
Published as a conference paper at ICLR 2024

SLICEGPT: COMPRESS LARGE LANGUAGE MODELS
BY DELETING ROWS AND COLUMNS

Saleh Ashkboos∗†‡
ETH Zurich

Maximilian L. Croci∗
Microsoft Research

Marcelo Gennari do Nascimento
Microsoft

Torsten Hoefler
ETH Zurich

James Hensman
Microsoft Research

ABSTRACT

Large language models have become the cornerstone of natural language process-
ing, but their use comes with substantial costs in terms of compute and memory
resources. Sparsification provides a solution to alleviate these resource constraints,
and recent works have shown that trained models can be sparsified post-hoc. Exist-
ing sparsification techniques face challenges as they need additional data structures
and offer constrained speedup with current hardware. In this paper we present
SliceGPT, a new post-training sparsification scheme which replaces each weight
matrix with a smaller (dense) matrix, reducing the embedding dimension of the
network. Through extensive experimentation we show that SliceGPT can remove
up to 25% of the model parameters (including embeddings) for LLAMA-2 70B,
OPT 66B and Phi-2 models while maintaining 99%, 99% and 90% zero-shot
task performance of the dense model respectively. Our sliced models run on
fewer GPUs and run faster without any additional code optimization: on 24GB
consumer GPUs we reduce the total compute for inference on LLAMA-2 70B
to 64% of that of the dense model; on 40GB A100 GPUs we reduce it to 66%.
We offer a new insight, computational invariance in transformer networks, which
enables SliceGPT and we hope it will inspire and enable future avenues to reduce
memory and computation demands for pre-trained models. Code is available at:
https://github.com/microsoft/TransformerCompression .

1 INTRODUCTION
Large language models (LLMs) are neural networks with billions of parameters, trained on trillions
of tokens (Zhao et al., 2023). The cost of training an LLM has caused a shift to re-using pre-trained
models for multiple tasks, the foundation model paradigm. The size of LLMs makes deploying a
pre-trained model an expensive undertaking. Many models require multiple GPUs to be able to
compute a prediction, and because the models are autoregressive, multiple forward passes of the
neural network are needed to generate text responses. It is therefore of widespread interest to reduce
the computational requirements of these models, usually performed via post-training techniques
referred to as model compression.

A majority of model compression techniques fall into one of four categories: distillation, tensor
decomposition (which includes low-rank factorization), pruning and quantization (Hoefler et al., 2021;
Gholami et al., 2021; Zhu et al., 2023; Gupta & Agrawal, 2021). In this work we focus on pruning,
though we hope that our methodology may influence future work on other areas. Whilst pruning
methods have been around for some time, many approaches require recovery fine-tuning (RFT) after
pruning to maintain performance, making the overall process an expensive and hard-to-scale task.
With SliceGPT we compress large models using a single GPU in just a few hours and maintain
competitive performance on generation and downstream tasks even without RFT.

∗Equal contribution
†Work completed as an intern at Microsoft.
‡{saleh.ashkboos, torsten.hoefler}@inf.ethz.ch {t-mcroci, marceloge,

jameshensman}@microsoft.com

1

https://github.com/microsoft/TransformerCompression


Published as a conference paper at ICLR 2024

X
W

Unstructured sparsity

X
W

2:4 Structured sparsity

XQ
Q⊤W

Slicing (ours)

Figure 1: Matrix multiplication of the signal X and a weight matrix W under different types of
sparsity. Left: unstructured sparsity, where some elements of W are zero, and X is dense. Middle:
2:4 structured sparsity, where each block of four weight matrix entries contains two zeros, and X is
dense. Right: SliceGPT, where after introducing transformation Q, all the sparsity is arranged to the
bottom rows of W and the corresponding columns of X are removed.

Pruning methods work by setting some elements of the weight matrices in an LLM to zero, and
(optionally) updating the surrounding elements of the matrix to compensate. The result is a sparse
pattern which means that some floating point operations can be skipped in the matrix multiplications
required in the forward pass of the neural network. The relative speedup of the operations depends
on the level of sparsity and the sparsity pattern: more structured sparsity is associated with more
computational gain. In contrast to other pruning methods, SliceGPT prunes away (slices off!) entire
rows or columns of the weight matrices. Before slicing, we perform a single transformation of the
network which leaves the predictions invariant, but allows the slicing to have only a small effect.

The result is that weight matrices are smaller, and the signals passed between blocks of the neural
network are smaller too: we reduce the embedding dimension of the neural network.

Figure 1 compares our approach with existing sparsity methods. Our contributions are as follows:

1. We introduce the idea of computational invariance: we show that we can apply orthogonal-
matrix transformations to each weight matrix in a transformer without changing the model.

2. We use this to edit each block in a transformer architecture, such that we are projecting the
signal matrix1 between blocks onto its own principal components. We remove columns or
rows of the transformed weight matrices to reduce the model size. We call the transformation
and removal of weights SliceGPT.

3. We conduct multiple experiments on OPT (Zhang et al., 2022) and LLAMA-2 (Touvron
et al., 2023) LLMs, demonstrating that SliceGPT is able to compress these models by up to
30% with superior perplexity to the state of the art 2:4 scheme. On downstream tasks we
additionally experiment with Phi-2 and show that all models can be sliced by up to 30%
while maintaining >90% of the dense performance.

2 BACKGROUND

In this section, we first describe some necessary background on transformer architectures, which
allows us to introduce notation which we will use to prove our main results. Then we describe related
work on sparsification for compressing such architectures.

2.1 TRANSFORMER NETWORKS

Transformer networks (Vaswani et al., 2017) are a class of neural networks that have been shown
to be effective at a wide range of tasks including language modeling. The transformer architecture
is composed of a series of layers, each of which is composed of a multi-head self-attention block
followed by a feed-forward network block. Between each block, there is a LayerNorm (Ba et al.,
2016) (or RMSNorm (Zhang & Sennrich, 2019)) block. Figure 2 illustrates part of a transformer
network: an attention block connected to a Feed Forward Network (FFN) block through a LayerNorm
block, with residual connections. The following describes the operations of each component (ignoring
dropout, which is not applied post-training).

