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ABSTRACT

We address causal reasoning in multivariate time series data generated by stochastic
processes. Existing approaches are largely restricted to static settings, ignoring the
continuity and emission of variations across time. In contrast, we propose a learn-
ing paradigm that directly establishes causation between events in the course of
time. We present two key lemmas to compute causal contributions and frame them
as reinforcement learning problems. Our approach offers formal and computational
tools for uncovering and quantifying causal relationships in diffusion processes,
subsuming various important settings such as discrete-time Markov decision pro-
cesses. Finally, in fairly intricate experiments and through sheer learning, our
framework reveals and quantifies causal links, which otherwise seem inexplicable.

1 INTRODUCTION

Philosophers have long dreamed of discovering causal relationships from raw data. There are a wide
variety of theories of causation, relevant to our discussion are the counterfactual theory (Lewis, 1973;
1979; 1986; 2000) and process-based theory of causation (Salmon, 1984; Dowe, 2000). The basic
idea of counterfactual theories of causation is that the meaning of causal claims can be explained in
terms of counterfactual conditionals of the form “If cause event A had not occurred, effect event B
would not have occurred”. The original counterfactual analysis of causation, most widely discussed
in the philosophical literature, is provided by David Lewis (Lewis, 1979; 2000). Lewis’s stated
probability of causation between events as follows: “The effect event B depends probabilistically on
a cause event A if and only if, given A, there is a chance x of B’s occurring, and if A were not to
occur, there would be a chance y of B’s occurring, where x is much greater than y.”

Works such as the Causal Bayes Net (Spirtes et al., 2000) or Structural Causal Model (Pearl et al.,
2000) explored a counterfactual approach to causation that employs the structural equations framework
to answer the causal question using interventionist/manipulationist approaches to find counterfactuals
(HP setting, Halpern and Pearl (2001; 2005)). However, these approaches can have severe limitations,
especially when applied to dynamical systems. Interventions are often infeasible in physical systems
(Cartwright, 2007), and one can never observe counterfactuals nor assess empirically the validity of
any modeling assumptions made about them, even though one’s conclusions may be sensitive to these
assumptions (Dawid, 2000; Berzuini et al., 2012). Moreover, these approaches ignore the dynamics as
well as the possibility of other interventions between events (Dawid, 2000). Further, these frameworks
assume knowledge of causal dependencies or structural information between various events in the
system. Constructing detailed structural models can be hard, even for domain experts (Spirtes, 2001).

Other philosophers have proposed an alternative conception of causality, featuring physical systems
as causal processes (Salmon, 1984; Fair, 1979; Kistler, 2007). The cornerstone of Salmon’s theory
of causality is the notion of a causal process, defined as a spatiotemporal continuous entity having
the capacity to transmit “information, structure and causal influence” (Salmon, 1984). He believed
that processes are responsible for causal propagation, and provide the links connecting causes to
effects. While this understanding of causation is meaningful on an abstract level, philosophers have
argued that Salmon’s causal mechanical explanation was too weak, because it envisaged a geometrical
network of processes and interactions (transmission of marks (Salmon, 1984) or conserved quantities
(Dowe, 2000)) but did not convey as to what properties should be taken as explanatory (Hitchcock,
1995). Further, the scenarios described by everyday and scientific causal claims (e.g. ‘smoking causes
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lung cancer’) are often rather complex such that the possibility of decomposing them into sets of
individual interactions is clearly out of sight (Fazekas et al., 2021).

As a different example, consider playing a seemingly simple Atari game where losing a point prompts
the question: what caused this outcome? In its most basic form, an Atari game encompasses nearly
30,000 variables at each time step, resulting in tens of millions of variables during a short gameplay,
each assuming 256 discrete values. Beyond its staggering size, constructing a causal graph demands
substantial domain knowledge to decipher the combinatorially larger number of graph connections.
Moreover, interventions in an active game necessitate delving into the internal game engine to
mechanically adjust state variables—an impossible operation. This dynamic causal problem mirrors
challenges found in diverse systems, such as pinpointing the reasons behind a patient’s stroke in an
ICU, understanding the cause of a nuclear reactor malfunction, or elucidating why a particular protein
ceases development. An open question is how to uncover causal links in complex dynamical settings
with no graph, no human-level knowledge beyond data, and no need for impossible interventions.

Inspired by the above theories of causality, our approach seeks to establish/validate causal assertions
through the examination of underlying dynamics, placing a strong emphasis on spatiotemporal,
system-level thinking. In a physical process, if events are seen as changes of state or action variables,
we can naturally answer causal questions originating from the emission of changes in the state-space,
across time. To this end, (i) we begin by defining causation from a process-based viewpoint. (ii) We
then present two fundamental lemmas, which enable us to: (A) construct two reinforcement learning
problems, whose optimal value functions yield core metrics to understand causation, and (B) isolate
and quantitatively assess the individual contributions of each state or action component to the causal
metrics. These lemmas reframe the notion of causation as a machine learning problem, making it
amenable to analysis using raw observational data. (iii) We examine our methodology through a
series of complex experiments1. We present a detailed account of related works in Appendix A.

2 BASICS AND PROBLEM FORMULATION

We adopt Kalman’s definition of state: the smallest collection of numbers which must be specified
at time t = t0 to enable predicting the system’s behavior for any time t > t0. Any dynamical
system can be described from the state viewpoint (Kalman, 1960). Formally, state is a n-dimensional
vector-space and is either fully observable or reconstructable from observations. At any given time,
each state component is a random variable, and the state vector’s evolution across time forms a
(stochastic) process. It is desirable to also include alterable inputs, i.e., action variables. The evolution
of state is a function of both the intrinsic dynamics and the temporally selected (extrinsic) actions. We
present our formal results for generic dynamical systems obeying (continuous) diffusion processes.
We then derive our algorithmic machinery, which covers discrete cases and model-free settings.

Diffusion Processes. Assume a filtered probability space (Ω,F, P ). Let the state vector form a
continuous-time random process X(t, ω) over the mentioned probability space (we often suppress
ω for brevity). The process X(t) is a diffusion if it possesses the strong Markov property and if its
sample paths are continuous w.p. (with probability) one.

Many physical, biological and economic phenomena are either reasonably modeled or well-
approximated by diffusion processes (Karlin and Taylor, 1981). Further, discrete-time Markov pro-
cesses can be well-approximated by diffusion processes. Conversely, a diffusion process (continuous-
time) can be discretized to make a discrete-time Markov process with arbitrary level of accuracy (for
a formal discussion, see Karlin and Taylor (1981), pp. 168–169). As a result, we will readily extend
our formal results to design discrete-time algorithms, which are of special importance in practice.

Let ∆hX(t) = X(t + h) − X(t) be the change of state X(t) over a time interval of length h.
We assume that the following limits exists: limh↓0

1
hE

[
∆hX(t) | X(t) = x

]
= µ(x,u, t) and

limh↓0
1
hE

[{
∆hX(t)

}2 | X(t) = x
]
= σ(x,u, t), where µ is a vector of size n and σ is a matrix of

size n× n (they are referred to as infinitesimal parameters), and u ∈ U ⊆ Rm is a m-dimensional
1In causal reasoning, two distinct (but related) classes of questions are intrinsically relevant: (1) a cause

event is assumed and possible effects are in question – causal inference (what is the result of using a certain
medication?). (2) An effect event is assumed and possible causes and the extent to which they contributed to
the effect are in question (why did the Chernobyl reactor explode?). We primarily focus on the latter class;
nevertheless, the present core concepts and technical results can readily be used for causal inference as well.
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action. We further assume that both µ and σ are continuous functions of their arguments, σ is
positive definite, and all the higher moments are zero. The state evolution can therefore follow the
following differential form (Stokey, 2009):

dX(t, ω) = µ
(
X(t, ω),u(t)

)
dt+ σ

(
X(t, ω),u(t)

)
dW(t, ω), (1)

where W(t, ω) denotes the vector of standard Brownian motions. We assume u to be deterministic,
bounded, and follow u̇ .

= ϕ(t). We let µ and σ be stationary, however, it is straight to extend to
stochastic actions and/or non-stationary infinitesimals. Further, the time variable can be augmented to
the state vector to simply accommodate for non-stationary cases. Placed with initial state distribution
and reward function (and with an obvious abuse of terminology), we deem a Markov decision process
(MDP) as a general term to refer to a (continuous-time) diffusion or a discrete-time Markov decision
process. The MDP is formally defined as a tuple M = (X ,U , R,P0). X and U are sets of possible
states and actions, R : X 7→ R is a scalar reward function, and P0 is the distribution of initial states.
Let actions be selected according to some policy u(t) = π(X(t), t). Starting from x, the random
variable corresponding to the (undiscounted) accumulated future rewards is called return, and its
expectation is called value function: V π(x) .

= E{
∫ T

t
R(X(t′, ω))dt′|X(t) = x} with the trajectory

terminating at time T > t. Further, V ∗(x) .
= maxπ V π(x) is called optimal value function. Finally,

we say that X admits one or more known components xj at time t iff Xj(t) = xj .

Process-based Causality. As mentioned earlier, we posit that causal relationships are based on
temporal dynamics. Any causal relationship contains two events: cause (event A) and effect (event
B). We argue that in all logical arguments on causation, the following axioms are true:

i. Causality necessitates time: a causal relationship is realizable solely along the time axis.
ii. Cause happens before effect and the relationship is unidirectional from cause to effect.

iii. A causal relationship may imply neither necessity nor sufficiency.

These axioms set the ground for a natural view of causation. Notably, (i) requires that an event must
be associated with a point or an interval in time; otherwise, no causal argument can possibly be made
about that event being the cause or effect of any other event. In the HP settings of causation, the time
dependency often becomes implicit in the arguments (e.g., in causal graphs), but it may be a source
of confusion; hence, we seek a formulation that inherently includes time. Therefore, we formally
define an event as a change of one or more state or action components during a homogeneous time
interval. The components involved in an event are called ruling variables. The time interval is
assumed to be short enough such that the dynamics can be considered as monotone. This assumption
highlights the fact that an event cannot be a long-term incident relative to the rate of changes in the
environment. This definition further enables us to consider changes in the same variable happening at
different points in time as different events, which can be very helpful in practical cases of interest.
Next, (i) and (ii) necessitate that “A causes B” implies “B cannot cause A”; This helps resolve the
question of what constitutes the direction of the causal relation between two events. Furthermore,
(iii) necessitates that, in general, a causal relationship requires probabilistic views and non-binary
measures. For example, if “A causes B” and if A does not happen, then in general, one cannot
conclude B necessarily will not happen. By the same token, if A happens, it may not necessarily
imply B will also happen. In other words, an event may partially contribute in the occurrence of
another event in the future, although the case that A is a necessary and/or sufficient cause for B is a
possibility. This further addresses the problem of pre-emption since cases of preemption show us that
causes need not be necessary for their effects (Gallow, 2022).

