Published as a conference paper at ICLR 2023

DIFFUSER: DIFFUSION VIA EDIT-BASED RECON-
STRUCTION

Machel Reid Vincent J. Hellendoorn
Google Research* Software and Societal Systems Department
machelreid@google.com Carnegie Mellon University

vhellendoorn@cmu.edu

Graham Neubig

Language Technologies Institute,
Carnegie Mellon University
Inspired Cognition
gneubiglcs.cmu.edu

ABSTRACT

In text generation, models that generate text from scratch one token at a time are
currently the dominant paradigm. Despite being performant, these models lack
the ability to revise existing text, which limits their usability in many practical
scenarios. We look to address this, with DIFFUSER (Diffusion via Edit-based
Reconstruction), a new edit-based generative model for text based on denoising
diffusion models — a class of models that use a Markov chain of denoising steps to
incrementally generate data. DIFFUSER is not only a strong generative model in
general, rivalling autoregressive models on several tasks spanning machine trans-
lation, summarization, and style transfer; it can also perform other varieties of
generation that standard autoregressive models are not well-suited for. For in-
stance, we demonstrate that DIFFUSER makes it possible for a user to condition
generation on a prototype, or an incomplete sequence, and continue revising based
on previous edit steps.

1 INTRODUCTION

Revision and editing are central to how humans produce content; we write and revise emails and
papers, gradually produce works of art, and iterate on plans for a project. Despite this, the most
dominant paradigm in text generation is purely autoregressive, producing text left-to-right in a sin-
gle pass (Bengio et al., [2003)). Although models employing this single-pass form of generation are
highly performant, they are limited by the inability to refine existing text. To address this, we pro-
pose DIFFUSER: Diffusion via Edit-based Reconstruction, a flexible method to apply edit-based
generative processes to arbitrary text generation tasks. Specifically, we take inspiration from dif-
fusion models (Sohl-Dickstein et al.l 2015; [Ho et al.| 2020), generative models that generate by
way of incremental denoising steps, and adapt this approach to the text generation paradigm with a
formulation similar to natural editing processes.

Prior work on text generation either focuses on improving the performance of standard autoregres-
sive (AR) models through larger models and datasets (Vaswani et al., [2017; |Sutskever et al., 2014;
Radford et al.; [Brown et al., 2020) or on proposing new, non-autoregressive approaches (Gu et al.,
2017; |Ghazvininejad et al., 2019; [Gu et al.l 2019) to improve general modes of text generation. A
thus far separate line of models has taken the perspective of modeling text edits for specific tasks:
e.g. style transfer (Reid & Zhong, |2021; Malmi et al., 2020), sentence fusion (Malmi et al.,|2019),
and grammatical error correction (Dale & Kilgarriff, [2011). DIFFUSER unifies these two perspec-
tives by enabling edit processes to be applied to general purpose text generation without compro-
mising performance or requiring external supervised data (Guu et al, [2018). This design enables it

*Work done partially while at the University of Tokyo

Published as a conference paper at ICLR 2023

filter | Toronto | guilty | trough | feel
po(zr-1|2T) q(zr|zr_1) A

[2}

g These ‘ model ‘ gty ‘ named DiffusER e
Q

[e} po(@r_2ler 1) q(zr_1|Tr_2) —Q
=~ =
o c
8 named DiffusER uses ‘ editing procedures -g-
b= o
© =1
5 po(zr-3|lzr—2) q(zr—2|Tr_3) o
] =
g , named DiffusER, processes 8
o) [0]
2 @
& po(Tr-a|TT-3) a(zr-3lzr-4)

v This | model | , named | DiffusER, uses editing processes for | flexible | generation
Figure 1: DIFFUSER’s text generation process. represents replacements, blue represents

insertions, red represents deletions, and white represents keep operations. This process largely imi-
tates a natural editing process (Reid & Neubig), 2022).

to both generate and edit text, including externally produced content, a natural extension of the text
generation paradigm.

DIFFUSER models text generation as a series of diffusion steps at the token level. This form of
generation allows us to develop a synthetic formulation of natural editing processes (Reid & Neubig,
2022) using edit-based corruption and reconstruction. Our method starts from an arbitrary sequence
(either a prototype generation, randomly sampled tokens, or a null sequence) and progressively edits
it into the final sequence guided by the Levenshtein edit operations of INSERT, DELETE, KEEP,
and REpLACE as shown in Figure[I} This enables flexible editing in a range of contexts, including
machine translation, summarization, style transfer, while also allowing for the possibility of taking
outside input to guide and constrain generation.

Learning these edit-based diffusion processes required several innovations over standard autore-
gressive and MLM-style iterative generation approaches (Ghazvininejad et al., [2019; |Austin et al.,
20215 Savinov et al., [2022), including forming edit-based corruption and reconstruction processes
for training (Sec [3), as well as techniques to improve the quality of decoding sequences across both
timesteps and token-level generations (including 2D beam search; Sec[3.6 Sec[3.5).

