Published as a conference paper at ICLR 2024

DSPY: COMPILING DECLARATIVE LANGUAGE
MODEL CALLS INTO SELF-IMPROVING PIPELINES

Omar Khattab,' Arnav Singhvi,?

Paridhi Maheshwari,* Zhiyuan Zhang,'

Keshav Santhanam,' Sri Vardhamanan,” Saiful Haq,’
Ashutosh Sharma,® Thomas T. Joshi,” Hanna Moazam,
Heather Miller,>° Matei Zaharia,?> Christopher Potts'

8

!Stanford University, 2UC Berkeley, *Carnegie Mellon University,
4 Amazon Alexa Al, ®Dashworks Technologies, Inc., STIT Bombay,
"Calera Capital, 8Microsoft Qatar, *Two Sigma Investments

okhattab@cs.stanford.edu

ABSTRACT

The ML community is rapidly exploring techniques for prompting language mod-
els (LMs) and for stacking them into pipelines that solve complex tasks. Un-
fortunately, existing LM pipelines are typically implemented using hard-coded
“prompt templates”, i.e. lengthy strings discovered via trial and error. Toward a
more systematic approach for developing and optimizing LM pipelines, we intro-
duce DSPy, a programming model that abstracts LM pipelines as text transforma-
tion graphs, or imperative computational graphs where LMs are invoked through
declarative modules. DSPy modules are parameterized, meaning they can learn
how to apply compositions of prompting, finetuning, augmentation, and reason-
ing techniques. We design a compiler that will optimize any DSPy pipeline to
maximize a given metric, by creating and collecting demonstrations. We conduct
two case studies, showing that succinct DSPy programs can express and optimize
pipelines that reason about math word problems, tackle multi-hop retrieval, an-
swer complex questions, and control agent loops. Within minutes of compiling,
DSPy can automatically produce pipelines that outperform out-of-the-box few-
shot prompting as well as expert-created demonstrations for GPT-3.5 and Llama2-
13b-chat. On top of that, DSPy programs compiled for relatively small LMs like
770M parameter T5 and Llama2-13b-chat are competitive with many approaches
that rely on large and proprietary LMs like GPT-3.5 and on expert-written prompt
chains. DSPy is available at https://github.com/stanfordnlp/dspy.

1 INTRODUCTION

Language models (LMs) are enabling researchers to build NLP systems at higher levels of abstrac-
tion and with lower data requirements than ever before (Bommasani et al., 2021). This is fueling an
exploding space of “prompting” techniques—and lightweight finetuning techniques—for adapting
LMs to new tasks (Kojima et al., 2022), eliciting systematic reasoning from them (Wei et al., 2022;
Wang et al., 2022b), and augmenting them with retrieved sources (Guu et al., 2020; Lazaridou et al.,
2022) or with tools (Yao et al., 2022). Most of these techniques are explored in isolation, but interest
has been growing in building multi-stage pipelines and agents that decompose complex tasks into
more manageable calls to LMs in an effort to improve performance (Qi et al., 2019; Khattab et al.,
2021a; Karpas et al., 2022; Dohan et al., 2022; Pourreza & Rafiei, 2023; Yao et al., 2023).

Unfortunately, LMs are known to be sensitive to how they are prompted for each task, and this is
exacerbated in pipelines where multiple LM calls have to interact effectively. As a result, the LM
calls in existing LM pipelines and in popular developer frameworks are generally implemented using
hard-coded ‘prompt templates’, that is, long strings of instructions and demonstrations that are hand
crafted through manual trial and error. We argue that this approach, while pervasive, can be brittle

https://github.com/stanfordnlp/dspy

Published as a conference paper at ICLR 2024

and unscalable—conceptually akin to hand-tuning the weights for a classifier. A given string prompt
might not generalize to different pipelines or across different LMs, data domains, or even inputs.

Toward a more systematic approach to designing Al pipelines, we introduce the DSPy programming
model.' DSPy pushes building new LM pipelines away from manipulating free-form strings and
closer to programming (composing modular operators to build text transformation graphs) where a
compiler automatically generates optimized LM invocation strategies and prompts from a program.
We draw inspiration from the consensus that emerged around neural network abstractions (Bergstra
et al., 2013), where (1) many general-purpose layers can be modularly composed in any complex
architecture and (2) the model weights can be frained using optimizers instead of being hand-tuned.

To this end, we propose the DSPy programming model (Section 3). We first translate string-based
prompting techniques, including complex and task-dependent ones like Chain of Thought (Wei et al.,
2022) and ReAct (Yao et al., 2022), into declarative modules that carry natural-language typed sig-
natures. DSPy modules are task-adaptive components—akin to neural network layers—that abstract
any particular text transformation, like answering a question or summarizing a paper. We then pa-
rameterize each module so that it can learn its desired behavior by iteratively bootstrapping useful
demonstrations within the pipeline. Inspired directly by PyTorch abstractions (Paszke et al., 2019),
DSPy modules are used via define-by-run computational graphs. Pipelines are expressed by (1)
declaring the modules needed and (2) using these modules in any logical control flow (e.g., if
statements, for loops, exceptions, etc.) to logically connect the modules.

We then develop the DSPy compiler (Section 4), which optimizes any DSPy program to improve
quality or cost. The compiler inputs are the program, a few training inputs with optional labels, and
a validation metric. The compiler simulates versions of the program on the inputs and bootstraps
example traces of each module for self-improvement, using them to construct effective few-shot
prompts or finetuning small LMs for steps of the pipeline. Optimization in DSPy is highly modular:
it is conducted by teleprompters,” which are general-purpose optimization strategies that determine
how the modules should learn from data. In this way, the compiler automatically maps the declara-
tive modules to high-quality compositions of prompting, finetuning, reasoning, and augmentation.

Programming models like DSPy could be assessed along many dimensions; we focus on the role
of hand-crafted prompts in shaping system performance. We are seeking to reduce or even remove
their role through DSPy modules and teleprompters. We report on two expansive case studies:
math word problems (GSMS8K; Cobbe et al. 2021) and multi-hop question answering (HotPotQA;
Yang et al. 2018) with explorations of chain of thought, multi-chain reflection, multi-hop retrieval,
retrieval-augmented question answering, and agent loops. Our evaluations use a number of different
compiling strategies effectively and show that straightforward DSPy programs outperform systems
using hand-crafted prompts, while also allowing our programs to use much smaller and hence more
efficient LMs effectively. Overall, the main contributions of this paper are empirical and algorithmic:
with DSPy, we have found that we can implement very short programs that can bootstrap state-of-
the-art multi-stage NLP systems using LMs as small as Llama2-13b with no hand-crafted prompts.

2 RELATED WORK

This work is inspired by the role that Torch (Collobert et al., 2002), Theano (Bergstra et al., 2010;
2011; Al-Rfou et al., 2016), Chainer (Tokui et al., 2015), and others played in the development
in deep learning by providing powerful abstractions. We are seeking to offer a solid conceptual
framework and programming abstractions for what we call foundation model programming. We
draw on differentiable programming (Wang et al., 2018) but applied to LM calls rather than neural
networks, and borrow syntactic elements from PyTorch (Paszke et al., 2019).

In-context learning (McCann et al. 2018; Radford et al. 2018; Brown et al. 2020) is a key mechanism
for programming LMs in this new mode. A growing body of work has revealed that, especially with
instruction tuning (Ouyang et al., 2022), we can elicit sophisticated behavior via prompting (Wei
et al., 2022; Wang et al., 2022b; Press et al., 2022; Yao et al., 2022; Khot et al., 2022; Madaan et al.,
2023). Similarly, forms of weak supervision that would normally require task-specific (Khattab

'DSPy is pronounced dee-ess-pie. It’s the second iteration of our earlier Demonstrate—Search—Predict
framework (DSP; Khattab et al. 2022).

>We derive the name fele-prompters from the notion of abstracting and automating the task of prompting—
such it happens at a distance, without manual intervention.

Published as a conference paper at ICLR 2024

et al., 2021a;b) or hand-built (Ratner et al., 2016; Hancock et al., 2018) heuristics are now done by
LMs (Wang et al., 2022b; Zelikman et al., 2022; Zhang et al., 2022; Shao et al., 2023). In-context
learning methods now routinely invoke tools, leading to LM pipelines that use retrieval (Chen et al.,
2017; Lewis et al., 2020; Guu et al., 2020; Lazaridou et al., 2022; Izacard et al., 2022), and APIs
(Nakano et al., 2021). Toolkits have been developed to facilitate this, including LangChain (Chase,
2022), Semantic Kernel (Microsoft, 2023), and Llamalndex (Liu, 2022), and many other retrieval
or agent libraries. While these toolkits provide pre-packaged chains and agents that connect LMs
with tools, they suffer from the pervasive prompt engineering challenges we address in DSPy: in
particular, their abstractions still express task-specific behavior through hand-written prompt tem-
plates (see Appendix D). LMQL (Beurer-Kellner et al., 2023) is a related query language, which
efficiently constrains the decoding algorithms of LMs to generate only strings that fulfill logical
constrains (e.g., lists of bullets or values formatted correctly for a calculator). Whereas DSPy fo-
cuses on optimizing LM pipelines for a given metric, LMQL’s lower-level interface for controlled
decoding could be beneficial to implement specific advanced modules within DSPy.

Researchers are starting to apply discrete optimization and RL to find effective prompts, generally
for a single logical LM call (Guo et al., 2023; Pryzant et al., 2023; Huang et al., 2022; Yang et al.,
2023). DSPy seeks to generalize this space: it offers a rich framework for optimizing arbitrary
pipelines from high-level declarative signatures, by bootstrapping high-quality multi-stage demon-
strations with constraints. In this framework, DSPy teleprompters may apply optimization using
model selection techniques like cross-validation or, in principle, with sophisticated techniques in-
volving RL and LM feedback (Hu et al., 2023; Zhao et al., 2023a; Shinn et al., 2023) or learned
or Bayesian hyperparameter optimization methods (Bergstra et al., 2013; Akiba et al., 2019). The
present paper seeks to motivate DSPy as a programming model and to report new empirical find-
ings from applying the DSPy compiler. This is inspired by formative work by Bergstra et al. (2010;
2013), Paszke et al. (2019), and Wolf et al. (2020), who support their respective programming mod-
els with a mix of benchmark numbers and some qualitative measures. For the current paper, we
focus on showing that DSPy and its compiler allow us to build outstanding LM systems without
hand-crafted prompt strings, but instead from truly modular units, and that this opens up doors for
systematically exploring a rich design space at a very high programmatic level of abstraction.

3 THE DSPY PROGRAMMING MODEL

We present DSPy, which treats LMs as abstract devices for text generation,” and optimizes their us-
age in arbitrary computational graphs. DSPy programs are expressed in Python: each program takes
the task input (e.g., a question to answer or a paper to summarize) and returns the output (e.g., an
answer or a summary) after a series of steps. DSPy contributes three abstractions toward automatic
optimization: signatures, modules, and teleprompters. Signatures abstract the input/output behavior
of a module; modules replace existing hand-prompting techniques and can be composed in arbitrary
pipelines; and teleprompters optimize each module in the pipeline to maximize a metric.