The central idea behind Lewis definition is that causes, by themselves, increase the probability of their
effects. In the presence of actions, the probability of a future event’s occurrence is not well-defined.
Considering arbitrary policies for action selection, one may devise different chains of events after A.
Following each such policy incurs a different probability for event B’s occurrence. Remark that if A
causes B then under the most pessimistic version of such chains of events, still x must be greater
than y in Lewis’s definition. Hence, we set x to be the minimum probability of B’s happening.

We define grit of a future event B at state X, denoted by ΓB(X), as the minimum probability that
B occurs if current state is X. As discussed, the minimum is taken over future courses of actions.
Similarly, reachability of a future event B is denoted by ΛB(X) and is defined as the maximum
probability of B’s occurrence starting from X. In discrete settings, it is helpful to extend the
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definitions to starting from a given state and a given action (with an overload of notation): ΓB(X,u)
and ΛB(X,u).

We further argue that if the net impact of each variable is known (all ruling and non-ruling ones), then
there is no need for the designed “interventions,” (modifying the history), as the role of intervention is
to mechanically separate the impact of a variable from the collective impact. We, therefore, postulate
the following definition of causation:
Definition 1 (Causation). In a stochastic process, A is a cause of B if and only if

C1. Time-wise, conclusion of A happens at or before beginning of B;

C2. Expected grit of B strictly increases from before to after A. Moreover, until B’s occurrence, it
never becomes the same or smaller than its value at A’s beginning;

C3. The contribution of A’s ruling variables in the growth of B’s expected grit is strictly positive
and is strictly larger in magnitude than that of non-ruling variables with negative impact.

Remark that the non-ruling variables can have positive, zero, or negative impacts on the change of
B’s grit. The second part of condition C2 necessitates that a future event must not nullify the impact
of a cause. Condition C3 above requires that the contribution of A’s ruling variables must both be
positive and overshadow the negative impact of non-ruling ones. It then follows that even in the
absence of non-ruling variables with a positive impact, B’s grit still increases by A; hence, A is a
cause. Moreover, grit is a random variable due to non-ruling variables at the beginning of A. The
expected grit asserts that causation must hold under the expected starting point. Of note, one can
set forth a strong notion of causation by replacing C3 to assert that the contribution of A’s ruling
variables is strictly larger than that of all non-ruling variables. This notion helps to identify an event
as a dominant cause. In any case, the yet-open question is how to compute individual contributions.
In the next section, we will establish formal results to answer this question.

3 FUNDAMENTAL LEMMAS

We present two foundational lemmas. In a nutshell, the first lemma is a generalization of Lemma 2 in
Fatemi et al. (2021), and it broadly states that grit and reachability can be computed by the optimal
value functions corresponding to two easily constructed reward functions. This lemma establishes
the learning of value functions (hence reinforcement learning) as the principal learning paradigm for
dynamical causal problems. The second lemma decomposes expected change of grit and reachability
to the contribution of state and action components, which inherently enables causal analysis. These
lemmas are core to our theory in that they enable formal and computational reasoning about causality,
which will be presented in the rest of this paper. All the proofs are deferred to Appendix B.
Lemma 1 (Value Lemma). Let [T, T ′] be the duration of event B’s occurrence, and the state only
admits xB at t = T ′ (all states that admit xB are terminal). Define two MDPs MΓ and MΛ identical
to M with their rewards being zero if B does not happen. Otherwise, RΓ(X(t)) = RΛ(X(t)) = 0 for
t < T ;

∫ T ′

T
RΓ(X(t))dt = −1; and

∫ T ′

T
RΛ(X(t))dt = 1. Let V ∗

Γ (x) and V ∗
Λ (x) denote the optimal

value functions (undiscounted) of MΓ and MΛ, respectively. The followings hold for all X ∈ X :

1. ΓB(X) = −V ∗
Γ (X)

2. ΛB(X) = V ∗
Λ (X)

Lemma 2 (Decomposition Lemma). Fix a filtered probability space (Ω,F,P). Let X = X(t, ω)
be a diffusion process with stationary infinitesimal parameters µ = µ(X,u) and σ = σ(X,u).
Let grit and reachability exist and be differentiable twice in state. Let σi(X,u) denote the i-th
row of the matrix σ(X,u). Finally, let a fixed action u be applied from time t1 to t2 and the
state admits occurance of event A between t1 and t2. The expected change of grit, E [∆AΓB ] =
E
[
ΓB

(
X(t2, ω))− ΓB(X(t1, ω)

)
|A

]
, is expressed by the following formula:

E [∆AΓB ] =

n∑
j=1

E {gj |A}+
n∑

j=1

E {ġj |A}+
n∑

j=1

n∑
i=1
i̸=j

E {g̈j,i|A} , (2)
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gj
.
=

∫ t2

t1

µj(X,u) · ∂ΓB

∂xj
(X)dt (3)

ġj
.
=

1

2

∫ t2

t1

σj(X,u) · σT
j (X,u) · ∂

2ΓB

∂xj
2
(X)dt (4)

g̈i,j
.
=

1

2

∫ t2

t1

σi(X,u) · σT
j (X,u) · ∂2ΓB

∂xi∂xj
(X)dt (5)

The same formulation holds for reachablity.

If change of action variables is to be considered as an event, then u is allowed to change and a similar
term is also required for actions. By assumption u is not a stochastic process; thus, it only adds
a deterministic term. Let u̇(t) .

= ϕ(t) and ϕk be the k-th component of ϕ. We need to consider
ΓB

.
= ΓB(X,u), and the additional term

∑m
k=1 E{hk|A} will be added to equation 2 with

hk
.
=

∫ t2

t1

ϕk(t) ·
∂ΓB

∂uk
(X,u) dt (6)

Remark that u may take more complex forms or even be a stochiastic process. Then, other terms
should also be added to decomposition lemma. Although such expansions are straightforward, we do
not consider them here, since in practice, changes of u is often seen as extrinsic events.

Using fundamental lemmas, we next present certain basic properties for grit and reachibility:
Proposition 1 (Unity Proposition). If grit of an event B is unity at some state x, then w.p.1 it will
remain at unity. Moreover, this occurs if and only if B will happen w.p.1 from x regardless of future
actions and stochasticity.
Proposition 2 (Null Proposition). If reachablity of an event B is zero at some state x, then w.p.1 it
will remain at zero. Moreover, this occurs if and only if B will almost surely never happen, regardless
of future actions and stochasticity.
Proposition 3. Let actions be selected according to a fixed policy u = π(X) over a fixed time
interval. The resultant expected changes in grit and reachability of a future event B are bounded
as follows: (1) minπ E [∆ΓB ] ≤ 0, and (2) E [∆ΛB ] ≤ 0 for all π. Further, the equality in both
statements holds if transitions are deterministic.

The unity proposition states that one is the (only) sticky value for grit: once it is reached, grit will
remain at one until B is forcefully reached, irrespective of any intrinsic or extrinsic future event. We
will use this important property for proving the sufficiency of a cause. The null proposition, enables
to reason about rejection of a future event. We will use this proposition to establish necessity of a
cause. The third proposition provides anticipation for the expected change of grit and reachability
(i.e., on average). Of note, in practice, a learned value function is often used in place of V ∗, which
may violate such properties to various degrees depending on the level of approximation errors.

4 FORMAL ESTABLISHMENT OF CAUSATION

Let φA(j) = E {gj |A}+ E {ġj |A}+
∑n

i=1
i ̸=j

E {g̈j,i|A} be the impact of component j on event B’s

grit during event A (likewise for actions). Using decomposition lemma, we can directly state the
definition of causation in a mathematical form, which we call proposition of causation:
Proposition 4 (Causation). Let A occurs over the interval [t1, t2] and DA be the set of A’s ruling
variables. A is a cause of B if and only if

1. A happens before B

2. E{∆A(ΓB)} > 0 and E{ΓB

(
X(t)

)
} > E{ΓB

(
X(t1)

)
} for all t > t2

3.
∑

j∈DA
φA(j) > −

∑
j ̸∈DA

min
(
φA(j), 0

)
Proposition 4 judges A as a whole. If A contains more than one ruling variable, i.e., |DA| > 1, a
comparison of their individual contributions will help discover spurious or redundant variables inside
A. This can prove useful in the context of causal discovery.
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Key Properties of Causation Our proposition of causation induces various desired properties, we
discuss a number of them herein. We, however, remark that no such statements as presented in this
section are required and they are provided to grant certain plausibility to the theory. Nevertheless, the
actual merit of our theory lends itself to its practical implications.

Without loss of generality, let event B have only one ruling variable, Xb, and if B occurs, it will
be over the time interval [T, T ′]; hence, T ′ is either terminal or no reward afterwards. Using value
lemma, decomposition lemma, the definition of value functions, and the fact that the reward function
of B is only a function of Xb, i.e., rB(X) = rB(Xb), it follows that

∂ΓB(X(t))

∂Xj(t)
= −

∂V ∗
Γ

(
X(t)

)
∂Xj(t)

= − ∂

∂Xj(t)
E
∫ ∞

t+
rB(X(t′))dt′ = − ∂

∂Xj(t)
E
∫ T ′

T

rB(X(t′))dt′

= −E
∫ T ′

T

∂rB(Xb(t
′))

∂Xj(t)
dt′ = −E

∫ T ′

T

drB(Xb(t
′))

dXb(t′)

∂Xb(t
′)

∂Xj(t)
dt′ (7)

Similar equations can be derived for the second derivatives. These derivatives of ΓB are still random
variables due to X(t), as the expectation operators (from the definition of value functions) only affect
stochasticity after t. If B happens, the term drB(Xb(t

′))/dXb(t
′) is nonzero (by construction) over

[T, T ′]. Consequently, the driver terms are the derivatives (sensitivity) of Xb at a future time t′ to the
j-th state component at an earlier time t. If the sensitivity is zero, then the contribution of j in change
of grit will render null.

To shed more light on this, let us expand the first derivative. Remark that X(·) is a diffusion; hence,
there exists a sequence of m ≥ 0 stopping times from t to t′, such that t ≤ τ1 < τ2 < · · · < τm ≤ t′.
The strong Markov property of X asserts that state components at each stopping time are conditionally
independent of their values at any time prior to the preceding stopping time. We therefore write

∂Xb(t
′)

∂Xj(t)
=

∑
i1∈D1

· · ·
∑

im−1∈Dm−1

∑
im∈Dm

∂Xb(t
′)

∂Xim(τm)

∂Xim(τm)

∂Xim−1
(τm−1)

. . .
∂Xi1(τ1)

∂Xj(t)
(8)

where Dk is the set of all state variables, which appear in the (stochastic) differential equation of
Xik+1

, with Dm corresponds to those of Xb. Equation equation 8 shows how a change in Xj at t
propagates through other components across time until reaching Xb at t′, thus causing Xb to change in
a certain way during event B. This may also be seen as a formal materialization of what philosophers
refer to as “chain of events from A to B” (Lewis, 1973; Paul, 1998). Plugging equation 8 into
equation 7 and then into decomposition lemma, we see how this chain of events eventually changes
the expected grit of B. Using these as well as previous results, we can prove various core properties:

i. Efficiency: The collective contribution of all components during any time interval is equal to
E ∆ΓB over that interval.

ii. Symmetry: If two variables are symmetrical w.r.t. Xb (i.e., having exactly the same impact
on the dynamics of other variables, which ultimately reach Xb), then switching them does not
impact ∂jΓB . Furthermore, their contributions in ∆ΓB will be exactly the same provided that
their respective µ and σ are the same during the given time interval.

iii. Null event: Contribution of Xj in ∆ΓB is zero if and only if at some stopping time through the
propagation chain of equation 8, Dk is empty (meaning that there is no link between Xj at t and
Xb at t′). Such an event is called null event w.r.t. B.

iv. Linearity: Let Ai, Aj , and Ai,j be three events with the ruling variables Xi, Xj and {Xi, Xj},
respectively. Then, the contribution of Ai,j in ∆ΓB is sum of the contributions of Ai and Aj .

