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Abstract
The trade-off between regret and computational
cost is a fundamental problem for online kernel
regression, and previous algorithms worked on
the trade-off can not keep optimal regret bounds
at a sublinear computational complexity. In this
paper, we propose two new algorithms, AOGD-
ALD and NONS-ALD, which can keep nearly op-
timal regret bounds at a sublinear computational
complexity, and give sufficient conditions under
which our algorithms work. Both algorithms dy-
namically maintain a group of nearly orthogonal
basis used to approximate the kernel mapping,
and keep nearly optimal regret bounds by con-
trolling the approximate error. The number of
basis depends on the approximate error and the
decay rate of eigenvalues of the kernel matrix. If
the eigenvalues decay exponentially, then AOGD-
ALD and NONS-ALD separately achieves a re-
gret of O(

√
L(f)) and O(deff(µ) lnT ) at a com-

putational complexity in O(ln2 T ). If the eigen-
values decay polynomially with degree p ≥ 1,
then our algorithms keep the same regret bounds
at a computational complexity in o(T ) in the case
of p > 4 and p ≥ 10, respectively. L(f) is the
cumulative losses of f and deff(µ) is the effective
dimension of the problem. The two regret bounds
are nearly optimal and are not comparable.

1. Introduction
Online kernel learning in the regime of the square loss is an
important non-parametric online learning method (Kivinen
et al., 2004; Vovk, 2006; Sahoo et al., 2014). The learning
protocol can be formulated as a game between a learner
and an adversary. Before the game, the learner selects a
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reproducing kernel Hilbert space (RKHS) H induced by
a positive semidefinite kernel function (Aronszajn, 1950;
Shawe-Taylor & Cristianini, 2004). At each round t =
1, 2, . . . ,, the adversary sends an instance xt ∈ Rd to the
learner. Then the learner chooses a hypothesis ft ∈ H ⊂ H
and output ft(xt). After that the adversary reveals the true
output yt. The learner suffers a loss `(ft(xt), yt). The goal
is to minimize the regret defined as follows

∀f ∈ H, Reg(f) =

T∑
t=1

[`(ft(xt), yt)−`(f(xt), yt)]. (1)

One of the challenges minimizing the regret is to balance
the computational cost. Kernel online gradient descent
(KOGD) enjoys a regret of O(

√
L(f)) at a computational

complexity (space and per-round time) in O(dT ) (Zinke-
vich, 2003; Srebro et al., 2010; Zhang et al., 2019), where
L(f) =

∑T
t=1 `(f(xt), yt). O(

√
L(f)) implies the “small-

loss” bound (Wang et al., 2020; Zhang et al., 2022). Kernel
online Newton step (KONS) (Calandriello et al., 2017b) en-
joys a regret ofO(µ‖f‖2H+deff(µ) lnT ) at a computational
complexity in O(T 2), where µ > 0 is a regularization pa-
rameter and deff(µ) is called effective dimension depending
on the decay rate of eigenvalues of the kernel matrix (Capon-
netto & Vito, 2007; Rudi et al., 2015). The KAAR algorithm
(Gammerman et al., 2004) and kernel ridge regression algo-
rithm (Zhdanov & Kalnishkan, 2013) enjoy the same regret
bound and computational complexity with KONS. If the
eigenvalues decay exponentially, then deff(µ) = O(ln T

µ )
(Li et al., 2019). If the eigenvalues decay polynomially with
degree p ≥ 1, then deff(µ) = O((T/µ)1/p) (Jézéquel et al.,
2019a).

The O(dT ) and O(T 2) computational complexities are pro-
hibitive. Some approximate algorithms reduce the com-
putational complexity at the expense of regret (Lu et al.,
2016; Calandriello et al., 2017b;a). The FOGD algorithm
approximating KOGD, achieves a regret of Õ(

√
TL(f)/D)

at a computational complexity in O(dD) where D is a tun-
able parameter (Lu et al., 2016). Achieving the optimal
regret bound requires D = Ω(T ). The Sketched-KONS
algorithm approximating KONS, reduces the computational
complexity by a factor of γ−2, but increases the regret by
γ > 1 (Calandriello et al., 2017b). The PROS-N-KONS
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algorithm approximating KONS, increases the regret by
a factor of Õ(deff(α)) and suffers a space complexity in
Õ(deff(α)2) and an average per-round time complexity
in Õ(deff(α)2 + deff(α)4/T ) (Calandriello et al., 2017a),
where α > 0. Although Sketched-KONS and PROS-N-
KONS can ensure a o(T ) computational complexity, they
can not achieve the optimal regret bound. The PKAWV
algorithm keeps the regret of KONS at a computational com-
plexity in Õ(Tdeff(α) + d2

eff(α)) (Jézéquel et al., 2019a).
Although PKAWV reduces the O(T 2) computational com-
plexity, it can not ensure a o(T ) computational complexity.
Besides, PKAWV must store all of the observed examples.

In summary, existing approximate algorithms can not
achieve nearly optimal regret bounds and a o(T ) compu-
tational complexity simultaneously. It is important to rise
the question: Is it possible to achieve nearly optimal regret
bounds at a computational complexity in o(T )? To be spe-
cific, the question is equivalent to the following two. (1)
Is it possible to achieve a regret of O(

√
L(f)) at a o(T )

computational complexity? O(
√
L(f)) matches the lower

bound in the stochastic setting (Srebro et al., 2010). (2) Is
it possible to achieve a regret of O(µ‖f‖2H + deff(µ) lnT )
at a o(T ) computational complexity? The regret bound
is optimal up to lnT (Jézéquel et al., 2019a). If the
eigenvalues of the kernel matrix decay exponentially, then
O(µ‖f‖2H + deff(µ) lnT ) = O(ln2 T ). If the eigenvalues
decay polynomially with degree p ≥ 1, then O(µ‖f‖2H +

deff(µ) lnT ) = O(T
1

1+p lnT ) where µ = T
1

1+p .

1.1. Main Results

In this paper, we propose two algorithms, AOGD-ALD
and NONS-ALD, and give conditions under which the
answers are affirmative. The computational complexities
of both algorithms depend on the decay rate of eigenval-
ues of the kernel matrix. If the eigenvalues decay expo-
nentially, then AOGD-ALD and NONS-ALD separately
achieves a regret of O(

√
L(f)) and O(deff(µ) lnT ) at a

computational complexity in O(ln2 T ). If the eigenval-
ues decay polynomially with degree p ≥ 1, then AOGD-
ALD keeps the same regret bound at a computational
complexity in O(min{dT

2
p + T

4
p , dT}), and NONS-ALD

achieves a regret of O(T
1

1+p lnT ) at a space complexity in

O(T
2(1+5p)
p(1+p) ) and an average per-round time complexity in

O(T
2(1+5p)
p(1+p) + T

4(1+5p)
p(1+p)

−1). AOGD-ALD and NONS-ALD
achieve a computational complexity in o(T ) in the case of
p > 4 and p ≥ 10, respectively. We summary the related
results in Table 1.

1.2. Technical Contributions

AOGD-ALD approximates KOGD and NONS-ALD approx-
imates KONS. We use the approximate linear dependence

condition (Engel et al., 2004) to dynamically maintain a
group of nearly orthogonal basis. The computational com-
plexities of our algorithms have a quadratic dependence on
the number of basis which depends on the decay rate of
eigenvalues of the kernel matrix (Li & Liao, 2022). For
AOGD-ALD, we use the orthogonal basis to approximate
the gradients. For NONS-ALD, we use the Nyström projec-
tion with the orthogonal basis to construct explicit feature
mapping. Since the number of basis may grow with t, the
feature mapping must change dynamically. The first techni-
cal challenge is how to incrementally update the model pa-
rameter wt and the covariance matrix At when the explicit
feature mapping changes. Our first technical contribution
is a projection scheme which projects wt ∈ Rj onto Rj+1,
and projects At ∈ Rj×j onto R(j+1)×(j+1). The regret
analysis is also challenging, since it requires to control the
regret induced by the projection. Our second technical con-
tribution is a non-trivial and novel analysis for the regret
induced by the projection. We proved that it only depends
on the error related to the ALD condition and can be omitted
by controlling the error. The approximate scheme of NONS-
ALD provides a new approach for both online and offline
kernel learning which might be of independent interest.

2. Preliminary and Problem Setting
Let X = {x ∈ Rd|‖x‖2 < ∞} and IT = {(xt, yt)t∈[T ]}
be a sequence of examples, where [T ] = {1, . . . , T},
xt ∈ X , |yt| ≤ Y . Let κ(·, ·) : Rd × Rd → R≥0 be a
positive semidefinite kernel function. We assume that κ
is normalized and κ(x,x) = 1. Denote by H the RKHS
associated with κ, such that (i) 〈f, κ(x, ·)〉H = f(x); (ii)
H = span(κ(xt, ·) : t ∈ [T ]). We define 〈·, ·〉H as the inner
product inH, which induces the norm ‖f‖H =

√
〈f, f〉H.

Denote by H = {f ∈ H|‖f‖H ≤ U}. U is a constant. The
square loss function is `(f(x), y) = (f(x)− y)2.

2.1. Effective Dimension

κ induces an implicit feature mapping φ(·) : X → Rn,
where n may be infinite. The orthogonality of {φ(xt)}Tt=1

characterizes the hardness of the data. A usual measure of
the orthogonality is the effective dimension (Calandriello
et al., 2017b).

Definition 2.1 (µ-effective dimension). Given instances
{xτ}Tτ=1, a kernel function κ and a regularization parameter
µ > 0, the ridge leverage scores (RLS) of xτ is defined by

rT,τ (µ) = e>T,τKT (KT + µIT )−1eT,τ , τ = 1, . . . , T,

where KT is the kernel matrix and eT,τ ∈ {0, 1}T . Only
the τ -th element of eT,τ is one. The µ-effective dimension
is deff(µ) :=

∑T
τ=1 rT,τ (µ) = tr(KT (KT + µIT )−1).

Let λ1 ≥ λ2 ≥ . . . ≥ λT be the eigenvalues of KT . If
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Eigenvalues condition Algorithm Regret bound Computational complexity #Buffer

decay exponentially:

PKAWV O(ln2 T ) O(T ln3 T ) T

∃r ∈ (0, 1), R0 = Θ(T ),

Sketched-KONS O(γ ln2 T ) O(T 2/γ2) O(T/γ)

s.t. ∀i ∈ [T ], λi ≤ R0r
i

Pros-N-KONS O(ln5 T ) O(ln6 T ) O(ln3 T )

FOGD Õ(
√
TL(f)/D) O(dD) 0

AOGD-ALD O(
√
L(f)) O(ln2 T ) O(lnT )

NONS-ALD O(ln2 T ) O(ln2 T ) O(lnT )

decay polynomially:

PKAWV O(T
1

1+p lnT ) Õ(T 2r + T 1+r), r = 2p
p2−1 T

∃p ≥ 1, R0 = Θ(T ), s.t.

Sketched-KONS O(γT
1

1+p lnT ) O(T 2/γ2) O(T/γ)

∀i ∈ [T ], λi ≤ R0i
−p

Pros-N-KONS O(T
3p+1

(1+p)2 ln2 T ) O(T
4p

(1+p)2 ln4 T ) O(T
2p

(1+p)2 ln2 T )

FOGD Õ(
√
TL(f)/D) O(dD) 0

AOGD-ALD O(
√
L(f)) O(dT

2
p + T

4
p ), p > 4 O(T

2
p )

NONS-ALD O(T
1

1+p lnT ) O(T
2(1+5p)
p(1+p) ), p ≥ 10 O(T

1+5p
p(1+p) )

Table 1. Regret bound and computational complexity (space complexity and (averaged) per-round time complexity) of online kernel
regression algorithms. {λi}Ti=1 are the eigenvalues of the kernel matrix. #Buffer is the number of stored examples.

λi decays exponentially, then deff(µ) = O(ln T
µ ) (Li et al.,

2019). If λi decays polynomially with degree p ≥ 1, then
deff(µ) = O((T/µ)1/p) (Jézéquel et al., 2019a).