3.1 NATURAL LANGUAGE SIGNATURES CAN ABSTRACT PROMPTING & FINETUNING

Instead of free-form string prompts, DSPy programs use signatures to assign work to the LM. This is
a natural-language typed function declaration: a declarative spec that tells DSPy what a transforma-
tion needs to do (e.g., consume questions and return answers), rather than how a specific LM should
be prompted to implement that behavior. More formally, a DSPy signature is a tuple of input fields
and output fields (and optional instruction). A field consists of field name and optional metadata.”*
The roles of fields are inferred from field names, e.g. the compiler will use in-context learning to
interpret question differently from answer and to iteratively refine its usage of these fields.

Signatures offer two benefits over prompts: they support compilation into high-quality, self-
improving, and pipeline-adaptive prompts or finetunes. This is primarily done by bootstrapping
(Sec 4) useful demonstrating examples for each signature. Additionally, they handle structured for-
matting and parsing logic to reduce (or, ideally, avoid) brittle string manipulation in user programs.

3We assume access to one or more LMs, which consume a prompt string and return text completions. This
may be a promptable LM capable of in-context learning (e.g., GPT-3.5 or Llama2-7b) or a smaller finetuneable
LM (e.g., TS-base). An LM may be selected as the default; operations will use it unless configured otherwise.

*Description of the task is optional and usually omitted. Fields can carry optional prefix and description.

Published as a conference paper at ICLR 2024

In practice, DSPy signatures can be expressed with a shorthand notation like question -> answer,
so that line 1 in the following is a complete DSPy program for a basic question-answering system
(with line 2 illustrating usage and line 3 the response when GPT-3.5 is the LM):

lga = dspy.Predict(”"question -> answer")
2 ga(question="Where is Guarani spoken?”) # Out: Prediction(answer=’Mainly in South America.’)

In the shorthand notation, each field’s name indicates the semantic role that the input (or output)
field plays in the transformation. DSPy will parse this notation and expand the field names into
meaningful instructions for the LM, so that english_document -> french_translation would
prompt for English to French translation. When needed, DSPy offers more advanced programming
interfaces for expressing more explicit constraints on signatures (Appendix B).

3.2 PARAMETERIZED & TEMPLATED MODULES CAN ABSTRACT PROMPTING TECHNIQUES

AKkin to type signatures in programming languages, DSPy signatures define an interface and pro-
vide type-like hints on the expected behavior. To use a signature, we declare a module with that
signature, like the Predict module above. A module declaration like this returns a function having
that signature. The core module in DSPy is Predict (Appendix G.1), which stores internally the
supplied signature, an optional LM to use (initially None, but otherwise overrides the default LM for
this module), and a list of demonstrations for prompting (initially empty). The instantiated module
behaves as a callable function: it takes in keyword arguments corresponding to the signature input
fields (e.g., question), formats a prompt to implement the signature and include the appropriate
demonstrations, calls the LM, and parses the output fields. When Predict detects it’s being used in
compile mode, it internally tracks input/output traces to assist bootstrapping.

DSPy includes more sophisticated modules like ChainOfThought, ProgramOfThought,
MultiChainComparison, and ReAct.” These can be used interchangeably to implement a DSPy
signature, e.g. changing Predict to ChainOfThought above leads to a system that thinks step by
step before committing to its output field. Importantly, these modules are implemented in a few
lines of code by expanding the user-defined signature and calling Predict one or more times on
new signatures. We show a simplified implementation of ChainOfThought in Appendix G.2 using
seven lines of code. This is a fully-fledged module capable of learning effective few-shot prompt-
ing for any LM or task. We contrast that with Appendix E, which copies long reasoning prompts
hand-written by recent papers and prompting libraries.

DSPy modules translate prompting techniques into modular functions that support any signature by
parameterizing these modules. To understand this, observe that any LM call seeking to implement a
particular signature needs to specify parameters that include: (1) the specific LM to call (Chen et al.,
2023), (2) the prompt instructions (Yang et al., 2023) and the string prefix of each signature field and,
most importantly, (3) the demonstrations used as few-shot prompts (for frozen LMs) or as training
data (for finetuning). We focus in this paper on generating and selecting useful demonstrations
and using them for prompting or finetuning. We find that bootstrapping demonstrations gives us a
powerful way to teach sophisticated pipelines of LMs new behaviors systematically.

DSPy modules can be composed in arbitrary pipelines in a define-by-run interface. Inspired di-
rectly by PyTorch and Chainer, one first declares the modules needed at initialization, allowing
DSPy to keep track of them for optimization, and then one expresses the pipeline with arbitrary
code that calls the modules in a forward method. As a simple illustration, we offer the follow-
ing simple but complete retrieval-augmented generation (RAG) system.® DSPy programs may
use tools, which are modules that execute computation. We support retrieval models through a
dspy.Retrieve module. At the time of writing, DSPy has built-in support for ColBERTv2, Py-
serini, and Pinecone retrievers, and we have explored experimental dspy.SQL for executing SQL
queries and dspy.PythonInterpreter for executing Python code in a sandbox.

These generalize prompting techniques from the literature, respectively, by Wei et al. (2022), Chen et al.
(2022), Yoran et al. (2023), and Yao et al. (2022).

5To highlight modularity, we use ChainOfThought as a drop-in replacement of the basic Predict. One
can now simply write RAG() ("Where is Guarani spoken?") to use it. Notice that, if we use a signature
"context, question -> search_query”, we get a system that generates search queries rather than answers.

Published as a conference paper at ICLR 2024

1 class RAG(dspy.Module):

2 def __init__(self, num_passages=3):

3 # ‘Retrieve ‘ will use the user’s default retrieval settings unless overriden.

4 self.retrieve = dspy.Retrieve(k=num_passages)

5 # ‘ChainOfThought ¢ with signature that generates answers given retrieval & question.
6 self.generate_answer = dspy.ChainOfThought("context, question -> answer”)

7 def forward(self, question):

8 context = self.retrieve(question).passages

9 return self.generate_answer(context=context, question=question)

3.3 TELEPROMPTERS CAN AUTOMATE PROMPTING FOR ARBITRARY PIPELINES

When compiling a DSPy program, we generally invoke a teleprompter, which is an optimizer that
takes the program, a training set, and a metric—and returns a new optimized program. Different
teleprompters (Sec 4) apply different strategies for optimization, typically gradient-free. In DSPy,
training sets may be small, potentially a handful of examples, though larger data enables more
powerful optimization. Training examples may be incomplete, i.e., only input values are necessary.
Labels for the pipeline steps are not required, unless they need to be used in the metric. In practice,
we typically assume labels only for (at most) the program’s final output, not the intermediate steps.
This label-efficiency is critical for modularity: building a new pipeline in DSPy requires simply
recompiling the new pipeline’s code, not annotating data specific to the new pipeline.

Metrics can be simple notions like exact match (EM) or F1, or they can be entire DSPy programs
that balance multiple concerns. For example, we may compile the RAG module above against a
dataset of question—answer pairs ga_trainset and the metric EM. The goal of optimization here is
to effectively bootstrap few-shot demonstrations. The following code achieves this:

1 # Small training set with only questions and final answers.

2 ga_trainset = [dspy.Example(question="What is the capital of France?”, answer="Paris”)]

3

44# The teleprompter will bootstrap missing labels: reasoning chains and retrieval contexts.
5 teleprompter = dspy.BootstrapFewShot(metric=dspy.evaluate.answer_exact_match)

6 compiled_rag teleprompter.compile(RAG(), trainset=qga_trainset)

In this example, the BootstrapFewShot teleprompter (Sec 4, Appendix G.2) simulates RAG on the
training example(s). It will collect demonstrations of each module (i.e., examples of its input—output
behavior) that collectively lead to valid output (i.e., respecting the signatures and the metric).

Teleprompters can be composed by specifying a teacher program. DSPy will sample demonstra-
tions from this program for prompt optimization. This composition can enable very rich pipelines,
where expensive programs (e.g., ensembles of large LMs) supervise cheap programs (e.g., simpler
pipelines using smaller LMs). One may start with compiled_rag from above (say, compiled to use
a large Llama2-13b-chat LM) but now fine-tune Flan-T5-large to create an efficient program:

1 # Larger set of questions with #no labelsx. Labels for all steps will be bootstrapped.

2 unlabeled_questions = [dspy.Example(question="What is the capital of Germany?"), ...]

3# As we assume no answer, we use ‘answer_passage_match‘ to filter ungrounded answers.

4 finetuning_teleprompter = BootstrapFinetune(metric=dspy.evaluate.answer_passage_match)

5 compiled_rag_via_finetune = finetuning_teleprompter.compile(RAG(), teacher=compiled_rag,
trainset=unlabeled_questions, target=’google/flan-t5-large’)

4 THE DSPY COMPILER

A key source of DSPy’s expressive power is its ability to compile—or automatically optimize—
any program. Compiling relies on a teleprompter, which is an optimizer for DSPy programs that
improves the quality (or cost) of modules via prompting or finetuning, which are unified in DSPy.
The compiler first finds all unique Predict modules (predictors) in a program, including those
nested under other modules. While DSPy does not enforce this when creating new teleprompters,
typical teleprompters go through three stages.

Stage 1: Candidate Generation For each predictor p, the teleprompter may generate candidate
values for the parameters of p: the instructions, field descriptions, or demonstrations (i.e., example
input—output pairs). In this iteration of DSPy, we focus on demonstrations and find that simple
rejection sampling can help bootstrap highly effective multi-stage systems. Consider the simplest
non-trivial teleprompter in DSPy, BootstrapFewShot (simplified pseudocode in Appendix H.1).

Published as a conference paper at ICLR 2024

This teleprompter will simulate a teacher program (or, if unset, the zero-shot version of the program)
on some training inputs, possibly one or more times with a high temperature. When running in
compile mode, multi-stage traces are tracked transparently and in a thread-safe fashion throughout
execution. The program’s metric is used to filter for multi-stage traces that together help the pipeline
pass the metric. We thus obtain potential labels for all signatures in the program by throwing away
the bad examples and using the good examples as potential demonstrations, though these design
decisions are under user control. While LMs can be highly unreliable, we find they can be rather
efficient at searching the space of solutions for multi-stage designs. A well-decomposed program
can typically find at least a few training examples where the LM can pass the constraints enforced
by the signatures and metrics, allowing us to bootstrap iteratively if needed.

Stage 2: Parameter Optimization Now each parameter has a discrete set of candidates: demon-
strations, instructions, etc. Many hyperparameter tuning algorithms (e.g., random search or Tree-
structured Parzen Estimators as in HyperOpt (Bergstra et al., 2013) and Optuna (Akiba et al., 2019))
can be applied for selection among candidates. We report a simplified implementation of DSPy’s
BootstrapFewShotWithRandomSearch in Appendix H.2. Another type of optimization is finetun-
ing with BootstrapFinetune, where the demonstrations are used to update the LM’s weights for
each predictor. When this is applied, the LM of each module is updated to the new LM weights.