Correlations vs. Causation. Wrongly identifying correlations as causal links is a core problem
in formal reasoning. We show that our theory nullifies such links. Consider three consecutive and
non-overlapping events A, A′, and B, which occur in this exact order and possess distinct ruling
variables. Let A be the cause of both A′ and B, and consider two cases: Case 1: A′ also causes B,
and Case 2: A′ has nothing to do with B; however, they are still correlated due to having the same
cause, i.e., A. Using equation 8, we observe that in Case 1, if both A and A′ are causes of B, then
all Dk’s must be non-empty (otherwise they cannot be a cause due to the null-event property). As
a result, in this case, change of grit will become non-zero, meaning that proposition of causation
correctly asserts both A and A′ as causes of B. In direct contrast, in Case 2, by assumption A′ is
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a null event for B and at some stopping time after the conclusion of A′, the propagation of ruling
variables of A′ towards Xb is terminated (i.e., propagation of A toward A′ and toward B happens
through different collections of Dk’s). Thus, equation 8 implies ∂jΓB = 0 for j ∈ DA′ ; hence,
proposition of causation will correctly reject A′ as a cause. This same logic can be used to address
the problem of late-preemption that counterfactual theories have difficulty handling (Gallow, 2022).

Sufficiency and Necessity of a Cause. There are two further results of practical importance, namely,
sufficiency and necessity of a cause. A sufficient cause is one that forcefully makes the effect occur
in finite time. According to unity proposition, the necessary and sufficient condition that B forcefully
happens from state x is E ΓB(x) = 1. Using this result, the following proposition is immediate:

Proposition 5 (Sufficient Causation). Let X+ be the state at A’s conclusion. Then, A is a sufficient
cause for B if and only if A is a cause for B (proposition of causation holds) and E ΓB(X+) = 1.

A necessary cause is an event without which the effect will never happen from the current state.
Occurrence of a necessary cause does not guarantee the effect’s happening, but it is required for the
effect to happen. More formally, if a state x does not admit the occurrence of A, then A is a necessary
cause for B from the state x if every trajectory from x to B passes through A. That is, if A is not
reachable from x, then so isn’t B. Using null proposition, the following is therefore immediate:

Proposition 6 (Necessary Causation). Let A be a unique event (i.e., ruling variables of A admit
certain values “only if” A occurs) and let X not admit conclusion of A. A is a necessary cause at X
for the event B if and only if A is a cause for B, and E ΛA(X) = 0 =⇒ E ΛB(X) = 0.

Computational Machinery. We can approximate the integrals with summations of M points using
the trapezoidal rule (M is a hyper-parameter). Let us use the first-order approximate of µ, which only
depends on applying u at the m-th point, corresponding to the time m · (t2 − t1)/M . To simplify
the notation, define X(m)

.
= X(m · (t2 − t1)/M). Note that in discrete-time problems, we still

need to interpolate these points between the actual time ticks of the environment. We use forward
approximation of µ at m and backward approximation at m+ 1, which alleviates the need for triple-
point data of action u. This yields µj(X(m),u) ≃ µj(X(m+ 1),u) ≃

(
Xj(m+ 1)− Xj(m)

)
/∆t.

This formula approximates µ by the slope of the (hyper-)line segment between X(k) and X(k + 1).
Using one-step trapezoidal rule and ∆t = (t2 − t1)/M , it therefore follows (note that ∆t cancels
out): gj ≃ 1

2

∑M
m=1

(
Xj(m + 1) − Xj(m)

)
·
(
∂jΓB

(
X(m)

)
+ ∂jΓB

(
X(m + 1)

))
. We call this

equation g-formula. Similar formulas can be derived for h, ġ, and g̈.

5 EXPERIMENTS

We present two illustrative examples that no existing method can tackle. Modeling dynamical systems
as SCMs is computationally and memory intensive to a prohibitive degree, especially in systems with
numerous variables (Koller and Friedman, 2009). Additionally, it typically requires causal discovery
methods and domain expertise to establish causal graphs and system equations. In contrast, our
method operates solely on raw observational data without accessing system equations or causal graphs.
Furthermore, defining ¬A events in interventionist frameworks is largely ambiguous, particularly in
continuous spaces, and predicting intervention outcomes heavily relies on restrictive assumptions
about interventions or system models (Peters et al., 2022; Hansen and Sokol, 2014). Consequently,
existing methods are irrelevant for baseline comparisons.

Atari Game of Pong. To understand causal reasoning in a real setting, we applied our theory to the
Atari 2600 (Bellemare et al., 2013) game of Pong. Event B is losing a score, and the question is why
B happens if the player does not move its paddle. For our study, we use the DQN architecture (Mnih
et al., 2015), but set γ = 1 and r = −1 if losing a point (terminal state) and zero otherwise. The rest
of hyper-parameters are similar to Mnih et al. (2015). We next use the Pytorch’s autograd to compute
the value function’s gradient w.r.t. screen pixels, based on which we could compute g-formula with
M = 10 computational micro-steps to compute the integral. Further details can be found in Appendix
D. Illustrated in Fig. 1, the method accurately pinpoints not only the last steps where the paddle
should have moved (49), but also the pixels corresponding to the ball’s movement. From 48, at each
step, the set of actions that can catch the ball increasingly shrinks and the expected grit of losing
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46 47 48 49 50 51 52 53 54 55 56Frame

Screen

0

1

Figure 1: Atari game of Pong. ∇Γ is shown from red (≥ 1) to blue (≤ −1). Probing g and Γ(x) at
frames 49 to 51 reveals the cause of losing score. Moreover, a sufficient cause is realized at frame 51.

a point increases. As all conditions in proposition of causation hold, these ball movements are the
causes for B. Moreover, the change from 50 to 51 fulfills the proposition of sufficient causation.
Playing the game step by step, one can easily confirm that 50 is the first frame, which is already
too late and nothing can be done to catch the ball. Remark again that all these results are obtained
through sheer learning with no access to system equations or human-level knowledge.

Real-world Diabetes Simulator. In this experiment, we analyze multivariate medical time-series
data using an open-source implementation of the FDA-approved Type-1 Diabetes Mellitus Simulator
(T1DMS) (Kovatchev et al., 2009). The simulator models a patient’s blood glucose (BG) level and 12
other real-valued signals representing glucose and insulin values in different body compartments. We
control two actions: 1) insulin intake, to regulate insulin level 2) meal intake, to manage the amount
of carbohydrates. More details on the data and experiment design can be found in Appendix E. This
experiment helps us investigate the impact of insulin and carbohydrate intake on blood glucose levels.
Meal intake increases the amount of glucose in the bloodstream, which for T1D patients, is regulated
with external insulin intake. However, intensive control of blood glucose with insulin injections
can increase the risk of hypoglycemia (BG level < 70 mg/dL), which is the effect event we aim to
understand its causes (event B). We use Monte Carlo learning to estimate VΓ(X) and thus ΓB(X).
Of note, the algorithm has only access to data. In our setting, we observe that intake of insulin causes
an instantaneous spike in dynamics of subcutaneous insulin 1 (SI1), while intake of carbohydrates
causes an instantaneous spike in glucose in stomach 1 (GS1). Since the previous action is considered
as part of the current state, the spike in subcutaneous insulin just acts as a proxy for action insulin,
similarly for action meal and GS1. We study two scenarios under event B:

(A) Single intake of insulin: In the scenario described in Fig. 2-A, we wish to answer why event B
(BG level < 70 over t ∈ [312, 313]) did happen. Here we notice that ∆ΓB(X) > 0 over t ∈ [180, 181].
Hence we can say that the change in state at t ∈ [180, 181] contains possible causes for hypoglycemia.
Now, we need to determine the change in which state component Xi could have led to ∆ΓB(X) > 0.
To do this, we will decompose ∆ΓB(X) as individual contributions from each state variable. Using
decomposition lemma, in Fig. 3-A we see the individual contributions of each variable towards the
total grit as seen in gi. We notice that at the time interval t ∈ [180, 181], the contribution to total
grit only comes from variable SI1. Therefore, a change in variable SI1 at t ∈ [180, 181] (event A) is
considered cause of event B.

(B) Multiple intakes of insulin and meal: In Fig. 2-B, following a similar drill, we notice that
∆ΓB(X) > 0 at t ∈ [180, 181] and at t ∈ [510, 511]. However, although ∆ΓB(X) > 0 at t ∈
[180, 181], ΓB decreases to levels before t=180, prior to reaching event B. Therefore, change in
variables at t ∈ [180, 181] cannot be a cause since it violates condition C2 of proposition of causation.
This only leaves change in variables at t ∈ [510, 511] as a possible cause. Using decomposition
lemma, Fig. 3-B reveals that at time interval t ∈ [510, 511] the contribution to total grit comes only
from variable SI1 (event A2). Therefore event A2 is the only cause of event B.

8
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A B

A B

Figure 2: Diabetes simulator. Cause events are depicted with ∗ markers and the effect event B (BG
< 70) with ▲ marker. The simulation ends when event B happens. The last two lines are change of
grit computed from VΓ directly and from decomposition lemma (which are consistent).

A

B

Time (min)

Figure 3: Diabetes simulator. Individual contributions of each signal towards the total grit.

6 CONCLUSIONS

We have presented a general theory for causation in dynamical settings, based on a direct analysis of
the underlying process. We confined our exposition mostly to the case of given an event as effect,
how to reason about possible causes. Our formal results enable a full framework, which can answer
such causal questions directly from raw data. Further, we showed that various desired properties are
immediate from our postulation, including the core conditions of counterfactual views. The main
limitation of this work is two-fold: higher moments than two of the stochasticity are dismissed and
the full information state is assumed. Relaxation of these assumptions are left for future work.
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DATA AND CODE AVAILABILITY

Our code and pretrained models to replicate the analysis (including figures) presented in this paper is
publicly available at: https://github.com/fatemi/dynamical-causality.