2.2. Online Kernel Regression

The protocol of online kernel regression is as follows: at any
round t, an adversary sends an instance xt ∈ X . An learner
chooses a hypothesis ft ∈ H, and makes the prediction
ŷt = ft(xt). Then the adversary reveals the true output yt.
We aim to minimize the regret w.r.t. any f ∈ H, denoted
by Reg(f) defined in (1). It is worth mentioning that com-
peting with f ∈ H does not weaken the definition of regret.
Note that |yt| ≤ Y . It is natural to require |f(xt)| ≤ Y .
Since f(xt) ≤ ‖f‖H · ‖κ(xt, ·)‖H ≤ ‖f‖H. We only need
to consider all f such that ‖f‖H ≤ Y . To this end, we can
define U ≥ Y .

3. Approximating KOGD
In this section, we propose a deterministic approximation
of KOGD, named AOGD-ALD.

3.1. Algorithm

According to the protocol of online kernel regression, the
key is to compute ft+1 from ft. KOGD (Zinkevich, 2003)
executes the following update rule,

f̄t+1 =ft − ηt∇`(ft(xt), yt), (2)

ft+1 = min

{
1,

U

‖f̄t+1‖H

}
f̄t+1, (3)

where ∇`(ft(xt), yt) = `′(ft(xt), yt)κ(xt, ·) and ηt is
a time-variant learning rate. Note that `′(ft(xt), yt) =
2(ft(xt)− yt). ft+1 can be recursively rewritten as ft+1 =

∑t
τ=1 aτκ(xτ , ·). To store ft+1, we must store some ob-

served examples, denoted by St+1 = {(xτ , yτ ), τ ≤ t :
aτ 6= 0}. For simplicity, we call St+1 the buffer. The
computational complexity is O(dt). To reduce the compu-
tational cost, we must limit the size of St+1. Next, we use
the approximate linear dependence (ALD) condition (Engel
et al., 2004) to maintain St+1.

At the beginning of round t, let St be the buffer. If
∇`(ft(xt), yt) 6= 0, then we must decide whether (xt, yt)
will be added into St. The ALD condition measures
whether κ(xt, ·) is approximate linear dependence with
ΦSt = (κ(x, ·)x∈St). We compute the projection error(

min
β∈R|St|

‖ΦStβ − κ(xt, ·)‖2H

)
=: αt. (4)

The solution 1 is

β∗t = K−1
St

Φ>Stκ(xt, ·),

where KSt is the kernel matrix defined on St. We introduce
a threshold for αt and define the ALD condition as follows

ALDt : αt ≤ α, α ∈ (0, 1]. (5)

If ALDt holds, then κ(xt, ·) can be well approximated by
ΦStβ

∗
t . Thus we replace (2) with (6),

f̄t+1 = ft − ηt`′(ft(xt), yt) ·ΦStβ
∗
t . (6)

In this case, we do not add (xt, yt) into St, i.e., St+1 = St.

If ALDt does not hold, that is, κ(xt, ·) can not be well
approximated by ΦStβ

∗
t , then we still execute (2). In this

case, we add (xt, yt) into St, i.e., St+1 = St ∪ {(xt, yt)}.
1If St = ∅, then we set β∗t = 0 and αt = 1.
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Algorithm 1 AOGD-ALD
Input: U , α, B0.
Initialize: f1 = 0
1: for t = 1, . . . , T do
2: Receive xt

3: Compute ŷt = ft(xt)
4: Compute ηt
5: if |St| < B0 then
6: Compute αt

7: if ALDt holds then
8: Compute ft+1 following (6) and (3)
9: else

10: Compute ft+1 following (2) and (3)
11: Update St+1 = St ∪ {(xt, yt)}
12: end if
13: else
14: Compute ft+1 following (2) and (3)
15: Update St+1 = St ∪ {(xt, yt)}
16: end if
17: end for

The computational complexity is O(d|St| + |St|2). It has
been proved that |St| depends on the decay rate of eigen-
values of the kernel matrix KT . If the eigenvalues decay
slowly, then it is possible that |St| �

√
T . In this case, the

computational complexity is Ω(T ). To address this issue,
we set a threshold B0 for |St|. If |St| ≥ B0, then we always
execute (2).

The learning rate ηt is defined as follows

ηt =
U√

1 +
∑t
τ=1 ‖∇̂τ‖2H

,

∇̂τ =

{
`′(fτ (xτ ), yτ ) ·ΦSτβ

∗
τ , if ALDτ holds,

`′(fτ (xτ ), yτ ) · κ(xτ , ·), otherwise.

We name this algorithm AOGD-ALD (Approximating ker-
nelized Online Gradient Descent by the ALD condition),
and give the pseudo-code in Algorithm 1.

3.2. Regret Bound

We first give the size of buffer maintained by the ALD
condition.
Lemma 3.1 (Li & Liao (2022)). Let S1 = ∅ and ALDt

be defined in (5). For all t ≤ T − 1, if ALDt does not
hold, then St+1 = St ∪ {(xt, yt)}. Otherwise, St+1 = St.
Let {λi}Ti=1 be the eigenvalues of KT sorted in decreasing
order. If {λi}Ti=1 decay exponentially, that is, there is a
constant R0 > 0 and 0 < r < 1 such that λi ≤ R0r

i,

then |ST | ≤ 2
ln (

C1R0
α )

ln r−1 . If {λi}Ti=1 decay polynomially,
that is, there is a constant R0 > 0 and p ≥ 1, such that
λi ≤ R0i

−p, then |ST | ≤ e(C2R0

α )
1
p . In both cases, C1 and

C2 are constants, and R0 = Θ(T ).

Next we give the regret bound and the computational com-
plexity of AOGD-ALD.

Theorem 3.2. Let B0 = b(
√
d2 + 4dT − d)/2c and α =

T−1. For any IT satisfying T > ln2 T , the regret of AOGD-
ALD satisfies,

∀f ∈ H, Reg(f) = O
(
U
√
L(f) + U + U2

)
.

If {λi}Ti=1 decay exponentially, then the computational com-
plexity is O(d lnT + ln2 T ). If {λi}Ti=1 decay polynomially
with degree p ≥ 1, then the computational complexity is
O
(

min{dT
2
p + T

4
p , dT}

)
.

Let f∗ = argminf∈HL(f). O(
√
L(f∗)) is called “small-

loss” bound (Orabona et al., 2012; Lykouris et al., 2018;
Lee et al., 2020; Wang et al., 2020; Zhang et al., 2022). The
data-dependent bound is never worse than the worst-case
bound i.e., O(

√
T ). If we select a good kernel function such

that L(f∗)� T , then we can obtain a regret of o(
√
T ). If

LT (f∗) = 0, then we obtain a regret of O(1).

3.3. Comparison with Previous Results

The challenge of obtaining a regret of O(
√
L(f)) is the

computational cost. KOGD achieves this regret bound at
a computational complexity in O(dT ) (Zinkevich, 2003).
With probability at least 1 − δ, FOGD (Lu et al., 2016)

achieves a regret of O(
√
L(f) +

√
TL(f) ln 1

δ√
D

) at a compu-
tational complexity in O(dD). We can define D = o(T )
which yields a suboptimal regret bound. For completeness,
we reanalyze the regret of FOGD in the Appendix. Theorem
3.2 shows that if the eigenvalues decay exponentially or
polynomially with degree p > 4, AOGD-ALD achieves the
optimal regret at a computational complexity in o(T ).

Note that L(f∗) depends on {(xt, yt)}Tt=1, while deff(µ)
depends on {xt}Tt=1. In general, they are not comparable.
Thus it is not intuitive to compare AOGD-ALD with Pros-N-
KONS (Calandriello et al., 2017a) and PKAWV (Jézéquel
et al., 2019a). We just explain that AOGD-ALD provides
a new regret-computational cost trade-off. Table 1 shows
that the computational complexity of Pros-N-KONS can be
smaller than AOGD-ALD, but its regret bound is worse in
the case of p ≤ 2 +

√
5. The computational complexity of

PKAWV is always larger than AOGD-ALD, but its regret
bound may be better for p > 1. In the case of L(f∗)� T ,
the regret bound of AOGD-ALD is also very small.

4. Approximating KONS
The square loss function is exp-concave. Thus second-order
algorithms, such as KONS, can obtain a regret of O(µ +
deff(µ) lnT ). In this section, we propose a deterministic
approximation of KONS, named NONS-ALD.
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Algorithm 2 KONS
Input: A0 = µI, f1 = 0.
1: for t = 1, . . . , T do
2: Receive xt

3: Compute ŷt = ft(xt)
4: Update At = At−1+ηt∇`(ft(xt), yt)(∇`(ft(xt), yt))

>

5: Compute ft+1 = ft −A−1
t ∇`(ft(xt), yt)

6: end for

4.1. Kernelized ONS

For simplicity, we use the hypothesis spaceH. At the end
of round t, the KONS algorithm (Calandriello et al., 2017b)
compute ft+1 by the following rule,

At =At−1 + ηt∇`(ft(xt), yt)(∇`(ft(xt), yt))>,
ft+1 =ft −A−1

t ∇`(ft(xt), yt),
(7)

where A0 = µI. We give the pseudo-code in Algorithm 2.

KONS nearly stores all of the observed examples. At any
round t, the computational complexity is O(dt + t2). To
reduce the computational complexity, a natural idea is to
use the ALD condition to maintain St. However, such a
approach still has a O(t · |St|) computational complexity.
Next we briefly explain the reason.

At any round t, if ALDt holds, then we can approximate
κ(xt, ·) by ΦStβ

∗
t and St keeps unchanged. Then we have

At = At−1 + ηt(`
′(ft(xt), yt))

2ΦStβ
∗
t (ΦStβ

∗
t )>. The

key is to compute ft+1(xt+1).

Theorem 4.1. Let gt = `′(ft(xt), yt) and

φ̂(xt) =

{
φ(xt) = κ(xt, ·) if ALDt does not hold,
ΦStβ

∗
t otherwise.

Let ∇̂t = gtφ̂(xt) and Φ̂t = (
√
η1∇̂1, . . . ,

√
ηt∇̂t). Then

ft+1(xt+1) =
−1

µ

t∑
τ=1

gτ φ̂(xτ )>φ(xt+1)+

1

µ

t∑
τ=1

gτ φ̂(xτ )>Φ̂τ (Φ̂>τ Φ̂τ + µI)−1Φ̂>τ φ(xt+1).

Computing the first term requires time inO(d|St|). Comput-
ing the second term requires time in O(t|St|). The computa-
tional challenge comes from that KONS runs in the implicit
feature space Rn in which we can not explicitly store and
incrementally update At. To address this issue, we use the
Nyström projection to approximate the kernel mapping φ(·),
and run online Newton step (ONS) in an explicit feature
space. To be specific, let φj(·) : X → Rj be an approximate
kernel mapping. Then At = At−1 + ηtg

2
t φj(xt)φ

>
j (xt).

We only store At ∈ Rj×j , j < ∞ and can incrementally
update At. The computational complexity is O(j2).

4.2. Nyström Projection

We briefly introduce how the Nyström projection constructs
explicit feature mapping (Williams & Seeger, 2001).

We select j columns from KT to form a matrix KT,j ∈
RT×j , and select the corresponding j rows from KT to
form a matrix K>T,j ∈ Rj×T . Let S(j) contain the selected
instances and KS(j) ∈ Rj×j be the crossing matrix whose
SVD is KS(j) = US(j)ΣS(j)U

>
S(j). The Nyström projec-

tion approximates KT by

KT ≈KT,jK
+
S(j)K

>
T,j

=(Σ
− 1

2

S(j)U
>
S(j)Φ

>
S(j)ΦT )>Σ

− 1
2

S(j)U
>
S(j)Φ

>
S(j)ΦT .

ΦT = (φ(xt)t∈[T ]) ∈ Rn×T and ΦS(j) = (φ(x)x∈S(j)) ∈
Rn×j . Denote by PS(j) = ΦS(j)US(j)Σ

−1
S(j)U

>
S(j)Φ

>
S(j)

the projection matrix onto the column space of ΦS(j). The
approximate scheme defines an explicit feature mapping

φj(·) : X → P
1
2

S(j)φ(·) ∈ Rj ,

in which P
1
2

S(j) = Σ
− 1

2

S(j)U
>
S(j)Φ

>
S(j). It is obvious that the

approximation error depends on the selected j columns, or
the crossing matrix. In the next subsection, we will use the
ALD condition to select columns.