1The signal matrix is sometimes referred as activation matrix.

2



Published as a conference paper at ICLR 2024

Embeddings Let D be the embedding dimension of our transformer, N be the sequence length.
The transformer model takes as input a sequence of token IDs and position IDs, and uses them to
index the embedding matrices, producing the initial signal X with shape N ×D. In what follows we
consider, without loss of generality, a single embedding matrix Wembd indexed by input sequence s.

LayerNorm After embeddings, the signal matrix is passed through a LayerNorm operation, which
subtracts the mean from each row of the matrix, divides the row by its standard deviation, rescales
(columnwise), and adds an offset. We write the LayerNorm block as

LayerNorm(X) = RMSNorm(XM)diag(α)
√
D + 1Nβ⊤ (1)

where RMSNorm(X) applies2 x ← x/∥x∥ to each row of X. The vector parameter α and offset
(vector) parameter β are learned independently at each LayerNorm instance. The constant matrix
M = I− 1

D11⊤ is a D ×D matrix which subtracts the mean from each row of X.

Attention

LayerNorm

FFN

Wk Wq Wv
Multi-Head
Attention

Wo

Inputs

+

x
∥x∥M diag(α)

Activation
Function

W1 W2

+

Figure 2: A single layer in a transformer net-
work. The signals (inputs) arising from the pre-
vious blocks of the networks arrive at the bottom
of the figure, before being passed through atten-
tion, LayerNorm, and FFN. The attention and
FFN blocks both have input and output linear op-
erations (blue) which we denote in the text as
Win,Wout. The linear operations of LayerNorm
M and diag(α) are highlighted. This and subse-
quent figures do not show biases.

Attention Blocks The attention block has four
matrices: Wk,Wq,Wv and Wo, each of dimen-
sion D × D. The input signal arriving into the
block is projected into the Key (XWk), Query
(XWq), and Value (XWv) matrices, which are
then split into multiple heads. A nonlinear opera-
tion is applied at each head before the signals are
combined and multiplied by the output weight
matrix Wo. Since the first three weight matri-
ces are applied separately to the inputs, we can
concatenate them and perform a single matrix
multiplication (denoted by the white box around
these matrices in Figure 2). We can consider the
concatenation of these matrices to be a single lin-
ear layer, which we denote Win. We also refer to
the output matrix as Wout. We treat the attention
block as σ(XWin + bin)Wout + bout

3, where σ
represents the multi-head attention operation.

FFN Blocks The other type of block that ap-
pears in transformer architectures is a Feed For-
ward Network (FFN) block. In many cases, this is
a Multi-layer Perceptron (MLP), which consists
of a linear layer W1, followed by an element-
wise operation σ, followed by a second linear
layer: σ(XW1 + b1)W2 + b2. Some architec-
tures have adopted the gated format, where an
additional matrix is used, and the operation is(
σ(XW1 + b1) ◦ (XW2)

)
W3, where ◦ is an

element-wise product. Much like the first three
linear layers in the attention module, we can con-
sider the concatenation of W1 and W2 to be a
single linear operation, and denote it Win. We
can therefore denote the operation of MLP or
gated FFN layers as σ(XWin)Wout, where σ
takes a different meaning to that in an attention.

Language Modelling (LM) Head All of the transformer networks to which we apply SliceGPT
in this paper have a decoder-only structure following (Radford et al., 2018): after multiple layers
applying alternating attention and FFN blocks, a head block computes logits which are used to
compute the loss during training and token prediction on deployment. The head operation is XWhead+
bhead, where X is the output of the last transformer block.

2In some implementations an RMSNorm block may contain scale parameters. We consider these to be
special instances of LayerNorm and handle them accordingly.

3For ease of notation here and throughout this paper, we abuse notation slightly and omit the broadcasting of
the bias terms across the sequence length dimension. The complete notation for the operation of an attention
block is σ(XWin + 1Nb⊤in )Wout + 1Nb⊤out .

3



Published as a conference paper at ICLR 2024

Forward pass Once the model is trained and all of the parameters are set, the computations required
in a transformer network to produce predictions involve passing signal matrices from one block to
the next until the head node is reached. Since we are able to define both FFN and attention blocks in
the form σ(XWin + bin)Wout + bout, where we understand that σ represents either a point-wise or
multi-head-attention nonlinearity, we are able to describe the forward pass using Algorithm 1.

Algorithm 1 The forward pass of a transformer network

Require: {Wℓ
in, b

ℓ
in,W

ℓ
out b

ℓ
out}Lℓ=1 // weights and biases of FFN and attention blocks

Require: {σℓ}Lℓ=1 // nonlinearity associated with each block
Require: {Normℓ}Lℓ=0 // LayerNorm or RMSNorm instances to perform between blocks
Require: Wembd,Whead, bhead // embedding and head matrices
Require: s // input sequence
1: X←Wembd[s, :] // index embeddings
2: X← Norm0(X) // normalize
3: for ℓ = 1 . . . L do
4: Z← σℓ

(
XWℓ

in + bℓin
)
Wℓ

out + bℓout // apply FFN or attention
5: X← Normℓ(X+ Z) // normalize and apply residual connection
6: end for
7: return XWhead + bhead // apply model head

2.2 RELATED WORK

In the simplest setting, one can employ magnitude-based sparsification, which involves setting the
smallest weights in the model to zero (Han et al., 2016; Zhu & Gupta, 2017; Gale et al., 2019).
Although magnitude sparsification is scalable, its application to LLMs gives too strong a degradation
in performance (Frantar & Alistarh, 2023). Optimal Brain Surgeon (OBS) (Hassibi et al., 1993;
LeCun et al., 1989), a more sophisticated method, systematically removes weights that have the
least impact on the loss function. The method compensates for the error introduced by weight
removal by updating the un-pruned weights using the inverse of the Hessian matrix. Unfortunately,
OBS is impractical for models with a few million parameters due to the need to calculate and store
the inverse of the Hessian matrix. To address the computational limitation posed by OBS, recent
research has explored two approaches: approximating the inverse of the Hessian matrix such as
WoodFisher (Singh & Alistarh, 2020) or applying it separately to each layer such as in Optimal Brain
Compression (OBC, Frantar & Alistarh, 2022), known as layer-wise pruning. While these techniques
have proven effective for medium-sized networks, they are not practical for large language models,
where individual layer weight matrices typically contain more than 108 parameters.

