', d, ¢, 3, K)

1: Tnitialize ¢1, ..., Gater Y1, .- ., Yate, and P, 7.
2: fort=1,2,...,7T do
3: Sample X, A:, R:, X; from the environment.

4: 7, P « Update(#, P, X¢, A¢, Ry, X7)

5: wlid"rc — Update(wlid+67 Xt7 Ata Xé)

6: Vi MoCog™ (7, P, ¢r.a,P1:a) or Vi, < MoCoj(F, P, $1.a, ¥1:a).
7: if £ mod K = 0 then

8: POp ¢1,’L/)1

9: @d+c + MeasurementCreation(Vi, ¢1:44c—1) , Wate(z,a) 0

A closely comparable algorithm to MoCoVI is OS-VI (Rakhsha et al., 2022). OS-VI also does
solve a new MDP at each iteration, but instead of changing the transition dynamics, changes the
reward function. The convergence rate of OS-VI, when stated in terms of our €pjoqe1 Using Pinsker’s
inequality, is ¢1||€Model || co- In comparison, ' can become much smaller if the past value functions
can approximate the true value function well or if d is increased. Moreover, OS-VI can diverge if the
model is too inaccurate, but even if 4' > 1, the bound given in Theorem 1 still holds for V}, for all £,
which means MoCoVI does not diverge.

5 MODEL CORRECTING DYNA

We extend MoCoVI to the sample-based setting where only samples from the true dynamics P are
available. The key challenge is that we can no longer obtain vy, from ¢y, by a single query. Instead,
we should form an estimate of P¢;, using the samples. In general, this is a regression task that is
studied in supervised learning. In algorithms that a replay buffer of transitions (X;, A;, R;, X/)N , is
stored, the regression can be done with (X, A;) as the input and ¢ (X) as the target. In this paper,
we present a version of the algorithm based on stochastic approximation, but we emphasize that the
algorithm can be extended to use function approximation without any fundamental barriers.

An overview of MoCoDyna for finite MDPs is given in Algorithm 1. For some integer ¢ > 0, we

keep d + c measurement functions ¢1, . . ., ¢4+.. As explained later, this set of functions is updated
similar to MoCoVI: the oldest function is regularly substituted with the current value function. A
set of approximate query results 91, . .., ¥4+ for the measurement functions is also maintained.

That is, we will have 1); ~ P¢; for each ¢ via stochastic approximation. At each step, we get
a sample (X¢, A¢, Ry, X{) from the environment. We update ¢; (X, A;) fori = 1,...,d + c by
Vi (X, Ap) — (X, Ay) + m(@()(t’) — (X, A¢)). Here, N;(X;, A;) is the number of
times (X, A;) has been visited since the function ¢; has been added to the set of measurement
functions. At every step, the agent also updates its approximate model 7, P with (Xi, Ay, Ry, X7).

At each iteration, MoCoDyna runs the MaxEnt MoCo procedure to obtain the new value function and
policy. That is, the agent uses an arbitrary planning algorithm to solve the PE or control problem
with rewards 7 and the dynamics obtained by correcting P. The correction only uses the d oldest
measurement functions among the d + ¢ functions. The reason is that for a measurement function ¢
that has been added to the set recently, the agent has not had enough samples to form an accurate
approximation of P¢;. Finally, every K steps, the agent updates its set of measurement functions.
The oldest function ¢; is removed along with ;. The new measurement function ¢4 . is chosen
such that V; belongs to span of ¢1.4+.. In the simplest form, we can set ¢4, = V;, but as discussed
after Theorem 1 some linear transformations might be beneficial. We allow this transformation by
defining ¢4 < MeasurementCreation(V;, ¢1.4+c—1)-

6 NUMERICAL EXPERIMENTS

We empirically show the effectiveness of MoCoVI and MoCoDyna to utilize an approximate model.
We consider the 6 x 6 grid world environment with four actions introduced by Rakhsha et al. (2022),
with v = 0.9. We defer the details of the environment to the supplementary material. As shown in
Theorem 2, the convergence rate of MoCoVI depends on the model error and d. We introduce error
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Figure 1: Comparison of (top) MoCoVI with VI, pure MBRL and OS-VI, and (bottom) MoCoDyna
with QLearning, Dyna, and OS-Dyna. (Left) low (A = 0.1), (Middle) medium (A = 0.5), and (Right)
high (A = 1) model errors. Each curve is average of 20 runs. Shaded areas show the standard error.

to P by smoothing the true dynamics P as suggested by Rakhsha et al. (2022): for A € [0, 1], the
smoothed dynamics P is PX)(:|z,a) £ (1 = A) - P(-|z,a) + A - U ({z'|P(2’|z,a) > 0}), where
U(S) is the uniform distribution over set S. The parameter A controls the model error, from no error
with A = 0 to a large error with A = 1 (uniform transition probability over possible next-states).

Fig. 1 first compares MoCoVI with OS-VI (Rakhsha et al., 2022), VI, and the value function obtained
based on the model. We set P = P for A = 0.1,0.5 and 1. The plot shows normalized error of
Vi against V*, that is, ||V, — V*||1/[|[V*|l1. MoCoVI can converge to the true value function in a
few iterations even with extreme model errors. The robustness, as expected, is improved with larger
values of d. In comparison, OS-VI and VI show a much slower rate than MoCoVI and the value
function obtained from P suffers from the model error. Fig. 1 then shows the results in the RL setting.
We compare MoCoDyna with OS-Dyna (Rakhsha et al., 2022), QLearning, and Dyna. At each step,
the algorithms are given a sample (X, A, Ry, X{) where X}, A; are chosen uniformly in random.

We use P = Pl%zE where Pyg is the MLE estimate of dynamics at the moment. For OS-Dyna
and QLearning which have a learning rate, for some a;, N > 0, we use the constant learning o for
t < N and a/(t — N) fort > N to allow both fast initial convergence and stability. The results
show a similar pattern as for MoCoVI. MoCoDyna can successfully solve the task with any model
error. In fact, MoCoDyna significantly outperforms other algorithms. In comparison, QLearning and
OS-Dyna show a slower rate of convergence, and Dyna cannot solve the task due to the model error.

7 CONCLUSION

In this work, we set out to bridge model-based and model-free approaches in RL by devising a cost-
efficient approach to alleviate model errors. We develop the MaxEnt model correction framework,
which adopts MaxEnt density estimation to reduce model errors given a small number of queries to
the true dynamics. A thorough theoretical analysis indicates that our framework can significantly
accelerate the convergence rate of policy evaluation and control algorithms, and ensure convergence
to the true value functions despite model errors if said errors are sufficiently small. We also develop
a sample-based variant, MoCoDyna, which extends the Dyna framework. Lastly, we confirm the
practical relevance of our theoretical findings by benchmarking MoCo-based planning algorithms
against their naive counterparts, and showing superior performance both in terms of convergence rate
and expected returns. Future work should investigate deep RL applications of the MoCo framework.



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We would like to thank the members of the Adaptive Agents Lab, especially Claas Voelcker, who
provided feedback on a draft of this paper. AMF acknowledges the funding from the Canada CIFAR
Al Chairs program, as well as the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC) through the Discovery Grant program (2021-03701). MK acknowledges the
support of NSERC via the Canada Graduate Scholarship - Doctoral program (CGSD3-568998-2022).
Resources used in preparing this research were provided, in part, by the Province of Ontario, the
Government of Canada through CIFAR, and companies sponsoring the Vector Institute.