4.3. Column Selecting by the ALD Condition

At the beginning of the t-th round, assuming that |St| = j.
Denote by St = S(j). We first decide whether xt will be
added into S(j). Solving (4), we obtain

β∗j (t) = K−1
S(j)Φ

>
S(j)φ(xt).

If the ALDt condition holds, that is

αt =
∥∥ΦS(j)β

∗
j (t)− κ(xt, ·)

∥∥2

H ≤ α,

then S(j) keeps unchanged. We use KS(j) as the cross-

ing matrix and defined φj(xt) = P
1
2

S(j)φ(xt). If the
ALDt condition does not hold, then we execute St+1 =
St ∪ {(xt, yt)}, and denote by St+1 = S(j + 1). We will
construct explicit feature φj+1(xt).

4.4. Algorithm

Let Wt = {f ∈ H : |f(xt)| ≤ U} (Luo et al., 2016;
Calandriello et al., 2017a). For each f ∈ H, |f(xt)| ≤
‖f‖H‖φ(xt)‖H ≤ U . Thus H ⊆ Wt. Our algorithm
will run in {Wt}Tt=1 not H, since projection onto Wt is
computationally more efficient.

We divide the time horizon {1, . . . , T} into different epochs.

T0 =
{
s1, . . . , sj . . . , sJ : ALDsj does not hold

}
,

Tj = {sj , sj + 1, . . . , sj+1 − 1}, j = 1, 2, . . . , J,
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where we define s1 = 1 and sJ+1 − 1 = T . Thus
{1, . . . , T} = ∪Jj=1Tj . For any t ∈ Tj , let St = S(j) =
{xs1 , . . . ,xsj}. ∀j ∈ [J ], t ∈ Tj \ {sj}, the ALDt condi-
tion holds. Besides, it is obvious that κ(xsj , ·) ∈ ΦS(j).

The main idea of our algorithm is to run ONS on Tj , j ∈ [J ].
Next we consider a fixed epoch Tj . At the beginning of
round t, we compute φj(xt). Our algorithm maintains a
linear hypothesis fj,t(·) = w>j (t)φj(·), where wj(t) ∈ Rj .
The prediction is given by ŷt = fj,t(xt). For simplicity, let
gj(t) = 2(ft,j(xt)− yt), and

∇j(t) = ∇`(fj,t(xt), yt) = gj(t)φj(xt).

We execute the following updating
Aj(t) = Aj(t− 1) + ηtg

2
j (t)φj(xt)φ

>
j (xt),

w̃j(t+ 1) = wj(t)−A−1
j (t)φj(xt) ∈ Rj ,

wj(t+ 1) = PWt+1(w̃j(t+ 1)),

where PWt+1(·) is a projection operator defined as follows

wj(t+ 1) = arg min
w∈Wt+1

‖w − w̃j(t+ 1)‖2Aj(t)
. (8)

The initial configurations are denoted by Aj(sj − 1) and
wj(sj). When we enter Tj from Tj−1, the dimension of
explicite feature mapping changes from j − 1 to j which in-
duces a technical challenge on initializing the configurations.
To be specific, we can not use fj−1,sj = w>j−1(sj)φj−1(·)
to prediction xt, t ∈ Tj . To address this issue, a simple
approach is the restart technique. We just need to run a
new ONS in Tj , which implies Aj(sj − 1) = αI and
wj(sj) = 0. This idea is adopted by PROS-N-KONS
(Calandriello et al., 2017a). The simple restart technique
increases the regret by a factor of O(J). Intuitively, the
restart technique discards all of the information contained in
wj−1(sj) ∈ Rj−1 and Ar(sr+1 − 1) ∈ Rr×r, r ≤ j − 1.
Next we redefine the initial configurations. The main idea
is to project wj−1(sj) onto Rj and project Ar(sr+1 − 1)
onto Rj×j , r ≤ j − 1.

The definition of Aj(sj − 1) is intuitive. For any t ∈ Tj ,
the updating rule of ONS is as follows,

Aj(t) = Aj(sj − 1) +

t∑
τ=sj

ητg
2
j (τ)φj(xτ )φ>j (xτ ).

The ideal value of Aj(sj − 1) should be

Aj(sj − 1) = µI +

j−1∑
r=1

∑
t∈Tr

ηtg
2
r(t)φj(xt)φ

>
j (xt),

where φj(xt) = P
1
2

S(j)φ(xt). However, such an approach

must store {xt}
sj−1
t=1 which induce a O(dT ) computational

complexity. Recalling that the ALD condition guarantees
that φ(xt) ≈ ΦS(r)β

∗
r (t). It is natural to define

∀t ∈ Tr, φ̃j(xt) = P
1
2

S(j)ΦS(r)β
∗
r (t). (9)

We can define Aj(sj − 1) as follows,

Aj(sj − 1) = µI +

j−1∑
r=1

∑
t∈Tr

ηtg
2
r(t)φ̃j(xt)φ̃

>
j (xt). (10)

In this way, we only use the instances in St. The computa-
tional complexity is O(d|St|+ |St|2).

It is less intuitive to define wj(sj). The projection of any
f ∈ H onto the column space of ΦS(j−1) and ΦS(j) are
fj−1 = PS(j−1)f and fj = PS(j)f , respectively. Denote
by fj−1 = w>j−1φj−1(·) and fj = w>j φj(·). We can prove

that wj−1 = P
1
2

S(j−1)(P
1
2

S(j))
>wj . Thus it must be

wj−1(sj) = P
1
2

S(j−1)(P
1
2

S(j))
>wj(sj). (11)

Besides, at the (sj − 1)-th round, wj−1(sj) must be the
solution of the following projection

wj−1(sj) = PWsj
(w̃j−1(sj)). (12)

To this end, we need to compute φj−1(xsj ). Note that
ALDsj does not hold. Although κ(xsj , ·) can not be well
approximated by ΦS(j−1), the goal of (12) is just to ensure
wj(sj) ∈ Wsj . Both the property in (11) and (12) are
critical to the regret analysis.

We name this algorithm NONS-ALD (Nyström Online New-
ton Step using the ALD condition), and give the pseudo-
code in Algorithm 3.

4.5. Theoretical Analysis

4.5.1. REGRET ANALYSIS

We first show an equivalent definition of (10).

Lemma 4.2. For any j = 1, . . . , J , the approximate
scheme (10) is equivalent to the following scheme

Aj(sj − 1) = µI +Qj,j−1(Aj−1(sj − 1)− µI)Q>j,j−1

where Qj,j−1 = P
1
2

S(j)(P
1
2

S(j−1))
>.

Storing Aj(sj−1) andQj,j−1 requires space inO(j2), and
computing Aj(sj − 1) requires time in O(j3).

Lemma 4.3. For any j = 1, . . . , J , let wj−1(sj) satisfy
(12), and

wj(sj) = P
1
2

S(j)(P
1
2

S(j−1))
>wj−1(sj).

Then wj(sj) ∈Wsj and (11) is satisfied.

6
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Algorithm 3 NONS-ALD
Input: µ, α, U , Y
Initialize: j = 0, w1(1) = 0,A1(0) = µ, S(0) = ∅, flag = 1
1: for t = 1, . . . , T do
2: Receive xt

3: Compute β∗j (t) = arg minβ∈Rj ‖φ(xt)−ΦS(j)β‖2H
4: Compute αt = κ(xt,xt)− φ(xt)

>ΦS(j)β
∗
j (t)

5: if αt > α then
6: S(j + 1) = S(j) ∪ {(xt, yt)}
7: flag = 1
8: j = j + 1
9: else

10: if flag == 1 then
11: sj = t
12: (US(j),ΣS(j))← SVD(KS(j))
13: flag = 0

14: Compute Qj,j−1 = P
1
2
S(j)(P

1
2
S(j−1))

>

15: Compute Aj(sj − 1) follows Lemma 4.2

16: Compute wj(sj) = P
1
2
S(j)(P

1
2
S(j−1))

>wj−1(sj)

17: end if
18: Compute φj(xt) = Σ

− 1
2

S(j)U
>
S(j)Φ

>
S(j)φ(xt)

19: Output ŷt = w>j (t)φj(xt)
20: Compute∇j(t) = `′(ŷt, yt) · φj(xt)
21: Update Aj(t) = Aj(t− 1) + ηt∇j(t)∇>j (t)

22: Compute w̃j(t+ 1) = wj(t)−A−1
j (t)∇j(t)

23: Compute φj(xt+1) = Σ
− 1

2
S(j)U

>
S(j)Φ

>
S(j)φ(xt+1)

24: Compute wj(t+ 1) following (8)
25: end if
26: end for

Remark 4.4. An empirical version of Pros-N-KONS (Ca-
landriello et al., 2017a), named CON-KNOS, uses a differ-
ent wj(sj). CON-KNOS uses wj−1(sj − 1) to construct
wj(sj), while our algorithm uses wj−1(sj) to construct
wj(sj). Our regret analysis shows that wj−1(sj) is neces-
sary for obtaining the nearly optimal regret bound.

Next we measure the quality of columns selected by the
ALD condition using spectral norm error bounds.

Lemma 4.5 (Spectral Norm Error Bound). Let α ≤ 1. For
all j = 1, . . . , J , let ΦTj = (φ(xt))t∈Tj and PS(j) be the
projection matrix onto the column space of ΦS(j).

∀j ∈ [J ],
∥∥∥Φ>TjΦTj −Φ>TjPS(j)ΦTj

∥∥∥
2
≤ |Tj | · α. (13)

Let Φ̃T =
(

(φ̃J(xt))t∈T1 , . . . , (φ̃J(xt))t∈TJ

)
∈ RJ×T ,

where φ̃J(·) follows (9). Then∥∥∥KT − Φ̃>T Φ̃T

∥∥∥
2
≤ T
√
α. (14)

We call (14) global spectral norm error bound. We call
(13) local spectral norm error bound. According to Lemma
4.5, we can prove that the regret induced by our projection
scheme (i.e., projecting Aj−1(sj − 1) and wj−1(sj)) is

controlled by the parameter α. Thus optimizing α will yield
the desired regret bounds.

Lemma 4.5 gives deterministic spectral norm error bounds,
while most of previous results only hold in a high probability,
such as the uniform column sampling (Drineas & Mahoney,
2005; Jin et al., 2013) and the RSL sampling (Calandriello
et al., 2017a). If the instances could be observed beforehand,
such as offline learning, then we can obtain a goal spectral
norm error bound stated in (13). Such a result might be
of independent interest. In this case, previous work only
proved a global spectral norm error bound ofO(T

√
α) (Sun

et al., 2012).

Theorem 4.6. Let U ≥ Y and ηt = 1
4(U2+Y 2) for all

t ∈ [T ]. Assuming that |ST | = J . For any f ∈ H, the
regret of NONS-ALD satisfies

Reg(f) ≤(
µ

2
+ Tα)‖f‖2H +

1

2
deff(

µ

2
)

(
1 + ln

2T + µ

µ

)
+
T 2
√
α√

2µ
+
√

8(U2 + Y 2)‖f‖H · T
√
α.

The space complexity isO(dJ+J2). The average per-round
time complexity is O(dJ + J2 + J4

T ).

We will omit the factor O(dJ) in the discussion on compu-
tational complexity. Next we give the values of µ and α and
derive nearly optimal regret bounds.

Corollary 4.7. Let α = ln4 T
T 4 and µ > 0 be a constant. If

{λi}Ti=1 decay exponentially, i.e., λi ≤ R0r
i, R0 = Θ(T ),

then the regret of NONS-ALD satisfies

∀f ∈ H, Reg(f) = O(‖f‖2H + ln2 T ).

The space and average per-round time complexity is
O(ln2 T ).

If {λi}Ti=1 decay polynomially, then we must tune µ and α.