GPTQ (Frantar et al., 2022) has solved this issue by quantizing (representing the parameter using
lower precision) the weight matrix of LLMs using a column-by-column scheme and updating all
not-yet-quantized weights in the next columns. SparseGPT (Frantar & Alistarh, 2023) applied the
same idea for pruning and sparsifies the LLMs using unstructured and semi-structured pruning, and
Sun et al. (2023) simplified the idea by using only the diagonal of the Hessian. Since achieving end-
to-end speed improvements through unstructured pruning is a demanding task, they also attempted
a similar technique to induce sparsity with semi-structured patterns like 2:4 and 4:8 (Mishra et al.,
2021). However, implementing such structures does not maintain the accuracy of the model.

Another approach to compression is low-rank approximation, where each weight matrix is replaced
with the product of two matrices with a smaller inner dimension, usually followed by a fine-tuning
step (Hu et al., 2021; Mahabadi et al., 2021; Noach & Goldberg, 2020; Tukan et al., 2020). To
achieve compression, the inner dimension must be smaller than half of the original dimension. In
contrast, our method replaces each weight matrix with a single smaller one, reducing the embedding
dimension without the need for fine-tuning.

We propose to delete rows and columns of weight matrices, which is similar to pruning of filters and
channels in the convnet literature. There, sparsity-inducing regularization is added to batch-norm
factors (Liu et al., 2017) or network structures (Huang & Wang, 2018), and the network is trained or
fine-tuned, resulting in the pruning of channels or parts of the network. Perhaps the most analogous
methods to ours are ThiNet (Luo et al., 2017; He et al., 2017), which apply linear operations between
layers (as will we), interleaved with more fine-tuning with regularization. In this literature, the
model sizes are typically several orders of magnitude smaller than in LLMs, for example the VGG16
network has 138M parameters, comparable with the very smallest OPT model that we consider. The

4



Published as a conference paper at ICLR 2024

huge size of LLMs makes methods that involve extensive fine-tuning unappealing, especially when
outer-loops are needed to select regularization parameters.

Recently, some works have been proposed that apply structured pruning to LLMs, followed by
continued training (or fine-tuning) to recover the performance that is lost. For example LLM-pruner
(Ma et al., 2023a) removes connected structures from an LLM before further training. Contemporarily
with our work, LLM Surgeon (van der Ouderaa et al., 2023) interweaves recovery fine-tuning with
pruning. We provide results for SliceGPT as a single-shot method and with post-slicing recovery
fine-tuning.

3 SLICEGPT
Our SliceGPT method relies on a computational invariance that is inherent in the transformer
architecture. By this, we mean that it is possible to apply an orthogonal transformation to the output
of one component, so long as it is undone in the next. Our key insight is that the RMSNorm operation
which is performed between blocks of the network does not affect the transformation: the operations
commute. In this section, we first describe how the invariance occurs in RMSNorm-connected
transformer networks, then we note how networks trained with LayerNorm connections can be
converted to RMSNorm. Next, we describe our method to compute transformations at each layer
using Principal Component Analysis (PCA), such that the signal between blocks is projected onto its
principal components. Finally, we describe how deleting the minor principal components corresponds
to slicing away rows or columns of the modified network.

3.1 COMPUTATIONAL INVARIANCE IN TRANSFORMER NETWORKS

Let Q denote an orthogonal matrix: we have Q⊤Q = QQ⊤ = I. Note that multiplying a vector x
by Q does not change the norm of the vector, since ∥Qx∥ =

√
x⊤Q⊤Qx =

√
x⊤x = ∥x∥. In this

work, the dimensions of Q will always match the embedding dimension of the transformer D.

Suppose that Xℓ is the output of one block of the transformer, which is then processed by RMSNorm,
and then inputted to the subsequent block as RMSNorm(Xℓ). If we insert linear layers with the
orthogonal matrix Q before RMSNorm and Q⊤ after RMSNorm, the network remains unchanged,
since each row of the signal matrix is multiplied by Q, normalized and multiplied by Q⊤. We have

RMSNorm(XℓQ)Q⊤ = RMSNorm(Xℓ) . (2)

A proof of this relation appears in Appendix A.1. Now, since each attention or FFN block of the
network has a linear operation on both the input and output, we can absorb the additional operations
Q into the linear layers of the blocks. Since the network contains residual connections, we must also
apply Q to the output of all previous layers (all the way back to the embedding) and to all subsequent
layers (all the way up to the LM Head).

An invariant function is one for which a transformation to the input does not result in a change to the
output. In our case, we can apply any orthogonal transformation Q to the weights of the transformer
without changing the result, so the computation can be performed in any transformed state. We refer
to this as a computational invariance, and define it in the following theorem.

Theorem 1. Let Wℓ
in and Wℓ

out be the weight matrices of the linear layers of the ℓ-th block of
an RMSNorm-connected transformer network, and bℓin, b

ℓ
out be the corresponding biases, if any,

and let Wembd and Whead be the embedding and head matrices. Let Q be an orthogonal matrix
of dimension D. Then the following network is equivalent to the original transformer network:

W̃embd = WembdQ , (3)

W̃ℓ
in = Q⊤Wℓ

in , (4)

W̃ℓ
out = Wℓ

outQ , (5)

b̃ℓout = Q⊤bℓout , (6)

W̃head = Q⊤Whead . (7)

The input and head biases are copied: b̃ℓin = bℓin, b̃head = bhead.