Stage 3: Higher-Order Program Optimization A different type of optimization that the DSPy
compiler supports is modifying the control flow of the program. One of the simplest forms of
this is ensembling, which we use in the case studies in this work. An ensemble will bootstrap
multiple copies of the same program, and then replace the program with a new one that runs them
all in parallel and reduces their predictions into one with a custom function (e.g., majority voting).
In future work, this stage can easily accommodate techniques for more dynamic (i.e., test-time)
bootstrapping as well as automatic backtracking-like logic.

5 GOALS OF EVALUATION

Programming frameworks can be evaluated along many dimensions: computational efficiency, de-
veloper efficiency, intuitiveness of the code and concepts, and so forth. In this paper, we focus on
perhaps the most pressing issue for current LM pipelines: the role of hand-written, task-specific
prompts in achieving performant systems. Our evaluations seek to test the following hypotheses:

H1 With DSPy, we can replace hand-crafted prompt strings with concise and well-defined
modules, without reducing quality or expressive power.

H2 Parameterizing the modules and treating prompting as an optimization problem makes
DSPy better at adapting to different LMs, and it may outperform expert-written prompts.

H3 The resulting modularity makes it possible to more thoroughly explore complex pipelines
that have useful performance characteristics or that fit nuanced metrics.

Our evaluation will explore these hypotheses using diverse task—program pairs. We hope this begins
a shift from underspecified questions like “how do different LMs compare on GSM8K” toward “how
they compare on GSM8K with program P when compiled with strategy S”, which is a well-defined
and reproducible run. Ultimately, our goal is to reduce the role of artful prompt construction in
modern Al in favor of the development of new modular, composable programs and optimizers.

6 CASE STUDY: MATH WORD PROBLEMS

We evaluate on the popular GSM8K dataset with grade school math questions (Cobbe et al., 2021).
We sample 200 and 300 question—answer pairs from the official training set for training and develop-
ment, respectively. Our final evaluations use the 1.3k official test set examples. We report extensive
comparisons on the development set to avoid overfitting on test. Following prior work on GSM8K,
we evaluate the accuracy of the final numerical value that appears in the LM output.

Programs Considered For this task, we consider three simple DSPy programs: a one-step Pre-
dict module (vanilla), a two-step ChainOfThought module (CoT), and finally a multi-stage
ComparerOfThoughts module (ThoughtReflection). These are defined by the code below. In
reflection, five reasoning chains are sampled from the LM (alongside their answers) and they
are compared in parallel by a built-in MultiChainComparison module, which generalizes Yoran

Published as a conference paper at ICLR 2024

Table 1: Results with in-context learning on GSM8K math word problems. Each row represents
a separate pipeline: the module in the Program column is compiled against the examples in the
Training set. The programs, compilers, and (small) training sets are defined in Section 6. Rows with
ensemble build on the immediately preceding row. Notably, all programs in this table are expressed
by composing two to four DSPy modules and teleprompters. Compiling the right modules, instead
of string prompts, improves different LMs from 9-25% accuracy to 46-81% accuracy.

GPT-3.5 Llama2-13b-chat

Program Compilation Training Dev Test Dev Test
none n/a 240 252 7.0 9.4
fewshot trainset 33.1 - 4.3 -

vanilla bootstrap trainset 44.0 - 28.0 -
bootstrapx2 trainset 647 61.7 373 36.5
+ensemble trainset 62.7 619 39.0 34.6
none n/a 56.0 - 267 -
fewshot trainset 65.1 - 273 -

CoT fewshot +human_CoT 78.6 724 343 33.7
bootstrap trainset 80.3 729 433 -
+ensemble trainset 88.3 81.6 43.7 -
none n/a 65.0 - 367 -

reflection fewshot tra%nset 71.7 - 363 -
bootstrap trainset 83.0 76.0 443 40.2
+ensemble trainset 86.7 - 49.0 46.9

et al. (2023). This generates a new answer taking into account the patterns from the five attempts.
Critically, the modules used are all generic, none is specific to math problems or a particular LM.

I vanilla = dspy.Predict("question -> answer”) # GSM8K Program ‘vanilla‘
2 CoT = dspy.ChainOfThought(”"question -> answer"”) # GSM8K Program ‘CoT*

% class ThoughtReflection(dspy.Module):

5 def __init__(self, num_attempts):

6 self.predict = dspy.ChainOfThought(”"question -> answer”, n=num_attempts)

7 self.compare = dspy.MultiChainComparison(’question -> answer’, M=num_attempts)
8

9 def forward(self, question):

10 completions = self.predict(question=question).completions
11 return self.compare(question=question, completions=completions)

13 reflection = ThoughtReflection(num_attempts=5) # GSM8K Program ‘reflection®

Compiling As we discussed in Section 4, DSPy programs can be compiled into new, optimized
programs. In our experiments, we evaluate the programs zero-shot (no compiling) as well as a
number of strategies for compiling. Our simplest compiler is LabeledFewShot:

| fewshot = dspy.LabeledFewShot(k=8).compile(program, trainset=trainset)

Here, program can be any DSPy module. This samples k=8 demonstrations from the trainset for
the fields common to the training examples and the signature(s), in this case, question and answer
but not reasoning for instance. We report the average of 3—5 runs (depending on the setting) when
applying such sampling. Next, we consider bootstrapping few-shot examples with random search:

I tp = BootstrapFewShotWithRandomSearch(metric=gsm8k_accuracy)
2 bootstrap = tp.compile(program, trainset=trainset, valset=devset)

This will generate demonstration chains for examples in the training set and optimize the selection
of demonstrations (from this set) to self-improve the program’s modules. As the name indicates,
this is done with random search, treating the selection of demonstrations as a parameter to optimize.
Next, if desired, this bootstrapping process can be nested in DSPy. In particular, we can use the
optimized bootstrap program itself to further bootstrap another program. This is relevant, for
example, whenever the original zero-shot program performs relatively poorly.

| bootstrap2 = tp.compile(program, teacher=bootstrap, trainset=trainset, valset=devset)

And lastly, we consider ensembling these bootstraps:

1 # A program that ensembles the top-7 candidate programs from a bootstrapping compiler run
(in particular ‘bootstrap‘ or, when applicable, ‘bootstrap2‘) with majority voting.
2 ensemble = Ensemble(reduce_fn=dspy.majority).compile(bootstrap.programs[:7])

Published as a conference paper at ICLR 2024

GSMBSK includes human reasoning chains. Above, trainset does not include these reasoning
chains. We also evaluate with trainset_human_CoT, which extends the examples in trainset with
the human reasoning string. These two datasets can be used interchangeably as the value for the
trainset parameter above. We note here that compiling generally runs on the order of minutes
(or tens of minutes) as even the more expensive settings only require running the program a few
thousand times (e.g., 10-20 trials over 150-300 validation examples) and they can occur in parallel.

Results Our results are summarized in Table 1, which includes dev results as well as our evalua-
tion of promising representatives of each approach on the test set. First, the reflection program
while only a few lines longer than the others is a clear winner, though CoT is quite effective with
ensemble. Second, the bootstrap compilation procedure leads to large gains for every program,
across both LMs. Interestingly, vanilla is helped by compiling with bootstrap as the teacher
program (bootstrapx2). On inspecting the prompts bootstrapped (Appendix I), we see that the
LM leverages the metric (i.e., correctness of the final numerical value in the output) so it uses the
answer field for reasoning first. Third, while the human reasoning chains (+human_CoT) provide a
large boost for fewshot, we can match or surpass this using bootstrap, which substantiates our
hypothesis that DSPy can cut the need for hand-crafted prompts.’

7 CASE STUDY: COMPLEX QUESTION ANSWERING

In this case study, we explore the multi-hop question answering task with the HotPotQA (Yang et al.,
2018) dataset in the open-domain “fullwiki” setting. For retrieval, we use a search index of the of-
ficial Wikipedia 2017 “abstracts” dump of HotPotQA. Search is conducted by a ColBERTV2 (San-
thanam et al., 2021) retriever. The HotPotQA test set is hidden, so we reserve the official validation
set for our testing, and sample 1000 examples for that. We sub-divide the training set into 70%/30%
train/validation splits. In the training (and thus validation) split, we keep only examples marked as
“hard” in the original dataset, which matches the designation of the official validation and test sets.
For training and for reporting development results, we sample 200 and 300 examples respectively.

Programs Considered Our simplest baseline is the vanilla program used in the previous case
study on GSMS8K (Section 6); the "question -> answer” signature is universal enough that it will
work for many tasks when compiled appropriately. Our baseline RAG program is the one given in
Section 3.2 with a dspy.ChainOfThought layer. This program does not excel at HotPotQA, and this
motivates us to evaluate two multi-hop programs. We first test ReAct (Yao et al., 2022), a multi-step
agent for tool use, which is implemented as a built-in module in DSPy. In the simplest case, a ReAct
module for a particular signature can be declared as follows in DSPy:

I react = dspy.ReAct("question -> answer”, tools=[dspy.Retrieve(k=1)], max_steps=5)

And we test the following custom program, which is akin to Baleen (Khattab et al., 2021a), IRRR
(Qi et al., 2020), and has similarities to IRCoT (Trivedi et al., 2022):

I class BasicMultiHop(dspy.Module):

2 def __init__(self, passages_per_hop):

3 self.retrieve = dspy.Retrieve(k=passages_per_hop)

1 self.generate_query = dspy.ChainOfThought("context, question -> search_query")

context += self.retrieve(query).passages

5 self.generate_answer = dspy.ChainOfThought("context, question -> answer”)

6

7 def forward(self, question):

8 context = []

9

10 for hop in range(2):

11 query = self.generate_query(context=context, question=question).search_query
12

13

14 return self.generate_answer (context=context, question=question)
15

H»multihop = BasicMultiHop(passages_per_hop=3)

"We can informally compare these with published results for GSM8K. Zhang et al. (2022) reports 48%
for text-davinci-002, close to our results using llama2-13b, and 63% with codex using CoT. Zhang et al.
(2022) report 57% for CoT prompting with PaLM 540-B, which becomes 74% upon adding self-consistency.
Llama?2 (Touvron et al., 2023) presented 28.7%, 42.2%, and 56.8% for llama2-13b, llama2-34b, and llama2-
70b. Our implementation with llama2-13b is competitive with their llama2-34b results, while we don’t use
human reasoning chains in our program. Zhao et al. (2023b) reports that CoT scores around 80% for gpt-3.5-
turbo from April 2023. The GPT-4 paper (OpenAl, 2023) reports that GPT-3.5 scores 57% and GPT-4 elevates
this to 92% but they note that GPT-4 was trained on a subset of GSM8K.

Published as a conference paper at ICLR 2024

Table 2: Results with in-context learning on HotPotQA. We report answer exact match (Ans) and
pair-retrieval accuracy (Psg). Each row represents a separate pipeline: the module in the Program
column is compiled against the examples in the Training set. The programs, compilers, and (small)
training sets are defined in the main text. For HotPotQA, we use the training set (and not dev)
directly for cross-validation. *The marked result is evaluated on 50% of our test set due to cost.