For the T1D experiment we have used an open-source implementation of the FDA-approved Type-1
Diabetes Mellitus Simulator (Kovatchev et al., 2009). The code is publicaly available at: https:
//github.com/jxx123/simglucose
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A RELATED WORK

Static Settings. As noted above, philosophers have time and again proposed different theories
trying to understand causation from raw data. Since the 80’s, statisticians have tried to materialize
this dream through mathematical reductions. The most popular framework for actual causation
was purposed by Halpern and Pearl Halpern and Pearl (2001; 2005) following Pearl’s influential
book on causality that provided the first formal definition of causation Pearl et al. (2000). Pearl
claimed that using causal models allows one to make the intuitive understanding of causation formally
precise, whereas existing logical notions lack the resources to do so. Further, Pearl defined three
basic probabilities of causation – the probability of necessity, of sufficiency, and of necessity and
sufficiency, and ways to calculate them from data (Pearl, 2022). Moreover, researchers have used
the causal structure and the properties of the data to narrow the bounds of the above probabilities
of causation Tian and Pearl (2000); Dawid et al. (2017); Mueller et al. (2021). Needless to say,
Pearl’s account has come under criticism and revision – both from philosophers and researchers in AI
Beckers (2021); Beckers and Vennekens (2018); Halpern (2015); Weslake (2015); Hitchcock (2001;
2007). However, all these works try to infer causal relationships from non-temporal data by making
certain assumptions about the underlying process of data generation (causal graphs), which restricts
the understanding of causation to static settings.

Dynamic Settings. Works like Granger (1969); White and Lu (2010); Peters et al. (2013); Pfister
et al. (2019); Eichler and Didelez (2012); Huang et al. (2020) deal with understanding causal relations
in time series data, but mostly consider discrete-time models. Moreover, they focus on finding
causal dependencies between different variables in time series data while we try to find causation
between events, defined by a change in variables during a homogeneous time interval. Further,
works like Peters et al. (2022); Hansen and Sokol (2014); Mooij et al. (2013); Blom and Mooij
(2018); Bongers et al. (2018); Rubenstein et al. (2016) focus on continuous time systems that are
governed by ordinary differential equations and propose a framework to model dynamical systems as
structural causal models (SCMs). Again, they focus on understanding the effect of interventions and
on causal structure learning or causal discovery under various system-level assumptions and do not
deal with understanding the causation of events itself. It’s important to note that “causal discovery” or
structural learning as used in current literature deals with inferring the underlying causal structure or
dependencies between variables from raw data Pearl (1980); Spirtes et al. (2000). It does not concern
itself with understanding the cause of an event in a specific context Halpern (2016).

Further, all the above-mentioned methods deal with understanding causation from a counterfactual-
interventionist perspective Woodward and Woodward (2005); Pearl (1980), while we follow the
route of process theory of causation and emphasize system-level thinking to answer questions of
causation Fazekas et al. (2021); Salmon (1984); Dowe (2000). Works like Fazekas et al. (2021)
propose a philosophical framework for a dynamical systems approach to causation based on the
process theory of causation Salmon (1984); Dowe (2000) and emphasize conceptually the importance
of system-level thinking. However, the paper stops there, while we provide a formal framework that
materializes this idea and enables computational machinery.

Sensitivity Analysis. Another related area from a different domain is sensitivity analysis. The
primary goal of sensitivity analysis is to understand the sensitivity or responsiveness of a model’s
output to variations in its input factors Ljung (1987); Skogestad and Postlethwaite (2005). However,
it should be highlighted that sensitivity does not imply causation and defining causation purely based
on sensitivity results in wrong causal arguments. Additionally, no connection is made in sensitivity
analysis with value functions and learning algorithms thereof.

We believe a side-by-side discussion of dynamical systems and the theory of causation will allow us
to develop novel approaches, transfer expertise across communities, and enable us to overcome the
current limitations of each perspective individually. Our goal is to cast causation as a learning problem
from dynamic temporal data such that given sufficient data, one can reliably answer the question of
why. Notably, our paradigm conveniently covers both cases of intrinsic causation (cause is a change
in the environment itself) and extrinsic causation (cause is an action applied to the environment).

15



Published as a conference paper at ICLR 2024

B EXTENDED FORMAL RESULTS

Here, we present the proofs of formal claims from the paper with further discussions. The results are
numbered as in the main paper.

Lemma 1 (Value Lemma). Define two MDPs MΓ and MΛ to be identical to M with their corre-
sponding reward kernels being RΓ = −δ(x− x̃) and RΛ = δ(x− x̃), where x̃ admits the occurrence
of event B and δ(·) denotes the Dirac delta function. Further, set all such x̃ as terminal states. Let
V ∗
Γ (x) and V ∗

Λ (x) denote the optimal value functions of MΓ and MΛ, respectively, under γ = 1.
Then, the followings hold for all x ∈ X :

1. ΓB(x) = −V ∗
Γ (x)

2. ΛB(x) = V ∗
Λ (x)

Proof. For part 1, let π∗ denote an optimal policy of MΓ. We note that since the only source of
reward is when B is reached and it is negative, then π∗ maximally avoids reaching B (i.e., π∗

optimally chooses to reach anywhere but B). Hence, following π∗ results in the minimum probability
of reaching B from any state. On the other hand, γ = 1 induces that the return of any sample path
is precisely −1 if B is reached and zero otherwise. By definition, the optimal value of each state is
the expectation of the return from all sample paths starting from that state and following π∗. Let T
denote the set of all sample paths and partition it as T = TB ∪ TN , where TB and TN are disjoint
sets corresponding to the paths which reach B and those which do not (whose length can be of finite
or infinite, the finite case occurs when there are terminal states in M which may happen before ever
reaching B or when by assumption time horizon is finite). Let further Z(σ) represent the return of a
sample path σ and P(σ|x, π∗) denote the conditional probability that the sample path σ occurs if π∗

is followed starting from the state x. It then follows

V ∗
Γ (x)

.
= E[Z | x, π∗] =

∫
σ∈T

Z(σ)dP(σ|x, π∗)

=

∫
σ∈TB

−1 dP(σ|x, π∗) +

∫
σ∈TN

0 dP(σ|x, π∗)

= −P ∗
B(x)

where P ∗
B(x) =

∫
σ∈TB

dP(σ|x, π∗) denotes the total probability of reaching B from x if π∗ is
followed; that is, the minimum probability of reaching B from x, which by definition is ΓB(x).

Similarly, for part 2, let π̄∗ denote an optimal policy of MΛ. We write

V ∗
Λ (x)

.
=

∫
σ∈T

Z(σ)dP(σ|x, π̄∗)

=

∫
σ∈TB

+1 dP(σ|x, π̄∗) +

∫
σ∈TN

0 dP(σ|x, π̄∗)

= P̄ ∗
B(x)

Here, P̄ ∗
B(x) =

∫
σ∈TB

dP(σ|x, π̄∗) represents the probability of reaching B from x if π̄∗ is followed.
π̄∗ minimizes the chance of missing B due to its positive reward and being the only source of reward.
However, it only cares about reaching B and it does not distinguish among various paths as long
as they reach B. That is, π̄∗ does not induce a shortest path to B, but it maximized the chance of
reaching B. Hence, P̄ ∗

B(x) would be the maximum probability of reaching B from x, which by
definition is ΛB(x), which completes the proof. We note that similar value functions, but for discrete
time, state, and action, has also been introduced by (Fatemi et al., 2019; 2021).

We should mention here that similar results may be extended to distributional RL (Bellemare et al.,
2017) or to the case of semi-Markov settings (Sutton et al., 1999). Such settings are of practical
interest (see for example Fatemi et al. (2022)).
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Lemma 2 (Decomposition Lemma). Fix a filtered probability space (Ω,F,P). Let X = X(t, ω) be
a diffusion process with stationary infinitesimal parameters µ = µ(x,u) and σ = σ(x,u). Let grit
and reachability be defined over X, and both be differentiable twice in state. Let σi(x,u) denote the
i-th row of the matrix σ(x,u). Finally, let a fixed action u be applied from time t1 to t2 and the state
admits certain values at t1 and t2 for some of its components. The admissions correspond to an event
A. The expected change of grit, E [∆AΓB ] = E

[
ΓB

(
X(t2, ω))− ΓB(X(t1, ω)

)
|A

]
, is expressed by

the following formula:

E [∆AΓB ] =

n∑
j=1

E {gj |A}+
n∑

j=1

E {ġj |A}+
n∑

j=1

n∑
i=1
i̸=j

E {g̈j,i|A} , (9)

gj
.
=

∫ t2

t1

µj(X,u) · ∂ΓB

∂xj
(X)dt (10)

ġj
.
=

1

2

∫ t2

t1

σj(X,u) · σT
j (X,u) · ∂

2ΓB

∂xj
2
(X)dt (11)

g̈i,j
.
=

1

2

∫ t2

t1

σi(X,u) · σT
j (X,u) · ∂2ΓB

∂xi∂xj
(X)dt (12)

and the expectations are expressed on ω. The same formulation holds for reachablity.

Proof. Conditioning on event A makes some components of X become deterministic and known, and
the process is still a diffusion. Hence, the result follows from Itô’s lemma, then taking conditional
expectation from both sides and rearranging the terms. Remark that for any integrable function
Y(t, ω), we have E{

∫ t2
t1

Y(t, ω) dW(t, ω)|A} = 0 (see Theorem 3.1 in Stokey (2009)). As a result,
the dW part in Itô’s lemma is eliminated and the stated result will follow.

Proposition 1 (Unity Proposition). If grit of B is unity at some state x, then with probability one it
will remain at unity. Moreover, this occurs if and only if B will happen with probability one from x
regardless of future actions and stochasticity.

Proof. We establish the proof under mild assumptions on the dynamics (that a small enough ∆ exists).
A more rigorous proof may be possible by relaxing such assumptions (like it is in the discrete cases).
However, insofar as the goal being applying the theory to practical problems, which naturally involve
discrete or discretized time, the present proof fully suffices.

We first prove that if grit is unity then B will happen w.p.1. and grit will remain at one until B occurs.
Following the value lemma, ΓB(x) = −V ∗

Γ (x). We therefore show that if V ∗
Γ (x) = −1, it will then

remain at -1 until B occurs. Remark that in the case of discrete state and discrete time, the result
follows Lemma 1 of Fatemi et al. (2021) (similar ideas also exist in Fatemi et al. (2019) and Cao
et al. (2023)). Here, using a similar line of argument, we present the proof for the general case of
continuous time and state.

Remark that both V ∗
Γ and Q∗

Γ are in [−1, 0] for all states and actions. Thus, −1 = V ∗
Γ (x) =

maxu Q
∗
Γ(x,u) implies that Q∗

Γ(x,u) = −1 for all u. Therefore, if V ∗
Γ (x) remains at -1, so does

Q∗
Γ(x,u) for all u and, as a result, we only require to show V ∗

Γ (x) remains at -1 with no reference
to any particular policy for action selection. In other words, all actions are optimal at x (w.r.t.
maximizing integration of RΓ) and choice of u at x makes no difference.