Proof. We can show that the transformed network computes the same results as the original by
stepping through Algorithm 1. Suppose that on line 1, the original network has computed X, then

5



Published as a conference paper at ICLR 2024

the modified network has computed X̃ = XQ, using Equation 3. Applying RMSNorm on line 2,
we see that the operation of the two networks matches: by Equation 2 we have RMSNorm(X̃) =

RMSNorm(XQ) = RMSNorm(X)Q. Applying the nonlinearity on line 4, we see that X̃W̃ℓ
in =

XWℓ
in, using Equation 4 and it follows that Z̃ = ZQ. On line 5 the residual connection means

we have (X̃ + Z̃) = (X + Z)Q, and applying RMSNorm results in assignment of X̃ = XQ.
This follows through to the end of the loop. Finally, on line 7, the transformations are undone as
XWhead = X̃W̃head using Equation 7.

3.2 LAYERNORM TRANSFORMERS CAN BE CONVERTED TO RMSNORM

Attention

RMSNorm

FFN

(α′)Wk (α′)Wq (α′)Wv
Multi-Head
Attention

WoM

Inputs

+

x
∥x∥

(α)W1
Activation
Function

W2M

+

Figure 3: Converting a transformer network
from LayerNorm to RMSNorm: the scale matrix
diag(α) is absorbed into the subsequent matrix
Win. Figure shows the block in combined colors.
We use (α) for brevity. The mean-subtraction
matrix M is applied to each matrix Wout. Layer-
norm becomes RMSNorm, up to a constant

√
D

(not shown). Here, the scaling (α′) comes from
the previous block.

The computational invariance of the transformer
network applies only to RMSNorm-connected
networks. Before working on those with Layer-
Norm, we convert the network to RMSNorm by
absorbing the linear blocks of LayerNorm into
the adjacent blocks. Figure 3 shows such a trans-
formation on the transformer network (see Figure
2) . In each block, we multiply the output matrix
Wout by the mean-subtraction matrix M, which
accounts for the mean subtraction that would hap-
pen in the subsequent LayerNorm. The input
matrices Win are pre-multiplied by the scales
of the preceding LayerNorm blocks. The em-
bedding matrix Wembd must be mean-subtracted,
and Whead must be re-scaled by the last Layer-
Norm scales. This is a straightforward change
in the order of operations and does not affect the
network output.

3.3 A TRANSFORMATION PER BLOCK

Now that every LayerNorm in the transformer
has been converted to RMSNorm, we can select
any Q to modify the model. Our initial plan
was to collect signals from the model, construct
an orthogonal matrix using those signals and to
delete parts of the network. We quickly saw that
the signals at different blocks of the network were
not aligned, and that we would need to apply a
different orthogonal matrix at each block, Qℓ.

Allowing the orthogonal matrix used in each
block to differ can be shown to leave the model
unchanged using the same proof as Theorem 1, with the exception of line 5 of Algorithm 1. Here we
see that the residual connection and the output of the block must have the same rotation. To fix this,
we modify the residual connection by applying the linear transformation Q⊤

ℓ−1Qℓ to the residual.
Figure 4 shows how different rotations can be applied to different blocks with the additional linear
operation in the residual connection. Unlike the modifications to the weight matrices, these additional
operations cannot be pre-computed and add a small (D ×D) overhead to the model. Nonetheless,
they are needed to allow slicing the model (Section 3.4) and we see real speedup overall (Section 4).

To compute the matrices Qℓ, we use PCA. We select a calibration dataset from the training set,
run it through the model (after converting LayerNorm operations into RMSNorm), and extract
the orthogonal matrix of the layer. We use the output of the transformed network to calculate the
orthogonal matrices of the next layers. More precisely, if Xℓ,i is the output of the ℓth RMSNorm
block for the ith sequence in the calibration dataset, we compute

Cℓ =
∑
i

X⊤
ℓ,iXℓ,i (8)

and set Qℓ to the be the eigenvectors of Cℓ, sorted by decreasing eigenvalues.

6



Published as a conference paper at ICLR 2024

Attention

RMSNorm

FFN

Q⊤
1(α

′)Wk Q⊤
1(α

′)Wq Q⊤
1(α

′)Wv WoMQ2
Multi-Head
Attention

Inputs multiplied
by Q1 and truncated

+

x
∥x∥

Q⊤
2 (α)W1

Activation
Function

W2MQ3

+

Q⊤
1Q2

Q⊤
2Q3

Figure 4: With the network converted
to RMSNorm (see Figure 3), we apply
the computational-invariance idea. The
input weight matrices diag(α)Win are
pre-multiplied by Q⊤. The output matri-
ces WoutM are post-multiplied by Q. In
the skip-connection, a new linear layer
is added Q⊤

ℓ Qℓ+1. After these modifica-
tions, the matrices can be sliced (hatched
areas).

3.4 SLICING

The goal of Principal Component Analysis is usually to take a data matrix X and compute a lower
dimensional representation Z, and an approximate reconstruction X̃:

Z = XQD , X̃ = ZD⊤Q⊤ . (9)

where Q is the eigenvectors of X⊤X, and D is a D × Dsmall deletion matrix (containing Dsmall
columns of the D ×D identity matrix), which removes some of the columns of the matrix to the left.
The reconstruction is L2 optimal, in the sense that QD is a linear mapping that minimizes ∥X− X̃∥2.

When we apply PCA to the signal matrix X between blocks, we never materialize the N × D
signal matrix, but we apply the deletion matrix D to the operations preceding and succeeding the
construction of that matrix, which have already been multiplied by Q in the above. We delete rows of
Win and columns of Wout and Wembd. We also delete both rows and columns of the matrix Q⊤

ℓ−1Qℓ

that we have inserted into the residual connection (see Figure 4).

4 EXPERIMENTAL VALIDATION

Setup We use Hugging Face Transformers (Wolf et al., 2019) to implement our code with PyTorch
(Paszke et al., 2019). The computation of Q is performed on a single H100 GPU with 80GB of
memory, taking approximately 3.5 hours to complete for the LLAMA-2 70B model. We use double
precision for the PCA calculation because using single precision for eigenvector calculations in
PyTorch leads to a discrepancy in the final accuracy, as detailed in Appendix A.2.