REFERENCES

Romina Abachi, Mohammad Ghavamzadeh, and Amir-massoud Farahmand. Policy-aware model
learning for policy gradient methods. arXiv:2003.00030v2, 2020. 7

Romina Abachi, Claas A Voelcker, Animesh Garg, and Amir massoud Farahmand. VIPer: Iter-
ative value-aware model learning on the value improvement path. In Decision Awareness in
Reinforcement Learning Workshop at ICML 2022, 2022. 2,7

Zaheer Abbas, Samuel Sokota, Erin Talvitie, and Martha White. Selective dyna-style planning under
limited model capacity. In Proceedings of the 37th International Conference on Machine Learning
(ICML), volume 119 of Proceedings of Machine Learning Research, pages 1-10. PMLR, 2020. 1,
2

Yasemin Altun and Alex Smola. Unifying divergence minimization and statistical inference via
convex duality. In Proceedings of the 19th Annual Conference on Learning Theory (COLT), pages
139-153. Springer Berlin Heidelberg, 2006. 3, 17

Bernardo Avila Pires and Csaba Szepesvari. Policy error bounds for model-based reinforcement
learning with factored linear models. In 29th Annual Conference on Learning Theory (COLT),
volume 49 of Proceedings of Machine Learning Research, pages 121-151. PMLR, 2016. 2

D. Bertsekas. Convex Optimization Theory. Athena Scientific optimization and computation series.
Athena Scientific, 2009. ISBN 9781886529311. 18

D. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996. ISBN
9781886529106. 13

Jonathan M Borwein and Adrian S Lewis. Duality relationships for entropy-like minimization
problems. SIAM Journal on Control and Optimization, 29(2):325-338, 1991. 17

Zdravko I Botev and Dirk P Kroese. The generalized cross entropy method, with applications to
probability density estimation. Methodology and Computing in Applied Probability, 13:1-27,
2011. 3

S. Brooks, A. Gelman, G. Jones, and X.L. Meng. Handbook of Markov Chain Monte Carlo. Chapman
& Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, 2011. ISBN 9781420079425.
3

S.F. Chen and R. Rosenfeld. A survey of smoothing techniques for me models. IEEE Transactions
on Speech and Audio Processing, 8(1):37-50, 2000a. doi: 10.1109/89.817452. 5

Stanley F Chen and Ronald Rosenfeld. A survey of smoothing techniques for me models. /IEEE
transactions on Speech and Audio Processing, 8(1):37-50, 2000b. 5

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory 2nd Edition (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, 2006. ISBN 0471241954. 5, 21

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
7160-7168, 2021. 7

10



Published as a conference paper at ICLR 2024

John N Darroch and Douglas Ratcliff. Generalized iterative scaling for log-linear models. The Annals
of Mathematical Statistics, pages 1470-1480, 1972. 3

Andrée Decarreau, Danielle Hilhorst, Claude Lemaréchal, and Jorge Navaza. Dual methods in entropy
maximization. application to some problems in crystallography. SIAM Journal on Optimization, 2
(2):173-197, 1992. 16, 17

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19(4):380-393, 1997. 3

Miroslav Dudik, Steven J. Phillips, and Robert E. Schapire. Performance guarantees for regularized
maximum entropy density estimation. In Proceedings of the 17th Annual Conference on Com-
putational Learning Theory (COLT), volume 3120 of Lecture Notes in Computer Science, pages
472-486. Springer Berlin Heidelberg, 2004. 3, 5

Miroslav Dudik, Steven J. Phillips, and Robert E. Schapire. Maximum entropy density estimation
with generalized regularization and an application to species distribution modeling. Journal of
Machine Learning Research, 8(44):1217-1260, 2007. 1, 3,4, 5, 20

Amir-massoud Farahmand. Iterative value-aware model learning. In Advances in Neural Information
Processing Systems (NeurIPS), volume 31. Curran Associates, Inc., 2018. 2,7

Amir-massoud Farahmand, Csaba Szepesvari, and Rémi Munos. Error propagation for approximate
policy and value iteration. In Advances in Neural Information Processing Systems (NeurIPS),
volume 23. Curran Associates, Inc., 2010. 6, 27

Amir-Massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-Aware Loss Function for
Model-based Reinforcement Learning. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 54 of Proceedings of Machine Learning
Research, pages 1486-1494. PMLR, 2017. 2,7

Joshua Goodman. Exponential priors for maximum entropy models. In Proceedings of the Human
Language Technology Conference of the North American Chapter of the Association for Computa-
tional Linguistics: HLT-NAACL 2004, pages 305-312. Association for Computational Linguistics,
2004. 5

Taher Jafferjee, Ehsan Imani, Erin Talvitie, Martha White, and Micheal Bowling. Hallucinating
value: A pitfall of dyna-style planning with imperfect environment models. arXiv preprint
arXiv:2006.04363, 2020. 1, 2

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems (NeurIPS), volume 32.
Curran Associates, Inc., 2019. 2

E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106:620-630, 1957. 3

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the 19th International Conference on Machine Learning (ICML), pages 267-274.
Morgan Kaufmann Publishers Inc., 2002. 26

J. N. Kapur and H. K. Kesavan. Entropy Optimization Principles and Their Applications, pages 3-20.
Springer Netherlands, 1992. ISBN 978-94-011-2430-0. 3

Jun’ichi Kazama and Jun’ichi Tsujii. Evaluation and extension of maximum entropy models with
inequality constraints. In Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, pages 137-144, 2003. 5

Solomon Kullback. Information Theory and Statistics. Wiley publication in mathematical statistics.
Wiley, 1959. 3

Raymond Lau. Adaptive statistical language modeling. PhD thesis, Massachusetts Institute of
Technology, 1994. 5

11



Published as a conference paper at ICLR 2024

Guy Lebanon and John Lafferty. Boosting and maximum likelihood for exponential models. In
Advances in Neural Information Processing Systems (NeurIPS), volume 14. MIT Press, 2001. 5

Angelo G. Lovatto, Thiago P. Bueno, Denis D. Mau4, and Leliane N. de Barros. Decision-aware
model learning for actor-critic methods: When theory does not meet practice. In Proceedings on
"I Can’t Believe It’s Not Better!" at NeurlPS Workshops, volume 137 of Proceedings of Machine
Learning Research, pages 76-86. PMLR, 2020. 7

Robert Malouf. A comparison of algorithms for maximum entropy parameter estimation. In COLING-
02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002), 2002. 3

Rémi Munos. Error bounds for approximate policy iteration. In Proceedings of the 20th International
Conference on Machine Learning (ICML), page 560-567. AAAI Press, 2003. 6, 27

Rémi Munos. Performance bounds in L, norm for approximate value iteration. SIAM Journal on
Control and Optimization, 46(2):541-561, 2007. 6, 7, 27

Amin Rakhsha, Andrew Wang, Mohammad Ghavamzadeh, and Amir-massoud Farahmand. Operator
splitting value iteration. In Advances in Neural Information Processing Systems (NeurlPS),
volume 35, pages 38373-38385. Curran Associates, Inc., 2022. 2, 8, 9, 15, 33, 34

Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, and Matthieu Geist.
Approximate modified policy iteration and its application to the game of tetris. Journal of Machine
Learning Research (JMLR), 16(49):1629-1676, 2015. 6, 27

J. Shore and R. Johnson. Axiomatic derivation of the principle of maximum entropy and the principle
of minimum cross-entropy. IEEE Transactions on Information Theory, 26(1):26-37, 1980. 3

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In Proceedings of the 7th International Conference on Machine
Learning (ICML), pages 216-224. Morgan Kaufmann, 1990. 2

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2019. 13

Csaba Szepesvari. Algorithms for Reinforcement Learning. Morgan Claypool Publishers, 2010. 2, 13

Erin J. Talvitie. Self-correcting models for model-based reinforcement learning. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, pages 2597-2603. AAAI Press, 2017.
1,2

Claas A. Voelcker, Victor Liao, Animesh Garg, and Amir-massoud Farahmand. Value gradient
weighted model-based reinforcement learning. In International Conference on Learning Represen-
tations (ICLR), 2022. 2,7

Tong Zhang. Class-size independent generalization analsysis of some discriminative multi-category
classification. In Advances in Neural Information Processing Systems (NIPS), volume 17. MIT
Press, 2004. 5

12



Published as a conference paper at ICLR 2024

A LIST OF APPENDICES

* Appendix B provides extended background on MDPs.

» Appendix C contains the proofs for Section 2.1.

* Appendix D provides technical details of Maximum Entropy Density Estimation.
* Appendix E contains the proofs for Section 3.1.

* Appendix F contains the proofs for Section 3.2.

* Appendix G provides the analysis of MaxEnt MoCo in £, norms

 Appendix H contains the proofs for £,, analysis of MaxEnt MoCo.

» Appendix I contains the proofs for Section 4.

* Appendix J shows additional empirical results.