By construction, any trajectory that includes B has a terminal state at the end of B. Let ∆ be a small
positive number such that it can cover the duration of B. We partition time into intervals of length
∆. Starting from x at time 0, the world will be at a (random) state X′(ω)

.
= X(∆, ω) at time t = ∆.

Let ∆ be small enough such that selection of u ∈ argmaxu′ Q∗
Γ(x,u′) at t = 0 and sticking to it

for [0,∆] is almost the same as following argmaxQ∗
Γ(x, ·) during [0,∆]. Such ∆ exists due to the

continuity of diffusion’s sample paths and the assumption that duration of any event, including B,
has to be short w.r.t. the rate of changes of the state.

During the time interval [0,∆], exactly one of four possibilities could occur:
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1. a terminal state happens that admits B;

2. a terminal state happens that does not admit B;

3. no termination: X′ is a non-terminal state with V ∗
Γ (X

′) = −1;

4. no termination: X′ is a non-terminal state with V ∗
Γ (X

′) = −β ∈ (−1, 0].

In the first two cases, by the definition of terminal state, X′ is also a terminal state with zero value.
Let C1 to C4 represent the sets of all possible states X′ corresponding to each of the four cases above.
These sets are mutually disjoint. We then show that if V ∗

Γ (x) = −1, then only either of (1) or (3) can
happen. We note that any sample path of a diffusion is continuous. Since RΓ(·) is also a continuous
function, its integral exists. We can therefore write:

−1 = V ∗
Γ (x) = E

[ ∫ ∆

0

RΓ(X(t, ω))dt+ V ∗
Γ (X

′(ω)) | X(0, ·) = x
]

= P[X′ ∈ C1]
(
− 1 + 0

)
+ P[X′ ∈ C2]

(
0 + 0

)
+ P[X′ ∈ C3]

(
0− 1

)
+ P[X′ ∈ C4]

(
0− β

)
= −P[X′ ∈ C1 ∪ C3]− βP[X′ ∈ C4]

= −
(
1− P[X′ ̸∈ C1 ∪ C3]

)
− βP[X′ ∈ C4]

= −
(
1− P[X′ ∈ C2 ∪ C4]

)
− βP[X′ ∈ C4]

= −1 + P[X′ ∈ C2] +
(
1− β

)
P[X′ ∈ C4]

which deduces

P[X′ ∈ C2] +
(
1− β

)
P[X′ ∈ C4] = 0

We remark that 1−β is strictly positive; thus we conclude both P[X′ ∈ C2] = 0 and P[X′ ∈ C4] = 0.
Consequently, the resultant state is either a terminal state admitting B (i.e., X′ ∈ C1) or some state X′

where V ∗
Γ (x′) = −1 (i.e., X′ ∈ C3). Following the same line of argument on X′ and noting that by

assumption the time horizon is finite, we conclude that V ∗
Γ remains precisely at -1, and the path will

eventually reach B with probability one, regardless of stochasticity and selected actions.

Conversely, if from a state x, event B is going to happen with probability one, then all possible future
trajectories will reach a reward of −1, which makes their return also be −1. More precisely, those
trajectories which end with a reward of zero will have zero probability. Hence, the expected return
from (i.e., the value function of) state x would be −1 regardless of stochasticity; hence, VΓ(x) = −1.
It is then immediate from value lemma that ΓB(x) = 1 if B occurs with probability one from x.

Proposition 2 (Null Proposition). If reachablity of an event B is zero at some state x, then w.p.1 it
will remain at zero. Moreover, this occurs if and only if B will almost surely never happen, regardless
of future actions and stochasticity.

Proof. The proof is similar to the previous proposition. In particular, during the time interval [0,∆],
exactly one of three possibilities could occur:

1. a terminal state happens that admits B;

2. a terminal state happens that does not admit B;

3. no termination: X′ is a non-terminal state with V ∗
Λ (X

′) = β ∈ [0, 1].

Note that, compared to the proof of Proposition 1, here we combined the last two items, resulting
in only three items. In the first two cases, by the definition of terminal state, X′ is also a terminal
state with zero value. Also note that in the case of reachability, the reward integrates to one over an
interval where B occurs and is zero elsewhere. Similarly to the previous proposition, let C1 to C3
represent the sets of all possible states X′ corresponding to each of the three cases above, and these
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sets are mutually disjoint. Here, we show that if V ∗
Λ (x) = 0, then only either (2) can happen, or else

(3) can happen, in which case β has to be zero. We write

0 = V ∗
Λ (x) = E

[ ∫ ∆

0

RΛ(X(t, ω))dt+ V ∗
Λ (X

′(ω)) | X(0, ·) = x
]

= P[X′ ∈ C1]
(
1 + 0

)
+ P[X′ ∈ C2]

(
0 + 0

)
+ P[X′ ∈ C3]

(
0 + β

)
= P[X′ ∈ C1] + βP[X′ ∈ C3]

=
(
1− P[X′ ̸∈ C1]

)
+ βP[X′ ∈ C3]

= 1− P[X′ ∈ C2 ∪ C3] + βP[X′ ∈ C3]
= 1− P[X′ ∈ C2] +

(
− 1 + β

)
P[X′ ∈ C3]

which deduces

P[X′ ∈ C2] +
(
1− β

)
P[X′ ∈ C3] = 1 (13)

Hence, the following cases are possible (note: P[X′ ∈ Ck] = 1 implies P[X′ ∈ Ck′ ] = 0, k′ ̸= k):

(i) P[X′ ∈ C2] = 1;

(ii) P[X′ ∈ C3] = 1 with β = 0 (otherwise the equality cannot hold);

(iii) both P[X′ ∈ C2] ̸= 1 and P[X′ ∈ C3] ̸= 1, with β ̸= 1 (otherwise the equality cannot hold).

Note that if β ̸= 0 then P[X′ ∈ C2] cannot be zero because 1 − β < 1 and equation 13 would be
violated. That is, in the case of P[X′ ∈ C3] = 1 (hence, P[X′ ∈ C2] = 0), β has to be zero. On the
other hand, if β = 1, then P[X′ ∈ C2] must be one; hence, in (iii), β = 1 must be excluded.

Let both P[X′ ∈ C2] ̸= 1 and P[X′ ∈ C3] ̸= 1. Using the fact that P[X′ ∈ C2] + P[X′ ∈ C3] ≤ 1
and substituting from equation 13, it yields

P[X′ ∈ C2] +
1− P[X′ ∈ C2]

1− β
≤ 1

Re-arranging the terms and having note that β ̸= 1, it follows that 1/(1 − β) ≤ 1 or 1 − β ≥ 1,
which deduces β = 0. Substituting β = 0 in equation 13, it follows that

P[X′ ∈ C2] + P[X′ ∈ C3] = 1

which implies P[X′ ∈ C1] = 0. Thus, occurrence of a terminal state that admits B is improbable.
Furthermore, in the case that both P[X′ ∈ C2] ̸= 1 and P[X′ ∈ C3] ̸= 1, β must be zero. That is, the
next state X′ is (with probability one) either a terminal state not admitting occurrence of B, or else
a non-terminal state with VΛ(X′) = 0. Continuing with this line of argument and knowing that by
assumption the time horizon is finite, we conclude that VΛ remains at zero until reaching a terminal
state, which does not admit occurrence of B (hence, B never happens). Using value lemma, it then
follows that ΛB also remains at zero and B will never occur.

Conversely, if B never happens, then all possible trajectories will incur zero return; thus, the expected
return is zero, i.e., VΛ = 0, which deduces ΛB = 0.

Proposition 3. Let action u be selected according to some policy π(x) over a time interval [t1, t2].
The resultant expected changes in grit and reachability of some future event B are bounded as
follows:

1. minπ E [∆ΓB ] ≤ 0

2. E [∆ΛB ] ≤ 0 for all π

with the equality in both statements holds for deterministic environments.
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Proof. As the argument goes for any arbitrary point before event B’s occurrence, the reward of both
MDP’s are zero by definition. Also, remark that there is no discounting. Hence, the value functions
in Lemma 1, V ∗

Γ and V ∗
Λ , admit HJB equation of the following form:

max
u

 n∑
j=1

µj(x,u) · ∂V
∗
Γ

∂xj
(x) +

1

2

n∑
i=1

n∑
j=1

σi(x,u)σT
j (x,u) · ∂2V ∗

Γ

∂xi∂xj
(x)

 = 0 (14)

where x is any state that does not admit the occurrence of B. From the value lemma we have
ΓB(x) = −V ∗

Γ (x). Let π denote any arbitrary stationary policy to select u (not necessarily fixed)
from time t1 to t2. We have:

min
π

E [∆ΓB ] = min
π

E


∫ t2

t1

 n∑
j=1

µj(x,u) · ∂ΓB

∂xj
(x) +

1

2

n∑
i=1

n∑
j=1

σi(x,u)σT
j (x,u) · ∂2ΓB

∂xi∂xj
(x)

 dt


= max

π
E


∫ t2

t1

 n∑
j=1

µj(x,u) · ∂V
∗
Γ

∂xj
(x) +

1

2

n∑
i=1

n∑
j=1

σi(x,u)σT
j (x,u) · ∂2V ∗

Γ

∂xi∂xj
(x)

 dt


≤ E


∫ t2

t1

max
u

 n∑
j=1

µj(x,u) · ∂V
∗
Γ

∂xj
(x) +

1

2

n∑
i=1

n∑
j=1

σi(x,u)σT
j (x,u) · ∂2V ∗

Γ

∂xi∂xj
(x)

 dt


= 0 (15)

The first line follows from decomposition lemma and the second line follows from value lemma.
Remark that the negative sign in value lemma switches min to max. Finally, the last line follows
from equation 14. If the transitions are deterministic, then the expectation operators (as well as all
the σ terms) will vanish. Hence, the inequality will also be replaced by an equal sign.

The proof for the second part follows a similar argument. We start with maxu E [∆ΛB ] and then
apply the value lemma similar to the above (remark that there is no negative sign for reachability
in the value lemma). This yields maxu E [∆ΛB ] ≤ 0, which induces E [∆ΛB ] ≤ 0. Hence, for
reachability, the stated bound holds regardless of the choice of u.

Proposition 4 (Causation). Let DA be the set of A’s ruling variables. A is a cause of B if and only if

1. A happens before B;

2. E{∆A(ΓB)} > 0;

3.
∑

j∈DA
φA(j) > −

∑
j ̸∈DA

min
(
φA(j), 0

)
Proof. This follows from a direct translation of Definition 1 into our formal concepts as well as using
decomposition lemma to bring the individual contributions.

PROOF OF PROPERTIES FROM SECTION 4

i. Efficiency: The collective contribution of all components during any time interval is equal to
∆ΓB over that interval.