Corollary 4.8. If {λi}Ti=1 decay polynomially with degree
p ≥ 1, i.e., λi ≤ R0i

−p, R0 = Θ(T ), then let µ = T
1

1+p

and α = T−
4p

1+p . The regret of NONS-ALD satisfies

∀f ∈ H, Reg(f) = O
(
T

1
1+p lnT

)
.

The space complexity is O(T
2(1+5p)
p(1+p) ), and the average per-

round time complexity is O(T
2(1+5p)
p(1+p) + T

4(1+5p)
p(1+p)

−1).

It is worth mentioning that for all p ≥ 10, the space
complexity and the average per-round time complexity

is O(T
2(1+5p)
p(1+p) ) = o(T ). This is the first algorithm that

achieves a nearly optimal regret bound at a sublinear com-
putational complexity. However, the computational com-
plexity becomes worse for p < 10. It is left to further work

7



Nearly Optimal Algorithms with Sublinear Computational Complexity for Online Kernel Regression

to achieve the same regret bound at a o(T ) computational
complexity in the case of p < 10.

The regret bounds in Corollary 4.7 and Corollary 4.8 recov-
ery the regret bounds of KONS (Calandriello et al., 2017b).
Our regret bounds are optimal up to lnT . The most impor-
tant improvement is the computational complexity. KONS
requires a O(T 2) computational complexity.

4.5.2. COMPARISON WITH MORE RESULTS

We compare our algorithm with Pros-N-KONS (Calan-
driello et al., 2017a) and PKAWV (Jézéquel et al., 2019a).

With probability at least 1− δ, Pros-N-KONS achieves

∀f ∈ H,Reg(f) ≤ µ

2
J‖f‖2H + J · deff(µ) ln(T ) +

Tα

µ
,

where J = O(deff(α) · ln2 T
δ ). The space complexity

is O(J2). Pros-N-KONS executes the SVD operations
J times. Thus the average per-round time complexity is
O(J2 + J4

T ). The factor O(ln2 T
δ ) on J is induced by

the RLS sampling (see Proposition 1 in Calandriello et al.
(2017a)) which is a random method. Thus O(ln2 T

δ ) is un-
avoidable. Our algorithm uses the ALD condition which is
a deterministic method, and does not have the factor.

If {λi}Ti=1 decay exponentially, then deff(α) = O(ln T
α ).

Let µ be a constant and α = µ
T . Pros-N-KONS enjoys a

regret of O(ln5 T ) at a computational complexity (space
complexity and average time-complexity) in O(ln6 T ). Our
algorithm enjoys a regret of O(ln2 T ) at a computational
complexity in O(ln2 T ).

If {λi}Ti=1 decay polynomially, then deff(α) = O((Tα )
1
p ).

We solve the following two equations

µ =

(
T

µ

) 1
p

, µ

(
T

α

) 1
p

=
Tα

µ
.

The solutions are µ = T
1

1+p and α = T
− p

2−2p−1

(p+1)2 . Pros-

N-KONS enjoys a regret of O(T
3p+1

(1+p)2 ln3 T ) at a compu-

tational complexity in O(T
4p

(1+p)2 ln4 T ). Although Pros-
N-KONS ensures a computational complexity in o(T ) for
p > 1, its regret bound is far from optimal.

With probability at least 1− δ, PKAWV achieves

∀f ∈ H, Reg(f) ≤ µ

2
‖f‖2H + deff(µ) ln(T ) +

JTα

µ
.

The computational complexity is O(TJ + J2), where J =
O(deff(α) · ln2 T

δ ) (see Algorithm 2 in the Supplementary
material of Jézéquel et al. (2019a), or see Section H in
Jézéquel et al. (2019b)). Besides, at each round t, PKAWV
must store the pervious examples {(xτ , yτ )tτ=1}. Both our
algorithm and Pros-N-KONS only store J examples.

If {λi}Ti=1 decay exponentially, then PKAWV enjoys
a regret of O(ln2 T ) at a computational complexity in
O(T ln3 T ). Our algorithm enjoys the same regret bound
only at a computational complexity in O(ln2 T ).

If {λi}Ti=1 decay polynomially, then PKAWV also enjoys a
regret of O(T

1
1+p lnT ). PKAWV suffers a computational

complexity in O(T
4p

p2−1 ln2 T +T
1+ 2p

p2−1 ln4 T ) which can
not be o(T ) for all p ≥ 1. In the case of p ≥ 10, our
algorithm enjoys a computational complexity in o(T ).

Finally, we note that Pros-N-KONS can compare with f ∈
H = {f ∈ H : ∀t ∈ [T ], |f(xt)| ≤ U} and PKAWV can
compare with f ∈ H, while our algorithm only compares
with f ∈ H. It should be that H ⊆ H ⊆ H. From the
perspective of the size of hypothesis space, our algorithm is
weaker than Pros-N-KONS and PKAWV. As explained in
Section 2.2, it is enough to compare with hypotheses in H.

4.5.3. COMPUTATIONAL COMPLEXITY ANALYSIS

At each round t, the main time cost is to compute the pro-
jection (8), Aj(sj − 1), A−1

j (sj) and the SVD of KS(j).

The solution of projection (8) is as follows.

Theorem 4.9 (Luo et al. (2016)). At each round t,

wj(t+ 1) = w̃j(t+ 1)−
m(ỹt+1)A−1

j (t)φj(xt+1)

φ>j (xt+1)A−1
j (t)φj(xt+1)

where ỹt+1 = w̃>j (t + 1)φj(xt+1) and m(ỹt+1) =
sign(ỹt+1) max{|ỹt+1| − U, 0}.

For any invertible B ∈ Rj×j and a,b ∈ Rj , we have

(B + ab>)−1 = B−1 − B−1ab>B−1

1 + b>B−1a
.

Let B = Aj(t − 1) and a = b =
√
ηt∇j(t). In this way,

A−1
j (t)) can be computed incrementally in timeO(j2). The

time complexity over T rounds is O(TJ2).

Computing Aj(sj−1), A−1
j (sj−1) and the SVD of KS(j)

requires time in O(j3). Such operations are only executed
J times. The time complexity over T rounds is O(J4).

Thus the total complexity is O(TJ2 + J4). Thus the aver-
age per-round time complexity is O(J2 + J4

T ). The space
complexity is always O(J2).

5. Conclusion
In this paper, we have studied the trade-off between regret
and computational cost for online kernel regression, and
proposed two algorithms that achieve two types of nearly op-
timal regret bounds at a sublinear computational complexity
for the first time. The two regret bounds are data-dependent
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and not comparable. The computational complexities of our
algorithms depend on the decay rate of eigenvalues of the
kernel matrix, and are sublinear if the eigenvalues decay
fast enough. We empirically verified that our algorithms can
balance the prediction performance and computational cost
better than previous algorithms can do.

The two algorithms use the ALD condition to dynamically
maintain a group of nearly orthogonal basis which are used
to approximate the kernel mapping. Compared with other
basis selecting schemes, such as uniform sampling and the
RLS sampling, both the number of basis and the approxi-
mate error bound can be smaller. The ALD condition can be
a better basis selecting scheme for designing computation-
ally efficient online and offline kernel learning algorithms.
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Table 2. Basic information of datasets. #num is the number of examples. #fea is the number of features.
Dataset #num #fea Dataset #num #fea Dataset # num #fea Dataset #num #fea
parkinson 5875 16 elevators 16599 18 cpusmall 8192 12 bank 8192 32
ailerons 13750 40 calhousing 14000 8 Year 51630 90 TomsHardware 28179 96

A. Experiments
In this section, we verify the following three goals.

G 1 NONS-ALD enjoys the best prediction performance.
Corollary 4.7 and Corollary 4.8 show that the regret bounds of NONS-ALD are optimal up to lnT . We expect that
NONS-ALD performs best.

G 2 If the kernel function is well tuned, then AOGD-ALD and NONS-ALD only store few examples.
The number of stored examples depends on the decay rate of eigenvalues of the kernel matrix. We can tune the kernel
function such that the eigenvalues of the kernel matrix decay fast.

G 3 If the kernel function is well tuned, then AOGD-ALD and NONS-ALD are computationally efficient.
We have proved that if the eigenvalues of the kernel matrix decay fast, then AOGD-ALD and NONS-ALD achieve a
o(T ) computational complexity. If the eigenvalues decay exponentially, the computational complexity is O(ln2 T ).

A.1. Experimental Setting

We adopt the Gaussian kernel κ(x,v) = exp(−‖x−v‖
2

2ς2 ) and use 8 regression datasets from WEKA and UCI machine
learning repository 2. The information of datasets is given in Table 2. The target variables and features of all datasets are
rescaled to fit in [0, 1] and [−1, 1] respectively. We randomly permutate the instances in the datasets 10 times and report the
average results. All algorithms are implemented with R on a Windows machine with 2.8 GHz Core(TM) i7-1165G7 CPU 3.

The baseline algorithms include two first-order algorithms, FOGD and NOGD (Lu et al., 2016) and two second-order
algorithms, PROS-N-KONS and CON-KONS (Calandriello et al., 2017a). CON-KONS which is an empirical variant of
PROS-N-KONS, sets Aj(sj − 1) = Qj,j−1Aj−1(sj − 1)Q>j,j−1 and wj(sj) = Qj,j−1wj−1(sj − 1), where Qj,j−1 =

P
1
2

S(j)(P
1
2

S(j−1))
>. Note that the two values are different from our initial configurations in Lemma 4.2 and Lemma 4.3.

We do not compare with PKAWV (Jézéquel et al., 2019a), since its computational complexity is O(T ). The experimental
results in (Jézéquel et al., 2019a) also verified that PKAWV runs slower than PROS-N-KONS. For FOGD and NOGD,
we tune the stepsize η ∈ { 1√

T
, 10√

T
, 100√

T
, 1000√

T
}. We set D = 400 for FOGD and J = 400 for NOGD in which D is the

number of random features and J is the size of buffer (or the number of stored examples). There are five hyper-parameters
needed to be tuned in PROS-N-KONS and CON-KONS, i.e., C, β, ε, α and γ. We set C = 1, β = 1, ε = 0.5 following the
suggestion in original paper (Calandriello et al., 2017a). To improve the performance of PROS-N-KONS and CON-KONS,
we tune α ∈ {1, 5, 15} and γ ∈ {0.5, 1, 5, 10}. α is a regularization parameter and plays the same role with the parameter
µ in NONS-ALD. γ controls the size of buffer. The larger γ is, the smaller the buffer will be, that is, the computational
complexity will be smaller. We set α = 25

T for AOGD-ALD and NONS-ALD. We set U = 2 for AOGD-ALD and U = 1
for NONS-ALD. Besides, we tune µ ∈ {1, 5, 15} for NONS-ALD.

A.2. Experimental Results

Table 3 shows the experimental results. We report the average mean squared error (MSE), the size of buffer (J), the number
of random features (D), and the average per-round running time. The MSE is defined as MSE = 1

T

∑T
t=1(ŷt − yt)2.

As a whole, NONS-ALD enjoys the smallest MSE on all datasets. We first analyze the results of the three second-order
algorithms, i.e., NONS-ALD, CON-KONS and PROS-N-KONS. Both NONS-ALD and CON-KONS enjoy much better
prediction performance than PROS-N-KONS. The MSE of PROS-N-KONS is even larger than that of the three first-order
algorithms. The reason is that PROS-N-KONS uses the restart technique. If the times of restart are large, then the prediction

2https://archive.ics.uci.edu/ml/index.php
3The codes are available at https://github.com/JunfLi-TJU/OKR.git.

11



Nearly Optimal Algorithms with Sublinear Computational Complexity for Online Kernel Regression

Table 3. Experimental results on benchmark datasets.