B BACKGROUND ON MARKOV DECISION PROCESSES

In this work, we consider a discounted Markov Decision Process (MDP) defined as
M = (X, A R,P,v) (Bertsekas and Tsitsiklis, 1996; Szepesvari, 2010; Sutton and Barto, 2019).
Here, X is the state space, A is the action space, R: X x A — M(R) is the reward kernel,
P: X x A — M(X) is the transition kernel, and 0 < v < 1 is the discount factor.> We de-
fine r: X x A — R to be the expected reward and assume it is known to the agent. A policy
m: X — M(A) is a mapping from states to distributions over actions. We denote the expected
rewards and transitions of a policy 7 by r": X — Rand P": X — M(X), respectively. For any
function ¢: X — R, we define P¢: X x A — R as

(Po)(z,a) 2 / P(dr|, a)o(z))  (Vo,a).

The value function V™ = V™ (R, P) of a policy 7 is defined as

VT(z) 2 E [Z v Ri| X0 = x] ,

t=0

where actions are taken according to 7, and X; and R; are the state and reward at step ¢. The value
function of 7 satisfies the Bellman equation: For all z € X', we have

Vi(x)=r"(z) + ’y/P”(dx'|x)V”(x’), (B.1)

or in short, V™ = r™ + 4PT™V ™. The optimal value function V* = V*(R, P) is defined such that
V*(x) = max, V™ (x) for all states x € X. Similarly, V* satisfies the Bellman optimality equation:

V*(z) = max {T(:c,a) +7/P(dx’|x,a)v*(z’)}. (B.2)

acA

We denote an optimal policy by 7* = 7*(P, R), for which we have V* = V™. We refer to the
problem of finding V™ for a specific policy mpg as the Policy Evaluation (PE) problem, and to the
problem of finding an optimal policy as the Control problem.

The greedy policy at state x € X is

mg(z; V) argmax{r(at,a) + w/P(dy|x,a)V(y)}. (B.3)
acA

In this paper, we assume an approximate model P Pis given. We define V™ and #* in the
approximate MDP M = (X, A, R, P,~) similar to their counterparts in the true MDP M.

3For a domain S, we denote the space of all distributions over S by M(S).
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C PROOFS FOR SECTION 2.1

In this section, we provide the proof of Lemma 1. Before that, we first show two useful lemmas.
Lemma 2. For two transition dynamics P1, Ps and any policy m we have

IPT () = Py ()]l < \/ﬁ/ﬂ(dalx)\/DKL( Pi(|z,a) [| Pa(-|z,a) )

Proof. We have
IPF (le) = PFClo)l, = [ PF(yle) — PF (o)

Y

)

g/y/aw(da,wﬂ’/)l(dym,a)—Pg(dy|x,a)|

/ r(da, z) (P (dy|, a) — Pa(dylz,a))

/aw(da,x)/ywvl(dylamPz(dylx,a)l

— [ w(da.)|Pr(l2,0) = Pal-lo,a)l €

a

< /Tr(d%x)\/QDKL( 731<~|$,CL) || P2(~|x,a) )

where we used the Pinsker’s inequality. [

Lemma 3. For two transition dynamics P1, P2 and any policy m, Define

by = (T=2P3)H(vPF —P3)
We have

i V2
HG ~prll < 17 sup VDL Pi(|z,a) || Po(-|z,a))

0 -

Proof. When clear from context, we write G™ instead of G, p,. We have
167l <A@ =P M| JMPT = PEllus

< sup||[P7 ([z) = Pz (o)l

g
=15
where we used ||(I—A)~" = 1/(1 — [ A]l.)]| for [|All, < 1 and the fact that || PJ||, = 1. Due
to Lemma 2 we have for any x

IPT(lz) = P3 (o)l < ﬁ/ﬂ(dalx)\/DKL( Pi(fz;a) || Pa(-|2,a))

< sup V2D ( Pi(-|z,a) || Pa(|z,a) )

substituting this in the bound for ||G™||  gives the result. O

We now give the proof of Lemma 1.
Proof of Lemma 1 for PE
Proof. Since V™ = (I —~vP™)~ 1+ and 7™ = (I — yP™)V™ we have

YT (C.2)

14
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Thus,
s
<= H — PV
e Gkl
’V\f .
<1 7HGModolH IVl
where we followed the proof of Lemma 3 for the last inequality. O

Proof of Lemma 1 for Control
Proof. Define ry = r + (yP — yP)V* similar to Rakhsha et al. (2022, Lemma 3)

Vﬂ* (7“0, 75) =V (T7 P)

Assume f < g mean f(x) > g(z) for any 2. We can write

0 V™ (r,P) = V™ (r,P)
= V”*(rg,ﬁ) — VT (r,P)
=V™ (rg,P) =V (r,P) + V™ (r,P) =V (r,P)
LKV (rg,P) = V™ (r,P) + VT (r,P) = V" (r, P)
:(17775”*)*1(7“3*—r’r*)+VW(r P) VT (r,P)
= (I—~7P™ ) Y yP™ — AP W* +V* (r,P) = VT (1, P)
= G;}V* + VT (r,P) = V7 (r, P)
=GhpV =GRV (1 P)
= G;fﬁv* - G;;fﬁv* + G;fﬁ(v* — V™ (r,P))
< ‘G;’jﬁv* + ‘G*Pfﬁv* + ’G;;’:ﬁ(v* - V**(r,P))‘

where we used (C.2). Comparing the first line with the least, we obtain

v =ve|_<|emsve|_+|em v |+ |ep v - v (C3)
< 2arlennl V1. + +etllentodalllo [V = V|
where we used Lemma 3. Rearranging the terms give the result. O

D TECHNICAL DETAILS OF MAXIMUM ENTROPY DENSITY ESTIMATION

In this section we present the technical details of maximum entropy density estimation. This involves
the duality methods for solving the optimization algorithms and some useful lemmas regarding their
solutions. These problems are well studied in the literature. We do not make any assumptions on
whether the environment states space, which will be the domain of the distributions in this section, is
finite or continuous, and we make arguments for general measures. Due to this, our assumptions as
well as our constraints may differ from the original papers in the literature. In those cases, we prove
the results ourselves.
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D.1 MAXIMUM ENTROPY DENSITY ESTIMATION WITH EQUALITY CONSTRAINTS

Assume Z is a random variable over domain Z with an unknown distribution p € M(Z). For a
set of functions ¢1,...,¢q: Z — R the expected values ¢, = Ez.,[¢;(Z)] are given. We will
use ¢: Z — R% and ¢ € R? to refer to the respective vector forms. We also have access to an
approximate distribution p € M(Z) such that p ~ p. The maximum entropy density estimation
gives a new approximation ¢* that is the solution of the following optimization problem

n D 5), D.1
L ke(q [l D) (D.1)

st. Ezgl¢i(Z)] =00 (1<i<d).

The KL-divergence in (D.1) is finite only if q is absolutely continuous w rt p. In that case, ¢ can
be specified with its density w.r.t p defined as f = dq : Z — R where & d is the Radon-Nikodym
derivative. Let L1 (Z, p) be the L, space over Z w1th measure p. We have f € L1(Z,p).

Also for any f € Ly(Z,p) such that f > 0 and [ f(z)p(dz) = 1 we can recover a distribution

g€ M(Z)as
- [ rmaz) (D2)

Consequently, (D.1) can be written in terms of f. We have

Dxi(qllp)= /q(dZ) log £

[ q(dz) o q(dz) (s
B /p(dZ)1 & pldz)

We can write (D.1) as

mfin /f(z) log f(z) p(dz), (D.3)

feLiZ,p).
The constraint f > 0 is implicit in the domain of the KL objective. The Lagrangian with dual
parameters A, A’ is

LfAN) = / lf )log /(2 ZU Jilz) + N f(z )] Pd) + 3 Nidi = N (D

Then, we can obtain the dual objective DJ)()\, A’') £ inf; L(f, A, \) from this result by Decarreau
et al. (1992, Proposition 2.4).