Proof. This is a direct result from decomposition lemma.

ii. Symmetry: If two variables are symmetrical w.r.t. Xb (i.e., having exactly the same impact
on the dynamics of other variables, which ultimately reach Xb), then switching them does not
impact ∂jΓB . Furthermore, their contributions in ∆ΓB will be exactly the same provided that
their respective µ and σ are the same during the given time interval.

Proof. It is immediate from equation 8 and decomposition lemma.
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iii. Null event: Contribution of Xj in ∆ΓB is zero if and only if at some stopping time through the
propagation chain of equation 8, Dk is empty (meaning that there is no link between Xj at t and
Xb at t′). Such an event is called null event w.r.t. B.
Proof. If µ is non-zero for ruling variables of A, then decomposition lemma asserts that ∂jΓB

must be zero in order to render j-th contribution null. Assuming that event B is happening or
has happened, the only way for that to become zero is that at least one of the Dk’s in equation 8
is empty.

iv. Linearity: Let Ai, Aj , and Ai,j be three events with the ruling variables Xi, Xj and {Xi, Xj},
respectively. Then, the contribution of Ai,j in ∆ΓB is sum of the contributions of Ai and Aj .
Proof. This follows from decomposition lemma.

Propositions 5 and 6 These propositions summarize the explanation before them in a formal format.
Note also that A should first be a cause for B, then other conditions should be checked.
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C COMPARISON TO THE HP DEFINITIONS

In this section, we first provide an overview of how our framework varies from the HP framework
broadly.

We then discuss and understand the HP definition of actual causation (Halpern and Pearl, 2001;
2005; Halpern, 2015; 2016), then provide a mapping to move between the HP framework and our
framework and then compare and contrast our definition of causation and the HP definition of actual
causation.

C.1 OVERVIEW

Broadly our framework differs from the HP framework in the following ways:

• Time is an explicit factor in our formulation. It establishes the direction of causation between
events and answers questions of causation in more practical and complicated scenarios.
Since we define events as changes in variables over a homogeneous interval of time, it clears
much of the confusion around the time of happening of an event and provides the flexibility
to study multiple events that share the same ruling variables and admit the same changes but
occur at different points in time.

• Since we do not use interventions/manipulations to understand causation, we can make our
conclusions from raw observational data without having to conduct interventions or worry
about the kind of interventions, especially in complex systems.

• Instead of considering actions under a fixed policy, restricting the chain of events between A
and B, we examine if event A causes B under the most pessimistic version of such chains
of events. Remark that adhering to a certain chain of actions can be readily considered in
our framework. This respects the dynamics of the system between the events of interest and
helps address more realistic scenarios.

• Further, we argue that an event can contribute partially to the happening of the effect without
being necessary or sufficient. Our framework argues that, while a cause can be a sufficient
and/or necessary cause, it does not have to be a sufficient/necessary cause to qualify as a
possible cause of event B.

C.2 STRUCTURAL EQUATION MODELLING

Before we look into the HP definitions we assume that the reader is familiar with the concept of
structural equation modeling. To do so, we recommend the reader refer to (Beckers, 2021) section 2,
so they are equipped with the basic tools needed to understand the HP definition. For our discussion,
we will borrow heavily from this reference for notions and discussions necessary to define and
understand structural causal modeling.

Much of the discussion and notation is taken from Halpern’s actual causality (Halpern, 2016), as
presented in Beckers (2021) with little change.
Definition 2. (Beckers, 2021) A signature P is a tuple (U ,V,R), where U is a set of exogenous
variables, V is a set of endogenous variables andR a function that associates with every variable
Y ∈ U ∪ V a nonempty set R(Y ) of possible values for Y (i.e., the set of values over which Y

ranges). If X⃗ = (X1, . . . , Xn) ,R(X⃗) denotes the cross productR (X1)× · · · × R (Xn).

It’s important to recognize that exogenous variables are factors whose causes lie beyond the direct
influence of the model, encompassing background conditions and noise. Conversely, the values of
endogenous variables are causally influenced by other variables within the model, whether they are
endogenous or exogenous. We refer to a collection u⃗ ∈ R(U) of exogenous variable values as the
contextual setup of the problem.
Definition 3. (Beckers, 2021) A causal model M is a pair (P,F), where P is a signature and F
defines a function that associates with each endogenous variable X a structural equation FX giving
the value of X in terms of the values of other endogenous and exogenous variables. Formally, the
equation FX mapsR(U ∪ V − {X}) toR(X), so FX determines the value of X , given the values
of all the other variables in U ∪ V .
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C.3 HP DEFINITIONS

We now look at HP definitions of causation as presented in (Halpern, 2015). Halpern and Pearl
(Halpern and Pearl, 2001; 2005) develop two of the initial HP definitions, whereas the third one is
proposed solely by Halpern (Halpern, 2015). This will be the one we will discuss in detail since
it builds on the limitations of the earlier proposed definitions. The relations between them are
extensively discussed by Halpern Halpern (2016). We encourage the readers to read through this
work to get a better insight into it.

We borrow on the notions used by (Beckers, 2021) in section 3 to discuss the HP definitions.
Throughout our discussion, settings of variables V with

• ∗ i.e., v⃗∗ indicate that (M, u⃗) |=
(
V⃗ = v⃗∗

)
.

• ′ i.e., v⃗′ indicate that (M, u⃗) |=
(
V⃗ ̸= v⃗′

)
.

• No subscripts can refer to any setting.

Given the notations, the modified HP definition Halpern (2015) is given as follows:

Definition 4 (Modified HP (Halpern, 2015)). Let event φ be Y⃗ = y⃗. X⃗ = x⃗ is an actual cause of φ
in (M, u⃗) if the following conditions hold:

AC1. (M, u⃗) |= (X⃗ = x⃗) ∧ φ

AC2(a). There is a partition of V into two sets Z⃗ and W⃗ with X⃗ ⊆ Z⃗ and a setting x⃗′ and w⃗ of the
variables in X⃗ and W⃗ , respectively, such that (M, u⃗) |=

[
X⃗ ← x⃗′, W⃗ ← w⃗∗

]
¬φ

AC2(b). For all subsets Q⃗ of W⃗ and subsets O⃗ of Z⃗ − X⃗ , we have (M, u⃗) |=
[
X⃗ ← x⃗, Q⃗← q⃗, O⃗ ←

o⃗∗
]
φ

AC3. X⃗ is minimal; there is no strict subset X⃗ ′′ of X⃗ such that X⃗ ′′ = x⃗′′ satisfies AC2, where x⃗′′

is the restriction of x⃗ to the variables in X⃗ ′′

We designate W⃗ = w⃗ as a witness indicating that when X⃗ = x⃗, it causes the occurrence of φ. The
variables within Z⃗ are conceptualized as constituting the "causal path" from X⃗ to φ. In essence,
altering the value of a variable in X⃗ leads to changes in the value(s) of certain variable(s) in Z⃗,
subsequently influencing the values of other variable(s) within Z⃗, ultimately resulting in a change in
the truth value of φ.

AC1 stipulates the basic criterion that both the potential cause and effect must be events that occurred.
AC3 is similarly straightforward, emphasizing the exclusion of redundant elements from the causal
factors. However, the crux of the definition lies in AC2. Halpern categorizes conditions AC2(a) and
AC2(b) as the "necessity condition" and the "sufficiency condition," respectively (Halpern, 2015).

AC2(a) asserts that the effect demonstrates counterfactual dependence on the cause, holding the
witness fixed at their actual values, i.e, (M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗∗]φ, and (M, u⃗) |= [X⃗ ←
x⃗′, W⃗ ← w⃗∗]¬φ. Consequently, AC2(a) can be interpreted as articulating a contrastive necessity
condition: there exist contrasting values x⃗′ such that altering X⃗ to x⃗′ results in non-fulfillment of φ.

The sufficiency condition, AC2(b), essentially stipulates that when the variables in X⃗ and any chosen
subset O⃗ of other variables along the causal path (besides those in X⃗) retain their actual context
values, then φ holds even if only a subset Q⃗ of the variables in W⃗ are set to their values in w⃗ (the
setting for W⃗ utilized in AC2(a)). Notably, by fixing W⃗ to w⃗, alterations in the values of variables
within Z⃗ may occur. AC2(b) asserts that these changes do not impact the truth of φ; it remains valid.
Consequently, in light of condition AC2(a), this implies that the variables in W⃗ − Q⃗, denoted as
W⃗ ′, essentially operate as they do in reality; their values are determined by the structural equations,
denoted as w⃗′∗.
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C.4 MAPPING FROM HP FORMULATION TO OUR FORMULATION

Mapping the problem from a static space to a dynamic space can be quite tricky because of the
missing time component in the static setting. In fact, static formulations lacking time makes them
particularly difficult to map into dynamical problems.

Recapping from Def. 2 and Def. 3, in HP framework, a causal model is formally defined as,M
= (P,F). P is a signature of tuple (U ,V,R), where U is a set of exogenous variables, V is a set
of endogenous variables. F defines a function that associates with each endogenous variable X
a structural equation FX giving the value of X in terms of the values of other endogenous and
exogenous variables. Note that there are no functions associated with exogenous variables; their
values are determined outside the model. We call a setting u⃗ ∈ R(U) of values of exogenous variables
a context. Because we are discussing causation in dynamical systems, we will restrict our discussion
to strongly recursive (or strongly acyclic) causal models - where given context u⃗ the values of all
remaining variables can be determined.

In our process-based formulation, the model under discussion is a Markov Decision Process (MDP),
formally defined as a tuple M = (S,A, R,P0). S and A are sets of possible states and actions
(intervenable inputs), R : S 7→ R is a scalar reward function, and P0 is the distribution of initial
states. We consider the state (S(t) ∈ S), to be an n-dimensional vector space and is either fully
observable or reconstructable from observations. At any given time, each state component (Sj(t))
is a random variable and the state vector’s evolution across time forms a (stochastic) process. The
evolution of state is, therefore, a function of both the intrinsic dynamics and the selected (extrinsic)
actions across time. Therefore, the state component Sj(t) can be seen as a function of other state and
action components from prior times. Further, we say that S(t) admits one or more known components
sj at time t iff Sj(t) = sj .

As mentioned earlier, mapping from a static space to a dynamic space can be quite tricky because of
the missing time component in the static setting. However, given our discussion so far, we can forge
some associations.

The endogenous variables (V) of the causal modelM in HP setting can be analogous to the state
variables of the MDP model M , but only at a certain time instance, S(t) (n-dimensional vector of
random variables). It’s important to note that, since each time instance of any state variable is an
endogenous variable, the causal graph in the static sense can grow immensely even for a small MDP -
with only a few state variables and time steps. Because we are discussing strongly recursive causal
models, the exogenous variables U inM can be thought of as providing the initial conditions, P0 in
the MDP model M .

In our framework, we formally define an event as a change of one or more state or action components
during a homogeneous time interval. The components involved in an event A are called ruling
variables of event A, or DA. State admits event A between time [t, t′] if, DA admits a certain change
of values between [t, t′], say SDA

(t′) = x⃗ and SDA
(t) admits values other than x⃗. In HP setting

(Halpern, 2016), given a causal modelM, a primitive event is a formula of the form X⃗ = x⃗, for
X ∈ V and x ∈ R(X). Since the HP definitions do not explicitly consider time in the definition of
events, for simplicity let’s assume that variables X⃗ admit values x⃗ only once during the observation
period.