Algorithm parkinson, ς = 8 elevator, ς = 8
MSE J |D Time (s) MSE J |D Time (s)

FOGD 0.05590 ± 0.00011 400 0.26 ± 0.01 0.00560 ± 0.00009 400 0.72 ± 0.02
NOGD 0.05711 ± 0.00042 400 1.42 ± 0.03 0.00575 ± 0.00004 400 3.97 ± 0.11
PROS-N-KONS 0.06420 ± 0.00073 33 0.45 ± 0.05 0.00873 ± 0.00023 32 1.16 ± 0.07
CON-KONS 0.05553 ± 0.00024 31 0.46 ± 0.04 0.00452 ± 0.00018 34 1.19 ± 0.14
AOGD-ALD 0.05988 ± 0.00018 13 0.08 ± 0.02 0.00534 ± 0.00003 28 0.27 ± 0.02
NONS-ALD 0.05514 ± 0.00008 13 0.14 ± 0.02 0.00284 ± 0.00005 28 0.71 ± 0.06

Algorithm cpusmall , ς = 2 bank, ς = 12
MSE J |D Time (s) MSE J |D Time (s)

FOGD 0.01269 ± 0.00033 400 0.34 ± 0.02 0.01910 ± 0.00033 400 0.43 ± 0.01
NOGD 0.01388 ± 0.00070 400 1.93 ± 0.04 0.01966 ± 0.00008 400 2.09 ± 0.03
PROS-N-KONS 0.02939 ± 0.00096 42 0.77 ± 0.11 0.02677 ± 0.00015 179 14.05 ± 1.07
CON-KONS 0.01166 ± 0.00080 42 0.77 ± 0.08 0.01663 ± 0.00014 177 14.00 ± 1.15
AOGD-ALD 0.01330 ± 0.00006 44 0.15 ± 0.02 0.01915 ± 0.00009 148 0.66 ± 0.03
NONS-ALD 0.00703 ± 0.00024 43 0.62 ± 0.06 0.01306 ± 0.00004 148 11.18 ± 0.53

Algorithm ailerons , ς = 8 calhousing, ς = 4
MSE J |D Time (s) MSE J |D Time (s)

FOGD 0.00363 ± 0.00009 400 0.73 ± 0.02 0.02690 ± 0.00017 400 0.54 ± 0.01
NOGD 0.00394 ± 0.00013 400 3.63 ± 0.06 0.02800 ± 0.00032 400 3.08 ± 0.05
PROS-N-KONS 0.01509 ± 0.00028 88 4.45 ± 0.40 0.04336 ± 0.00146 45 1.52 ± 0.14
CON-KONS 0.00320 ± 0.00007 84 4.25 ± 0.35 0.02436 ± 0.00010 44 1.49 ± 0.13
AOGD-ALD 0.00345 ± 0.00002 58 0.42 ± 0.03 0.03034 ± 0.00006 29 0.25 ± 0.02
NONS-ALD 0.00288 ± 0.00001 58 1.72 ± 0.12 0.02215 ± 0.00011 29 0.59 ± 0.04

Algorithm year , ς = 16 TomsHardware, ς = 12
MSE J |D Time (s) MSE J |D Time (s)

FOGD 0.01501 ± 0.00004 400 4.04 ± 0.34 0.00080 ± 0.00003 400 2.28 ± 0.08
NOGD 0.01511 ± 0.00013 400 16.49 ± 0.45 0.00085 ± 0.00001 400 10.52 ± 0.27
PROS-N-KONS 0.01967 ± 0.00026 109 22.60 ± 3.33 0.00232 ± 0.00007 105 13.47 ± 1.45
CON-KONS 0.01370 ± 0.00004 107 23.73 ± 3.02 0.00054 ± 0.00001 108 14.88 ± 1.72
AOGD-ALD 0.01499 ± 0.00002 106 3.72 ± 0.23 0.00062 ± 0.00000 100 1.97 ± 0.07
NONS-ALD 0.01243 ± 0.00001 106 31.65 ± 0.61 0.00043 ± 0.00000 100 14.53 ± 0.38

performance will become bad. Both NONS-ALD and CON-KONS use carefully designed projection operations which keep
the previous information. Besides, NONS-ALD performs better than CON-KONS which proves that our projection scheme
in Lemma 4.2 and Lemma 4.3 is better than that of CON-KONS. All of the first-order algorithms have higher MSE than
NONS-ALD and CON-KONS. The results are intuitive, since second-order algorithms use more information of the square
loss function. The results very the first goal G 1.

Next we analyze the size of buffer. Both AOGD-ALD and NONS-ALD only store few examples. For instance, AOGD-ALD
and NONS-ALD only store 13 examples on the parkinson dataset, and store 148 examples on the bank dataset. NOGD stores
400 examples, but still performs worse than our algorithms. CON-KONS and PROS-N-KONS also store more examples
than our algorithms. It is worth mentioning that we must carefully tune the kernel function on each dataset. For instance, we
set ς = 8 for the parkinson dataset, while we set ς = 16 for the year dataset. The results very the second goal G 2.

Finally, we analyze the average per-round running time. As a whole, the running time of AOGD-ALD and NONS-ALD is
comparable with all of the baseline algorithms. AOGD-ALD even runs fastest on all datasets except for the bank dataset.
The per-round time complexity of AOGD-ALD is O(min{dJ + J2, dT}). The average per-round time complexity of
NONS-ALD is O(dJ + J2 + J4

T ). The smaller J is, the faster AOGD-ALD and NONS-ALD will run. Note that changing
the value of D in FOGD and J in NOGD will balance the prediction performance and computational cost. FOGD and
NOGD can not perform better than NONS-ALD by increasing the value of D or J . The reason is that FOGD and NOGD
are first-order algorithm. The results very the third goal G 3.

12



Nearly Optimal Algorithms with Sublinear Computational Complexity for Online Kernel Regression

B. Reanalyze FOGD

In this section, we reanalyze the regret of FOGD (Lu et al., 2016), and aim to prove a regret of O(

√
TL(f) ln 1

δ√
D

). Our proof
is similar with the proof of Theorem 1 in Lu et al. (2016). Thus we just show the critical differences.

For any f =
∑T
t=1 atκ(xt, ·) ∈ H, we define f̃ =

∑T
t=1 atφ̃(xt), where φ̃(·) is the explicit feature mapping constructed

by the random feature technique (Rahimi & Recht, 2007). The regret can be decomposed as follows,

Reg(f) =

T∑
t=1

`(w>t φ̃t(xt), yt)−
T∑
t=1

`(f̃(xt), yt) +

T∑
t=1

`(f̃(xt), yt)−
T∑
t=1

`(f(xt), yt)

=

T∑
t=1

`(w>t φ̃t(xt), yt)−
T∑
t=1

`(w>φ̃t(xt), yt)︸ ︷︷ ︸
T1

+

T∑
t=1

`(f̃(xt), yt)−
T∑
t=1

`(f(xt), yt)︸ ︷︷ ︸
T2

.

Following the original analysis of FOGD, T1 can be upper bounded as follows,

T1 ≤
‖w‖22

2η
+
η

2

T∑
t=1

`(w>t φ̃t(xt), yt) ≤
‖w‖22 + 1

2

√√√√ T∑
t=1

`(w>t φ̃t(xt), yt) ≤
‖w‖22 + 1

2

√
L(f̃) +

(‖w‖22 + 1)2

4
,

where we define the learning rate η = 1√∑T
t=1 `(w

>
t φ̃t(xt),yt)

. Next we analyze T2. The random feature technique guarantees

that, with probability at least 1− 28(σpR/ε)
2 exp(−Dε2/4(d+ 2)), |φ̃>(xτ )φ̃(xt)− κ(xτ ,xt)| ≤ ε. We further obtain

T2 ≤
T∑
t=1

|`′(f̃(xt), yt)| · ‖f‖1ε ≤ 2‖f‖1ε ·

√√√√T

T∑
t=1

`(f̃(xt), yt) ≤ 2‖f‖1ε ·

√√√√T

T∑
t=1

`(f(xt), yt) + 4T‖f‖21ε2,

where ‖f‖1 =
∑T
t=1 |at|. It was proved that ‖w‖22 ≤ (1 + ε)‖f‖21 (Lu et al., 2016). Combining the upper bounds on T1

and T2 gives that, with probability at least 1− δ,

Reg(f) = O

(
‖f‖21

T

D
ln

1

δ
+ (‖f‖21 + 1)

√
L(f) +

‖f‖1ε ·
√
TL(f)√

D

√
ln

1

δ

)
.

We conclude the proof. In Table 1, we omit the term O( TD ).

C. Proof of Theorem 3.2
Proof of Theorem 3.2. We first consider the case |St| < b(

√
d2 + 4dT − d)/2c for all t = 1, . . . , T .

∀f ∈ H, Reg(f) ≤
T∑
t=1

〈∇̂t, ft − f〉+ 〈∇t − ∇̂t, ft − f〉

≤
T∑
t=1

1

ηt
〈ft − f̄t+1, ft − f〉+ ‖ft − f‖H · |`′(ft(xt), yt)| ·

√
αt · I{αt ≤ α}

≤
T∑
t=1

1

2ηt

[
‖ft − f‖2H − ‖f̄t+1 − f‖2H + ‖f̄t+1 − ft‖2H

]
+ 2U

√
α

√√√√T

T∑
t=1

|`′(ft(xt), yt)|2

≤3U2

2ηT
+

1

2

T∑
t=1

ηt‖∇̂t‖2H + 4UT
1−ζ
2

√√√√ T∑
t=1

`(ft(xt), yt),

where we define α = T−ζ , ζ ≥ 0. Recalling the definition of ηt. It is easy to prove that

T∑
t=1

‖∇̂t‖2H√
1 +

∑t
τ=1 ‖∇̂τ‖2H

≤ 2

√√√√ T∑
τ=1

‖∇̂τ‖2H.
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Let ζ = 1. The final regret satisfies

Reg(f) ≤ 3U

2

√√√√1 +

T∑
τ=1

‖∇̂τ‖2H + U

√√√√ T∑
τ=1

‖∇̂τ‖2H + 4U

√√√√ T∑
t=1

`(ft(xt), yt) ≤ 9U

√√√√ T∑
t=1

`(ft(xt), yt) + 3U.

Solving for
∑T
t=1 `(ft(xt), yt) gives

Reg(f) ≤ 9U

√√√√ T∑
t=1

`(f(xt), yt) + 3U + 81U2.

Next we consider that there exists a t0 < T such that |St0−1| ≤ b(
√
d2 + 4dT − d)/2c and |St0 | > b(

√
d2 + 4dT − d)/2c.

For t ≥ t0, our algorithm just runs OGD which is equivalent ALDt does not hold.

Reg(f) =

t0−1∑
t=1

[`(ft(xt), yt)− `(f(xt), yt)] +

T∑
t=t0

[`(ft(xt), yt)− `(f(xt), yt)]

≤
t0−1∑
t=1

1

2ηt

[
‖ft − f‖2H − ‖f̄t+1 − f‖2H + ‖f̄t+1 − ft‖2H

]
+ 2UT−

ζ
2

√√√√(t0 − 1)

t0−1∑
t=1

|`′(ft(xt), yt)|2+

T∑
t=t0

1

2ηt

[
‖ft − f‖2H − ‖f̄t+1 − f‖2H + ‖f̄t+1 − ft‖2H

]

≤9U

√√√√ T∑
t=1

`(ft(xt), yt) + 3U.

Solving for
∑T
t=1 `(ft(xt), yt) gives the desired result.

D. Proof of Theorem 4.1
We first give a technical lemma which has been stated in (Calandriello et al., 2017b).

Lemma D.1. For any X ∈ Rn×m and α > 0,

XX>(XX> + αI)−1 =X(X>X + αI)−1X>,

(XX> + αI)−1 =
1

α
(I−X(X>X + αI)−1X>).

Proof of Theorem 4.1. For simplicity, let gt = `′(ft(xt), yt) and

φ̂(xt) =

{
φ(xt) if ALDt does not hold,
ΦStβ

∗
t otherwise.