Lemma 4 (Decarreau et al., 1992)). For any fixed A € R*, A’ € R, the Lagrangian L in (D.4) has a
unique minimizer fx + defined as

d
frar = exp (Z Aii(z) — A — 1).
=1

The dual objective is given by

d d
Dg(N\A') = — /GXP (Z Xigi(z) — A — 1>ﬁ(dz) +) i — N
i=1 i=1
It is concave, continuously differentiable, and its partial derivatives are
OD4 (A, A) 0Dz (A, N)
Y\ ) ¢
o /fx A )p(dz) ) N /fx A
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Thus, for the dual objective Dg (A, A’) we have Dg(X\, A') = L(fxas, A\, A’). We arrive at the
following dual problem

D\ A) =
s Da(hA)

d d
— /exp <Z Nigi(z) — A — 1>ﬁ(dz) + Z Xigi — AN, (D.5)
=1 i=1

The following result by Borwein and Lewis (1991, Corollary 2.6 and Theorem 4.8) shows the duality
of the problems.

Theorem 3 ((Borwein and Lewis, 1991)). Assume ¢; € Loo(Z,p) fori =1,...,n. Under certain
constraint qualification constraints, the value of (D.3) and (D.5) is equal with dual attainment.
Furthermore, let \*, " be dual optimal. The primal optimal solution is fy= .

We do not discuss the technical details of the constraint qualification constraints and refer the readers
to (Altun and Smola, 2006; Borwein and Lewis, 1991; Decarreau et al., 1992) for a complete
discussion.

For any A € R?, the optimal value of A’ can be computed. Due to Lemma 4, we have

0Dg(A, ') 0Dg (N, A')
P\ B, ¢>
o = e =1 [ (D6)
solving for the optimal A’ gives the following value
d
\ 210g [[exp (Z N (2) 1>ﬁ(d2) YV (.7)
i=1

where A is defined in Section 2.2. Note that since functions ¢; are bounded this quantity is finite.
Thus, we can just optimize Dg (A, A}) over A. By substitution we get

Dg(N\) £ Dg(\AY) sz log/exp(Z)\l@ ) 2). (D.8)

We observe that maxy D () is equlvalent to (2.4). From Theorem 3, if \* optimizes D, we know
that fi« Al optimizes (D.3). Due to equivalence of (D.3) and (D.1), then g~ defined as

d
- (A) 2 /Af)\*’A/” (z)p(dz) = / A]ﬁ(dz) - exp (Z A di(z) — A,\*> (D.9)
ze i=1

for all A C Z optimizes (D.1).

D.2 MAXIMUM ENTROPY DENSITY ESTIMATION WITH 6% REGULARIZATION

We now study a relaxed form of the maximum entropy density estimation. In this form, instead of
imposing strict equality constraints, the mismatch between the expected value Ez.4 [:(Z)] with
¢; is added to the loss. The benefit of this version is that even if ¢; values are not exactly equal to
Ez~p[¢i(Z)], the problem remains feasible. Moreover, we can adjust the weight of this term in the
loss based on the accuracy of ¢; values. Specifically, we define the following problem.
d
1 N2
in D )+ 25 3 (Bzmal6i(2)] - 61) D.10
[ Suin KL(QHP)JrﬂQ; 2~q|0i(2)] — & (D.10)
Similar to the previous section, we can write the above problem in terms of the density g—g and write
(Decarreau et al., 1992)

mm /f )log f(= Z{ (D.11)

/f Joi(2) Bldz) — i = & (1<i<d),
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The Lagrangian of this problems can be written as

Lo(f, &\ ') = L(f, A\ N) 252 +ZA & (D.12)

The dual objective is then

Dy (A N) = inf Ly (1€ M)

It can be observed that f and £ can be independently optimized for any fixed A, A’. Due to Lemma 4,
the optimal value of f is f) A/. The optimal value of {; can be calculated as

1
&= —§ﬁ2A (D.13)
We arrive at the following dual objective
1 d A d
D (A A) = L{fanr M) + 782 N+ 7 DOl b, (D.14)
i=1 i=1 i=1

d d
1 1

- I .Y 32 2_ 252 2

(faar, A, )+45 ;:1)\1 25 ;:1)\“

d
1
= Dg(\A') - 152 > AL
=1

which means we have the dual problem

Dy(\A) — —B2) A2 D2
Dy ) - 8 Z (D2)

We now show the duality of the problems. Notice how this problem has an extra i B2 Z?:l A2
compared to (2.4). This is the reason this problem is considered the regularized version of (2.4).
Notice that the regularization term also makes the dual loss strongly concave. This makes solving the
optimization problem easier.

Theorem 4. Assume ¢; is bounded fori = 1,...,n and B > 0. The value of (D.11) and (D2) is
equal with dual attainment. Furthermore, let \*, A'* be dual optimal. The primal optimal solution is
f}\* A

Proof. First, we show that the some solution A*, A’* exists for the dual problem. To see this, first
note that for any A\ € RY, the optimal value of A’ is A, defined in (D.6). Now we need to show
Dg 4(A, A) is maximized by some A\*. We have

d
1
Dp (A A3) = Dg(A A5) — 187> A2 (D.15)
=1

Since D is concave, Dy (A, A) and therefore Dy 5(A, AY) is also concave. Due to Weierstrass’
Theorem (Bertsekas, 2009, Proposition 3.2.1) it suffices to show the set

S={AeR?: Dy 4(\A)) > Dg 4(0,A)) }

18
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is non-empty and bounded. It is trivially non-empty. Assume |¢(2)| < @max forany z and 1 < ¢ < d.
For any \ € .S, we have

A Al /82 Z AQ
d _ 1 d
- /eXP <;)\i¢i(z) — Ay - 1)15((12) + ;)‘id)i — Ay - 152 ;&2
d d 1 d
i=1 i=1 i=1

. . 1
< AN 8]~ 106 exp (= AN — 1)) = A

1 ) i
< =3B I + N 8]+ iMoo+ 1
which enforces an upper bound on [|A|| . This means that some optimal solution \*, A’\.. exists.

Now we show that fi« AL is primal optimal with £,~. First, note that the derivative (D.6) is zero for
A*, A’ due to the derivation of A. Thus, f\- 5/ is feasible. Similarly using Lemma 4 we have
AL

from (D.15)

8D[3,<2>()‘*7 Al/\*)

o\
B 8 *()\* A'A) ﬁQ)\*
=i / Frear (2)0i(2)p(d2) + s

which shows &)« is feasible.

Consider another feasible f, ¢ for (D 11).

[ Heos 1) itaz) +fZ§ — Ly, AL)

> Dg (A", A).)
= Lﬁ(f)\*,A/*agA*v)‘*v /)\*)

d
/f,\* Ay (2)10g faag, (2) A(dz)+%25x«2,
i=1

which proves the claim. O

Similar to the exact formulation, we can substitute A’ with Af\ to obtain a loss function based on \.
We arrive at the loss function

d
D) £ Dy g0 1) = D0 A9) = 53¢
(} _ 762 Z )\2
_Z)\Z@ log/exp(Z)\Z@ ) 522)\2 (D.16)

If \* optimizes Dy g, Theorem 4 shows fy- AL optimizes (D.11). Due to equlvalence of (D.11)
with (D.10), we get that gy~ optimizes (D.10).

19
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D.3 LEMMAS REGARDING MAXIMUM ENTROPY DENSITY ESTIMATION

Lemma 5 (Dudik et al. 2007)). For ¢V, ¢ € RY, let A1), X2 be the maximizers of D
D respectively. We have

8 t;_b(l) and

ﬁ,;ﬁ(z)’
Sl FEF- N e K
H _52 ¢ ¢ 2
Proof. Define
d
o) 2105 [lexp (3o n(a))as)
i=1

Since g(\) = Zle /\icﬁgl) — Dz (M) and Dy () is concave, we know that g is convex. Due to
optimality of A1), \(2) we have

- 1
VD, 500 (AM) = =Vg(AD) + ¢ = 252N =0
- 1
VD, 50 (A?) = ~Vg(\®) + @ — S =0,

By taking the difference we get

SEO0 X)) = —(Vg(A®) - Vg(1@) + (3 - 3.