Therefore, X⃗ = x⃗ implies DA, admits a certain change of values between [t, t′], say SDA
(t′) =

x⃗ (implying that in this case, for simplicity, we consider that SDA
(t) admits some value of no

consequential interest here). Note that we define every event w.r.t to both ruling variables and an
associated time interval. This clears much of the confusion around the time of happening of an event
and provides the flexibility to study multiple events that share the same ruling variables and admit the
same changes but occur at different points in time.

As mentioned earlier, considering arbitrary policies for action selection, one may devise different
chains of events after the cause event A. Following each such policy incurs a different probability of
event B’s occurrence. In our setting, we examine if event A causes B under the most pessimistic
version of such chains of events. In the HP setting, we have already seen that exogenous variables U
provide the context under which the events occur. Therefore, we can also assume that exogenous
variables in U along with providing initial condition P0 also define a fixed policy. So given a context,
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Our Formulation HP Formulation
SDA

(tA) X⃗

SDB
(tB) Y⃗

SDW
(tW ) W⃗

SDZ
(tZ) Z⃗

SDZ′ (tZ′) Z⃗ ′

Table 1: Mapping between variables in our framework and HP framework

(u⃗ ∈ R(U)) the values of A are sampled based on a chosen policy. This is another distinction we
hold to HP formulation, instead of considering actions under a fixed policy, restricting the chain of
events between A and B, we examine if event A causes B under the most pessimistic version of such
chains of events. Remark that adhering to a certain chain of actions can be readily considered in our
framework. In that case, the actions after event A will simply become part of the dynamics and no
longer exogenous variables.

In all HP definitions, the endogenous variables are divided into two disjoint subsets Z⃗ and W⃗ . In
these settings, the endogenous variables X⃗ defining a event (X⃗ = x⃗) are a subset of endogenous
variables Z⃗ (i.e., X⃗ ⊂ Z⃗). Let’s call the remaining endogenous variables of Z⃗, as Z⃗ ′ (Z⃗ - X⃗). Further,
Z⃗ ′ is a set of endogenous variables that form a causal path between X⃗ = x⃗ and the effect event,
Y⃗ = y⃗. Therefore, the complete set of endogenous variables V can be broken into 3 disjoint subsets -
X ,W and Z ′.

As discussed before, endogenous variables can be mapped to the state variables of the MDP model
M , but only at a certain time instance. For the purposes of this discussion, let’s consider X⃗ = x⃗ as
event A and φ or Y⃗ = y⃗ as event B. Therefore in our setting, X⃗ can be mapped to state components
of ruling variables of the event of interest A at time tA, i.e., SDA

(tA). Similarly, Z⃗ ′ to SDZ′ (tZ′).
Since Z⃗ ′ are endogenous variables that form a causal path between event X⃗ = x⃗ and the effect event,
Y⃗ = y⃗, we can assume that time of occurrence of these events tZ′ ≥ tX . Further, W⃗ can be denoted
by state variables SDW

(tW ). Since these variables do not form a causal path between cause and
effect events, we can assume without harm that tW ≤ tX . Even if some events defined by W⃗ ′, where
W⃗ ′ ⊂ W⃗ , take place at tW ′ > tX , since they are not a part of the causal path between cause and
effect events, they can safely be ignored for the purposes of our discussion. Similar conclusions can
be drawn for the event Y⃗ = y⃗, i.e, it is mapped to SDB

(tB). Since the effect event can only happen
after the cause event tB > tA.

With these associations between the HP formulation and our formulation, we can move ahead to
analyze the conditions of causation.

C.5 COMPARE AND CONTRAST WITH HP DEFINITION

Given the current understanding of the HP definitions, let us now compare and contrast the modified
HP definition of actual causation (Def. 4) with our definition of causation (Def.1). For the purposes
of this discussion, let’s consider X⃗ = x⃗ as event A and φ or Y⃗ = y⃗ as event B. Also, since the HP
definitions do not explicitly consider time in the definition of events, for simplicity let’s assume that
variables X⃗ admit values x⃗ only once during the observation period. The same applies to Y⃗ = y⃗.
From discussed mapping in C.4, X⃗ = x⃗ implies SDA

, admits a certain change of values between
[tA, t

′
A], say SDA

(t′A) = x⃗ (implying that in this case, for simplicity, we consider that SDA
(tA)

admits some value of no consequential interest here). Similar logic can be applied to event B.

Our Definition: In a stochastic process, we define event A to be a cause of event B if and only if:

C1. Time-wise, conclusion of A happens at or before beginning of B;

C2. Expected grit of B strictly increases from before to after A. Moreover, until B’s occurrence, it
never becomes the same or smaller than its value at A’s beginning;
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C3. The contribution of A’s ruling variables in the growth of B’s expected grit is strictly positive
and is strictly larger in magnitude than that of non-ruling variables with negative impact.

Condition AC1 AC1 represents the trivial requirement that the candidate cause and effect are
among the events that took place. Our condition C1. implicity covers HP condition AC1 (Def. 4),
adding additional clarity of direction of causation with a time arrow between the events.

Condition AC2(a) Condition AC2(a) states that for X⃗ = x⃗ to be a cause, in causal modelM with
context u⃗ and witness W⃗ (u) = w⃗∗, Y⃗ ̸= y⃗, if we set X⃗ = x⃗′ (x⃗′ ∈ R(X⃗ ) is value X⃗ does not take
under the context u⃗). Note that w⃗∗ is the value W⃗ takes under u⃗ in causal modelM. This implies
that there exist contrast values x⃗′ such that if X⃗ is set to x⃗′, φ no longer holds. We further note that
setting X⃗ = x⃗′ also implies possible changes in values of Z⃗ that form a causal path between X⃗ and
φ, (Y⃗ = y⃗).

Mapping to our framework: Condition AC2(a) implies that event A can be a cause of event B if, for
any other value of the ruling variables( X⃗ = x⃗′) i.e, SDA

(t) = x⃗′ leads to non-occurance of event B,
implying non-occurrence of event A. All this while holding events SDW

(tW ) at the same values as
they were when event B occurs, while SDZ′ (tZ′) can change in the subsequent time steps.

Shortcomings: This condition suffers from some major problems: 1) In a continuous setting, x⃗′

can take infinitely many values even within the range of R(X⃗ ). Further setting X⃗ = x⃗′ (value
not achievable under context u⃗) while holding W⃗ = w⃗∗ (value achieved under context u⃗) while
symbolically meaningful, can be impossible to achieve in most if not all dynamical systems of
practical importance (Cartwright, 2007). For example, in the T1 diabetes example discussed in the
experiment section, if event A is a spike in blood glucose levels to 120, what would event NOT A be?
blood glucose spike to 80? 90? 100? Further, it would be impossible to make interventions and set
the blood glucose to the desired values to understand their effect. When interventions are frequent
and can take continuous values, finding patients with similar statistics but different interventions -
to act as counterfactuals, would be like finding a needle in a haystack. 2) More importantly, under
this condition, it is implied that when a cause event does not happen, then the effect event does not
happen as well. This enforces that, for an event to be a cause it should also be a necessary cause. This
contradicts our understanding of causation where we argue that an event can contribute partially to
the happening of the effect without being necessary or sufficient. Our framework argues that, while
a cause can be a necessary cause, it does not have to be a necessary cause to qualify as a possible
cause of event B.

Comparison: We argue that the intent of condition AC2(a) in Def.4 is to understand the effect of event
A (X⃗ = x⃗ or SDA

(tA) = x⃗) in isolation. This condition looks at the effect of the non-happening
of event A (X⃗ = x⃗′ or SDA

(tA) = x⃗′) on event B, while witness W⃗ are held under the values of
context u⃗, i.e, when event B (Y⃗ = y⃗) occurs. Our conditions C2 and C3 address this issue without
having to take an interventionist approach to causation. In our formulation, we can compute the
contribution of each event (defined by a subset of the state/action components over a homogenous
time interval) towards increasing the minimum probability of the event B happening. This helps us
talk about the individual contribution of each event of interest without the need to hold SDW

(tW ) at
the value achieved under context u⃗ while admitting a different value at SDA

(tA), which might be
physically impossible to achieve.

Condition AC2(b) The sufficiency condition, as discussed in condition AC2(b) of Modified HP
(Def. 4) roughly speaking mentions that if the variables in X⃗ and an arbitrary subset O⃗ of other
variables on the causal path are held at their values in the actual context u⃗) (i.e, X⃗(u) = x⃗ and
O⃗(u) = o⃗∗), then φ holds even if any subset of W⃗ , Q⃗ is set to q⃗∗. Therefore, this condition implies
that once event X⃗ = x⃗ happens, then no matter what values the events on the causal path between
event X⃗ = x⃗ and event φ, (Y⃗ = y⃗) take, event Y⃗ = y⃗ still happens.

Mapping to our framework: Event A can be a cause of event B if, no matter the values the non-ruling
variables (action or state variables), affected by event A and present in the causal path between event
A and event B take in the subsequent time steps, event B will still happen.

26



Published as a conference paper at ICLR 2024

Shortcomings: Similar to the previous case, this condition enforces that, for an event to be a cause it
should also be a sufficient cause. This again contradicts our understanding of causation where we
argue that an event can contribute partially to the happening of the effect without being necessary or
sufficient.

Comparisons Our framework argues that, while a cause can be a sufficient cause, it does not have to
be a sufficient cause to qualify as a possible cause of event B.

Condition AC3 AC3 is also fairly straightforward: we should not consider redundant elements
to be parts of causes. Further, any possible redundancies in ruling variables can be examined and
eliminated, because, their individual contributions to the growth of B’s expected grit will be zero.
Hence we can also satisfy condition AC3.
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D EXPERIMENT 1: ATARI GAME OF PONG

Both our network architecture and the base pipeline have the same structure as the original DQN
paper Mnih et al. (2015). In particular, there are 3 convolutional layers followed by 2 fully-connected
linear layers. The first convolutional layer has 32 8 × 8 filters with stride 4, the second 64 4 × 4
filters with stride 2, and the third and final convolutional layer contains 64 3× 3 filters with stride 1.
Then, the first linear layer has 512 inner nodes, and the next linear layer maps these to the number of
actions. All layers except the last one are followed by ReLU nonlinearities (the last layer is just a
linear layer). The state includes 4 consecutive frames, each of which is a downsized of the actual
Atari screen into 84× 84 pixels and then switched into grayscale. Thus, the actual state is a tensor of
size 4× 84× 84.

Important point: The screens shown in the main paper’s Fig. 1 illustrate the last frame of these four
at each step.