To demonstrate the effectiveness of DIFFUSER, we test our method on three text generation tasks:
machine translation, abstractive summarization, and text style transfer, and show on-par or improved
performance compared to purely autoregressive, single-pass and non-autoregressive methods. We
also provide qualitative samples of the edit processes learned by the models in different settings
and analyses on training and inference speeds, as well as the relationship between edit steps and
performance.

Overall, we demonstrate the potential of edit-based generative models to offer 1) more performant
generation, 2) greater interactivity between different models (as we can now perform edits in the
discrete space on model generated output), and 3) more flexible/controllable generation.

2 BACKGROUND

DIFFUSER operates at the intersection of text generation, editing processes, and diffusion models.
We first provide the background and intuition of these three techniques.

2.1 TEXT GENERATION

Most text generation models used in NLP today are autoregressive in nature. In this paradigm,
given a sequence s = [Sg, S1, . . ., Sn], one can model the likelihood of the entire sequence P(s) by
modeling the probability of predicting each token in an autoregressive, often left-to-right, manner.
This formulation, where the likelihood of a token p(s;) is conditioned on its predecessors s, is

Published as a conference paper at ICLR 2023

shown below (Bengio et al.| 2003):

N

P(S) = Hp(st|st—1’st—2, .. -750) (D

=0

Models trained with this objective can then be sampled from, or searched over (e.g. using beam
search), to provide generations in downstream tasks such as machine translation or summarization.

Non-autoregressive models (Gu et al., [2017) are a different variety of generative models, in which
a sequence is generated in a single pass (removing the autoregressive conditioning on previously
generated tokens) with multiple revision-level passes, often in the name of efficiency.

2.2 EDITING PROCESSES

Editing processes (Reid & Neubigl 2022) are a paradigm for modeling text by way of incre-
mental revisions, taking inspiration from the the way humans generate text. Specifically, let
X = {x0,%1,...,XR} be a series of R versions of a document, where X, X;, X represents the
initial, intermediate (at timestep t), and final/current state of a document, respectively. Using editing
processes, we can model the probability of this series of documents versions occurring consecutively
as follows:

R
p(X) =[] pxilxi))
=0

With this formulation, editing processes can also be used to calculate the probability of only the final
document while taking into account previous revisions, which is not possible in the traditional text
generation setup as intermediate revisions are not explicitly known, using the equation below (Reid
& Neubig, [2022)).

p(xgr) = > p(X). 3)

Xe{xF|%kr=xgr}

2.3 DIFFUSION MODELS

‘We now make the connection between editing processes and diffusion models (Sohl-Dickstein et al.|
2015} |Ho et al.,|2020). Continuous diffusion processes are commonly applied in computer vision
tasks to iteratively convert a sample of noise into an image. This can be seen as an edit process in
which the model iteratively edits a noisy image to bring it closer to a final, complete image. These
continuous diffusion models are often trained by modeling a Markov chain xr ... X, ...Xq, where
X represents the original image and xp represents Gaussian noise. This chain is typically produced
by incrementally adding Gaussian noise to x; to form x;4; (known as the forward or corruption
process), wherein a model parameterised by py is trained to reverse (or “denoise’) this process to

form the chain Z?:l Po(Xt—1X¢).

Analogized to text, this allows us to formulate natural edit processes as a discrete diffusion process
in which a null string or a prototype is iteratively edited into free form text. Our DIFFUSER method
(Figure [I)) takes inspiration from this process, but parameterises the corruption process by way
of sampled discrete edit operations applied over a discrete sequence of tokens. The success of
our method supports the findings in the vision domain |[Bansal et al.| (2022)), where it is found that
diffusion models can learn to invert arbirtary transformations.

Previous work in diffusion models has largely focused on computer vision (Ho et al. 2020} /Austin
et al., [2021), in which the diffusion process is applied to raw image values. Within the context of
natural language, both discrete diffusion models using only replacement operations (either applied
to random tokens or masked tokens) (Savinov et al., [2022; |Austin et al.| 2021), and continuous
diffusion over word embeddings (L1 et al.,|2022)) have been proposed. Our model is a more flexible
approach, using all four edit operations, towards diffusion models when compared with this work
owing to its edit process formulation, and is also more compatible with current models (e.g. AR
bootstrapping).

Published as a conference paper at ICLR 2023

3 DIFFUSER

DI1FFUSER, being a diffusion-based method, has two main procedures: corruption and denoising.
Unlike previous work (Ghazvininejad et al., 2019} [Savinov et al.| |2022; |Gu et al., 2019) in which
this procedure is relatively inflexible (e.g., due to length restrictions and/or using continuous repre-
sentations for the basis of the diffusion process), both our corruption process and denoising process
are based on Levenshtein operations, allowing our model to learn to take advantage of the flexibility
of text editing when generating.