Multiplying both sides by (A(1) — X)) T we get
%/FHA“) <2>H ~(Vg(AD) = Vg(A@)AD - A®) 4 (g — @ A0 @),
Due to the convexity of g, we have
(VgAM) = vg(A@) AL — 22y > g
Thus, we continue
1 _ _
T PR H ~(Vg(AD) = Vg(a@), A0 —2®) 1 (1) — 6@ A @)
<¢(1 (}(2) A /\(2)>
<[t =], x - x@],
2

where we used the Cauchy—Schwarz inequality. Dividing by | A(!) — ()|, proves the result.  []

Lemma 6 (Dudik et al. (2007)). Let \* maximize Dy g4 defined in (D.16). Then for any A, we have

iz B2
Dxi(pllar) < Dx(pll an) [Ez~pld(2)] - ||, + Il

+ 2]

Proof. Define ¢* £ E.,[¢(Z)]. First, we show that for any A € R%, we have

Dxr(pllgr) /p Z))

p(dz)
)exp(30 Nigi(z) — Ay)

/ (dz) log = ji) /p (dz) Z)\zd)z )+ Ay

=Dxi(p D)= (\@")+ A (D.17)

I
\

p(dz) log — 5
z

~—
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Now we can write from (D.16) and (D.17) that
D500 = (0 @) — A — 18I
= Da(pll5) = Dl p ]l 5)+ (A6} + (06— 8) — A — 1IN
= D (p15) ~ Dxelp lax) + 06— 8°) — 18I (D.18)

Define
P— argmax Dy 5+ (Mo)-

0

Due to optimality of \*, we have Dj 4(\**) < Dy 4(A\*). Expanding both sides with (D.18), we
get from the Cauchy—Schwarz and Lemma 5,

Do) < [ Dalpll5)+ 0.6 -8) - 31X 13-

D0 117) Dl o)+ (7.8 &) = I

* kk L x 1 * sk
= D (p [l e )+ (A=A, 6 = ¢7) = 87Nl — [A12)
* sk i Ik 1 sk
< Dxi(p | gr= ) + [N = XF|y]|[0 — @ ||2+152||/\ &

2 1= o« 1
< Dua(pl o) + 556 -8l + 382115

On the other hand, due to optimality of \**, we have D 4«(\) < Dy g+ (A**). Expanding both
sides with (D.18), we get

1 2 1 w0k (|2
Dgi(p | ax)+ 152||>\||2 2 Dx(p |l ax-- )+ 152||)\ 2

Combining the last two inequalities, we get

1 2 = — %12
Di(p llax ) < D llan) + 381N + 2516 = &7

which proves the claim. ]

E PROOFS FOR SECTION 3.1

We first show the following lemma:

Lemma 7. For any policy m, we have

Ghp| < erleoaale -

Proof. Since the feasibility set of Problem (P1) is convex, and P(-|z, a) belongs to it, we have from
Pythagoras theorem for KL-divergence (see Thm. 11.6.1 of Cover and Thomas 2006) that

Dx( P(le,a) | P(le,a)) = Dxi( P(le,a) | P(|z,a)) + Dxe( P(|z,a) || P(|z,a))
> D (P(|z,a) [| P(|z,a)).

From Lemma 3 we have

|75, < ersu /D (PCl) | P a))

< crsup \/DKL( P(|z,a) || P(|z,a))

< CIHEModellloo‘
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Proof of Proposition 1

Proof. Due the constraint in Problem (P1), for any i we have (P — P)¢; = 0 and therefore

G;"_Eﬁgbi = 0. Thus, using the proof of Lemma 1, for any w € R¢

v v
(o]

IN

GT‘—PE_ V7TPE
PP

o0

- lemar = e

‘ oo

= Cl||€ModelHoo

oo

Ve — Z w;P;

v — Z w;P;

— TPE
=Gpp

Similarly for control, from (C.3), we have for any w € R4

e v

T *
<[y
LS

_+ Hagﬁv*

<||epp(ve =Y wis)

+|6E v =)

’ oo

s = wien

+Herawe—ve|
’V* - Z Wi P;

where we used Lemma 7 in the last inequality. Rearranging the terms yields the result. O

< 2¢1 ||€Model €Model

)
o0

)v* v

+c1 ‘
o0 o0

N

F PROOFS FOR SECTION 3.2

In this section, we provide the analysis of MaxEnt MoCo in supremum norm. We will show a
sequence of lemmas before providing the result for general 5 and then proof of Theorem 1.

Lemma 8. If P is the solution of the optimization problem (P2), for any x,a we have

_ . 2
Dy ( P(|z,a) || P(-|z,a) ) < Dx( P(-|z,a) || P(-|z,a) ) + @EQucry(x,a)2~
Proof. For \ € R?, define

A d
g (A) £ /Ap(dy|l’7a> exp (Z ANii(y) — A/\>7

where A is the log-normalizer and A C X. Due to Lemma 6, for any A we have
d
_ 2
Dy (P(|z,a) | P(|lz,a) ) < Dxi( P(|z,a) || ga(-|z,a) ) + 7 > [(Pei)(x,a) — iz, a)]*+
i=1

BQ
M-

Since go = P(-|z, a), substituting A\ = 0 gives the result. O
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Lemma 9. If P is the solution of the optimization problem (P2), for any x,a we have

HP(|1‘,G) - ﬁ(‘maa)ul S \/§6Model(xaa) + %eQuery(xya)-

Proof. Using Lemma 8 and Pinsker’s inequality, and the fact that va + b < y/a + \/5, we write

1P(la,a) — P(la,a)||, < /2Dkw( P(le.a) | P(le,a) )

< /2P0 PClr.a) | PC40)) + cquan (.02

2
S \/EeModel(xy a) + BEQuery(m; a)-

Lemma 10. For any x,a we have

d
Z|(75¢i)($»a) — (Péi)(z,a)| < \/E(zeQuery(z,a) + Bemodel (7, a)>,

also for any policy

d
S1P60(@) ~ (P6:)(w)| <V [ w(dalo) (2ecuers () + Bersoaa(,0).

Proof. For a more compact presentation of the proof, let p = P(-|z,a), p = P(-|x,a), and
p=P(|r,a). Let ¢p: X = R and ¢p: X x A — R be d-dimensional vectors formed by ¢;, 1;.
For g € M(X) and f: X — R?, we write

alf) 2 Exq[£(X)).
We write
Iple] - plelll, < Vdllple] - plelll,
< Va(|lplg] - ¥ (@, a)l, + (@) ~ Bl

< Vd(equery (v, ) + 9@, @) = Bl ). ED)

Now note that p is the solution of (P2), the value of objective is smaller for p than it is for p. We
obtain

Dia (5 9)+ énm] — (@, )% < Dl p |l 5) + %npm oz, a)|2

1
< 6Model(xa a)2 + ﬁeQuery (1'7 a)2‘

Thus,

P[] — ¥ (z;a)ll; < \/BQeModel(x, @)? + €Query (¢, )2 = 2DkL(P || D)

< \/BQEModel(xa Q)Q + €Query (CC, a)2
S /66M0d61<x7 a) + 6Query(x; a)-

Substituting in (F.1) we get
Iplg) — plolll, < Vdlplg] — pigll,
< Va(Iple] - (. a)ll, + ¥ (z,a) - plell,)
< \/a(2€Query(x7 a) + Bemodel (T, a)).
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For the second part we simply write

d
Z|(75ﬂ¢i)( (P i) ()| = Z / (da|z) [(75@)(3:, a) — (Po;)(z, a)] ‘
i=1 1 dl )
< Z/W(da|x)|(77¢¢)($,a) — (Po:)(x,a)]
d
= / > m(dale)|[(Po)(x,0) — (Po.)(x.a)|
z_dl
< /Zw(dahc) (QeQuery(:r, a) + Berodel (T, a))v
where we used the first part for the second inequality. O

Lemma 11. If P is the solution of the optimization problem (P2), for any policy 7, w € R and
v: X — R, we have

¥ 2
HGP pUH < m (\/§||5Model||oo + EHGQueryHoo) v = sz¢z

+ 2% (Blessal + 2Nl
Proof. We have
|epp0]_ = ll@=Pm) P =P, (F2)
(L= yPT)THPT = PT)(v = D _wigi)|| + (F3)

(F4)

(I—~P™) " (yP™ - 775”)(2 w;;)

o0

Using (C.1) in proof of Lemma 2 and Lemma 9 we have
[P™( ) = PT(la)], < /W(dalx)||7’(~|w7a) = P(|z,a)l|,
2
S /71'((‘1(1|(£) |:\/§6Modcl($v (l) + B€Qucry (xa a):|
< V2|l entodel [l o ||6QucryH

Thus, for the first term (F.3), we can write

(I—~P™) H(yP™ —yP™) (v — Z wid;)

[ee}

*sup[P7 () = Pl

V=Y wids

i 00
v — Zwi¢i

: oo

2
S ﬁ |:\/§||€ModelH(><> + B”eQuery”OO:I .
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Now, for the second term (F.4), we can write

(I—~P™) " (yP™ - 775”)(2 w;;)
sz sz¢z

Sl (Mi)(x))]‘
= 5upZ| (P™¢i)(x) — (P™¢:) JU)’”U’HOO

7\/&
“1.5 [QHEQueryHoo + ﬁIIeModelnm] wl.

o0

1—7

= sup

1

Putting the bounds for (F.4) and (F.3) finishes the proof.