For the optimizer, we used Pytorch’s implementation of Adam optimizer with the Huber loss function,
and the results are obtained after training over 200 epochs of 250,000 steps each (each action is
repeated 4 times, hence each epoch involves one million Atari frames). All the hyper-parameters are
chosen similarly to Mnih et al. (2015).

In the plots, ∇Γ(x) is colour-coded by red shades for ∇Γ(x) > 0, blue shades for ∇Γ(x) < 0 and
white for zero, with darkest red for ∇Γ(x) ≥ +1 and darkest blue for ∇Γ(x) ≤ −1. Values with
|∇Γ(x)| < 0.1 are set to zero to denoise. The plots for g are similar but using 0.05 rather than 1 to
magnify the presentation. Additionally, g plots only depict g ≥ 0; since, by definition, only a positive
change of grit induces a cause.

Full details can be found in the ./atari folder of the code, available at https://github.
com/fatemi/dynamical-causality.

E EXPERIMENT 2: TYPE-1 DIABETES

E.1 SETUP AND DETAILS

We use an open-source implementation2 of the FDA-approved Type-1 Diabetes Mellitus Simulator
(T1DMS) Kovatchev et al. (2009) for modeling the dynamics of Type-1 diabetes. In version is the
very first release of the simulator and assumes inter-subject variability to be the same (parameters are
sampled from a distribution with same covariance matrix) and does not model intra-day variability of
patient parameters which they do in future iterations Man et al. (2014); Visentin et al. (2018).

The simulator models an insilicopatient’s blood glucose level (BG) and 12 other body dynamics with
real-valued elements representing glucose and insulin values in different compartments of the body.
The glucose dynamics are captured by - plasma glucose, tissue glucose, glucose in stomach 1 (GS1),
glucose in stomach 2 and gut. The insulin dynamics are captured by - insulin on glucose production,
insulin on glucose utilization, insulin action on liver, plasma insulin, liver insulin, sub-cutaneous
insulin-1 (SI) and sub-cutaneous insulin-2. We control two actions: 1) Insulin intake, to regulate the
amount of insulin 2) Meal intake, to regulate the amount of carbohydrates.

Meal intake increases the amount of glucose in the bloodstream, for T1D patients, when unregulated
without external insulin, this can lead to hyperglycemia - generally characterized by blood glucose
levels shooting over 180 mg/dL. Tight blood glucose control with insulin injections can help, but
intensive control of blood glucose with insulin injections can increase the risk of hypoglycemia -
generally characterized by blood glucose levels less than 70 mg/dL.

For our experiment, we study the event of hypoglycemia (BG < 70 mg/dL).

Insulin Dosing and Intake: Insulin dosing in T1D will vary based on the patient’s age, weight,
and residual pancreatic insulin activity. T1D patients will typically require a total daily insulin dose
of 0.4 - 1.0 units/kg/day. For example, if a patient weighs 80 kg, the total daily dose = 80 kg X (0.5
units/kg/d) = 40 units per day. Typically this insulin is split into basal and bolus insulin. Usually,

2https://github.com/jxx123/simglucose
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basal insulin is the insulin taken to keep the blood glucose in a steady state when there is no meal
intake. It is generally regulated through an insulin pump. Bolus insulin on the other hand is taken
through insulin injections to explicitly regulate the rise in glucose levels with meal intake. For the
purpose of our simulation, we focus on bolus insulin intake only. We consider a constant intake
of 0.027 units/min of basal insulin. For our experiment bolus insulin intake takes on values from
Ains = {0, 3, 7, 15} units.

We note that since this version of the simulator does not model the intra-day variability of the patient
parameters, the patient reaction to a given action is not dependent on the time of the day, i.e, 3 units
of insulin intake at noon and 3 units of insulin intake at 6 pm should have the same effect on patient
dynamics. To generate realistic daily insulin scenarios, we use a random scenario generator. Each
scenario is associated with the time of intake, amount of intake, and probability of intake. To make
the daily insulin intake more realistic, we add some stochasticity to the time of insulin intake, by
modeling it with a truncated normal distribution, TN(µ, σ, lb, ub) centered around time µ with σ
variance, lb lower bound and ub upper bound. choosing different probabilities of consumption helps
generate realistic scenarios of excessive insulin intake leading to hypoglycemia, or excessive meal
intake in the absence of insulin leading to hyperglycemia. We design six possible intakes of insulin
roughly capturing insulin intakes at breakfast, snack1, lunch, snack2, dinner, and snack3.

Time Amount (in units) Probability of Consumption
TN(3, 1, 1, 5) 7 {0.95, 1}
TN(5.5, .5, 5, 6) 3 0.3
TN(8, 1, 6, 10) 15 1
TN(11, .5, 10, 12) 3 0.3
TN(14, 1, 12, 16) 15 1
TN(17.5, 1, 16, 19) 3 0.3

(16)

Meal Intake: In our simulation, meal intake can take 4 different possible values, Ameal =
{0, 5, 30, 60} grams. Similar to insulin intake, to generate realistic daily meal consumption scenarios,
we use a random scenario generator. Each scenario is associated with the time of intake, amount of
intake, and probability of intake. To add some stochasticity to the time of meal intake, by modeling
it with a truncated normal distribution, TN(µ, σ, lb, ub) centered around time µ with σ variance,
lb lower bound and ub upper bound. We design six possible intakes of meals roughly capturing
breakfast, snack1, lunch, snack2, dinner, and snack3.

Time Amount (in grams) Probability of Consumption
TN(3.5, 1, 1, 5) 30 {0.95, 0}
TN(6, .5, 5, 6) 5 {0.3, 0.5}
TN(8.5, 1, 6, 10) 60 {0.5, 0, 1}
TN(11.5, .5, 10, 12) 5 0.3
TN(14.5, 1, 12, 16) 50 {0.5, 1}
TN(18, 1, 16, 19) 5 0.95

(17)

We map every combination of insulin and carbohydrate intake (each of which takes 4 distinct values)
into 16 different possible actions. For the purpose of our experiment, we sample from a single patient
trajectory (adult003) over 24 hours with a 1-minute sampling interval. We start from the same initial
conditions because the system becomes chaotic for different perturbations in initial conditions.

For our study, we use Monte Carlo estimation to estimate VΓ(X) and therefore ΓB(X). Given
the exploration policy of the off-line data we generate using the simulator is close to optimal, we
can safely assume this gives us V ∗

Γ (X). We set γ = 1 with no positive rewards, i.e., r = −1 if
BG < 70 and zero otherwise. We terminate the episode if we hit either hyperglycemia (BG>180), or
hypoglycemia (BG<70) or we reach the end of 24 hours. We use Pytorch’s autograd to compute the
value function’s gradient w.r.t. different body dynamics, based on which we could compute g-formula
with M = 50 computational micro-steps to compute the integral. In our setting, we observe that
intake of insulin causes an instantaneous spike in dynamics of subcutaneous insulin 1 (SI1), while
intake of carbohydrates causes an instantaneous spike in glucose in stomach 1 (GS1). Since the
previous action is considered a part of the current state to keep the system Markovian, the spike in
subcutaneous insulin just acts as a proxy for action insulin, similarly for action meal and GS1.
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We use a simple deep network with 3 fully connected layers with GELU (Gaussian error linear unit)
activation. In particular, we have 13× 30, 30× 30, and 30× 1 fully connected layers. The actual
state is a tensor of 13 × 1. Since the signals have very different ranges, we normalize them (with
population mean and standard deviation) before passing them through the network.

We use a learning rate of 0.00001 and minibatch size of 128. In each minibatch, we select 64
transitions by sampling from a prioritized experience replay (PER) butter Schaul et al. (2015). For
the remaining 64 samples, we choose 32 samples uniformly from the train data and append it with 6
uniformly selected event B, hypoglycemia transitions (r = −1 and terminal state = True), 2 uniformly
selected hyperglycemia transitions (r = 0 and terminal state = True), and remaining samples are
sampled from non-zero action samples. All other chosen hyper-parameters can be found in the
config.yaml file in the root directory of our code.

E.2 SYSTEM DYNAMICS MODEL

We use the ODE’s provided by Kovatchev et al. (2009) to generate the signals. We notice that
some of these are different from the ones provided in the open-source implementation repository
simglucose and make the changes accordingly in our implementation.

E.2.1 THE ORAL GLUCOSE SUBSYSTEM THAT CONTROLS RATE OF GLUCOSE APPEARANCE

Stomach compartment 1

x1(t) = Q̇sto1(t) = −kmax ·Qsto1(t) +D

D = CHO - carbohydrate intake from meal consumption
(18)

Stomach compartment 2

x2(t) = Q̇sto2(t) = −kgut (Qsto) ·Qsto2(t) + kmax ·Qsto1(t) (19)

Gut
x3(t) = Q̇gut(t) = −kabs ·Qgut(t) + kgut (Qsto) (20)

Qsto(t) = Qsto1(t) +Qsto2(t) (21)

Glucose rate of appearance

Ra(t) =
f · kabs ·Qgut(t)

BW
(22)

E.2.2 GLUCOSE SUBSYSTEM - GLUCOSE KINETICS

Plasma Glucose

x4(t) = Ġp(t) = max(EGP (t), 0) +Ra(t)− Uii(t)− E(t)− k1 ·Gp(t) + k2 ·Gt(t) (23)

Tissue Glucose
x5(t) = Ġt(t) = −Uid(t) + k1 ·Gp(t)− k2 ·Gt(t) (24)

Subcutaneous Glucose

x13(t) = Ġs(t) = −
1

Ts
·Gs(t) +

1

Ts
·Gp(t)

Ġs(t) = (Gs(t) ≥ 0)(Ġs(t))

G(t) = Gp(t)/VG

(25)
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Endogenous glucose production
EGP (t) = kp1 − kp2 ·Gp(t)− kp3 ·XL(t)

Insulin independent utilization
Uii(t) = Fcns

Insulin dependent utilization

Uid(t) =
(Vm0 + Vmx ·X(t)) ·Gt(t)

Km0 +Gt(t)

(26)

E.2.3 INSULIN KINETICS

Plasma Insulin

x6(t) = İp(t) = − (m2 +m4) · Ip(t) +m1 · Il(t) + ka1 · Isc1(t) + ka2 · Isc2(t) (27)

Insulin action on glucose utilization

x7(t) = Ẋ(t) = −p2U ·X(t) + p2U (I(t)− Ib) (28)

Delayed insulin action in the liver

x8(t) = ẊL(t) = −ki · (XL(t)− I(t)) (29)

Insulin action on glucose production

I(t) =
Ip(t)

VI

x9(t) = ˙̃I(t) = −ki · (Ĩ(t)− I(t))

(30)

Liver insulin
x10(t) = İl(t) = − (m1 +m3) · Il(t) +m2 · Ip(t) (31)

Subcutaneous insulin 1

x11(t) = İsc1(t) = − (kd + ka1) · Isc1(t) + Insulin(t) (32)

Subcutaneous insulin 2

x12(t) = İsc2(t) = kd · Isc1(t)− ka2 · Isc2(t) (33)
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