We experiment with two different calibration sets: the WikiText-2 training dataset (Merity et al.,
2016) and the Alpaca training dataset (Taori et al., 2023). An ablation study on the calibration set
size and sequence length is presented in Appendix A.3. We apply a small amount of RFT to sliced
LLAMA-2 and Phi-2 models using LoRA (Hu et al., 2021), following the idea from Ma et al. (2023a).
For models sliced with WikiText-2 we use approximately 1k sequences, for those sliced with the
Alpaca dataset we use 5k. We use LoRA with r = 32, α = 10 and sequence length 1024, and defaults
for all other hyperparameters in PEFT (Mangrulkar et al., 2022).

Models, Tasks, and GPUs We evaluate all our experiments on OPT (Zhang et al., 2022), LLAMA-
2 (Touvron et al., 2023) model families, and additionally evaluate Phi-2 (in our zero-shot task)
experiments. We exclude OPT 175B, as it is outperformed by smaller LLAMA-2 models. Nonetheless,
we anticipate that this larger model will yield improved results, as larger models typically offer more
promising opportunities for compression (see Section 4.1). We evaluate our scheme on both language
generation as well as popular zero-shot tasks. To demonstrate the comprehensive speedup achieved
by SliceGPT we use: Quadro RTX6000 GPUs with 24GB of memory as a representative example of
consumer-level GPUs; 40GB A100s and 80GB H100s to provide datacenter-level benchmarks.

Baseline Setup We initially planned to compare our results against a scheme that pruned columns
(or rows) with the smallest norm but found that this baseline was very poor, with the WikiText-2

7



Published as a conference paper at ICLR 2024

perplexity of the model soaring into the 1000s after pruning just a few columns. Instead, we compare
SliceGPT against SparseGPT (Frantar & Alistarh, 2023) employing a 2:4 sparsity ratio, as this is the
only sparsity scheme which achieves speedup (Mishra et al., 2021).

4.1 RESULTS

Generation Task We begin by showcasing our findings using the WikiText-2 dataset. In this
context, we evaluate the performance of both the OPT and LLAMA-2 model families across different
sizes when using this dataset for slicing. Table 1 shows the perplexity obtained by various slicing
levels. SliceGPT exhibits superior performance when applied to OPT models compared to LLAMA-2
models which matches our intuition from the spectrum analysis of those models (see Appendix A.4
for our discussion). The performance of SliceGPT improves as the model size increases. Comparing
SliceGPT with SparseGPT, we see that that SparseGPT 2:4 performs worse than SliceGPT with 25%
slicing in all LLAMA-2 models. For OPT, we see that 30% sliced models beat 2:4 sparsity for all
model sizes except 2.7B.

Table 1: OPT and LLAMA-2 perplexity results on WikiText2. The calibration set size and sequence
length are 1024 and 2048, respectively.

Method OPT LLAMA-2
125M 1.3B 2.7B 6.7B 13B 30B 66B 7B 13B 70B

Dense 27.64 14.61 12.46 10.85 10.12 9.56 9.33 5.47 4.88 3.32

SparseGPT 2:4 45.07 29.61 14.90 13.00 11.80 10.53 10.22 8.69 7.07 4.98

SliceGPT (10%) 29.34 15.10 12.75 10.92 10.27 9.65 9.43 5.89 5.21 3.69
SliceGPT (20%) 34.26 16.43 13.73 11.48 10.66 9.87 9.57 6.64 5.81 4.25
SliceGPT (25%) 37.74 17.46 14.56 11.90 10.94 10.04 9.68 7.24 6.30 4.60
SliceGPT (30%) 43.98 19.09 15.83 12.51 11.33 10.27 9.85 8.12 6.99 5.05

Zero-shot Tasks We assess SliceGPT across five well-known zero-shot tasks: PIQA (Bisk et al.,
2020); WinoGrande (Sakaguchi et al., 2021); HellaSwag (Zellers et al., 2019); ARC-e and ARC-
c (Clark et al., 2018) using the LM Evaluation Harness (Gao et al., 2021). Figure 5 shows the
results. We see a marked difference between the datasets, with the Alpaca dataset giving much higher
performing models. We attribute this difference to the similarity between Alpaca and the benchmark
tasks. For LLAMA-2 70B sliced at 30%, with RFT on Alpaca we are able to achieve an average
accuracy of 74.3%, compared to 76.6% on the dense model. The sliced model has approximately
51.6B parameters and considerably improved throughput as we demonstrate later. Results for OPT
and for all models post-pruning without RFT are shown in Appendix A.5.

We see that Phi-2 is not able to recover the drop in accuracy from slicing using only the WikiText-2
dataset, but using Alpaca we are able to recover several percentage points. The average accuracy of
Phi-2 with 25% slicing and RFT is 65.2%, compared to 72.2% with the dense model. The sliced
model has approximately 2.2B parameters and retains 90.3% of the accuracy of the 2.8B model. This
shows that even small LMs can benefit from post-training pruning. Tables of accuracies across each
task are provided in Appendix A.6.

7B 13B 70B
40

50

60

70

80

#params in the original model

W
ik

iT
ex

t2
ca

l.
&

R
FT

M
ea

n
A

cc
ur

ac
y

LLAMA-2 Family

2.78B

Phi-2

7B 13B 70B
40

50

60

70

80

#params in the original model

A
lp

ac
a

ca
l.

&
R

FT
M

ea
n

A
cc

ur
ac

y

LLAMA-2 Family

2.8B

Phi-2

Dense
20% sliced
25% sliced
30% sliced

Figure 5: Mean zero-shot accuracy on LLAMA-2 and Phi-2 across multiple tasks after slicing and
recovery fine-tuning (RFT). Left: WikiText-2 used for calibration and RFT. Right: Alpaca used for
calibration and RFT.

8



Published as a conference paper at ICLR 2024

Benchmarking Throughput Unlike conventional sparsity methods, which introduce sparsity in
Win and Wout, SliceGPT also introduces (structured) sparsity in X: entire columns of X are sliced
off, reducing the embedding dimension. This enhances both the computational complexity (in flops)
and data movement within our compressed model.