Let ∇̂t = gtφ̂(xt) and Φ̂t = (
√
η1∇̂1, . . . ,

√
ηt∇̂t). We can rewrite

At = At−1 + ηt∇̂t∇̂>t = µI +

t∑
τ=1

ητ ∇̂τ ∇̂>τ = µI + Φ̂tΦ̂
>
t . (15)

Recalling that

ft+1 = ft −A−1
t ∇̂t = ft−1 −A−1

t−1∇̂t−1 −A−1
t ∇̂t = . . . = f1 −

t∑
τ=1

A−1
τ ∇̂τ ,
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in which f1 = 0. Using Lemma D.1 yields

ft+1(xt+1) =f>t+1φ(xt+1)

=−
t∑

τ=1

∇̂>τ A−1
τ φ(xt+1)

=−
t∑

τ=1

∇̂>τ
(
µI + Φ̂τ Φ̂

>
τ

)−1

φ(xt+1)

=
−1

µ

t∑
τ=1

∇̂>τ
(
I− Φ̂τ (Φ̂>τ Φ̂τ + µI)−1Φ̂>τ

)
φ(xt+1)

=
−1

µ

t∑
τ=1

gτ ·
(
φ̂(xτ )>φ(xt+1)− φ̂(xτ )>Φ̂τ (Φ̂>τ Φ̂τ + µI)−1Φ̂>τ φ(xt+1)

)
,

which concludes the proof.

E. Proof of Lemma 4.2
Proof of Lemma 4.2. Recalling that

Aj(sj − 1)− µI =

j−1∑
r=1

∑
t∈Tr

ηtg
2
r(t)φ̃j(xt)φ̃

>
j (xt)

=

j−1∑
r=1

∑
t∈Tr

ηtg
2
r(t)P

1
2

S(j)ΦS(r)β
∗
r (ΦS(r)β

∗
r )>(P

1
2

S(j))
>

=

j−1∑
r=1

∑
t∈Tr

ηtg
2
r(t)P

1
2

S(j)ΦS(r)(Φ
>
S(r)ΦS(r))

−1Φ>S(r)φ(xt)(ΦS(r)(Φ
>
S(r)ΦS(r))

−1Φ>S(r)φ(xt))
>(P

1
2

S(j))
>

=

j−1∑
r=1

∑
t∈Tr

ηtg
2
r(t)P

1
2

S(j)PS(r)φ(xt)(PS(r)φ(xt))
>(P

1
2

S(j))
>

=

j−1∑
r=1

∑
t∈Tr

ηtg
2
r(t)P

1
2

S(j)PS(j−1)PS(r)φ(xt)(PS(j−1)PS(r)φ(xt))
>(P

1
2

S(j))
>

=P
1
2

S(j)

(
(P

1
2

S(j−1))
>
j−2∑
r=1

∑
t∈Tr

ηtg
2
r(t)P

1
2

S(j−1)PS(r)φ(xt)(PS(r)φ(xt))
>(P

1
2

S(j−1))
>P

1
2

S(j−1)+

(P
1
2

S(j−1))
>
∑

t∈Tj−1

ηtg
2
j−1(t)P

1
2

S(j−1)φ(xt)(P
1
2

S(j−1)φ(xt))
>P

1
2

S(j−1)

 (P
1
2

S(j))
>

=P
1
2

S(j)(P
1
2

S(j−1))
>

Aj−1(sj−1 − 1)− µI +
∑

t∈Tj−1

ηtg
2
j−1(t)φj−1(xt)φ

>
j−1(xt)

P 1
2

S(j−1)(P
1
2

S(j))
>

=P
1
2

S(j)(P
1
2

S(j−1))
>(Aj−1(sj − 1)− µI)P

1
2

S(j−1)(P
1
2

S(j))
>.

Thus we can obtain

Aj(sj − 1) = µI +

j−1∑
r=1

∑
t∈Tr

ηtg
2
r(t)φ̃j(xt)φ̃

>
j (xt) = µI + P

1
2

S(j)(P
1
2

S(j−1))
>(Aj−1(sj − 1)− µI)P

1
2

S(j−1)(P
1
2

S(j))
>,

which concludes the proof.
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F. Proof of Lemma 4.3
Proof of Lemma 4.3. We directly use the definition of wj(sj).

wj(sj) = P
1
2

S(j)(P
1
2

S(j−1))
>wj−1(sj)

⇒(P
1
2

S(j)(P
1
2

S(j−1))
>)>wj(sj) = (P

1
2

S(j)(P
1
2

S(j−1))
>)>P

1
2

S(j)(P
1
2

S(j−1))
>wj−1(sj)

⇒P
1
2

S(j−1)(P
1
2

S(j))
>wj(sj) = P

1
2

S(j−1)(P
1
2

S(j))
>P

1
2

S(j)(P
1
2

S(j−1))
>wj−1(sj)

⇒P
1
2

S(j−1)(P
1
2

S(j))
>wj(sj) = P

1
2

S(j−1)PS(j)(P
1
2

S(j−1))
>wj−1(sj)

⇒P
1
2

S(j−1)(P
1
2

S(j))
>wj(sj) = wj−1(sj),

where we use the fact P
1
2

S(j−1)(P
1
2

S(j−1))
> = I. Next we prove wj(sj) ∈Wsj .

(wj(sj))
>φj(xsj ) = (wj−1(sj))

>P
1
2

S(j−1)(P
1
2

S(j))
>P

1
2

S(j)φ(xsj ) =(wj−1(sj))
>P

1
2

S(j−1)φ(xsj )

=(wj−1(sj))
>φj−1(xsj ).

Since |(wj−1(sj))
>φj−1(xsj )| ≤ U , it must be wj(sj) ∈Wsj . Thus we conclude the proof.

G. Proof of Lemma 4.5
We first prove a technique lemma.

Lemma G.1. For all j = 1, . . . , J , let PS(j) be the projection matrix onto the column space of ΦS(j). For all t ∈ Tj ,

0 ≤ κ(xt,xt)− φ>j (xt)φj(xt) ≤ α,

For any r ∈ [J ] and t ∈ Tr, denote by φ̃J(xt) = P
1
2

S(J)ΦS(r)β
∗
r (t). Then for any i, j ∈ [J ] and for any t ∈ Ti, τ ∈ Tj ,

κ(xt,xτ )− φ̃>J (xt)φ̃J(xτ ) ≤
√
α.

Proof of Lemma G.1. For any t ∈ Tj , St = S(j).

κ(xt,xt)− φ>j (xt)φj(xt) = κ(xt,xt)− φ(xt)PS(j)φ(xt)

= κ(xt,xt)− (Φ>S(j)κ(xt, ·))>K−1
S(j)Φ

>
S(j)κ(xt, ·)

= αt ∈ [0, α],

where we use the fact that the ALDt condition holds.
Next we consider t ∈ Ti and τ ∈ Tj . Without loss of generality, assuming that i < j.

κ(xt,xτ )− φ̃>J (xt)φ̃J(xτ ) =φ(xt)
>φ(xτ )−

(
P

1
2

S(J)ΦS(i)β
∗
i (t)

)>
P

1
2

S(J)ΦS(j)β
∗
j (τ)

=φ(xt)
>φ(xτ )−

(
PS(i)φ(xt)

)> PS(J)PS(j)φ(xτ )

=φ(xt)
>φ(xτ )− φ(xt)

>PS(i)PS(J)PS(j)φ(xτ )

=φ(xt)
>φ(xτ )− φ(xt)

>PS(i)φ(xτ )

≤
√
‖φ(xt)− PS(i)φ(xt)‖2H · ‖φ(xτ )‖H

=
√
φ(xt)>φ(xt)− φ(xt)>PS(i)φ(xt) · ‖φ(xτ )‖H

≤
√
α,

which concludes the proof.
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Proof of Lemma 4.5. Denote by ΦTj = (φ(xsj ), φ(xsj+1), . . . , φ(xsj+1−1)) ∈ Rn×|Tj |, KTj = Φ>TjΦTj and K̃Tj =

Φ>TjPS(j)ΦTj . Let K− = KTj − K̃Tj . We first prove that K− is a positive semi-definite (PSD) matrix. Let
Φ[ej ] = (φ(xs1), φ(xs2), . . . , φ(xsj ), φ(xsj+1), . . . , φ(xsj+1−1)) ∈ Rn×(|Tj |+j−1), K−1

[ej ]
= Φ>[ej ]Φ[ej ], and P[ej ] =

Φ[ej ]K
−1
[ej ]

Φ>[ej ] be the projection matrix on the column space of Φ[ej ]. We have

KTj − K̃Tj =Φ>TjP[ej ]ΦTj −Φ>TjPS(j)ΦTj

=Φ>Ij (P
>
[ej ]
P[ej ] − P

>
S(j)PS(j))ΦIj

=Φ>Ij (P[ej ] − PS(j))
>(P[ej ] − PS(j))ΦTj

=
(
(P[ej ] − PS(j))ΦTj

)>
(P[ej ] − PS(j))ΦTj ,

where P[ej ] and PS(j) satisfy P>[ej ]P[ej ] = P[ej ] and P>S(j)PS(j) = PS(j). Besides,

P>[ej ]PS(j) = P[ej ]ΦS(j)(Φ
>
S(j)ΦS(j))

−1Φ>S(j) = PS(j),

where ΦS(j) belongs to the column space of Φ[ej ]. For any a ∈ R|Tj |, we have

a>K−a =
(
(P[ej ] − PS(j))ΦTja

)>
(P[ej ] − PS(j))ΦIja =

∥∥(P[ej ] − PS(j))ΦTja
∥∥2

H ≥ 0.

Thus K− is a PSD matrix. Lemma G.1 gives K−[i, i] ∈ [0, α]. Thus we have∥∥∥KTj − K̃Tj

∥∥∥
2
≤ tr

(
KTj − K̃Tj

)
≤ |Tj | · α.

Let Φ̃T =
(

(φ̃J(xt))t∈T1
, . . . , (φ̃J(xt))t∈TJ

)
. The second statement in Lemma G.1 can derive∥∥∥KT − Φ̃>T Φ̃T

∥∥∥
2
≤
∥∥∥KT − Φ̃>T Φ̃T

∥∥∥
F
≤ T
√
α,

which concludes the proof.

H. Proof of Theorem 4.6
We first give some technical lemmas.

H.1. Technical Lemmas

Lemma H.1. For any f ∈ H, let fj be the projection of f onto the column space of ΦS(j), and fj+1 be the projection

of f onto the column space of ΦS(j+1). The following three claims hold: (i) There exist wj = P
1
2

S(j)f ∈ Rj and

wj+1 = P
1
2

S(j+1)f ∈ Rj+1, such that fj(x) = w>j φj(x) and fj+1(x) = w>j+1φj+1(x), (ii) wj ∈ ∩Tt=1Wt and

wj+1 ∈ ∩Tt=1Wt, (iii) wj = P
1
2

S(j)(P
1
2

S(j+1))
>wj+1.

Proof of Lemma H.1. For any f ∈ H, the projection of f on the column space of ΦS(j+1) and ΦS(j) are

fj+1 = PS(j+1)f, fj = PS(j)f = PS(j)PS(j+1)f = PS(j)fj+1.

We have
fj(xt) = (PS(j)f)>φ(xt) = f>(P

1
2

S(j))
>P

1
2

S(j)φ(xt) = (P
1
2

S(j)f)>φj(xt) = w>j φj(xt).

Thus we obtain
wj = P

1
2

S(j)f, wj+1 = P
1
2

S(j+1)f,

which concludes the first claim.
For the second claim, we have

∀t ∈ [T ], |w>j φj(xt)| = |(P
1
2

S(j)f)>P
1
2

S(j)φ(xt)| = |f>PS(j)φ(xt)| ≤ ‖f‖H ≤ U.
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Thus wj ∈ ∩Tt=1Wt. Similarly, we have wj+1 ∈ ∩Tt=1Wt.

Since P
1
2

S(j) = P
1
2

S(j)PS(j+1), we have,

wj = P
1
2

S(j)PS(j+1)f = P
1
2

S(j)(P
1
2

S(j+1))
>P

1
2

S(j+1)f = P
1
2

S(j)(P
1
2

S(j+1))
>wj+1

which concludes the third claim.

Lemma H.2 ((Hazan et al., 2007)). Let ut ∈ Rj for t = 1, . . . , T be a sequence of vectors such that for some r > 0,
‖ut‖ ≤ r. Let µ > 0. Define Vt =

∑t
τ=1 uτu

>
τ + µI. Then

T∑
t=1

u>t V−1
t ut ≤

T∑
t=1

ln
det(Vt)

det(Vt−1)
= ln

det(VT )

det(V0)
= ln det

(
1

µ

T∑
τ=1

uτu
>
τ + I

)
,

where V0 = µI.