Theorem 5. Define the mixed error values

2 d-~
€1 = ﬁ ’ <\@||€Modc1||oo + BfQuory|oo>a €2 = ﬁ : (ﬂ”ﬁModclHoo + 2||€Qucry||oo)'

Then, for any wmax > 0, we have

HV’T”EfV“PEHOO <e inf

”wHooSwmax

+ €2 Wmax,

d
"V”E* > wi - ¢
i=1 >

d
=% 261 . 262
Ve -v~T ‘ < inf — w; - d;l|  +  Wiax-
H o 1 —e1 [|wll <wmax ; ¢ ~ 1—e
Proof. The PE result is a direct consequence of Lemma 11 and (C.2). We have
HVTFPF_ _ VTFPF_HOO _ HGWPE 1/ e
d
S | HV”“ 2w i e wM
S €1 ‘VTFPE - ws * ¢z + €2 * Wmax-
lwllo Y Z *
For control, from (C.3) we have
‘ vy HG v +HG Vv +HG;*75(V*—VT?*)H
o0 ’ o0

Choosing w = 0 in Lemma 11 we get

o -vml <y v

oo

Also for any w we get

d

Gr . V* < . HV* — b + .

H _61 ;wz oy - €2 ”w”oo
d

HG v §61'HV*;W'¢¢ OOJr€2'||w||o<>
1=
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Thus,

v

+2ez - ||lwl| o, + elHV* _yr
oo

d
’ §2€1'HV**ZU}1"¢% ‘

By rearranging, we get

d
261

< inf -HV*— w; - &

’w_wERdllel z:zl ¢ (bz

d
‘V* =Y w;- ¢
i=1

e -ve

262
e -||w||m]

262
* Wmax-
o] 1-— el

2eq ,

< — inf .
1T —e1 lwlly<wmax

O

Proof of Theorem 1 It is the direct consequence of Theorem 5 with choosing S =
lleQueryll o /ll€Model|| . and observing

2++2
er = 25 eyl < Berllemonal
-7
3Vd -y
1—

e = “llequeryll o = c2lléquery [l oo -

G {, ANALYSIS OF MAXENT MoCo

The analysis in the Section 3.2 is based on the supremum norm, which can be overly conservative.
First, the error in the model and queries are due to the error in a supervised learning problem.
Supervised learning algorithms usually provide guarantees in a weighted £, norm rather than the
supremum norm. Second, in the given results, the true value function V™ and V* should be
approximated with the span of functions ¢; according to the supremum norm. This is a strong
condition. Usually, there are states in the MDP that are irrelevant to the problem or even unreachable.
Finding a good approximation of the value function in such states is not realistic.

Hence, in this section we give performance analysis of our method in terms of a weighted £, norm.
We first define some necessary quantities before providing the results. For any function f: X — R
and distribution p € M(X), the norm [ f||, , is defined as

11,2 | [17Pocan)]| ”

Let 7 be an arbitrary policy, and P/, be the m-step transition kernel under w. The discounted
future-state distribution ™ : X — M (X) is defined as

T 1 S mpmT
n (‘.13) £ 1— ~y ! E Y P’m("x)'
m=0

Define w™(+|z) £ [ 7" (dz|x)P™(-|z). This is the distribution of our state when making one transition

according to P from an initial state sampled from the discounted future-state distribution 7™ (z|x).
Also let €f;,4e1 0 X — Rand eauery : & — R be defined based on epodel and €query similar the way

r™ is defined based on r. Assume for any ¢ and x, a we have A — B/2 < ¢;(x),¢;(z,a) < A+ B/2
for some values A and B > 0.

Let p € M(X) be some distribution over states. We define two concentration coefficients for
p. Similar coefficients have appeared in ¢, error propagation results in the literature (Kakade and
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Langford, 2002; Munos, 2003; 2007; Farahmand et al., 2010; Scherrer et al., 2015). Define
2 2

CT(p)! =eXp<B;2d)2/,0(x)’ dﬁ?;(/jm) N dw:lglw) i
0ﬂm4=i-/p@wdﬁ;$w;

Here, and dnwd(p'lx) are the Radon-Nikodym derivatives of ™ (-|z) and ™ (-|z) with respect

to p. In the CT (p) defined above, the exponential term forces us to only focus on large values of
3, which is not ideal. This term is appears as an upper bound for ||P7 (-|z)/P™ (-|z)||s. However,
similar to more recent studies on approximate value iteration, it is possible to introduce coefficients
that depend on the ratio of the expected values with respect to the two distribution instead of their
densities. Due to the more involved nature of those definitions, we only include this simple form of
results here and provide further discussion in the supplementary material. The next theorem shows
the performance guarantees of our method in terms of weighted ¢, norms.

Theorem 6. Define

dn” (-|z)
d

- 2’Y P L « 2 &
e = i -(CT(p)+C3(p)) - \/‘/§ HEModellle T F] || Query ‘l,p’
- 27\/& T 4
ey = T Ca(p) (BHGModelnl,p + 2HEQueryHl,p')
Then
2e7™ 2e3”

v~ 77, <

> T 5 7 inf T o 7 Wmax
1—2eT"  fwll. <wna 1— 27" ’

d
Uy
(\VTE - E w; - @i
i=1 4,p

also if €] = Max ¢+ 7+ 6e7 /(1 — 2e7) and €5 = max ¢ r+ 7+y 6€5 /(1 — 2eT), we have
d

V= Z w; - §;
i=1

Notice that the 3 appears in the bound in the same manner as Theorem 5. This will lead to the same
dynamics on the choice of 5. We provide the proof of this theorem in Section H.

< 2e;

4p T 1= e fwll o Swia

2e5
* Winax-
*
1—e7

+

Jr-v

4,p

H PROOFS FOR fp ANALYSIS OF MAXENT M0OCoO

We first show some useful lemmas towards the proof of Theorem 6.
Lemma 12. For m functions f1, fo,..., fm: X = R, we have

m
4 . 4
Il f1 +...+fm||47p <m? E HfiH4,p'
i=1

Proof. We have

1+ dull, = [ olan) (3 sit))’
< /p(dx) [(Z 14/3)3/4(Zfi(x)4)1/4]
= [ p(d) Y fila)’

i
m
4
=m* > lIfil,,
i=1
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Lemma 13. For any policy , we have G7, 5 = G;; PG; »— Gp p

Proof. We write

G5 G p — G
(I—~P")" ( (YP™ =PI —~P7) " I) (YP™ —yPT7)
(L= 4P) " (PT = yP™) (L= 4P™) " +1) (1P — 7P")

I =P H(yP™ —AP™)A —4P™) "t + (T —4P™)(I - 775”)_1) (YP™ —P7)
I—P™) (I = yP") (I = 7P") "L (yP" — 4P™)
71')71 ")/PTr o ,}/Pﬂ')

—~

(
(

/\

ﬁa
tl\

Lemma 14. For any w € R% we have
P =P (> wis)

Proof. We write

[P =P (> wis)

< VA(2 Ry, + BleRroarln) - vl

> wi (P (@) - (Po)(x)) ‘

=/p(dw) .
<ol o) S| (P60 - o))
< il [ pldo) [x/& [ (ko) (2qury (:0) + o)

— el [ p(02)[VA(26yry (2) + Beioaa(2)) |
= Va2l Buers s, + Bl toaalls,y) - 10l

where we used Lemma 10. O

Lemma 15. Define
Tv;;a:,ﬁ)é/ (d2)||P7 () — P (1),

We have 9
Tvg(,Pvﬁ) < \/iHeﬂ-Modcl”l,p + BHegucryHl’p'

Proof. Using (C.1) in proof of Lemma 2 and Lemma 9 we have
[o@olp=co) =Pl < [ ode) [ w(dalo)|PClz.a) - Pl ),
2
< /p(d:v)/w(da|:1c) {\/ieModel(x,a) + BeQuery(x,a)}

2
= \/§||€TFModelH11p + BnegueryHLP‘
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Lemma 16. Assume for any i and x,a we have A — B2 < U;(z),Y;(z,a) < A+ B/2 for some
values A and B > 0. Then we have
2B%d
S exp 7 .