The token throughput of models sliced at 25% and 50% are compared to the dense model on 80GB
H100 GPUs. We set the sequence length to 128 and find the maximum throughput by doubling the
batch size until the GPUs run out of memory or the throughput drops off. The 25% sliced models
achieve up to 1.55× throughput improvement over the dense model. At 50% slicing the largest
models require only one GPU instead of two, with large increases in throughput: 3.13× and 1.87×.
This means that for a fixed number of GPUs, these models achieve 6.26× and 3.75× throughput of a
dense model. We note that the WikiText2 perplexity of SliceGPT at 50% is worse than SparseGPT
2:4, but the throughput is much higher than could be achieved with a sparse method that does not
slice X. For full details see Appendix A.7.

Inference Time Table 2 compares the time of generating a single token in OPT 66B and LLAMA-2
70B models on Quadro RTX6000 and A100 GPUs. We observe 16-17% speedup on RTX6000 GPUs
when employing 25% slicing, and 11-13% on A100s. We reduce the number of GPUs used in both
cases, providing energy and cost savings relative to deployment of the dense model. For LLAMA-2
70B, the compute required using RTX6000 GPUs is reduced to 64%, from 1764 GPUms to 1075
GPUms4. We attribute this improvement to our approach of substituting weight matrices with smaller
ones in our compressed models, which is infeasible with other pruning schemes.

Table 2: Average per-token inference time of SliceGPT when generating sequences of length 128
(with batch size of 1). In each case, we show the time taken in ms, the number of GPUs required and
the total compute in GPUms.

GPU Type Slicing OPT 66B LLAMA-2 70B

A100 (40GB) Dense 114ms on 4 GPUs 456 GPUms 125ms on 4 GPUs 500 GPUms

25% 102ms on 3 GPUs 306 GPUms 110ms on 3 GPUs 330 GPUms

Quadro RTX6000 Dense 237ms on 6 GPUs 1422 GPUms 252ms on 7 GPUs 1764 GPUms

(24GB) 25% 204ms on 5 GPUs 1020 GPUms 215ms on 5 GPUs 1075 GPUms

End-to-end performance gains are not feasible with the SparseGPT baseline at the time of writing.
Instead, we compare SliceGPT with SparseGPT by comparing the relative timing of each operation
involved in a transformer layer. We find that SliceGPT (25%) is competitive with SparseGPT (2:4) in
terms of speedup and perplexity for large models. For further details see Appendix A.8.

5 CONCLUSION AND FUTURE WORK
We’ve introduced SliceGPT which allows for structured pruning for large language models. We
reduce the cost of inference of LLAMA-2 70B on 40GB A100 GPUs to 66% of that of the dense model
without any additional code optimization, requiring fewer GPUs (from 4 to 3) while maintaining
better held-out perplexity than SparseGPT 2:4. On 24GB RTX6000 GPUs, the cost of inference is
reduced to 64%, requiring 2 fewer GPUs (from 7 to 5). On zero-shot downstream tasks, slicing OPT
66B, LLAMA-2 70B and Phi-2 at 25% maintains 99%, 96% and 87% of the dense performance. With
recovery fine-tuning 25%-sliced LLAMA-2 70B and Phi-2 increase to 99% and 90% respectively.

Opportunities remain to build on our method. Smaller but dense LMs perform better than LMs with
13B parameters or less pruned to similar sizes, though we do not expect this to remain the case for
long. Our pruned models have more parameters than those pruned with SparseGPT but fit larger
batches in GPU memory with no overhead for sparsity structure: perhaps a combined method could
obtain the best of both. Other methods of computing Q could improve the results. To further decrease
the inference time and GPU count, complementary methods including quantization (Xiao et al., 2023;
Dettmers et al., 2022; Ashkboos et al., 2023; Dettmers et al., 2023; Frantar et al., 2022), and structural
pruning (e.g. Ma et al., 2023b) could be used.

4Our Hugging Face-based testing does not enjoy continuous batching or model sharding. This means that in
terms of inference time, the dense-model could be improved more than our sliced model in terms of GPUms.
Nonetheless, our measurements do reflect the energy-usage per token in such a deployment.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS
We thank Dmitry Kats, Pashmina Cameron, Pavel Myshkov, Elena Pochernina and Liana Mikaelyan
for their invaluable contributions to the source code. We additionally thank Pashmina Cameron for
her helpful feedback when reviewing early versions of the paper.

REFERENCES

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Towards end-to-end 4-bit inference on generative large language models.
arXiv preprint arXiv:2310.09259, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/CorpusID:
3922816.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless LLM weight compression. arXiv preprint arXiv:2306.03078, 2023.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks, 2019.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 2021.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. CoRR, abs/2103.13630,
2021. URL https://arxiv.org/abs/2103.13630.

Manish Gupta and Puneet Agrawal. Compression of deep learning models for text: A survey, 2021.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding, 2016.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397, 2017.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. CoRR,
abs/2102.00554, 2021. URL https://arxiv.org/abs/2102.00554.

10

https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2102.00554


Published as a conference paper at ICLR 2024

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European conference on computer vision (ECCV), pp. 304–320, 2018.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023a. URL https://arxiv.org/pdf/
2305.11627.pdf.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large
language models, 2023b.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers, 2021.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Matan Ben Noach and Yoav Goldberg. Compressing pre-trained language models by matrix decom-
position. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International Joint Conference on Natural Language Pro-
cessing, pp. 884–889, Suzhou, China, December 2020. Association for Computational Linguistics.
URL https://aclanthology.org/2020.aacl-main.88.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

11

https://arxiv.org/pdf/2305.11627.pdf
https://arxiv.org/pdf/2305.11627.pdf
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://aclanthology.org/2020.aacl-main.88


Published as a conference paper at ICLR 2024

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Murad Tukan, Alaa Maalouf, Matan Weksler, and Dan Feldman. Compressed deep networks:
Goodbye SVD, hello robust low-rank approximation. arXiv preprint arXiv:2009.05647, 2020.