3.1 EDIT OPERATIONS

Given the central role of the Levenshtein edit operations in our models, we provide a brief overview
of each operation and its role in the editing process. We use Figure [T] as a guide when explaining
each operation.

InseRT: The insertion operation is used to add new text to a sequence. For example in Figure[l]
“uses editing processes” is added by DiffusER at timestep x7—_o.

DELETE: The deletion operation erases existing text. In Figure[l] this is shown when “These” gets
deleted at timestep x7_o — X7 _3.

RepLacE: The replacement operation works overwriting existing text with new text. This is shown
in Figure[T|at step xp — @xp_1 where “filter Toronto guilty trough feel” is replaced by “These model
guilty named DiffusER”.

Keep: The keep operation ensures that a portion of the text remains unchanged into the next itera-
tion. This is illustrated in timestep xp_o — xp_3 where “model named DiffusER” is kept.

3.2 EDIT-BASED CORRUPTION

The four Levenshtein edit operations described above allow us to transform any arbitrary sequence
of tokens into another. This is in contrast to iterative mask replacement, which can only introduce
new tokens (Ghazvininejad et al.,[2019;|Austin et al.l[2021;|Savinov et al.,[2022). For every timestep
1, corruption process q(x;|x;_1; &, &) is parameterized by two distributions: the distribution over
edit types & (e.g. 60% keep, 20% replace, 10% delete, 10% insert), and the distribution over edit
length &;. The latter can be parameterized by any distribution over non-negative integers, such as
a uniform distribution or a Poisson distribution. For instance, to learn a deletion operation in the
reconstruction process, we insert randomly sampled distractor tokens, whereas, to learn an insertion
operation we delete a subset of tokens contained in the sequence.

3.3 EDIT-BASED RECONSTRUCTION

Our generative process is trained via the Edit-based Reconstruction (ER) process. ER can be thought
of as the opposite of our corruption process, in which we need to find the appropriate edit operations
to transform x7 to xg, by way of x7_1,...,%;.

That is, given a corrupted sequence X, we aim to learn the process by which we can reverse the
corruption in the following form.

T
Py(xo) = [[po(xi-1]x) 4)
=0

Given that, we model the likelihood of each timestep x;, this can also be referred to as an edit
process (Reid & Neubigl [2022). As we include an edit process in our model and use Levenshtein
tags for editing, one can think of ER as two distinct steps: identify which edits should take place
(tagging process) and deciding which tokens should go in these positions (generative process). This
decomposition is shown here:

po(xi—1/x¢) = pp¥(er|x)pf " (Xe—1]%¢ 1) (5)

Published as a conference paper at ICLR 2023

where p?g parameterises the tagging model to estimate the likelihood of producing a given set of
Levenshtein edit operations {INSERT ,DELETE , KEEP ,REPLACE } given x4, and p(gfn parame-
tersies the generator model given sequence x; and edit operations e;. This decomposition via edit-
operations allows the generation process to be more controllable and more flexible as it allows up to
explicitly specify edit types associated with tokens to be edited, rather than leaving both processes
to be implicit.

3.4 IMPLEMENTING DIFFUSER WITH TRANSFORMERS

When implemented with Transformers (Vaswani et al., |2017), DIFFUSER consists of two compo-
nents: a tagger and generator. The tagger, a transformer network, is trained using cross-entropy loss
over the ground-truth tag types to predict the edit operations that should be applied to the sequence,
in preparation for the next generation step. Then, in the generation step, after removing tokens se-
lected for deletion, we sum a learned embedding to insert and replace types and generate the inserted
and replaced sequences autoregressively. Following this, we feed the output of this diffusion step
into the tagger and perform another diffusion step. One step of this process can be compared to the
reconstruction process used in/Aghajanyan et al.| (2022).

3.5 DECODING METHODS

Di1FFUSER has an inherently different generation process from a standard autoregressive language
generation model—in addition to operating on a sequence/token level (in which generation is com-
posed of generating individual tokens in a single-revision; intra-revision), we also operate on a
revision level (in which the text is expanded across diffusion steps, inter-revision). This allows us
to experiment with different methods for decoding on both the intra-revision (single sequence level)
and inter-revision levels (multiple version level), which we explain below.

Beam Search One method for decoding is to perform beam search over b hypotheses at every
step on the output of our autoregressive generator (intra-revision level), while performing greedy
decoding at the inter-revision level. Although being conceptually straightforward, this method has
the limitation of not searching over the inter-revision space (despite revisions being a key component
of our approach).