GPT-3.5 Llama2-13b-chat
Program Compiler Dev Test Dev Test
Ans Psg Ans Psg Ans Psg Ans Psg
vanilla fewshot 343 n/a 315 na 275 n/a 218 n/a
CoT_RAG fewshot 364 360 29.8 344 345 36.0 28.0 344
- bootstrap 423 36.0 - - 383 360 329 344
none 20.3 - - - 20.0 - - -
react +human_r 33.0 - - - 28.3 - - -
bootstrap 31.0 - - - 24.7 - - -
bootstrapx2 39.0 - - - 40.0 - - -
fewshot 369 383 312 408 347 320 313 308
multihop bootstrap 48.7 47.0 39.6 438 42.0 483 364 435
ensemble 54.7 - 45.6* - 50.0 - 41.0 -

Compiling We continue to use the compilers we used for GSM8K (see Section 6). We
also consider two compositions of our teleprompters. For ReAct, we consider applying
BootstrapFewShotWithRandomSearch starting from an earlier bootstrap of the ReAct program.
For the simple multihop program, we consider fine-tuning starting from its earlier bootstrap.

I multihop_t5 = dspy.BootstrapFinetune(metric=answer_exact_match).compile(program,
teacher=bootstrap, trainset=trainset, target=’t5-large’)

Results Table 2 summarizes our results: a simple multihop program is the best across all models
and in general bootstrap again proves to be very effective. Perhaps most importantly, we can make
Llama2-13b-chat competitive with GPT-3.5 using the multihop program. We also evaluated the
compiler multihop_t5 defined above which produces a T5-Large (770M parameter) model. This
program scores 39.3% answer EM and 46% passage accuracy on the dev set, using only 200 labeled
inputs and 800 unlabeled questions otherwise, with a teacher program consisting of an ensemble
(union) of two Llama2-13b-chat multihop programs. Such a program would impose orders of mag-
nitude lower costs for inference than a proprietary LM like GPT-3.5.°

8 CONCLUSION

This paper introduced DSPy, a new programming model for designing Al systems using pipelines
of pretrained LMs and other tools. We presented three new concepts introduced in this abstraction
(DSPy signatures, modules, and teleprompters), and showed in two very different case studies that
it supports rapid development of highly effective systems that use relatively small LMs. We have
maintained open-source versions of this framework throughout 2023 and since. In this period, we
have seen and created a large number of programs that were compiled to high-quality systems by
DSPy, spanning tasks from information extraction to low-resource synthetic data generation. In
the interest of space and to maintain reasonable scope in this paper, we leave reporting on such
tasks under controlled experimental conditions to future work. While in-context learning has proved
transformative, we argue that the true expressive power in this emerging paradigm is in building so-
phisticated text transformation graphs in which composable modules and optimizers (teleprompters)
come together to leverage LMs in more systematic and reliable ways.

80ur results may be pegged against the evaluation on HotPotQA in a number of recent papers, though
there can be significant variation in evaluation methodology and test set samples across studies in this space.
Si et al. (2022) achieve 25.2% EM with CoT prompting. With a “recite-and-answer” technique for PaLM-
62B (Chowdhery et al., 2022), Sun et al. (2022) achieve 26.5% EM. Wang et al. (2022a) achieve 33.8% EM
and 44.6 F1 when applying self-consistency for PaLM-540B. Yao et al. (2022) achieve 35.1% EM using the
ReAct agent, with a tool giving it the ability for search using a Wikipedia API. Trivedi et al. (2022) reports 49%
using a pipeline with code-davinci-002 on a sample of 500 HotPotQA questions.

Published as a conference paper at ICLR 2024

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631, 2019.

Rami Al-Rfou, Guillaume Alain, Amjad Almabhairi, Christof Angermueller, Dzmitry Bahdanau,
Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, et al.
Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints,
pp- arXiv—1605, 2016.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume
Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: A CPU and GPU
math compiler in Python. In Proc. 9th python in science conf, volume 1, pp. 310, 2010.

James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier De-
lalleau, Guillaume Desjardins, David Warde-Farley, Ian Goodfellow, Arnaud Bergeron, et al.
Theano: Deep learning on gpus with Python. In NIPS 2011, BigLearning Workshop, Granada,
Spain, volume 3. Citeseer, 2011.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International conference on
machine learning, pp. 115-123. PMLR, 2013.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting is programming: A query lan-
guage for large language models. Proceedings of the ACM on Programming Languages, 7(PLDI):
1946-1969, 2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Harrison Chase. Hwchasel7/langchain. 2022. URL https://github.com/hwchase17/
langchain.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer
open-domain questions. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1870-1879, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1171. URL https:
//aclanthology.org/P17-1171.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular machine learning software
library. Technical report, Idiap, 2002.

10

https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchain
https://aclanthology.org/P17-1171
https://aclanthology.org/P17-1171

Published as a conference paper at ICLR 2024

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A Saurous, Jascha Sohl-Dickstein, et al. Language model
cascades. arXiv preprint arXiv:2207.10342, 2022.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan,
Vincent Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, et al. Rarr: Researching and revising what
language models say, using language models. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 16477-16508, 2023a.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764—10799. PMLR, 2023b.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training. arXiv preprint arXiv:2002.08909, 2020. URL https:
//arxiv.org/abs/2002.08909.

Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann, Percy Liang, and Christopher
Ré. Training classifiers with natural language explanations. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1884—
1895. Association for Computational Linguistics, 2018. URL http://aclweb.org/anthology/
P18-1175.

Bin Hu, Chenyang Zhao, Pu Zhang, Zihao Zhou, Yuanhang Yang, Zenglin Xu, and Bin Liu. En-
abling intelligent interactions between an agent and an LLM: A reinforcement learning approach.
arXiv preprint arXiv:2306.03604, 2023. URL https://arxiv.org/abs/2306.03604.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Few-shot learning with re-
trieval augmented language models. arXiv preprint arXiv:2208.03299, 2022.

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak Lenz, Opher Lieber, Nir Ratner, Yoav Shoham,
Hofit Bata, Yoav Levine, Kevin Leyton-Brown, et al. Mrkl systems: A modular, neuro-symbolic
architecture that combines large language models, external knowledge sources and discrete rea-
soning. arXiv preprint arXiv:2205.00445, 2022.

Omar Khattab, Christopher Potts, and Matei Zaharia. Baleen: Robust Multi-Hop Reasoning at Scale
via Condensed Retrieval. In Thirty-Fifth Conference on Neural Information Processing Systems,
2021a.

Omar Khattab, Christopher Potts, and Matei Zaharia. Relevance-guided supervision for openqa with
ColBERT. Transactions of the Association for Computational Linguistics, 9:929-944, 2021b.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech Stokowiec, and Nikolai Grigorev. Internet-
augmented language models through few-shot prompting for open-domain question answering.
arXiv preprint arXiv:2203.05115, 2022.

11

https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
http://aclweb.org/anthology/P18-1175
http://aclweb.org/anthology/P18-1175
https://arxiv.org/abs/2306.03604

Published as a conference paper at ICLR 2024

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Na-
man Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, Sebastian
Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp
tasks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 9459-9474. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
6b493230205f780e1bc26945df7481e5-Paper. pdf.

Jerry Liu. Llamalndex, 11 2022. URL https://github.com/jerryjliu/llama_index.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. arXiv:1806.08730, 2018. URL https:
//arxiv.org/abs/1806.08730.

Microsoft. Semantic kernel. 2023. URL https://learn.microsoft.com/semantic-kernel/.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna
Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schul-
man. WebGPT: Browser-assisted question-answering with human feedback, 2021. URL https:
//arxiv.org/abs/2112.09332.

OpenAl. Gpt-4 technical report, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/bdbca288fee7f92f2bfad9f7012727740-Paper . pdf.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. arXiv preprint arXiv:2304.11015, 2023.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350,
2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with” gradient descent” and beam search. arXiv preprint arXiv:2305.03495, 2023.

Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and Christopher D. Manning. Answering complex
open-domain questions through iterative query generation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2590-2602, Hong Kong,
China, 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1261. URL
https://aclanthology.org/D19-1261.

Peng Qi, Haejun Lee, Oghenetegiri Sido, Christopher D Manning, et al. Retrieve, rerank, read,

then iterate: Answering open-domain questions of arbitrary complexity from text. arXiv preprint
arXiv:2010.12527,2020. URL https://arxiv.org/abs/2010.12527.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://github.com/jerryjliu/llama_index
https://arxiv.org/abs/1806.08730
https://arxiv.org/abs/1806.08730
https://learn.microsoft.com/semantic-kernel/
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://aclanthology.org/D19-1261
https://arxiv.org/abs/2010.12527

Published as a conference paper at ICLR 2024

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language un-
derstanding by generative pre-training. Ms, OpenAl, 2018. URL https://openai.com/blog/
language-unsupervised/.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems
29, pp. 3567-3575. Curran Associates, Inc., 2016. URL https://papers.nips.cc/paper/
6523-data-programming-creating-large-training-sets-quickly.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Col-
BERTV2: Effective and Efficient Retrieval via Lightweight Late Interaction. arXiv preprint
arXiv:2112.01488, 2021.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Syn-
thetic prompting: Generating chain-of-thought demonstrations for large language models. arXiv
preprint arXiv:2302.00618, 2023.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang Wang, Jianfeng Wang, Jordan Boyd-Graber, and
Lijuan Wang. Prompting gpt-3 to be reliable. arXiv preprint arXiv:2210.09150, 2022.

Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and Denny Zhou. Recitation-augmented language
models. arXiv preprint arXiv:2210.01296, 2022.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open source
framework for deep learning. In Proceedings of workshop on machine learning systems (Learn-
ingSys) in the twenty-ninth annual conference on neural information processing systems (NIPS),
volume 35, pp. 1-6, 2015.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509, 2022.

Fei Wang, James Decker, Xilun Wu, Gregory Essertel, and Tiark Rompf. Backpropaga-
tion with callbacks: Foundations for efficient and expressive differentiable programming.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
34e157766f31db3d2099831d348a7933-Paper. pdf.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Rationale-
augmented ensembles in language models. arXiv preprint arXiv:2207.00747, 2022a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171,
2022b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods

13

https://openai.com/blog/language-unsupervised/
https://openai.com/blog/language-unsupervised/
https://papers.nips.cc/paper/6523-data-programming-creating-large-training-sets-quickly
https://papers.nips.cc/paper/6523-data-programming-creating-large-training-sets-quickly
https://proceedings.neurips.cc/paper_files/paper/2018/file/34e157766f31db3d2099831d348a7933-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/34e157766f31db3d2099831d348a7933-Paper.pdf

Published as a conference paper at ICLR 2024

in Natural Language Processing: System Demonstrations, pp. 38—45, Online, 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos. 6.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel Deutch, and Jonathan Berant. Answering
questions by meta-reasoning over multiple chains of thought. arXiv preprint arXiv:2304.13007,
2023.

Eric Zelikman, Yuhuai Wu, and Noah D Goodman. Star: Bootstrapping reasoning with reasoning.
arXiv preprint arXiv:2203.14465, 2022.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. ExpeL:
LLM agents are experiential learners. arXiv preprint arXiv:2308.10144, 2023a. URL https:
//arxiv.org/pdf/2308.10144.