Tycho FA van der Ouderaa, Markus Nagel, Mart van Baalen, Yuki M Asano, and Tijmen Blankevoort.
The llm surgeon. arXiv preprint arXiv:2312.17244, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression, 2017.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

12

https://github.com/tatsu-lab/stanford_alpaca


Published as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOF OF EQUATION 2

An orthogonal matrix Q is a square matrix that satisfies the relation Q⊤Q = QQ⊤ = I. The norm
of a vector is the square-root of the sum of squares of the elements: ∥x∥ =

√∑
i x

2
i =
√
x⊤x.

Multiplying a vector by Q does not change the norm since ∥Qx∥ =
√
x⊤Q⊤Qx = ∥x∥.

The RMSNorm operation divides each row of the input matrix X by its norm. By the basic rules of
linear algebra, if x is a row of X, then Q⊤x is the corresponding row of XQ. Applying RMSNorm
to XQ, said row will now be equal to 1

∥x∥Q
⊤x. After RMSnorm, we can multiply by Q⊤, our row

is now equal to 1
∥x∥QQ⊤x = 1

∥x∥x. Thus we have the relation

RMSNorm(XQ)Q⊤ = RMSNorm(X) . (10)

A.2 SINGLE PRECISION EIGENVALUE CALCULATION

As previously noted in Section 4, we employ double precision when performing the PCA algorithm.
This choice is made in order to mitigate potential numerical errors that may arise during the computa-
tion of the orthogonal matrix in SliceGPT. Nevertheless, it is intriguing to investigate the impact of
employing lower precision for PCA calculations on the ultimate accuracy.

Table 3 shows the perplexity of all our models when we apply FP32 PCA in our scheme. It shows
that the accuracy of larger models could be affected by numerical errors during the PCA calculation
phase. It should be noted that we use PyTorch (torch.linalg) for calculating the eigenvectors
and eigenvalues.

Table 3: OPT and LLAMA-2 perplexity results on WikiText2 using FP32 PCA calculation. The
calibration set size and sequence length are 128 and 2048, respectively.

Method OPT LLAMA-2
125M 1.3B 2.7B 6.7B 13B 30B 66B 7B 13B 70B

Dense 27.64 14.61 12.46 10.85 10.12 9.56 9.33 5.47 4.88 3.32

SparseGPT 2:4 45.07 29.61 14.90 13.00 11.80 10.53 10.22 8.69 7.07 4.98

SliceGPT 10% 29.48 15.15 12.83 11.05 10.28 9.68 9.45 6.51 5.64 4.20
SliceGPT 20% 34.12 16.51 13.87 11.64 10.73 9.94 9.80 7.30 6.07 5.82
SliceGPT 25% 38.25 17.67 14.78 12.14 11.08 10.15 9.81 8.52 6.65 7.01
SliceGPT 30% 44.17 19.33 16.20 12.82 11.53 10.43 9.99 10.41 7.49 8.75

A.3 SENSITIVITY TO THE CALIBRATION SET SIZE AND SEQUENCE LENGTH

We present an ablation study to examine the role of the WikiText-2 calibration set. We focus on the
generation task with 25% sparsity using OPT 6.7B and LLAMA-2 7B models.

16 32 64 128 256 512 1024

8

10

12

14

16

Calibration set size

W
ik

iT
ex

t2
PP

L

128 256 512 1024 2048 4096
Calibration sequence length

OPT 6.7B
LLAMA-2 7B

Figure 6: The effect of the calibration set size and sequence length on perplexity of WikiText2.

13



Published as a conference paper at ICLR 2024

Figure 6 (left) shows the result of varying the size of the calibration set on the perplexity. It shows
that sample sizes of at least 128 provide sensible choices for our calibration set.

Next we explore the effect of using different sequence lengths N in the calibration set. Given a
fixed number of B samples, the PCA input matrix is computed using NB embedding vectors, and
understanding the tradeoff between having a larger B or a larger N is interesting. Figure 6 (right)
shows the results of varying the sequence length in the calibration set from 128 to 4096: we conclude
that having a larger sequence length can result in better perplexity.

Using these insights, we use a calibration set size of 1024 and sequence length 2048 in our main
experiments (Table 1). In Table 4 below we evaluate the perplexity of OPT and LLAMA-2 models on
WikiText-2 with a smaller calibration set size, which confirms the trend that decreasing this degrades
the perplexity across all models and sizes.

Table 4: OPT and LLAMA-2 perplexity results on WikiText2. The calibration set size and sequence
length are 128 and 2048, respectively.

Method OPT LLAMA-2
125M 1.3B 2.7B 6.7B 13B 30B 66B 7B 13B 70B

Dense 27.64 14.61 12.46 10.85 10.12 9.56 9.33 5.47 4.88 3.32

SparseGPT 2:4 45.07 29.61 14.90 13.00 11.80 10.53 10.22 8.69 7.07 4.98

SliceGPT (10%) 29.33 15.15 12.82 11.00 10.30 9.66 9.43 5.96 5.29 3.78
SliceGPT (20%) 34.53 16.58 13.89 11.62 10.75 9.91 9.61 6.86 6.04 4.46
SliceGPT (25%) 38.13 17.78 14.84 12.12 11.08 10.10 9.76 7.56 6.61 4.89
SliceGPT (30%) 44.61 19.61 16.30 12.81 11.55 10.32 9.95 8.64 7.44 5.42

A.4 SPECTRUM ANALYSIS OF LLAMA-2 AND OPT MODELS

The figure below shows the eigenvalue distribution for the OPT 6.7B and LLAMA-2 7B models.
Although both models have a comparable parameter count, the LLAMA-2 model has a more tightly
compressed distribution in its embeddings spectrum. This observation shows that there are no
dominant principal components with significantly more information, making the pruning of these
components a more challenging task.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer Num.

10
5

10
4

10
3

10
2

10
1

10
0

N
or

m
al

iz
ed

 S
pe

ct
ru

m
 o

f t
he

 M
LP

 in
pu

t. OPT (6.7B)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer Num.

LLAMA-2 (7B)

Figure 7: Normalized (by maximum) spectrum of the MLP inputs (log scale) using 64 samples.
Except for the first layer in the LLAMA-2 model, the eigenvalue distributions for both models show
faster decay in early layers compared to later ones. This suggests that a greater amount of slicing
could be applied after the orthogonal transformation in these early layers.