2D Beam Search We propose 2D beam search, in which we extend beam search as it is applied to
token-level autoregressive generative models, and perform beam search using both an intra-revision
width of b and an inter-revision beam width of r. This allows us to perform search on the inter-
revision level, which we find results in better downstream performance, but increases the beam
count to 7 x b beams. Assuming a fixed sequence length and maximum number of diffusion steps,
we would decode as follows: We first use beam search with width b at the token level and take the r
most likely candidates (measured with log-likelihood). These r candidates are then fed to the next
step of the diffusion model, wherein for each of r hypotheses the next diffusion step is performed
with the token-level generator decoding with beam width of b. This leads us to have r x b candidate
hypotheses, of which we take the top 7. This process repeats for each diffusion step thereafter.

Nucleus Sampling To improve the diversity of generations, we also consider a nucleus sampling
based approach, where at every timestep x;, we use nucleus sampling (Holtzman et al.,|2019) with
p = 0.6 to sample each token autoregressively at the intra-revision level, and greedily decode at the
inter-revision level (i.e. no search or sampling is performed over multiple diffusion steps).

3.6 DECODER INITIALIZATION TECHNIQUES

Since our model is based on edit processes, it offers flexibility in terms of the discrete sequence
from which to initialize the text generation. Previous work on non-autoregressive translation often
starts with [MASK] tokens (Ghazvininejad et al.l [2019), a null string (Gu et al., |2019) or random
tokens (Savinov et al., [2022). We include the latter two methods in our experiments, in addition to
(1) experimenting with an AR Bootstrap, in which we learn to bootstrap from text generated by a
purely autoregressive model, and (2) proposing to use the source-side text as an initial state for the
D1rrUSER decoder.

Published as a conference paper at ICLR 2023

n filter ‘Tcrun(u‘ quilty ‘ﬁough‘ feel ‘
poler-1[er)
These ‘ model ‘ guilty ‘DiﬂusER‘ These ‘ model ‘ gty ‘named ‘Di"IASER‘

Null Sequence Random Tokens

This ‘mode\ ‘named ‘DlﬂuSER‘ is ‘ edit ‘

Revin] and [g | Jorreto] s |
po(zr-1ler)

This ‘ model | named ‘D\NusER‘ uses ‘ed\lmg *;rooesse{

po(@r-1ler)

AR Bootstrap

Source Bootstrap

Figure 2: Figure illustrating bootstrapping methods for decoding.

Null Sequence In this setting, we simply initialize DIFFUSER with a null string, in which the first
edit is constrained to be insertion.

Random Tokens In this setting, we initialize DIFFUSER with a series of random tokens, following
(Savinov et al., [2022)). The model then learns to edit this random sequence.

AR Bootstrap We bootstrap the reverse diffusion process by taking the output of DIFFUSER con-
strained to generate autoregressively (essentially mimicking a standard autoregressive generator).
We then use DIFFUSER to further edit the output of this operation.

Source Bootstrap In a sequence-to-sequence setting, we can also generate by bootstrapping using
the source text, by setting x7 to be equivalent to s. As we show in later sections, this is particularly
useful in tasks such as summarization in which the output can be easily formulated as an editing
version of the input.

4 EXPERIMENTS

4.1 MODELS

DIFFUSER We instantiate DIFFUSER with two separate Transformer models for the tagger and
generator. We use the Transformer-base encoder-decoder (Vaswani et al., 2017) architecture, with
6 layers, for the a hidden dimension of 512, feedforward dimension of 2048, 8 attention heads, and
dropout p = 0.3.

Baselines (MT & Summ) We use several Transformer baselines from previous literature for our
various tasks. We include a conventional 6-layer encoder-decoder Transformer model from Vaswani
et al.| (2017), as well as models proposed in related work from the non-autoregressive generation
literature: Levensthein Transformer (Gu et al.l [2019), CMLM (Ghazvininejad et al., 2019), DisCo
(Kasai et al., [2020a), Imputer (Saharia et al., 2020), and SUNDAE (Savinov et al., 2022).

4.2 TASKS

Machine Translation We use the WMT’ 14 English-German dataset for our machine trans-
lation experiments. We use the same preprocessing and post-processing steps as |(Ghazvinine-
jad et al| (2019). Unlike the standard in non-autoregressive translation work (Zhou et al.
2019), we focus on using the gold machine translation data instead of distilled data. We use

a Poisson distribution (A = 3) over edit operation lengths in our corruption process. Note
that we compute the edit operations over words rather than tokens. For this task, as well as
the following ones, we use 12 diffusion steps, b = 5, and » = 3 for beam search, and

&:(60% KeeP,20% REPLACE,10% INsERT,10% DELETE) based on numbers from preliminary
experiments.

Summarization We also benchmark on the CNN/DailyMail dataset for summarization (Nallapati
etal.,2016). Summarization is different in nature from machine translation in that it can be described
as more conducive to edits as a good summary tends to preserve many parts of the input. We use the
same post-processing steps as |See et al|(2017). We use a Poisson distribution & (A = 8) over edit
operation lengths in our corruption process (to roughly model sentence boundaries).