Proof. Assume ) is the dual problem of MaxEnt density estimation resulted in P(-|z,a). We have

APz,
dP(-|z,a)

We have by Jensen’s inequality
Ay =log / P(dy|x, a) exp (Z m(y))

> /75(dy|gc7 a)log (exp (Z >\i¢i(y)> )
— /ﬁ(dykc,a) (Z >\i¢i(y)>
= Z /\1 . EY~ﬁ(~\w,a) [¢1(Y)]

Thus

dP(-|z,a) e o
d75(|:17,a) (y) - p(g: Az¢z(y) AA)

< exp (Z Ai(0i(Y) = By Lp(1e,a) [@(Y)]))

< exp(BI|All,)-

Now to bound [[A[|;, note that for ¢'(z,a) = Ey 5, ,)[¢i(Y)] the solution of (P2) is P(|z,a)
that corresponds to dual parameters \’ = 0. Using to Lemma 5,

/ 2 , 2
Ally = [[]A = NIy < @lllﬁ(w,a) — ¢z, a)lly < @\/gB-

We get

et y) < exp(BIALL) < exp(BVAIAL) < exp

dP(:|z,a) 2B2d>

62
O

Lemma 17. Let €7, €5 be defined as in Theorem 6. For any policy 7, v: X — R and w € R% we
have

4
[E R

4
+(e5)* - lwll
4,p

0

4
4

v— Zwi¢i
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Proof. Define

‘We have

utv— Zwl¢7
o (o) / " (el P (|2)

AP(dzly) £ |P™(dzly) — P™(dzy)|
1V, 2 [ p(da) [P o) = P (o)
D2 (1= ~P) " (yPT = aPT)(v = 3 wid)

E£(I-+P7) 1 (yP" — VPW)(Z w;p;).

G pv =T =vP") ' (yP™ — 4P )v

= (L= 9P (PT =P = Y widi) + L= yPT) T (PT = yPT)(3_ widh)

=D+ E.

We bound norm of each term separately. For A, we write using the Cauchy—Schwarz inequality

4
1Dy,

T,

1
/ (dz) [/an (dy|x) - WN’(dZIy)-U(Z)I}4
ol /p(dx) Vy \/p(dy)-\/AP(dzly)>< 7 {dyle) p(| \/Wﬂ

dy)

4 - /p(dx) (// p(dy)-AP(dzIy)>2- <//yz 0™ (dy|z)? .Z((j)yz).AP(dzly)>z

= [t [ T le) 2Pty ~ Pl ) 4

~ g T [ ptan ([ (o AP(aat) )
-3 347)4 LTVZ. /Ip(dx) [L(\/mﬂ(ﬁ) ' (/y nﬁ(dy,ls(i);). -A;)Zj;'y)ﬂz

i~}

< 2 12 [ otan)| [ ptaziuter] [ / ( e A;(Déj)y))]

[ V)

P of [ Tz AP |
T e, // . <y Vp(dz) - p(dy) )

_ 2
- STV2 - [lull}, - C.
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For C we write

(dy|z)* - AP(dz]y)

o= [[ dx(/

:/zp(dx)/z (d2) (/y (dylx) A73(;12|y)

>2

p(dz) - p(dy)

y

2

= [ ptan| ( "l dzy))

:/xp(dx) dnd(pl z) || (fyn” dylz ™ (dz[y) (;{ 0 dylw)P“(dZIy)>
_ / p(dz) d<plx> (7-1 0" (dz]) w(zli?);))

~2 [ ptan) L [( (4o ( dz|y)]
:QLp(dx) dn lv‘l " ( dwép@) J

o o Hd"‘p o g g
B g R T

=205 (p)* +2CT (p ) ;
where we used Lemma 16. Also from Lemma 15 we have

TV, < V2| ftoqally, +

5 ey
6 Query i1 p

This means

4 2’)/4 T T T 2 ™ ? 4
1Dy, < e (C5(p)* +CT(0)Y) - | V2lleRtodellls, + EHGQueryHLp lully,,

< (€10 + OTO)* (VeI + 5 sl ) Dl

Now we bound the E term. Define

f(x) = ‘]EYN'PW(":L‘) [Z wi¢z‘(Y)] —Eypr(z) {Z wi@(Y)} ‘

Using Lemma 14, we have

1111,y < VA2l Bl , + BllFronall,y) - 0l
We have
11, < s [ ot )
S e / i) )
< il [ a2
= A0 (2l e, el
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Putting things together using Lemma 12:
4
4
HGP va = ||D+E||4,p

4 4
<8|Dlly,, +8lIEl,

16*}/4 . i i 2 i 2
Sao (C5(p) +CT(p)*- (\@IEModellle + BHeQueryHLp) Al

874 T 4 2 ™ T 4 4
oy 10" (2 eueny |y, + Alefioaally) el

4 4
< (eD)* - llully, + (€5)* - wlis

Proof of Theorem 6 for PE
Proof. We have
HVTFPE _ VTFPEH _ HG‘”PE* V/TPE
4p 4,p
~ ezmemmy - ey

< 23/4HG7TPEPG;;1>EPVWPE

3/4 T T
2 |cgm v

4,p

TPE TPE TPE
=< 2HG73 PGP PV 4,p

ooy

4,p.
Using Lemma 17 with w = 0 we have

TPE TPE TPE
‘ ’ G’P P GP Y

TPE
S €1

GTPE_ |/ TPE
PP

4,p

< eTrPEHVTrpE _ VTFPEH
1 4,p°

Also from Lemma 17 we have

4 1/4
ez, < (imtfvme - Sl + et
+ 5™ lw|| o

e — Z w; P; .
P

TPE
€1

with substitution we get

HVTI’PE — e < Qe;fPEHVﬂ'Pr VTFPEH4 + 267TPE

V=N " wig;

s o, 2 el

Rearranging the terms give the result.

Proof of Theorem 6 for Control

Proof. From proof of (C.3), we get

AR Ve ‘ < H ‘G”*AV* ‘G**AV* ‘G**A VE_vT
H 4,p - + + 7)’7)( ) 4,p
< SHG v 3HG v BHG’?*A ve—v™y| .
4,p * 47p+ P’P( ) 4,p

From Lemma 17 with w = 0

SHG;,ﬁ(V* _yT )H <et

4,p

vV —VT

4,p
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Also for any w

* * *
3HG73,75V S 61

= wids

esl|lw
el

4,p
slep V|| <er|[ve= S we|, +esllul
’ 4,p 4,p
Thus,
v v <2V =S wisi| 4+ 23wl + e V*fV’_T*‘ .
H L, SV = wi|, - 2eflwll + e
Rearranging proves the result. O

I PROOFS FOR SECTION 4

Here, we give the proof of Theorem 2 after the following lemma.