Xu Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and Qizhe Xie. Automatic model selection with
large language models for reasoning. arXiv preprint arXiv:2305.14333, 2023b.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Efficiently
programming large language models using sglang, 2023.

14

https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://arxiv.org/pdf/2308.10144
https://arxiv.org/pdf/2308.10144

Published as a conference paper at ICLR 2024

A LATENCY & THROUGHPUT

In the main paper, we introduced the DSPy programming model and presented quality-oriented
case studies. In this appendix, we report on efficiency-oriented metrics. We select one of the most
sophisticated programs we discussed, namely, the multihop program from Sec 7.

We run a self-contained experiment from scratch to sidestep the effect of caching. We compile the
multihop program using the latest OpenAl GPT-3.5 model at the time of writing this appendix, i.e.
gpt-3.5-turbo-1106. We compile using the BootstrapFewShotWithRandomSearch teleprompter
with 7 candidate programs. DSPy supports parallel evaluation. In these runs, we set the maximum
number of parallel threads to 10.

Compiling this program takes approximately 370 seconds (or 6 minutes), which is a little shorter
than one minute per candidate program. The number of candidates for random search is a simple
configurable parameter, whose typical range is 5 through 30. For OpenAl models, our main ex-
periments use 13 candidate, though we observe strong results with as little as 7. This compilation
process makes approximately 3200 API calls to the language model, with a total of 2.7M input to-
kens and 156k output tokens. With the current pricing of OpenAl models, this costs a total of $3.0
USD to compile.

For inference, single-threaded inference with the multihop program takes on the order of 2-3 sec-
onds per question, which includes three chain of thought prompts (i.e., two for query generation
and one for answer generation) and two retrieval queries (i.e., each retrieving three passages). In
the presence of multiple questions, multi-threading is again possible, and we observe that we can
process more than 150 questions per minute with 10 threads. The exact maximum depends on the
rate limits supported by the retriever and the LM server.

To provide a comparison of inference costs, we took four rows of increased complexity for Hot-
PotQA (Table 2) and tested them with gpt-3.5-1106, while disabling the cache (which would oth-
erwise skip any repeated computations, e.g. retrieval queries or LM calls). We ran 100 questions
from HotPotQA with a single thread, and we report the average latency below. Each numbered bul-
let below represents a program (with compiler strategy in parentheses). For Vanilla (fewshot), we
observe average latency of 0.3 seconds per question and average Cost of $0.0005 per question (1x).
For CoT_RAG (fewshot), we observe average latency of 1.1 seconds per question and average cost
of $0.0013 per question (2.6x). For Multihop (fewshot), we observe average latency of 2.6 seconds
per question and average cost of $0.0018 per question (3.6x). For Multihop (bootstrap), we observe
average latency of 2.6 seconds per question and average cost of $0.0041 per question (8.2x). As this
shows, these programs are within an order of magnitude of the cost and latency of the simplest one,
even though we see major quality improvements from vanilla to multihop.

Latency and throughput results for gpt-3.5-turbo-1106 depend on the OpenAl API load and the
rate limit permitted. For local models at the scale of 13B parameters, we typically see higher laten-
cies and lower throughputs in practice, when serving the model from one or a few A100 GPUs. We
suspect this gap will be bridged with recent open research advancements in serving open models,
especially approaches that apply intelligent prefix caching for prompts that share the same prefixes,
e.g. Zheng et al. (2023).

B ADVANCED SIGNATURES

When more control is desired, one can express signatures as Python classes to provide explicit
instructions of the transformation and describe the format or role of each field more directly. For
instance, the following signature generates search queries using context and an optional question:

I class GenerateSearchQuery(dspy.Signature):
2 """Write a simple search query that will help answer a complex question.""”

4 context = dspy.InputField(desc="may contain relevant facts"”)
question = dspy.InputField()
6 query = dspy.OutputField(prefix="Search Query:")

Using the above, we can specify a complete system for the generation of a synthetic IR dataset where
the queries are mediated by a question generated by the LM:

15

Published as a conference paper at ICLR 2024

I query_gen = dspy.Predict(GenerateSearchQuery)

2 query_gen(context="Language typology")

3# Out: Prediction(question=’What are the main types of language classification?’,
query='"language classification” OR "language typology"” -wikipedia’)

If questions are available, they can be supplied as shown: query_gen(context="Language
typology"”, question="What are the primary language families of South America?").

C MORE ADVANCED METRICS

If one wanted to push the compiled program to be extractive given its retrieved contexts, one could
define a custom metric to use in place of dspy.evaluate.answer_exact_match:

| def my_rag_validation_logic(example, pred, trace=None):

2 answer_match = dspy.evaluate.answer_exact_match(example, pred)

3 # Is the prediction a substring of some passage?

4 context_match = any((pred.answer.lower() in c) for ¢ in pred.context)
5 return answer_match and context_match

D COMPARISON WITH EXISTING LIBRARIES LIKE LANGCHAIN AND
LLAMAINDEX

LangChain and Llamalndex are perhaps the most popular library in the general space of prompting
LMs. These libraries have a different focus compared to DSPy and they suffer internally from the
prompt engineering challenges that DSPy aims to resolve. In particular, whereas the goal of DSPy
is to tackle the fundamental challenges of prompt engineering for building new LM computational
graphs, LangChain and Llamalndex generally help application developers who need pre-packaged
components and chains, e.g., implementations of popular and reusable pipelines (e.g., particular
agents and specific retrieval pipelines) and tools (e.g., connections to various databases and imple-
mentations of long- and short-term memory for agents).

These off-the-shelf higher-level abstractions contrast with DSPy’s focus on introducing core com-
posable operators. In particular, DSPy introduces signatures (to abstract prompts), modules (to
abstract prompting techniques), and teleprompters to act as optimizers for arbitrary imperative code
(DSPy programs) that chain modules together. Its goal is to help researchers and practitioners
build new LM pipelines quickly and achieve very high quality through automatic compilation (self-
improvement) instead of manual prompt engineering.

In contrast, typical existing research implementations and existing libraries like LangChain and
Llamalndex are implemented using manual prompt engineering, which is the key problem that DSPy
tackles. We conducted an informal study to highlight this. In late September 2023, we found
that the LangChain codebase contains 50 strings exceeding 1000 characters, which are generally
prompts, compared to none at all in DSPy. Indeed, a substantial number of LangChain’s Python
files are singularly dedicated to task-related templating and prompt engineering with 12 prompts. py
files and and 42 prompt.py files. DSPy, on the other hand, provides a structured framework that
automatically bootstraps prompts. The library itself does not contain a single hand-written prompt
demonstration for any tasks at the time of writing, despite the very high quality with various LMs.

To review the typical forms of prompt engineering in existing libraries, we consider the follow-
ing in LangChain. The LangChain Program-Aided Language Model Gao et al. (2023a) chain pro-
gram uses few-shot learning, leveraging a template that is 3982 characters long with 8 math word
problems (Prompt 2) and corresponding outputted programs as learning examples for the language
model. LangChain also contains a prompt for SQL query tasks for each of the databases like Or-
acle, GoogleSQL, DuckDB, Crate, and MySQL, with the average length of these prompts at 1058
characters. Other task areas such as QA with sources (Prompt D) and Graph_QA also have signif-
icantly lengthy prompt templates, with averages of 1337 and 722 characters, respectively. While
expert-written prompts can be useful, we believe that LM- and task-adaptive prompts bootstrapped
automatically can offer far more power (and are far more modular) than hard-coding a prompt per
database provider inside the code base. The next appendix section contains a number of prompts
copied from related research papers and existing libraries.

16

Published as a conference paper at ICLR 2024

E SAMPLE LARGE PROMPTS

This section highlights a few popular existing frameworks that structure prompts with extensive
prompt engineering templates. The primary objective is to capture how many words and characters
are used for such large multi-line prompts defined for tasks or tools and present these example
prompts retrieved from open-sourced papers and repositories. The formatting of these example

prompts is adapted from Gao et al. (2023a).

Task/Tool Prompt Source Words Characters
Prompt 1: Text-evidence checker Gao et al. (2023a) 818 4964
Prompt 2: Math word problems (PAL) LangChain & Gao et al. (2023b) 566 3957
Prompt 3: ReAct Yao et al. (2022) 593 3889
Prompt 4: Zero-shot ReAct LangChain 101 600
Prompt 5: QA with sources LangChain 992 6197
Prompt 6: SQL MyScale querying LangChain 343 2239
Prompt 7: Relevant docs retrieval Llamalndex 129 719
Prompt 8: IRS chatbot Llamalndex 389 2258

17

Published as a conference paper at ICLR 2024

1 [web] I will check some things you said.

3 (1) You said: Your nose switches back and forth between nostrils. When you sleep, you switch about every 45 minutes. This
is to prevent a buildup of mucus. It’s called the nasal cycle.

4 I checked: How often do your nostrils switch?

5 I found this article: Although we don’t usually notice it, during the nasal cycle one nostril becomes congested and thus

contributes less to airflow, while the other becomes decongested. On average, the congestion pattern switches about every

2 hours, according to a small 2016 study published in the journal PLOS One.

Your nose’s switching time is about every 2 hours, not 45 minutes.

This disagrees with what you said.

(2) You said: The Little House books were written by Laura Ingalls Wilder. The books were published by HarperCollins.

I checked: Who published the Little House books?

I found this article: These are the books that started it all -- the stories that captured the hearts and imaginations of
children and young adults worldwide. Written by Laura Ingalls Wilder and published by HarperCollins, these beloved books
remain a favorite to this day.

12 The Little House books were published by HarperCollins.

13 This agrees with what you said.

14

15 (3) You said: The Stanford Prison Experiment was conducted in the basement of Jordan Hall, Stanford’s psychology building.
16 I checked: Where was Stanford Prison Experiment conducted?

17 I found this article: Carried out August 15-21, 1971 in the basement of Jordan Hall, the Stanford Prison Experiment set
out to examine the psychological effects of authority and powerlessness in a prison environment.

18 The Stanford Prison Experiment was conducted in Jordan Hall.

19 This agrees with what you said.

20

21 (4) You said: Social work is a profession that is based in the philosophical tradition of humanism. It is an intellectual
discipline that has its roots in the 1800s.

22 I checked: When did social work have its roots?

23 I found this article: The Emergence and Growth of the Social work Profession

 Social work’s roots were planted in

the 1880s, when charity organization societies (COS) were created to organize municipal voluntary relief associations and
settlement houses were established.

24 Social work has its roots in the 1880s, not 1800s.

25 This disagrees with what you said.

26

27 (5) You said: The Havel-Hakimi algorithm is an algorithm for converting the adjacency matrix of a graph into its adjacency
list. It is named after Vaclav Havel and Samih Hakimi.

28 I checked: What is the Havel-Hakimi algorithm?

29 I found this article: The Havel-Hakimi algorithm constructs a special solution if a simple graph for the given degree
sequence exists, or proves that one cannot find a positive answer. This construction is based on a recursive algorithm.
The algorithm was published by Havel (1955), and later by Hakimi (1962).