Text Style Transfer We perform experiments using the Yelp (Shen et al.,|2017) dataset for the un-
supervised text-style transfer task. We compare against methods such as Tag-and-Generate (Madaan
et al., [2020), Masker (Malmi et al.,2020), and LEWIS (Reid & Zhong|, |2021)). In contrast with ma-
chine translation and summarization, text style transfer datasets are often unaligned (i.e. without

Published as a conference paper at ICLR 2023

Model En-De (MT) CNN-DM (Summ)
AR Transformer (Vaswani et al., 2017) 27.3 36.8
SUNDAE (Savinov et al., 2022 26.3 37.0
CMLM (Ghazvininejad et al.,[2019) 24.6 —
Levenshtein Transformer® (Gu et al.,2019) 23.7 —

DisCo (?) 24.7 —
Imputer 25.2 —
DIFFUSER 27.2 37.8
DIFFUSER + AR bootstrap 28.8 38.4
DIFFUSER + source bootstrap 24.5 38.9

Table 1: Machine Translation (MT) and Summarization (Summ) results on WMT’ 14 En-De (gold)
and CNN-DailyMail. Experiments on MT use BLEU while summarization uses ROUGE. DIF-
FUSER is compatible with a standard autoregressive model, while outperforming previous methods.

Model Accuracy BLEU
Masker (Malmi et al., [2020) 40.9 14.5
Tag and Generate (Madaan et al., 2020) 86.2 19.8
LEWIS (Reid & Zhong, 2021) 93.1 24.0
DIFFUSER 87.6 25.2

Table 2: Results on Yelp dataset for text style transfer. Without task-specific training techniques,
DIFFUSER performs comparably to previous task-specific methods.

source-target pairs) leading to the prominence of unsupervised text style transfer methods. We
propose a method of performing unsupervised text style transfer using DIFFUSER, following the
synthetic generation method in Reid & Zhong| (2021). We train two separate, style-specific (e.g.
positive and negative) DIFFUSER models on the style-specific data. We then perform transfer at test
time, feeding text from each style into the model trained to edit in the opposite style (e.g. positive
text — negative DIFFUSER model; negative text — positive DIFFUSER model). Following stan-
dard practice, we measure performance with BLEU, Self-BLEU and Accuracy (based on a classifier
trained to disambiguate between different styles of text; we use the classifier from Reid & Zhong
(2021))).

4.3 RESULTS

Main Results We summarize our main results on both machine translation and summarization
in Table As can be seen, for both machine translation and summarization tasks, DIFFUSER,
using 12 diffusion steps, outperforms all non-autoregressive baseline and rivals or outperforms the
fully autoregressive model. Particularly interesting is how the various methods of initializing our
model (i.e. AR Bootstrap and Source Bootstrap) can further improve performance well beyond the
autoregressive baseline, depending on the task. We can see that for summarization, bootstrapping
from the source input is more effective than bootstrapping from an abstractive autoregressive model.
However, for both tasks, unlike many non-autoregressive methods, we show that DIFFUSER is
complementary with token-level autoregressive methods and can be used naturally in conjunction
with them.

Style Transfer Results We also perform unsupervised text style transfer using our DIFFUSER
models using the Yelp (Shen et al.,2017) dataset. The results can be seen in Table We show that
even without task-specific techniques (such as synthetic data generation and classifier based style-
specific token identification), we still have competitive performance with state of the art methods.

4.4 ANALYSIS

"'We were not able to reproduce the published results of the Levenshtein Transformer using their code, hence
our reported BLEU score of 23.7 is slightly lower than that of 25.2 reported in|Gu et al.|(2019)

https://github.com/facebookresearch/fairseq/blob/main/examples/nonautoregressive_translation/

Published as a conference paper at ICLR 2023

Source Docu- (CNN)They’re not gonna take it anymore. Really. Twisted Sister says that its 2016 tour will be its last, according to

ment a press release. Next year marks the band’s 40th anniversary, and to celebrate, the tour is being titled "Forty and F*ck
1t ”It’s official: Farewell,” Twisted Sister singer Dee Snider posted on Facebook. Snider also noted that the band will
play with a new drummer, Mike Portnoy of Adrenaline Mob. Portnoy replaces A.J. Pero, who died March 20. The band
will also perform two shows in Pero’s honor: one at Las Vegas’ Hard Rock Hotel and Casino, the other at the Starland
Ballroom in Sayreville, New Jersey. The latter is in support of Pero’s family. Twisted Sister’s biggest hit, "We’re Not
Gonna Take It,” hit the Top Forty in 1984 and was featured in a popular video.