Lemma H.3. For any j = 1, . . . , J ,
Det(Aj(sj − 1))

Det(Aj−1(sj − 1))
= µ.

Proof of Lemma H.3. For any r ≤ j and t ∈ Tr, let φ̄(xt) =
√
ηtgr(t)φ(xt). Recalling that

Aj−1(sj − 1) =Aj−1(sj−1 − 1) +
∑

t∈Tj−1

ηtg
2
j−1(t)φj−1(xt)φ

>
j−1(xt)

=µI +

j−2∑
r=1

∑
t∈Tr

ηtg
2
r(t)φ̃j−1(xt)φ̃

>
j−1(xt) +

∑
t∈Tj−1

ηtg
2
j−1(t)P

1
2

S(j−1)φ(xt)(P
1
2

S(j−1)φ(xt))
>

=µI +

j−1∑
r=1

∑
t∈Tr

P
1
2

S(j−1)PS(r)φ̄(xt)(P
1
2

S(j−1)PS(r)φ̄(xt))
>

=µI + Φ̄S(j−1)Φ̄
>
S(j−1),

where

Φ̄S(j−1) =P
1
2

S(j−1)

[(
PS(r)φ̄(xt)

)
t∈Tr

]
r∈[j−1]

∈ R(j−1)×
∑j−1
r=1 |Tr|.

Similarly, we have

Aj(sj − 1) =µI +

j−1∑
r=1

∑
t∈Tr

ηtg
2
r(t)φ̃j(xt)φ̃

>
j (xt)

=µI +

j−1∑
r=1

∑
t∈Tr

P
1
2

S(j)PS(r)φ̄(xt)(P
1
2

S(j)PS(r)φ̄(xt))
>

=µI + Φ̄S(j)Φ̄
>
S(j),

where we define
Φ̄S(j) = P

1
2

S(j)

[(
PS(r)φ̄(xt)

)
t∈Tr

]
r∈[j−1]

∈ Rj×
∑j−1
r=1 |Tr|.

We have the following two facts.

rank(Φ̄S(j−1)Φ̄
>
S(j−1)) = rank(Φ̄>S(j−1)Φ̄S(j−1)), rank(Φ̄S(j)Φ̄

>
S(j)) = rank(Φ̄>S(j)Φ̄S(j)).
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We can prove

Φ̄>S(j)Φ̄S(j) − Φ̄>S(j−1)Φ̄S(j−1) =

([(
PS(r)φ̄(xt)

)
t∈Tr

]
r∈[j−1]

)>
PS(j)

[(
PS(r)φ̄(xt)

)
t∈Tr

]
r∈[j−1]

−([(
PS(r)φ̄(xt)

)
t∈Tr

]
r∈[j−1]

)>
PS(j−1)

[(
PS(r)φ̄(xt)

)
t∈Tr

]
r∈[j−1]

=

([(
PS(r)φ̄(xt)

)
t∈Tr

]
r∈[j−1]

)> [(
PS(r)φ̄(xt)

)
t∈Tr

]
r∈[j−1]

−([(
PS(r)φ̄(xt)

)
t∈Tr

]
r∈[j−1]

)> [(
PS(r)φ̄(xt)

)
t∈Tr

]
r∈[j−1]

=0,

in which we use the following facts

PS(j) = (P
1
2

S(j))
>P

1
2

S(j),

PS(r)PS(j) = ΦS(r)(Φ
>
S(r)ΦS(r))Φ

>
S(r)PS(j) = PS(r), r = 1, . . . , j − 1,

PS(r)PS(j−1) = ΦS(r)(Φ
>
S(r)ΦS(r))Φ

>
S(r)PS(j−1) = PS(r), r = 1, . . . , j − 1.

It must be that Φ̄S(j)Φ̄
>
S(j) and Φ̄S(j−1)Φ̄

>
S(j−1) have the same non-zero eigenvalues, denoted by λ̄1, λ̄2, . . . , λ̄k, k ≤ j−1.

We have
Det(Aj(sj − 1))

Det(Aj−1(sj − 1))
=

∏j
r=1(µ+ λ̄r)∏j−1
r=1(µ+ λ̄r)

=

∏k
r=1(µ+ λ̄r) · µj−k∏k
r=1(µ+ λ̄r) · µj−k−1

= µ,

which concludes the proof.

Proof of Theorem 4.6. Let fj be the projection of f ∈ H onto the column space of ΦS(j), j = 1, . . . , J . We decompose the
regret into two components.

∀f ∈ H, Reg(f) =

J∑
j=1

∑
t∈Tj

[`(ŷt, yt)− `(f(xt), yt)]

=

J∑
j=1

∑
t∈Tj

[`(ŷt, yt)− `(fj(xt), yt)] +

J∑
j=1

∑
t∈Tj

[`(fj(xt), yt)− `(f(xt), yt)]

=

J∑
j=1

∑
t∈Tj

[`(ŷt, yt)− `(w>j φj(xt), yt)]︸ ︷︷ ︸
T1

+

J∑
j=1

∑
t∈Tj

[`(fj(xt), yt)− `(f(xt), yt)]︸ ︷︷ ︸
T2

.

Lemma H.1 proved that there is a wj ∈ Rj such that fj(xt) = w>j φj(xt).

H.2. Analyze T1

We consider a fixed epoch Tj . At any round t ∈ Tj , the instantaneous regret can be upper bounded as follows

`(ŷt, yt)− `(w>j φj(xt), yt)
=(ŷt − yt)2 − (w>j φj(xt)− yt)2

=2(ŷt − yt)(ŷt −w>j φj(xt))− (ŷt −w>j φj(xt))
2

=〈∇`(w>j (t)φj(xt)),wj(t)−wj〉 −
1

4(ŷt − yt)2

(
〈∇`(w>j (t)φj(xt)),wj(t)−wj〉

)2
≤〈∇`(w>j (t)φj(xt)),wj(t)−wj〉 −

1

8(U2 + Y 2)

(
〈∇`(w>j (t)φj(xt)),wj(t)−wj〉

)2
.
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For simplicity, denote by σ = 1
8(U2+Y 2) and ∇j(t) = ∇`(w>j (t)φj(xt)) = `′(ŷt, yt)φj(xt).

Lemma H.1 has proved that wj ∈Wt+1. Using the property of projection, we have

‖wj(t+ 1)−wj‖2Aj(t)
− ‖wj(t)−wj‖2Aj(t)

≤‖w̃j(t+ 1)−wj‖2Aj(t)
− ‖wj(t)−wj‖2Aj(t)

=‖wj(t)−A−1
j (t)∇j(t)−wj‖2Aj(t)

− ‖wj(t)−wj‖2Aj(t)

=− 2〈wj(t)−wj ,A
−1
j (t)∇j(t)〉Aj(t) + ‖A−1

j (t)∇j(t)‖2Aj(t)

=− 2〈wj(t)−wj ,∇j(t)〉+∇>j (t)A−1
j (t)∇j(t).

Let ηt = 2σ. Rearranging terms and summing over t ∈ Tj = {sj , sj + 1, . . . , sj+1 − 1} gives

sj+1−1∑
t=sj

(
〈wj(t)−wj ,∇j(t)〉 − σ (〈∇j(t),wj(t)−wj〉)2

)

≤
sj+1−1∑
t=sj

(
‖wj(t)−wj‖2Aj(t)

− ‖wj(t+ 1)−wj‖2Aj(t)

2
+
∇>j (t)A−1

j (t)∇j(t)
2

− σ‖wj(t)−wj‖2∇j(t)∇>j (t)

)

=
‖wj(sj)−wj‖2Aj(sj)

2
−
‖wj(sj+1)−wj‖2Aj(sj+1−1)

2
+

sj+1−2∑
t=sj

‖wj(t+ 1)−wj‖2Aj(t+1) − ‖wj(j + 1)−wj‖2Aj(t)

2
+

sj+1−1∑
t=sj

∇>j (t)A−1
j (t)∇j(t)
2

−

sj+1−2∑
t=sj

σ‖wj(t+ 1)−wj‖2∇j(j+1)∇>j (j+1) − σ‖wj(sj)−wj‖2∇j(sj)∇>j (sj)

=

st+1−1∑
t=sj

∇>j (t)A−1
j (t)∇j(t)
2

+
‖wj(sj)−wj‖2Aj(sj−1)

2
−
‖wj(sj+1)−wj‖2Aj(sj+1−1)

2
,

where we use the following two facts

Aj(t+ 1) =Aj(t) + 2σ∇j(t+ 1)∇>j (t+ 1),

Aj(sj − 1) =Aj(sj)− 2σ∇j(sj)∇>j (sj).

Summing over j = 1, 2, . . . , J , we obtain

T1 ≤
J∑
j=1

sj+1−1∑
t=sj

∇>j (t)A−1
j (t)∇j(t)
2︸ ︷︷ ︸

T1,1

+

J∑
j=1

‖wj(sj)−wj‖2Aj(sj−1)

2
−
‖wj(sj+1)−wj‖2Aj(sj+1−1)

2︸ ︷︷ ︸
T1,2

.

The key of our analysis is to prove tighter upper bounds on T1,2 and T1,1 using our initial configurations in Lemma 4.2 and
Lemma 4.3. We first give some high-level explanations on why our analysis can give tighter regret bound.

The analysis of PROS-N-KONS (Calandriello et al., 2017a) initializes wj(sj) = 0 ∈ Rj and Aj(sj − 1) = αI ∈ Rj×j . A
trivial upper bound on T1 can be derived, i.e.,

T1 ≤ J · max
j=1,...,J

sj+1−1∑
t=sj

∇>j (t)A−1
j (t)∇j(t)
2

+

J∑
j=1

‖wj‖2Aj(sj−1)

2
.

It is naturally that the regret bound is linear with J . The analysis can not be improved unless we reset the initial configurations
wj(sj) and Aj(sj − 1). Intuitively, there is a negative term −‖wj(sj+1)−wj‖2Aj(sj+1−1) in T1,2. Our analysis will use
this negative term to cancel with the next positive term ‖wj+1(sj+1)−wj+1‖2Aj+1(sj+1−1). To this end, we must carefully
design wj+1(sj+1). Finally, we will prove T1,2 = 1

2‖f‖
2
H which is independent of J . Similar idea is used to analyze T1,1.

We first analyze T1,2 and then analyze T1,1.
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H.2.1. ANALYZING T1,2

Rearranging terms yields

T1,2 =
‖w1(s1)−w1‖2A1(s1−1)

2
−
‖wJ(sJ+1)−wJ‖2AJ (sJ+1−1)

2
+

1

2

J∑
j=1

[
‖wj+1(sj+1)−wj+1‖2Aj+1(sj+1−1) − ‖wj(sj+1)−wj‖2Aj(sj+1−1)

]
.

To upper bound the second term, the key is to analyze the relation between Aj+1(sj+1 − 1) and Aj(sj+1 − 1). For any
r ≤ j and t ∈ Tr, let Φ̄Tr = (φ̄(xt))t∈Tr where φ̄(xt) =

√
ηtgr(t)φ(xt) =

√
2σgr(t)φ(xt). According to (10), we have

Aj+1(sj+1 − 1) =µI +

j∑
r=1

∑
t∈Tr

ηtg
2
r(t)P

1
2

S(j+1)ΦS(r)β
∗
r (t)(ΦS(r)β

∗
r (t))>(P

1
2

S(j+1))
>

=µI +

j∑
r=1

∑
t∈Tr

ηtg
2
r(t)P

1
2

S(j+1)PS(r)φ(xt)(PS(r)φ(xt))
>(P

1
2

S(j+1))
>

=P
1
2

S(j+1)

[
µI +

(
PS(r)Φ̄Tr

)
r∈[j]

(
PS(r)Φ̄Tr

)>
r∈[j]

]
(P

1
2

S(j+1))
>,

Aj(sj+1 − 1) =µI +

j∑
r=1

∑
t∈Tr

ηtg
2
r(t)P

1
2

S(j)ΦS(r)β
∗
r (t)(ΦS(r)β

∗
r (t))>(P

1
2

S(j))
>

=P
1
2

S(j)

[
µI +

(
PS(r)Φ̄Tr

)
r∈[j]

(
PS(r)Φ̄Tr

)>
r∈[j]

]
(P

1
2

S(j))
>.