30 Havel-Hakimi algorithm is for constructing a special solution if a simple graph for the given degree sequence exists, or
proving that one cannot find a positive answer, not converting the adjacency matrix of a graph into its adjacency list.

31 This disagrees with what you said.

32

33 (6) You said: "Time of My Life” is a song by American singer-songwriter Bill Medley from the soundtrack of the 1987 film
Dirty Dancing. The song was produced by Michael Lloyd.

34 I checked: Who was the producer of "(I’ve Had) The Time of My Life"?

35 I found this article: On September 8, 2010, the original demo of this song, along with a remix by producer Michael Lloyd,
was released as digital files in an effort to raise money for the Patrick Swayze Pancreas Cancer Resarch Foundation at
Stanford University.

36 "Time of My Life" was produced by Michael Lloyd.

37 This agrees with what you said.

38

39 (7) You said: Kelvin Hopins was suspended from the Labor Party because he had allegedly sexually harassed and behaved

inappropriately towards a Labour Party activist, Ava Etemadzadeh.

40 I checked: Why was Kelvin Hopins suspeneded from the Labor Party?

41 I found this article: A former Labour MP has left the party before an inquiry into sexual harassment allegations against
him was able to be concluded, the party has confirmed. Kelvin Hopkins was accused in 2017 of inappropriate physical contact
and was suspended by the Labour party pending an investigation.This agrees with what you said.

42 Kelvin Hopins was suspended because he had allegedly sexually harassed and behaved inappropriately towards a Labour Party
activist, Ava Etemadzadeh.

43 This agrees with what you said.

44

45 (8) You said: In the battles of Lexington and Concord, the British side was led by General Thomas Smith.

46 I checked: Who led the British side in the battle of Lexington and Concord?

47 I found this article: Interesting Facts about the Battles of Lexington and Concord. The British were led by Lieutenant
Colonel Francis Smith. There were 700 British regulars.

48 The British side was led by Lieutenant Colonel Francis Smith, not General Thomas Hall.

49 This disagrees with what you said.

50

51 (9) You said: {text}

52 I checked: {query}

53 I found this article: {evidence}

54 ——

Figure 1: Example few-shot prompt using a reasoning chain for agreement model that identifies
inconsistencies between text and evidence (Gao et al., 2023a).

18

Published as a conference paper at ICLR 2024

21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44

45
46
47
48
49
50
51

52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

solution in Python:

def

solution():

"""0livia has $23. She bought five bagels for $3 each. How much money does she have left?"""
money-initial = 23

bagels = 5

bagel_cost = 3

money_spent = bagels * bagel_cost

money_left = money-initial - money_spent

result = money-left

return result

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he
have at the end of wednesday?

solution in Python:

def

did

solution():
"""Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls
he have at the end of wednesday?"""

golf_balls_initial = 58

golf_balls_lost_tuesday = 23

golf_balls_lost-wednesday = 2

golf_balls_left = golf_balls_initial - golf_balls_lost-tuesday - golf_balls_lost_wednesday
result = golf_balls_left

return result

Q: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday.

How

many computers are now in the server room?

solution in Python:

def

How

solution():

"""There were nine computers in the server room. Five more computers were installed each day, from monday to thursday.
many computers are now in the server room?"""

computers_initial = 9

computers_per._day = 5

num.days = 4

computers_added = computers_per_day * num_days

computers_total = computers_initial + computers_added

result = computers_total

return result

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

solution in Python:

def

solution():

"""Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?"""
toys.initial = 5

mom_toys = 2

dad-toys = 2

total_received = mom-toys + dad-toys

total_toys = toys_initial + total_received

result = total_toys

return result

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to
Denny?

solution in Python:

19

Published as a conference paper at ICLR 2024

s w o =

o

© o

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37
38

40
41
42
43
44
45
46
47
48
49
50
51

58
59
60
61
62
63
64

65

def solution():

"""Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give
to Denny?"""

jason_lollipops-initial = 20

jason_lollipops-after = 12

denny_lollipops = jason_lollipops.initial - jason_lollipops.after

result = denny_lollipops

return result

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
solution in Python:

def solution():
"""Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?"""
leah_chocolates = 32
sister_chocolates = 42
total_chocolates = leah_chocolates + sister_chocolates
chocolates_eaten = 35
chocolates_left = total_-chocolates - chocolates_eaten
result = chocolates_left
return result

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

solution in Python:

def solution():
"""If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?"""
cars_initial = 3
cars_arrived = 2
total_cars = cars_initial + cars.arrived
result = total_cars
return result

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be
21 trees. How many trees did the grove workers plant today?

solution in Python:

def solution():

"""There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will
be 21 trees. How many trees did the grove workers plant today?"""

trees_initial = 15

trees_after = 21

trees_added = trees_after - trees_initial

result = trees_added

return result

Q: {question}

solution in Python:

Figure 2: PAL example few-shot prompt for solving math questions by generating code.

20

Published as a conference paper at ICLR 2024

18

19
20
21
22
23
24

26

27
28
29
30

31
32
33
34
35
36

37
38

39
40
41
42

43
44
45

Solve a question answering task with interleaving Thought, Action, Observation steps. Thought can reason about the current
situation, and Action can be three types:

(1) Searchl[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it
will return some similar entities to search.

(2) Lookupl[keyword], which returns the next sentence containing keyword in the current passage.

(3) Finish[answer], which returns the answer and finishes the task.

Here are some examples.

Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny extends into?

Action 1: Search[Colorado orogeny]

Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and surrounding areas.
Action 2: Lookup[eastern sector]

Observation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central Plains orogeny.
Action 3: Search[High Plains]

Observation 3: High Plains refers to one of two distinct land regions:

Action 4: Search[High Plains (United States)]

Observation 4: The High Plains are a subregion of the Great Plains. From east to west, the High Plains rise in elevation
from around 1,800 to 7,000 ft (550 to 2,130 m).[3]

Action 5: Finish[1,800 to 7,000 ft]

Question: Musician and satirist Allie Goertz wrote a song about the "The Simpsons” character Milhouse, who Matt Groening
named after who?

Action 1: Search[Milhouse]

Observation 1: Milhouse Mussolini Van Houten is a recurring character in the Fox animated television series The Simpsons
voiced by Pamela Hayden and created by Matt Groening.

Action 2: Lookup[named after]

Observation 2: (Result 1 / 1) Milhouse was named after U.S. president Richard Nixon, whose middle name was Milhous.
Action 3: Finish[Richard Nixon]

Question: Which documentary is about Finnish rock groups, Adam Clayton Powell or The Saimaa Gesture?

Action 1: Search[Adam Clayton Powell]

Observation 1: Could not find [Adam Clayton Powell]. Similar: [’Adam Clayton Powell III’, ’Seventh Avenue (Manhattan)’,
’Adam Clayton Powell Jr. State Office Building’, ’Isabel Washington Powell’, ’Adam Powell’, ’Adam Clayton Powell (film)’,
’Giancarlo Esposito’].

Action 2: Search[Adam Clayton Powell (film)]

Observation 2: Adam Clayton Powell is a 1989 American documentary film directed by Richard Kilberg. The film is about the
rise and fall of influential African-American politician Adam Clayton Powell Jr.[3][4] It was later aired as part of the
PBS series The American Experience.

Action 3: Finish[The Saimaa Gesture]

Question: What profession does Nicholas Ray and Elia Kazan have in common?

Action 1: Search[Nicholas Ray]

Observation 1: Nicholas Ray (born Raymond Nicholas Kienzle Jr., August 7, 1911 { June 16, 1979) was an American film
director, screenwriter, and actor best known for the 1955 film Rebel Without a Cause.

Action 2: Search[Elia Kazan]

Observation 2: Elia Kazan was an American film and theatre director, producer, screenwriter and actor.

Action 3: Finish[director, screenwriter, actor]

Question: Which magazine was started first Arthur’s Magazine or First for Women?

Action 1: Search[Arthur’s Magazine]

Observation 1: Arthur’s Magazine (1844-1846) was an American literary periodical published in Philadelphia in the 19th
century.

Action 2: Search[First for Women]

Observation 2: First for Women is a woman’s magazine published by Bauer Media Group in the USA.[1] The magazine was started
in 1989.

Action 3: Finish[Arthur’s Magazine]

Question: Were Pavel Urysohn and Leonid Levin known for the same type of work?

Action 1: Search[Pavel Urysohn]

Observation 1: Pavel Samuilovich Urysohn (February 3, 1898 4 August 17, 1924) was a Soviet mathematician who is best known
for his contributions in dimension theory.

Action 2: Search[Leonid Levin]

Observation 2: Leonid Anatolievich Levin is a Soviet-American mathematician and computer scientist.

Action 3: Finish[yes]

Figure 3: ReAct example prompt for interleaving Thought, Action, Observation steps.

21

Published as a conference paper at ICLR 2024

1 Answer the following questions as best you can. You have access to the following tools:
2 Search: useful for when you need to answer questions about the world
3 Use the following format:

4 Question: the input question you must answer

5 Thought: you should always think about what to do

6 Action: the action to take, should be one of [Search]

7 Action Input: the input to the action

8 Observation: the result of the action

9 ... (this Thought/Action/Action Input/Observation can repeat N times)
10 Thought: I now know the final answer

1 Final Answer: the final answer to the original input question

12 Begin!
13 Question: {question}
14 Thought:

Figure 4: Langchain ReAct example prompt for interleaving Thought, Action, Observation steps.

22

Published as a conference paper at ICLR 2024

N o U A wN =

23
24
25
26
27

28
29
30
31

32

33
34

36

37

38

39

40

41

42

43

44
45

46

47

48

49

Given the following extracted parts of a long document and a question, create a final answer with references ("”SOURCES").
If you don’t know the answer, just say that you don’t know. Don’t try to make up an answer.
ALWAYS return a "SOURCES" part in your answer.

Content: This Agreement is governed by English law and the parties submit to the exclusive jurisdiction of the English
courts in relation to any dispute (contractual or non-contractual) concerning this Agreement save that either party may
apply to any court for an injunction or other relief to protect its Intellectual Property Rights.

Source: 28-pl

Content: No Waiver. Failure or delay in exercising any right or remedy under this Agreement shall not constitute a waiver
of such (or any other) right or remedy.

11.7 Severability. The invalidity, illegality or unenforceability of any term (or part of a term) of this Agreement shall
not affect the continuation in force of the remainder of the term (if any) and this Agreement.

11.8 No Agency. Except as expressly stated otherwise, nothing in this Agreement shall create an agency, partnership or
joint venture of any kind between the parties.

11.9 No Third-Party Beneficiaries.

Source: 30-pl

Content: (b) if Google believes, in good faith, that the Distributor has violated or caused Google to violate any
Anti-Bribery Laws (as defined in Clause 8.5) or that such a violation is reasonably likely to occur,

Source: 4-pl

FINAL ANSWER: This Agreement is governed by English law.
SOURCES: 28-pl

QUESTION: What did the president say about Michael Jackson?