Step 1 (ENNyThey re-not-gonna-takeit-anymere—Reaty—Twisted Sister says that its 2016 tour will be its last, according to
a press release. Next year marks the band’s 40th anniversary, and to celebrate, the tour is being titled “Forty and F*ck
It.” ”It’s official: Farewell,” Twisted Sister singer Dee Snider posted on Facebook. Snider also noted that the band will
play with a new drummer, Mike Portnoy of Adrenaline Mob. Portnoy replaces A.J. Pero, who died March 20. The band
will also perform two shows in Pero’s honor: one at Las Vegas’ Hard Rock Hotel and Casino, the other at the Starland
Ballroom in Sayreville, New Jersey. The latter is in support of Pero’s family. Twisted Sister’s biggest hit, "We’re Not
Gonna Take It,” hit the Top Forty in 1984 and was featured in a popular video.

Step 2 Twisted Sister says that its 2016 tour will be its last, according to a press relea%e Next year marki the band s 40th
anmversary, and to celebrate the tour is bemg titled "Forty and F*ck Tt 2 : 5 sted-Sit 3

Meb—Portnoy replaces A.J. Pero, who died March 20. The band will also perform two shows in Pero’s honor: one at Las
Vegas’ Hard Rock Hotel and Casino, the other at the Starland Ballroom in Sayreville, New Jersey. The latter is in support
of Pero’s family. Twisted Sister’s biggest hit, ”"We’re Not Gonna Take It,” hit the Top Forty in 1984 and was featured in a
popular video.

Step 3 Twisted Sister says that its 2016 tour will be its last, according to a press release. Next year marks the band’s 40th
anniversary, and to celebrate, the tour is being titled "Forty and F*ck It.” Portnoy replaces A.J. Pero, who died March 20.
The bdnd w1ll akcvperform two shows in Pero’s honor wa&bas—Veﬂa«—Hmﬂ—RﬂdeHﬁteHmd—Gaﬂfm—th&ﬁ%hei—a&ﬂ%

M&Geﬂm%@%%&%v&ﬁ%%w&eﬁme&rw&—pﬁpﬂlﬂw&mm Las Ve as and New Jersey.

Step 4 Twisted Sister says that its 2016 tour will be its last, according to a press release. Next year marks the band’s 40th
anniversary, and to celebrate, the tour is being titled “Forty and F*ck It.” Pertney-replaces-A.J. Pero, whe-died March 20.
The band will perform two shows in Pero’s honor in Las Vegas and New Jersey.

Generated Twisted Sister says that its 2016 tour will be its last. Next year marks the band’s 40th anniversary, and to celebrate, the
Summary tour is being titled "Forty and F*ck It.” A.J. Pero, died March 20. The band will perform two shows in Pero’s honor in
Las Vegas and New Jersey.

Table 4: Example of our summarization DIFFUSER process on a test set example. Here we show
that the majority of the summarization process is deletion coupled with minor edits. Despite this
simplicity, we are able to improve over existing purely abstractive models.

We perform additional analyses on DIF- PP .

FUSER, specifically focusing on the de- Initialization Decoding Method BLEU

coding method, the number of iterations Random Tokens Greedy 26.3

versus the final BLEU score, and also a Random Tokens Beam b =5 26.7

qualitative analysis of how text changes Random Tokens Beam b = 15 26.9

at every step. Random Tokens Nucleus 26.8
Random Tokens 2D-Beam 27.2

Decoding Method Ablation We per-
form an ablation of the decoding method,
using DIFFUSER for 12 steps (as used
in our main results) and showing results
when comparing greedy decoding, (1D) beam search, nucleus decoding, and 2D beam search. We
show that 2D-beam search tends to perform the best, likely because it searches over multiple diffu-
sion steps, while other methods (greedy, beam, nucleus) are still competitive.

Table 3: Decoding method ablation on the MT test set.

Number of Edit Steps versus Performance We perform an analysis where we compare the num-
ber of timesteps in our denoising diffusion process and the final BLEU score on WMT’14 En-De
when using 2D-Beam Search and random token initialization in Figure [d Here it can be seen that
most performance gains are in the initial diffusion timesteps (0-10), with diminishing gains (for ma-
chine translation) or gradual losses (for summarization) between 10 and 30, after which performance
marginally decreases towards 60 steps.

How does text change every step? We include a qualitative sample from our DIFFUSER sum-
marization model (Table). We find that DIFFUSER learns edit processes intuitive to the task at
hand: namely largely deleting portions and making minor edits to the remaining text (similar to how
a human may perform summarization given a news article).

Published as a conference paper at ICLR 2023

20-Beam

27.2 L]
27.0
Begm b= 15
()

2 26.8 ‘Nucleus Beam b=5
3 L

26.6

26.4

Greedy
[)
2 4 6 8

Relative Speed, Greedy = 1x

Figure 3: Relative time (seconds) comparison
between decoding methods, measured on a sin-
gle V100 GPU. There is a trade-off between
inference cost and performance. Faster well-
performing decoding algorithms for diffusion

Diffusion steps versus BLEU / ROUGE on MT / Summarization

BLEU | ROUGE

—— DiffusER (MT, BLEU)
—— SUNDAE (MT, BLEU)
—-= DiffusER (Summ, ROUGE)
—-- SUNDAE (Summ, ROUGE)

[10 20 30 40 50 60
Timesteps

Figure 4: Number of steps versus
BLEU/ROUGE on WMT’14 En-De and
Summarization for both SUNDAE and DIF-
FUSER. We observe fast initial progression with
performance, leveling off as steps increase.

models are an area for further work.