For simplicity, let ∆ = wj+1(sj+1)−wj+1. According to Lemma H.1 and Lemma 4.3, we obtain

‖wj(sj+1)−wj‖2Aj(sj+1−1)

=‖P
1
2

S(j)(P
1
2

S(j+1))
>(wj+1(sj+1)−wj+1)‖2Aj(sj+1−1)

=∆>P
1
2

S(j+1)(P
1
2

S(j))
>Aj(sj+1 − 1)P

1
2

S(j)(P
1
2

S(j+1))
>∆

=∆>P
1
2

S(j+1)(P
1
2

S(j))
>P

1
2

S(j)

[
µI +

(
PS(r)Φ̄Tr

)
r∈[j]

(
PS(r)Φ̄Tr

)>
r∈[j]

]
(P

1
2

S(j))
>P

1
2

S(j)(P
1
2

S(j+1))
>∆

=∆>P
1
2

S(j+1)PS(j)

[
µI +

(
PS(r)Φ̄Tr

)
r∈[j]

(
PS(r)Φ̄Tr

)>
r∈[j]

]
PS(j)(P

1
2

S(j+1))
>∆

=∆>P
1
2

S(j+1)

[
µI +

(
PS(r)Φ̄Tr

)
r∈[j]

(
PS(r)Φ̄Tr

)>
r∈[j]

+ µPS(j) − µI
]

(P
1
2

S(j+1))
>∆

=‖wj+1(sj+1)−wj+1‖2Aj+1(sj+1−1) + µ∆>P
1
2

S(j+1)

(
PS(j) − I

)
(P

1
2

S(j+1))
>∆

=‖wj+1(sj+1)−wj+1‖2Aj+1(sj+1−1) − µ∆>P
1
2

S(j+1)

(
I− PS(j)

)> (
I− PS(j)

)
(P

1
2

S(j+1))
>∆

=‖wj+1(sj+1)−wj+1‖2Aj+1(sj+1−1) − µ
∥∥∥(I− PS(j)

)
(P

1
2

S(j+1))
>∆
∥∥∥2

=‖wj+1(sj+1)−wj+1‖2Aj+1(sj+1−1) − µ
∥∥∥(I− PS(j)

)
(P

1
2

S(j+1))
>(P

1
2

S(j+1)(P
1
2

S(j))
>wj(sj+1)− P

1
2

S(j+1)f)
∥∥∥2

=‖wj+1(sj+1)−wj+1‖2Aj+1(sj+1−1) − µ
∥∥∥(I− PS(j)

)
(PS(j+1)(P

1
2

S(j))
>wj(sj+1)− PS(j+1)f)

∥∥∥2

=‖wj+1(sj+1)−wj+1‖2Aj+1(sj+1−1) − µ
∥∥(PS(j) − I

)
PS(j+1)f

∥∥2
,

where the last but one equality satisfies

(
I− PS(j)

)
PS(j+1)(P

1
2

S(j))
> = PS(j+1)(P

1
2

S(j))
> − PS(j)(P

1
2

S(j))
> = (P

1
2

S(j))
> − PS(j)(P

1
2

S(j))
> = 0.
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Thus we can obtain

T1,2 ≤
1

2

‖w1(s1)−w1‖2A1(s1−1) +

J∑
j=1

µ
∥∥(PS(j) − I

)
PS(j+1)f

∥∥2


=

1

2

‖w1‖2µI +

J∑
j=1

µf>(PS(j+1) − PS(j))f


≤1

2

(
‖w1‖2µI + µf>(PS(J+1) − PS(1))f

)
≤µ

2

(
‖w1‖22 + ‖f‖2H − f>PS(1)f

)
≤µ

2
‖f‖2H,

where w1(s1) = 0, A1(s1 − 1) = µI and w1 = PS(1)f .

H.2.2. ANALYZING T1,1

Recalling that

T1,1 =

J∑
j=1

sj+1−1∑
t=sj

∇>j (t)A−1
j (t)∇j(t)
2

,

where∇j(t) = `′(ŷt, yt)φj(xt), t ∈ Tj . According to (9), we have

∀t ∈ Tj , φj(xt) = P
1
2

S(j)φ(xt) = P
1
2

S(j)PS(j)φ(xt) = P
1
2

S(j)ΦS(j)β
∗
j (t) = φ̃j(xt).

For any r ≤ j, t ∈ Tr, denote by ∇̃j(t) = gr(t)φ̃j(xt). We can rewrite Aj(t) as follows

Aj(t) = Aj(sj − 1) +

t∑
τ=sj

ητg
2
j (τ)φj(xτ )φ>j (xτ ) = µI + 2σ

j−1∑
r=1

∑
τ∈Tr

∇̃j(τ)∇̃>j (τ) + 2σ

t∑
τ=sj

∇̃j(τ)∇̃>j (τ).

Using Lemma H.2, we obtain

sj+1−1∑
t=sj

∇>j (t)A−1
j (t)∇j(t) =

sj+1−1∑
t=sj

∇̃>j (t)A−1
j (t)∇̃j(t) ≤

1

2σ

sj+1−1∑
t=sj

ln
Det(Aj(t))

Det(Aj(t− 1))
=

ln
Det(Aj(sj+1−1))
Det(Aj(sj−1))

2σ
.

Summing over j = 1 . . . , J yields

J∑
j=1

sj+1−1∑
t=sj

∇>j (t)A−1
j (t)∇j(t) =

1

2σ

J∑
j=1

ln
Det(Aj(sj+1 − 1))

Det(Aj(sj − 1))

=
1

2σ
ln

J∏
j=1

Det(Aj(sj+1 − 1))

Det(Aj(sj − 1))

=
1

2σ
ln

1

Det(A1(s1 − 1))
·
J∏
j=2

Det(Aj−1(sj − 1))

Det(Aj(sj − 1))
·Det(AJ(sJ+1 − 1))

(∗)︷︸︸︷
=

1

2σ
ln

Det(AJ(sJ+1 − 1))

µJ−1Det(A1(s1 − 1))

(∗∗)︷︸︸︷
=

1

2σ
ln Det

 1

µ

J∑
j=1

∑
t∈Tj

2σ∇̃J(t)∇̃>J (t) + I

 (16)
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where (∗) comes from Lemma H.3, and (∗∗) comes from A1(s1 − 1) = µ.
For simplicity, let

Φ̃ =
√

2σ
[
(∇̃J(t))t∈Tj

]
j∈[J]

∈ RJ×T , Φ̄ =
√

2σ
[
(gj(t)φ(xt))t∈Tj

]
j∈[J]

∈ Rn×T .

Using the second statement of Lemma G.1, we can obtain∥∥∥Φ̃>Φ̃− Φ̄>Φ̄
∥∥∥

2
≤
∥∥∥Φ̃>Φ̃− Φ̄>Φ̄

∥∥∥
F
≤
√

2σ ·
√
T 2 · max

i,j∈[J]
|gi(t)| · |gj(t)|α ≤ T

√
2α.

Thus Φ̃>Φ̃ � Φ̄>Φ̄ + T
√

2αI. We further obtain

ln Det

(
2σ

µ

J∑
r=1

∑
t∈Tr

∇̃J(t)∇̃>J (t) + I

)
= ln Det

(
Φ̃>Φ̃

µ
+ I

)
≤ ln Det

(
Φ̄>Φ̄

µ
+

(
T
√

2α

µ
+ 1

)
I

)
.

Let λ̄1 ≥ λ̄2 ≥ . . . ≥ λ̄T be the eigenvalues of Φ̄>Φ̄. Then we have

ln Det

(
Φ̄>Φ̄

µ
+

(
T
√

2α

µ
+ 1

)
I

)
= ln

(
T∏
i=1

(
λ̄i
µ

+
T
√

2α

µ
+ 1

))

≤ ln

(
(1 +

T
√

2α

µ
)T

T∏
i=1

(
λ̄i
µ

+ 1

))

=T ln

(
1 +

T
√

2α

µ

)
+

T∑
i=1

ln

(
λ̄i
µ

+ 1

)
.

Let D = ({gj(t)
√

2σ}t∈∪Jj=1Tj
). Then Φ̄>Φ̄ = DKTD. Since ln(1 + x) < x

1+x (1 + ln(1 + x)) for all x > 0, we have

ln Det

(
Φ̄>Φ̄

µ
+

(
T
√

2α

µ
+ 1

)
I

)
≤T ln

(
1 +

T
√

2α

µ

)
+

T∑
i=1

λ̄i
µ+ λ̄i

(
1 + max

i
ln
λ̄i + µ

µ

)

≤T ln

(
1 +

T
√

2α

µ

)
+ tr(Φ̄>Φ̄(Φ̄>Φ̄ + µI)−1) ·

(
1 + ln

tr(Φ̄>Φ̄) + µ

µ

)
(∗)︷︸︸︷
≤ T ln

(
1 +

T
√

2α

µ

)
+ tr

(
KT (KT +

µ

2
I)−1

)
·
(

1 + ln
2T + µ

µ

)
.

(∗) follows the proof of Theorem 1 in (Calandriello et al., 2017b) which states

tr
(
Φ̄>Φ̄(Φ̄>Φ̄ + µI)−1

)
= tr

(
KT (KT + µD−2)−1

)
≤ tr

(
KT (KT + µλmin(D−2)I)−1

)
= deff

(µ
2

)
,

where λmin(D−2) = 1
2σmax(gr(t))2 = 4(U2+Y 2)

max(gr(t))2 = 1
2 . We obtain

T1,1 ≤
1

2
T ln

(
1 +

T
√

2α

µ

)
+

1

2
deff

(µ
2

)
·
(

1 + ln
2T + µ

µ

)
≤ T 2

√
α√

2µ
+

1

2
deff

(µ
2

)
·
(

1 + ln
2T + µ

µ

)
,

where we use the fact ln(1 + x) ≤ x for all x ≥ 0.
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H.3. Analyze T2

Let YTj = (ysj , ysj+1, . . . , ysj+1−1)>. Recalling that fj = PS(j)f . We have

T2 =

J∑
j=1

∑
t∈Tj

(
(PS(j)f)>φ(xt)− yt

)2 − T∑
t=1

(
f>φ(xt)− yt

)2
=

J∑
j=1

‖f>PS(j)ΦTj −YTj‖22 −
J∑
j=1

‖f>ΦTj −YTj‖22

=

J∑
j=1

‖f>ΦTj −YTj + f>(PS(j)ΦTj −ΦTj )‖22 −
J∑
j=1

‖f>ΦTj −YTj‖22

=

J∑
j=1

f>(PS(j)ΦTj −ΦTj )(PS(j)ΦTj −ΦTj )
>f + 2

J∑
j=1

〈f>ΦTj −YTj , f
>(PS(j)ΦTj −ΦTj )〉

=

J∑
j=1

‖f‖2H · ‖PS(j)ΦTj −ΦTj‖22 + 2

J∑
j=1

‖f>ΦTj −YTj‖2 · ‖f‖H · ‖PS(j)ΦTj −ΦTj‖2.

Using the first statement of Lemma 4.5, we obtain

‖PS(j)ΦTj −ΦTj‖22 =‖(PS(j)ΦTj −ΦTj )
>(PS(j)ΦTj −ΦTj )‖2

=‖Φ>TjΦTj −Φ>TjPS(j)ΦTj‖2
≤|Tj |α.

Thus we have

T2 ≤ ‖f‖2H · Tα+ 2

√√√√ J∑
j=1

‖f>ΦTj −YTj‖22 · ‖f‖H ·

√√√√ J∑
j=1

|Tj |α ≤ ‖f‖2H · Tα+
√

8(U2 + Y 2)‖f‖H · T
√
α.

Combining the upper bounds on T1,1, T1,2 and T2 concludes the proof.
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