Content: Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet.
Justices of the Supreme Court. My fellow Americans.

Last year COVID-19 kept us apart. This year we are finally together again.

Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.

With a duty to one another to the American people to the Constitution.

And with an unwavering resolve that freedom will always triumph over tyranny.

Six days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to
his menacing ways. But he badly miscalculated.

He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined.
He met the Ukrainian people.

From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.
Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending
their homeland.

Source: 0-pl

Content: And we won’t stop.

We have lost so much to COVID-19. Time with one another. And worst of all, so much loss of life.

Let’s use this moment to reset. Let’s stop looking at COVID-19 as a partisan dividing line and see it for what it is: A
God-awful disease.

Let’s stop seeing each other as enemies, and start seeing each other for who we really are: Fellow Americans.

We can’t change how divided we’ve been. But we can change how we move forward|on COVID-19 and other issues we must face
together.

I recently visited the New York City Police Department days after the funerals of Officer Wilbert Mora and his partner,
Officer Jason Rivera.

They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun.

Officer Mora was 27 years old.

Officer Rivera was 22.

Both Dominican Americans who’d grown up on the same streets they later chose to patrol as police officers.

I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their
mission to restore the trust and safety every community deserves.

Source: 24-pl

Content: And a proud Ukrainian people, who have known 30 years of independence, have repeatedly shown that they will not
tolerate anyone who tries to take their country backwards.

To all Americans, I will be honest with you, as I’ve always promised. A Russian dictator, invading a foreign country, has
costs around the world.

And I’m taking robust action to make sure the pain of our sanctions is targeted at Russia’s economy. And I will use every
tool at our disposal to protect American businesses and consumers.

Tonight, I can announce that the United States has worked with 30 other countries to release 60 Million barrels of oil
from reserves around the world.

America will lead that effort, releasing 30 Million barrels from our own Strategic Petroleum Reserve. And we stand ready
to do more if necessary, unified with our allies.

These steps will help blunt gas prices here at home. And I know the news about what’s happening can seem alarming.

But I want you to know that we are going to be okay.

Source: 5-pl

Content: More support for patients and families.

To get there, I call on Congress to fund ARPA-H, the Advanced Research Projects Agency for Health.

It’s based on DARPA|the Defense Department project that led to the Internet, GPS, and so much more.

ARPA-H will have a singular purpose|to drive breakthroughs in cancer, Alzheimer’s, diabetes, and more.

23

Published as a conference paper at ICLR 2024

1 A unity agenda for the nation.

2 We can do this.

3 My fellow Americans|tonight , we have gathered in a sacred space|the citadel of our democracy.

4 In this Capitol, generation after generation, Americans have debated great questions amid great strife, and have done
great things.

5 We have fought for freedom, expanded liberty, defeated totalitarianism and terror.

6 And built the strongest, freest, and most prosperous nation the world has ever known.

7 Now is the hour.

8 Our moment of responsibility.

9 Our test of resolve and conscience, of history itself.

10 It is in this moment that our character is formed. Our purpose is found. Our future is forged.

1 Well I know this nation.

12 Source: 34-pl

13 =

14

15

16

17

18

19

20

21

Figure 5: Langchain example prompt for QA with sources.

1 You are a MyScale expert. Given an input question, first create a syntactically correct MyScale query to run, then look
at the results of the query and return the answer to the input question.

2 MyScale queries has a vector distance function called DISTANCE(column, array) to compute relevance to the user’s question
and sort the feature array column by the relevance.

3 When the query is asking for {top_k} closest row, you have to use this distance function to calculate distance to entity’s
array on vector column and order by the distance to retrieve relevant rows.

4 *NOTICE*: DISTANCE(column, array) only accept an array column as its first argument and a NeuralArray(entity) as its second
argument. You also need a user defined function called NeuralArray(entity) to retrieve the entity’s array.

5 Unless the user specifies in the question a specific number of examples to obtain, query for at most {top_k} results using
the LIMIT clause as per MyScale. You should only order according to the distance function.

6 Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap
each column name in double quotes (") to denote them as delimited identifiers.

7 Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do
not exist. Also, pay attention to which column is in which table.

8 Pay attention to use today() function to get the current date, if the question involves "today”. ORDER BY clause should
always be after WHERE clause. DO NOT add semicolon to the end of SQL. Pay attention to the comment in table schema.

9

10 Use the following format

11 = table info =:

12 {table_info}

13 Question: {input}

14 SQLQuery:

15

16 Here are some examples

17 = table info =:

18 CREATE TABLE "ChatPaper” (

19 abstract String,

20 id String,

21 vector Array(Float32),

22) ENGINE = ReplicatedReplacingMergeTree()

23 ORDER BY id

24 PRIMARY KEY id

25 Question: What is Feature Pyramid Network?

26 SQLQuery: SELECT ChatPaper.title, ChatPaper.id, ChatPaper.authors FROM ChatPaper ORDER BY DISTANCE(vector,
NeuralArray(PaperRank contribution)) LIMIT {top_k}

27

28 Let’s begin:

29 table info ==

30 {table_info}

31 Question: {input}

32 SQLQuery:

Figure 6: Langchain example prompt for SQL querying using MyScale.

24

Published as a conference paper at ICLR 2024

1 A list of documents is shown below. Each document has a number next to it along with a summary of the document. A question
is also provided.

2 Respond with the numbers of the documents you should consult to answer the question, in order of relevance, as well as the
relevance score.

3 The relevance score is a number from 1-10 based on how relevant you think the document is to the question.
4 Do not include any documents that are not relevant to the question.
5

6 Example format:

7 Document 1:

8 <summary of document 1>

9

10 Document 2:

11 <summary of document 2>

12

13

14

15 Document 10:

16 <summary of document 10>

17

18 Question: <question>
19 Answer:

20 Doc: 9, Relevance: 7
21 Doc: 3, Relevance: 4
22 Doc: 7, Relevance: 3
23

24 Let’s try this now:
25 {context_str}

26 Question: {query_str}
27 Answer :

Figure 7: Llamalndex example prompt for returning relevant documents and corresponding sum-
maries.

1 You are an IRS chatbot whose primary goal is to help users with filing their tax returns for the 2022 year.

2 Provide concise replies that are polite and professional.

3 Answer questions truthfully based on official government information, with consideration to context provided below on
changes for 2022 that can affect tax refund.

4 Do not answer questions that are not related to United States tax procedures and respond with "I can only help with any
tax-related questions you may have.”.

5 If you do not know the answer to a question, respond by saying \I do not know the answer to your question. You may be able
to find your answer at www.irs.gov/fags”

7 Changes for 2022 that can affect tax refund:

8 Changes in the number of dependents, employment or self-employment income and divorce, among other factors, may affect
your tax-filing status and refund. No additional stimulus payments. Unlike 2020 and 2021, there were no new stimulus
payments for 2022 so taxpayers should not expect to get an additional payment.

9 Some tax credits return to 2019 levels. This means that taxpayers will likely receive a significantly smaller refund
compared with the previous tax year. Changes include amounts for the Child Tax Credit (CTC), the Earned Income Tax Credit
(EITC) and the Child and Dependent Care Credit will revert to pre-COVID levels.

10 For 2022, the CTC is worth $2,000 for each qualifying child. A child must be under age 17 at the end of 2022 to be a
qualifying child. For the EITC, eligible taxpayers with no children will get $560 for the 2022 tax year. The Child and
Dependent Care Credit returns to a maximum of $2,100 in 2022.

1 No above-the-line charitable deductions. During COVID, taxpayers were able to take up to a $600 charitable donation tax
deduction on their tax returns. However, for tax year 2022, taxpayers who don’t itemize and who take the standard deduction,
won’t be able to deduct their charitable contributions.

12 More people may be eligible for the Premium Tax Credit. For tax year 2022, taxpayers may qualify for temporarily expanded
eligibility for the premium tax credit.

13 Eligibility rules changed to claim a tax credit for clean vehicles. Review the changes under the Inflation Reduction Act
of 2022 to qualify for a Clean Vehicle Credit.

Figure 8: Llamalndex example prompt for IRS chatbot guidelines.

25

Published as a conference paper at ICLR 2024

F SOFTWARE DEPENDENCIES
DSPy has the following core software requirements:

* Python: Version 3.9 or higher.

* HuggingFace Text Generation Inference server: Used for hosting language models from

the HuggingFace transformers library.
* OpenAl connectivity: Required for accessing GPT models.
CoIBERTV2 retrieval server: Serves as the default search index retriever.

For optimal performance:

* Access to GPUs is recommended for hosting the language and retrieval models.

» DSPy experiments specifically relied on NVIDIA A100-SXM GPUs with 80 GiBs mem-

ory.
For model fine-tuning, the following package versions were used:

* datasets-2.14.5

e transformers-4.32.0
* peft-0.5.0

e trl-0.7.1

G MODULES

G.1 PREDICT

class Predict(dspy.Module):

1
2 def __init__(self, signature, #**config):
3 self.signature = dspy.Signature(signature)
4 self.config = config
6 # Module Parameters.
self.1lm = dspy.ParameterLM(None) # use the default LM
8 self.demonstrations = dspy.ParameterDemonstrations ([])

10 def forward(self, xxkwargs):
11 Im = get_the_right_lm(self.1lm, kwargs)

12 signature = get_the_right_signature(self.signature, kwargs)

3 demonstrations = get_the_right_demonstrations(self.demonstrations, kwargs)
14

15 prompt = signature(demos=self.demos, *xkwargs)

16 completions = 1lm.generate(prompt, #**self.config)

17 prediction = Prediction.from_completions(completions, signature=signature)
18

19 if dsp.settings.compiling is not None:

20 trace = dict(predictor=self, inputs=kwargs, outputs=prediction)

21 dspy.settings.traces.append(trace)

23 return prediction

G.2 CHAIN OF THOUGHT

class ChainOfThought (dspy.Module):

1

2 def __init__(self, signature):

4 # Modify signature from ‘xinputs -> xoutputs‘ to ‘*inputs -> rationale, #*outputs
5 rationale_field = dspy.OutputField(prefix="Reasoning: Let’s think step by step.")
6 signature = dspy.Signature(signature).prepend_output_field(rationale_field)

8 # Declare a sub-module with the modified signature.

9 self.predict = dspy.Predict(self.signature)

1(

11 def forward(self, xxkwargs):

12 # Just forward the inputs to the sub-module.

13 return self.predict (**kwargs)

26

Published as a conference paper at ICLR 2024

H TELEPROMPTERS

H.1 BOOTSTRAPFEWSHOT

class SimplifiedBootstrapFewShot(Teleprompter):

1

2 def __init__(self, metric=None):

3 self.metric = metric

4

5 def compile(self, student, trainset, teacher=None):

6 teacher = teacher if teacher is not None else student

7 compiled_program = student.deepcopy ()

8

9 # Step 1. Prepare mappings between student and teacher Predict modules.

10 # Note: other modules will rely on Predict internally.
11 assert student_and_teacher_have_compatible_predict_modules(student, teacher)

12 name2predictor, predictor2name = map_predictors_recursively(student, teacher)
13

14 # Step 2. Bootstrap traces for each Predict module.