Time comparsion between decoding methods We also measure the impact of the various decod-
ing algorithms we used with results shown in Figure[3] Beam search and 2D-Beam Search performs
significantly slower than greedy and nucleus sampling, demonstrating the potential for improved de-
coding algorithms tailored for improving the trade-off between efficiency and accuracy in diffusion
models.

5 RELATED WORK

Non-Autoregressive Generation Work in machine translation has explored non/semi-
autoregressive generation (Gu et al.,2017; Lee et al.|[2018]), which often includes an iterative refine-
ment step (Lee et al.,2018;|Ghazvininejad et al.L|2019; |Kasai et al.,[2020a;|Gu et al., 2019)). Previous
methods in this space are often highly specialized underperform non-autoregressive methods due to
the constraints imposed on generation for efficiency. This being said, [Kasai et al.| (2020b) demon-
strated that non-autoregressive models are actually comparable in speed when using a larger batch
size instead of 1. Our method allows us to hone in on the notion of iterative refinement by way of
editing processes, and is also relatively general, allowing us to combine DIFFUSER with standard
autoregressive models.

Learning Properties of Edits Previous work has also looked at studying or exploiting the prop-
erties of edits. This was initially worked on in the context of vector representation learning of edits
(Yin et al., [2019; Marrese-Taylor et al., 2021). Concurrently, a line of work has used edits for spe-
cific tasks such as sentence fusion, style transfer and grammatical error correction (Malmi et al.,
2019; 2020; Reid & Zhong, 2021; |(Omelianchuk et al., 2020). Recent work has proposed editing
processes (Reid & Neubig, [2022), in which document generation is looked at through the lens of its
revision history, rather than just at a token level. We take inspiration from this work and devise a
process by which arbitrary text generation tasks can be fitted into this framework.

6 CONCLUSIONS

We proposed DIFFUSER, an diffusion-based generative model for text using edits. DIFFUSER
shows improvements across the tasks considered (machine translation, summarization, style trans-
fer), with improved generative flexibility via incremental text improvement, and compatibility with
standard autoregressive models. We hope that DIFFUSER with spur research on edit-based gen-
erative models, with further potentials including how we can leverage edits to ensemble models
(regardless of parameter count) in the discrete space.

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We thank Armen Aghajanyan, Daniel Fried, Edison Marrese-Taylor, Eric Wallace, and Luke Zettle-
moyer for their helpful comments in early discussions. We thank Ari Holtzman, Jungo Kasai, Aman
Madaan, and Eric Wallace for feedback and proofreading the draft of this paper.

REFERENCES

Armen Aghajanyan, Bernie Huang, Candace Ross, Vladimir Karpukhin, Hu Xu, Naman Goyal,
Dmytro Okhonko, Mandar Joshi, Gargi Ghosh, Mike Lewis, and Luke Zettlemoyer. Cm3: A
causal masked multimodal model of the internet, 2022. URL https://arxiv.org/abs/
2201.07520.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 17981-17993, 2021. URL |https://proceedings.neurips.cc/paper/2021/
hash/958c530554£78bcd8e97125b70e6973d-Abstract.html.

Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie S. Li, Hamid Kazemi, Furong Huang, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. Cold diffusion: Inverting arbitrary image transforms
without noise, 2022. URL https://arxiv.org/abs/2208.09392.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. J. Mach. Learn. Res., 3(null):1137-1155, mar 2003. ISSN 1532-4435.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0dobfcb4967418bfb8acld2f6d4a-Abstract.htmll

Robert Dale and Adam Kilgarriff. Helping our own: The HOO 2011 pilot shared task. In
Proceedings of the 13th European Workshop on Natural Language Generation, pp. 242-249,
Nancy, France, September 2011. Association for Computational Linguistics. URL https:
//aclanthology.org/W11-2838.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models, 2019.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K. Li, and Richard Socher. Non-
autoregressive neural machine translation. arXiv preprint arXiv:1711.02281, 2017.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’ Alché-Buc, Emily B. Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 11179-11189, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/675£9820626f5bc0afb47b57890b466e-Abstract.htmll

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren, and Percy Liang. Generating Sentences by
Editing Prototypes. Transactions of the Association for Computational Linguistics, 6:437-450,
2018. doi: 10.1162/tacl_a_00030.