Lemma 18. If V}, is the value function at iteration k of MoCoVI for control. Let 3, €Query be defined
as in Theorem 2. We have
= wigs

Proof. Let P, be the corrected transition dynamics used to obtain Vi,. Let ry, = r + (7P — 775k)V
According to Rakhsha et al. (2022), V* = V*(ry, P) = V™ (r), Pi). Now we have

V* = Vi =V*(r, Pr) = V™ (r, Pr)
= V™ (ry, 75k) — V7 (r, ﬁk)
= (L—AP™ )~ (gt — ™)
=(I- 75“’“)’1@7””‘ — PV

[Vie = V|| o < 3ci]lemodel || o

o0
lwll oo <w +02H6Query||oowmax-
max

= Gyp,V*
On the other hand
V= Ve =V (1, Py) — V(1 Pr)

VT (Tk,Pk) V™ (r, Pr)

=@—P") M =)

=@ —yP" ) (PT —APT )V

G V"
Thus,

IV* = Vil < maX(HG?fﬁﬁkV* PV L)
< 3¢1 ||emodet || o, g v*—Zme + 0| €& neny || Wmaxs

where the last inequality is from Theorem 1. O

Proof of Theorem 2
Proof.
For PE, we note that from Theorem 1 we have forany K < k > 1

e — Z Wi Proti

<AV = Vil + o€y oo tmas-

||V7\'PE _ Vk“oo < 3C1||€Mode1||

+ Ca|€Suery || . Wmax
ol - Zwma o0 Querylloo
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By induction, we get

1 _ /
|V — VKHOO < ,Y/KHVT(PE _ VOHoo + 1_—’Y,Y/CQH€€§HGFY||oowmaX'

For control, note that according to Lemma 18, for 1 < k£ < K
V-V, <3 inf V- ; ;
H Hloo < 3erllevoaetllos | i0f, D witkri

<ANVF = Vil + C2H€OQOueryHoowmax~

+ Ca|€Suery || . Wmax
o Query || o0

Consequently
IK—1

_ 1-
IV~ Vicallao €757V = Vollag 4 2 eall ey i

Finally, based on Theorem 1,

Ve — v < 6c1|lemodet || oo
1 — 3c1][emodet || s N9l Swmax

d
V- E wi¢z‘+KH
i=1 e

2C2||€Query||o<> )
1 — 3ci|lemodet || oo

max

2 / 2¢zl€qQuery ||
1- 3cl||€Model||oo’y o 1—3ci|emodel]l .
2,YIK

1 —~"%  2csllequer
HV*_VOH Lil=7 2]l€Queryll o

L—v 1=3ci|lemodellle

~ 1 —3ci]|emodel || o

J ADDITIONAL EMPIRICAL DETAILS

| [

—»—»—»—»—»T
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—»—»—»—»—»T

+ R

—»—»—»—»—»T

Figure 2: Modified Cliffwalk environment (Rakhsha et al., 2022).

We perform our experiments on a 6 x 6 gridworld environment introduced by Rakhsha et al. (2022).
The environment is shown in Figure 2. There are 4 actions in the environment: (UP, RIGHT, DOWN,
LEFT). When an action is taken, the agent moves towards that direction with probability 0.9. With
probability of 0.1 it moves towards another direction at random. If the agent attempts to exit the
environment, it stays in place. The middle 4 states of the first, third, and fifth row are cliffs. If
the agent falls into a cliff, it stays there permanently and receives reward of —32, —16, —8 every
iterations for the first, third, and fifth row cliffs, respectively. The top-right corner is the goal state,
which awards reward of 20 once reached. We consider this environment with v = 0.9.
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Figure 3: Policy evaluation results comparing MoCoVI with VI, pure MBRL and OS-VI. (Left) low
(A = 0.1), (Middle) medium (A = 0.5), and (Right) high (A = 1) model errors. Each curve is average
of 20 runs. Shaded areas show the standard error.
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Figure 4: Policy evaluation results comparing MoCoDyna with Dyna, OS-Dyna and TD-learning.
(Left) low (A = 0.1), (Middle) medium (A = 0.5), and (Right) high (A = 1) model errors. Each curve
is average of 20 runs. Shaded areas show the standard error.

For MoCoVI, we set the initial measurement functions ¢; fori = 1, - - - , d constant zero functions.
We canset ¢; = 0fori =1, - ,d without querying P. This makes the comparison of algorithms
fair as MoCoVI is not given extra queries before the first iteration. The convergence of MoCoVI with
exact queries and 8 = 0 is shown in Figures 1 and 3 for the control and PE problems.

Figures 1 and 4 show the performance of MoCoDyna compared to other algorithms in the PE and
control problems. As discussed after Theorem 1, it is beneficial to choose measurement functions
such that the true value function can be approximated with ) . w;¢; for some small weights w;. To
achieve this in our implementation, we initialize ¢;.44. with an orthonormal set of functions. Also,
in line 9 of Algorithm 1, we maintain this property of measurement functions by subtracting the
projection of the new value function V; onto the span of the previous d — 1 functions before adding it
to the measurement functions. We have
d+c—1
Sare = Vi— D (¢, Vi) - i, (3.1

1=c+1

and then we normalize ¢4 . to have a fixed euclidean norm. The hyperparameters of MoCoDyna for
PE and control problems are given in Tables 3 and 4.

Model Error Reduction. To show that the model correction procedure in MoCoDyna improves the
accuracy of the model, we plot the error of original and corrected dynamics in the control problem
in Figure 5. The model error is measured by taking the average of |P(-|z,a) — P(-|z,a)]|; or
I1P(:|x,a) — P(:|z,a)||1 over all 2, a. We observe that higher order correction better reduces the
error.

Computation Cost. In Table 1 we provide the average time the calculation of P has taken in
MoCoDyna in the control problem. This is total time to calculate P(-|x, a) for all 144 state-action
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pairs in the environment. In our implementation, the dual variables of the optimization problem for
all state-action pairs are optimized with a single instance of the BFGS algorithm in SciPy library.
Note that in general, different instances of the optimization problem (P2) for a batch of state-action
pairs can be solved in parallel to reduce the computation time. Table 2 shows the full run time of
the algorithms. It is important to note that in Algorithm 1, apart from reporting the current policy
for the purpose of evaluation in line 6, MoCoDyna only needs to plan with P every K steps to have
V; in line 9. In our implementation, planning is done every 2000 steps to evaluate the algorithm.
Performing the planning only when needed in line 9 would make the algorithm computationally
faster.

Low Model Error Medium Model Error High Model Error
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—--- Model Dynamics Corrected Dynamics (d=1) Corrected Dynamics (d=2) Corrected Dynamics (d=3)
Figure 5: Comparison of the error of the original uncorrected model compared to error of corrected
dynamics in the PE problem. (Left) low (A = 0.1), (Middle) medium (A = 0.5), and (Right) high

(A = 1) model errors. Each curve is average of 10 runs. Shaded areas show the standard error.

Table 1: Average computation time (seconds) of 7 during a run of algorithms in the control problem
for low (A = 0.1), medium (A = 0.5), and high (A = 1) model errors.

MoCoDynal | MoCoDyna2 | MoCoDyna3
A=0.1 0.24 0.58 1.51
A=05 0.29 0.52 1.39
A=1 0.2 0.5 1.44

Table 2: Run time (seconds) for a single run of algorithms in the control problem for low (A = 0.1),
medium (A = 0.5), and high (A = 1) model errors.

TD Learning | Dyna | OS-Dyna | MoCoDynal | MoCoDyna2 | MoCoDyna3
A=0.1 44 50 555 119 134 200
A=0.5 44 34 565 113 114 169
A=1 44 33 600 91 110 172

Table 3: Hyperparamters for the PE problem. Cells with multiple values provide the value of the

hyperparameter for different model errors with A = 0.1, A = 0.5, and A = 1, respectively.

TD Learning OS-Dyna MoCoDynal MoCoDyna2 MoCoDyna3
learning rate 0.2 0.05,0.05,0.05 - - -
c - - 2,2,2 2,2,2 2,2,2
Jé] - - 0.02,0.02,0.02 | 0.16,0.16,0.16 | 0.14,0.14,0.14
K - - 250,400, 750 300, 300, 400 300, 300, 400
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Table 4: Hyperparamters for the control problem. Cells with multiple values provide the value of the
hyperparameter for different model errors with A = 0.1, A = 0.5, and A = 1, respectively.

TD Learning OS-Dyna MoCoDynal MoCoDyna2 MoCoDyna3
learning rate 0.2 0.02,0.02,0.02 - - -
c - - 2,2,2 2,2,2 2,2,2
Jé] - - 0.02,0.02,0.02 | 0.16,0.16,0.16 | 0.14,0.14,0.14
K - - 10k, 10k, 10k 6k, 6k, 6k 10k, 10k, 10k
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