15 # We’ll loop over the training set. We’ll try each example once for simplicity.
16 for example in trainset:

17 if we_found_enough_bootstrapped_demos(): break

18

19 # turn on compiling mode which will allow us to keep track of the traces
20 with dspy.setting.context(compiling=True):

21 # run the teacher program on the example, and get its final prediction
22 # note that compiling=True may affect the internal behavior here

23 prediction = teacher (x*xexample.inputs())

24

25 # get the trace of the all interal Predict calls from teacher program
26 predicted_traces = dspy.settings. trace

27

28 # if the prediction is valid, add the example to the traces

29 if self.metric(example, prediction, predicted_traces):

30 for predictor, inputs, outputs in predicted_traces:

31 d = dspy.Example(automated=True, *xinputs, **outputs)

32 predictor_name = self.predictor2namel[id(predictor)]

33 compiled_program[predictor_name].demonstrations.append(d)

34

35

36 return compiled_program

H.2 BOOTSTRAPFEWSHOTWITHRANDOMSEARCH

class SimplifiedBootstrapFewShotWithRandomSearch(Teleprompter):

1

2 def __init__(self, metric = None, trials=16):

3 self.metric = metric

4 self.trials = trials

d

6 def compile(self, student, x, teacher=None, trainset, valset=None):
7 # we can do forms of cross-validation if valset is unset.

8 valset = trainset if valset is None else valset

10 candidates = []
11 for seed in range(self.trials):

12 # Create a new basic bootstrap few-shot program.

13 shuffled_trainset = shuffle(trainset, seed=seed)

14 tp = BootstrapFewShot(metric=metric, max_bootstrap_demos=random_size())
15 candidate_program = tp.compile(student, shuffled_trainset, teacher)
16

17 # Step 2: Evaluate the generated candidate program.

18 score = evaluate_program(candidate_program, self.metric, valset)

19 candidates.append((score, candidate_program))

2

21 # return the best candidate program.

22 return max(candidates, key=lambda x: x[@]1)[1]

27

Published as a conference paper at ICLR 2024

I EXAMPLES OF THE PROMPTS AUTOMATICALLY GENERATED BY DSPY

We include three example prompts bootstrapped by DSPy for the 11ama2-13b-chat experiments
in this paper in Figures 9, 10, and 11. These include the prompt automatically generated by DSPy
for GSMSK vanilla program compiled with bootstrap x2, the GSM8K CoT program compiled with
bootstrap, and the second-hop generate_query prompt for HotPotQA’s multihop program. All of
these, particularly their demonstrations’ labels and their selection, are generated by DSPy automat-
ically using 11ama2-13b-chat. Consider the first one, i.e. Figures 9. This shows that, even though
the program (vanilla) does not induce a chain of thought, the LM effectively leverages the nature of
the GSMS8K metric (checking for the final number for evaluation) and bootstraps its own reasoning-
based demonstration, which makes the program effective at test time. Next, consider the second-hop
query prompt bootstrapped by DSPy using 11ama2-13b-chat, shown in Figure 11. We hypothe-
size this prompt works effectively because it demonstrates the process of generating search queries
for two complex questions by producing two very different types of queries: a simplified question
(“When was the first...?”") and a keyword query (“Jeremy Paxman birth year””). This might allow the
LM to resolve different questions at test-time more effectively.

28

Published as a conference paper at ICLR 2024

Given the fields ‘question‘, produce the fields ‘answer‘.

1

2

3 -

4

5 Follow the following format.
6

7 Question: ${question}

8 Answer: ${answer}

9

10 -

12 Question: Jimmy and Irene go shopping for clothes on a Tuesday, where senior citizens get a 10% discount on their purchases.
Jimmy picks out 3 shorts from the $15 rack. Irene grabs 5 shirts from the $17 rack. How much money do they give to the
cashier?

13 Answer: Jimmy picks out 3 shorts at $15 each = $45. Irene grabs 5 shirts at $17 each = $85. Total cost = $45 + $85 = $130.
Since senior citizens get a 10% discount, they will pay 10% of $130 = $13. So, they will give the cashier $130 - $13 =

$117. ——-
14
15 -—=
16
17 Question:

Figure 9: Copy of the prompt automatically generated by DSPy for GSM8K Llama2-13b-chat
vanilla program compiled with bootstrapx2.

Given the fields ‘question‘, produce the fields ‘answer‘.

1

2

3 —

4

5 Follow the following format.

6

7 Question: ${question}

8 Reasoning: Let’s think step by step in order to $produce the answer. We ...

9 Answer: ${answer}

10
1 il

12

13 Question: Mark is baking bread. He has to let it rise for 120 minutes twice. He also needs to spend 10 minutes kneading

it and 30 minutes baking it. How many minutes does it take Mark to finish making the bread?
14 Reasoning: Let’s think step by step in order to find out how many minutes it takes Mark to finish making the bread. We know

that he needs to let it rise for 120 minutes twice, so that’s 240 minutes. Then, he needs to spend 10 minutes kneading it
and 30 minutes baking it. So, in total, it will take Mark 240 + 10 + 30 = 280 minutes to finish making the bread.
15 Answer: 280 ---

17 -—=

18

19 Question: Ben has $2000 for his business operations costs. He orders goods from his supplier and writes them a cheque for
$600. His debtor pays him $800 from the purchases they had made on credit. Mr. Ben then decides to do equipment maintenance
and spends $1200 on the whole operation. How much money is Mr. Ben remaining with?

20 Reasoning: Let’s think step by step in order to find out how much money Mr. Ben is remaining with. We know that he had
$2000 to begin with, and he spent $600 on goods from his supplier, so he has $2000 - $600 = $1400 left. Then, his debtor
paid him $800, so he has $1400 + $800 = $2200. Finally, he spent $1200 on equipment maintenance, so he has $2200 - $1200
= $1000 left.

21 Answer: $1000 ---

22

23 --=

24

25 ... several other demonstrations here ...

26

27 il

28

29 Question:

Figure 10: Shortened copy of the prompt automatically generated by DSPy for GSM8K Llama2-
13b-chat CoT program compiled with bootstrap.

29

Published as a conference paper at ICLR 2024

Given the fields ‘context‘, ‘question‘, produce the fields ‘search_query‘.

Follow the following format.

Context: ${context}

Question: ${question}

Reasoning: Let’s think step by step in order to ${produce the search_query}. We ...
10 Search Query: ${search_query}

o0 N oUW =

©

12 --=

13

14 Context:

15 [1] Twilight (novel series) | Twilight is a series of four vampire-themed fantasy romance novels by American author
Stephenie Meyer.

16 [2] Harper Connelly Mysteries | The Harper Connelly Mysteries is a series of fantasy mystery novels written by Charlaine
Harris, and first published in 2005.

17 [3] The Dark Heroine | The Dark Heroine is a series of vampire-themed fantasy romance novels written by English author
Abigail Gibbs, published by HarperCollins in 2012.

18

19 Question: In which year was the first of the vampire-themed fantasy romance novels for which The Twilight Saga: The
Official Illustrated Guide serves as a spin-off encyclopedic reference book first published?

20

21 Reasoning: Let’s think step by step in order to determine the year the first of the vampire-themed fantasy romance novels
was first published.

22

23 Search Query: When was the first of the vampire-themed fantasy romance novels published?

24

25 ---

26

27 Context:

28 [1] The Victorians | The Victorians - Their Story In Pictures is a 2009 British documentary series which focuses on

Victorian art and culture.

29 [2] The Caxtons | The Caxtons: A Family Picture is an 1849 Victorian novel by Edward Bulwer-Lytton that was popular in its
time.

30 [3] Victorian (comics) | The Victorian is a 25-issue comic book series published by Penny-Farthing Press and starting in
1999.

32 Question: The Victorians - Their Story In Pictures is a documentary series written by an author born in what year?
34 Reasoning: Let’s think step by step in order to produce the search query. We know that the documentary series is about
Victorian art and culture, and it was written and presented by Jeremy Paxman. Therefore, we need to find the year in which

Jeremy Paxman was born.

36 Search Query: Jeremy Paxman birth year

41 Context:

Figure 11: Shortened copy of the prompt automatically generated by DSPy for HotPotQA Llama2-
13b-chat multi-hop program (generating second hop query) compiled with bootstrap.

30

Published as a conference paper at ICLR 2024

J FUTURE WORK DIRECTIONS

As we discuss in Sec 2, this work is inspired by the role that abstractions and libraries for deep
learning played in the development of the field. Our goal for DSPy is to recreate that revolution
for what we call foundation model programming. To this end, we have started working on several
follow-up directions that expand and improve DSPy.

At a high level, we see highly promising directions in: (1) the implementation of new modules (cor-
responding to various new prompting techniques), (2) the systematic evaluation of a larger number
of advanced programs for open-ended tasks, (3) the addition of various automatic LM-based metrics
for optimization, (4) the addition of methods for better debugging and inspection and (5) for more
controlled generation (a la LMQL; Beurer-Kellner et al. 2023), and (6) the development a deeper
understanding of the tradeoffs associated with compiling with large vs. small LMs.

Beyond these, one of the key strengths of DSPy is the modularity between programs and
teleprompters (optimizers). The discussion in Sec 4 lays out several angles for building more so-
phisticated teleprompters, which can improve the quality of existing as well as new DSPy programs.

Better candidate generation. We envision a more systematic treatment of the variables to opti-
mize, e.g. instructions, demonstrations, string prefixes (e.g., “Let’s think step by step” for chain of
thought), and numerical hyperparameters (e.g., the number of passages to retrieve or the number of
candidate answers to generate). Future work may benefit from the way variables are defined in Op-
tuna (Akiba et al., 2019) and in the conceptual framework of Dohan et al. (2022) to allow expressing
these. Future work may also evaluate methods to generate more diverse or more challenging demon-
strations, including more sophisticated logic for bootstrapping (e.g., trying multiple variants of the
program) or filtering (e.g., only selecting examples that the zero-shot version of the program cannot
solve correctly).

Better parameter optimization. More sophisticated programs will likely benefit from more ad-
vanced optimization strategies. For instance, the Optuna teleprompter in DSPy may allow Bayesian
optimizations that exceed the quality achieved with random search. More research is required to
understand the tradeoffs of cost and quality in this case. Going a step beyond this, LMs can take a
more active role in optimization, beyond bootstrapping demonstrations. For instance, they can re-
vise instructions based on categories of common failures or attempt to simulate a notion of gradients
over multi-stage programs.

Better higher-order program optimizations. All programs in this paper were directed to a prompt
(or ensemble of optimized prompts) for each module. It is possible to treat different inputs for each
module more dynamically, directing them to more specialized prompts. While DSPy has an initial
teleprompter that treats different inputs more dynamically, this space is very large and warrants much
exploration. Beyond that, the ability to backtrack to correct mistakes and address LM feedback
accordingly is another promising direction.

In all of these, the references presented in Sec 2 may serve as powerful starting points for each
individual component (e.g., utilizing LM feedback), which DSPy can generalize and extend to deal
with arbitrary LM pipelines of declarative modules.

31