10

https://arxiv.org/abs/2201.07520
https://arxiv.org/abs/2201.07520
https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html
https://arxiv.org/abs/2208.09392
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/W11-2838
https://aclanthology.org/W11-2838
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html

Published as a conference paper at ICLR 2023

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840-6851, 2020.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration, 2019. URL https://arxiv.org/abs/1904.09751.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and Jiatao Gu. Non-autoregressive machine
translation with disentangled context transformer. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 5144-5155. PMLR, 2020a. URL http:
//proceedings.mlr.press/v119/kasai20a.html.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah A. Smith. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine translation, 2020b. URL https://arxiv.
org/abs/2006.103609.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement, 2018.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B. Hashimoto.
Diffusion-Im improves controllable text generation. arXiv preprint arXiv: Arxiv-2205.14217,
2022.

Aman Madaan, Amrith Setlur, Tanmay Parekh, Barnabds P6czos, Graham Neubig, Yiming Yang,
Ruslan Salakhutdinov, Alan W. Black, and Shrimai Prabhumoye. Politeness transfer: A tag
and generate approach. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pp. 1869—1881. Association for Computational Linguis-
tics, 2020. doi: 10.18653/v1/2020.acl-main.169. URL https://doi.org/10.18653/v1/
2020.acl-main.169.

Eric Malmi, Sebastian Krause, S. Rothe, Daniil Mirylenka, and Aliaksei Severyn. Encode, tag,
realize: High-precision text editing. emnlp, 2019. doi: 10.18653/v1/D19-1510.

Eric Malmi, Aliaksei Severyn, and Sascha Rothe. Unsupervised Text Style Transfer with Padded
Masked Language Models. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 8671-8680, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.699.

Edison Marrese-Taylor, Machel Reid, and Yutaka Matsuo. Variational inference for learning repre-
sentations of natural language edits. In AAAI, 2021.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos Santos, Caglar Giilgehre, and Bing Xiang.
Abstractive text summarization using sequence-to-sequence rnns and beyond. In Yoav Goldberg
and Stefan Riezler (eds.), Proceedings of the 20th SIGNLL Conference on Computational Natural
Language Learning, CoNLL 2016, Berlin, Germany, August 11-12, 2016, pp. 280-290. ACL,
2016. doi: 10.18653/v1/k16-1028. URL https://doi.org/10.18653/v1/k16-1028\

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem Chernodub, and Oleksandr Skurzhanskyi. Gec-
tor — grammatical error correction: Tag, not rewrite, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners.

Machel Reid and Graham Neubig. Learning to model editing processes, 2022.
Machel Reid and Victor Zhong. LEWIS: Levenshtein editing for unsupervised text style transfer.
In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 3932—

3944, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
findings-acl.344. URL https://aclanthology.org/2021.findings—acl.344.

11

https://arxiv.org/abs/1904.09751
http://proceedings.mlr.press/v119/kasai20a.html
http://proceedings.mlr.press/v119/kasai20a.html
https://arxiv.org/abs/2006.10369
https://arxiv.org/abs/2006.10369
https://doi.org/10.18653/v1/2020.acl-main.169
https://doi.org/10.18653/v1/2020.acl-main.169
https://doi.org/10.18653/v1/k16-1028
https://aclanthology.org/2021.findings-acl.344

Published as a conference paper at ICLR 2023

Chitwan Saharia, William Chan, Saurabh Saxena, and Mohammad Norouzi. Non-autoregressive
machine translation with latent alignments. In Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 1098-1108, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.83. URL
https://aclanthology.org/2020.emnlp—-main. 83.

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord. Step-
unrolled denoising autoencoders for text generation. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=T0GpzBQ1Fg6.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Regina Barzilay and Min-Yen Kan (eds.), Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers, pp. 1073—1083. Association for Computa-
tional Linguistics, 2017. doi: 10.18653/v1/P17-1099. URL https://doi.org/10.18653/
v1/P17-1099.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style transfer from non-parallel text
by cross-alignment. arXiv preprint arXiv:1705.09655, 2017.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256-2265. PMLR, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neu-
ral networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 27. Curran Asso-
ciates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
aldacb5adf27472c5d894eclc3c/43d2-Paper.pdfl

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv: Arxiv-
1706.03762, 2017.

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt.
Learning to represent edits, 2019.

Chunting Zhou, Graham Neubig, and Jiatao Gu. Understanding knowledge distillation in non-
autoregressive machine translation. arXiv preprint arXiv: Arxiv-1911.02727, 2019.

12

https://aclanthology.org/2020.emnlp-main.83
https://openreview.net/forum?id=T0GpzBQ1Fg6
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

	Introduction
	Background
	Text Generation
	Editing Processes
	Diffusion Models

	DiffusER
	Edit Operations
	Edit-based Corruption
	Edit-based Reconstruction
	Implementing DiffusER with Transformers
	Decoding Methods
	Decoder Initialization Techniques

	Experiments
	Models
	Tasks
	Results
	Analysis

	Related Work
	Conclusions