We can use the above insights to slice different layers by different amounts. Instead of specifying the
slicing level upfront, we set the fraction of the total variance to discard during each PCA calculation,
which sets the number of rows and columns to slice off from each matrix. For each model, we run
three experiments with varying target variances to obtain a total reduction on the network close to
25%.

14



Published as a conference paper at ICLR 2024

The results are shown in Table 5 below. Varying the slicing level by layer improves the WikiText-2
perplexity in OPT models, but has the opposite effect in LLAMA-2 models.

Table 5: Evaluating the effects of varying slicing level by layer. The calibration set size is 128 and
the sequence length is the maximum for each model.

Model WikiText-2 PPL WikiText-2 PPL Improvement(25% constant slicing) (varying slicing by layer)

OPT 6.7B 12.10 11.94, 24.7% total slicing 0.16
OPT 13B 11.04 10.76, 24.2% total slicing 0.28
OPT 30B 10.13 9.95, 24.8% total slicing 0.18
OPT 66B 9.75 9.63, 24.1% total slicing 0.12

LLAMA-2 7B 6.84 7.63, 24.1% total slicing -0.79
LLAMA-2 13B 6.00 6.17, 23.3% total slicing -0.17
LLAMA-2 70B 4.44 4.63, 25.5% total slicing -0.19

A.5 ZERO-SHOT ACCURACY ABLATION OVER CALIBRATION DATASET

Figure 8 shows the average scores achieved by the sliced models across the zero-shot tasks. The top
row of the plot shows the mean accuracy when WikiText-2 is used for calibration, and the bottom
row shows the accuracy when Alpaca is used for calibration. We observe a similar pattern to the
generation task in the results: the OPT models are more amenable to compression than the LLAMA-2
models, and the reduction in accuracy is less pronounced in the larger models. Here we also include
the Phi-2 model: we see that sliced versions of the Phi-2 model are comparable with sliced versions of
the LLAMA-2 7B model. The largest OPT and LLAMA-2 models can be compressed very effectively,
with just a few percentage points loss when removing 30% of the 66B OPT model.

40

50

60

70

80

W
ik

iT
ex

t-
2

ca
lib

.
M

ea
n

A
cc

ur
ac

y

OPT Family LLAMA-2 Family Phi-2

Dense
20% sliced
25% sliced
30% sliced

1.3B 2.7B 6.7B 13B 30B 66B
40

50

60

70

80

#params in the original model

A
lp

ac
a

ca
lib

.
M

ea
n

A
cc

ur
ac

y

7B 13B 70B
#params in the original model

2.8B

Figure 8: Mean zero-shot accuracy on OPT, LLAMA-2 and Phi-2 across multiple tasks after slicing
with the WikiText-2 (top) and Alpaca (bottom) datasets for calibration.

Recovery fine-tuning (RFT) can be applied LLAMA-2 and Phi-2 models to improve their performance
further (Figure 5 in main text). Despite an extensive search, we were not able to find RFT parameters
that enabled improved performance in the OPT models.

15



Published as a conference paper at ICLR 2024

A.6 DETAILED ZERO-SHOT RESULTS

In this section, we provide the detailed results of the zero-shot tasks we presented in the paper.

Table 6: Downstream zero-shot task performance of OPT, LLAMA-2 and Phi-2 models when slicing
using the WikiText2 dataset.

Model Slicing PIQA WinoGrande HellaSwag ARC-e ARC-c Avg. Score

OPT 1.3B

Dense 72.42 59.27 53.72 50.97 29.52 53.18
20% 65.34 54.85 45.39 46.04 26.96 47.72
25% 62.30 53.83 42.91 45.45 27.22 46.34
30% 60.77 54.70 39.81 43.90 25.77 44.99

OPT 2.7B

Dense 74.81 61.01 60.58 54.42 31.14 56.39
20% 68.23 57.93 51.38 51.81 28.50 51.57
25% 65.29 57.22 47.85 49.79 27.99 49.63
30% 62.35 57.22 44.18 46.72 27.05 47.50

OPT 6.7B

Dense 76.39 65.19 67.16 60.14 34.64 60.70
20% 72.74 61.09 61.04 55.89 30.80 56.31
25% 70.35 60.62 58.15 52.78 29.52 54.28
30% 68.61 60.69 54.56 52.15 29.01 53.00

OPT 13B

Dense 76.82 64.80 69.81 61.87 35.67 61.79
20% 74.48 64.96 65.42 60.90 35.24 60.20
25% 73.67 64.25 63.28 60.52 34.64 59.27
30% 71.82 62.90 60.66 58.80 32.94 57.42

OPT 30B

Dense 78.07 68.19 72.27 65.24 38.23 64.40
20% 76.50 66.61 70.61 64.18 35.75 62.73
25% 75.30 66.61 69.42 63.55 35.67 62.11
30% 74.97 65.04 68.15 63.55 34.64 61.27

OPT 66B

Dense 79.82 68.90 74.85 67.21 40.02 66.16
20% 78.73 67.88 73.79 68.81 39.51 65.74
25% 78.40 67.09 73.33 67.89 39.16 65.17
30% 77.42 66.30 72.62 66.90 37.97 64.24

LLAMA-2 7B

Dense 79.11 69.06 75.99 74.58 46.25 69.00
20% 69.42 65.11 59.04 59.76 37.54 58.18
25% 66.87 63.38 54.16 58.46 34.56 55.48
30% 63.55 61.33 49.62 51.77 31.23 51.50

LLAMA-2 13B

Dense 80.47 72.22 79.39 77.48 49.23 71.76
20% 71.87 69.38 63.04 69.87 43.09 63.45
25% 68.55 67.48 58.10 62.50 37.88 58.90
30% 66.10 65.11 52.69 56.82 35.07 55.16

LLAMA-2 70B

Dense 82.70 77.98 83.84 80.98 57.34 76.57
20% 76.61 76.40 72.98 80.51 55.20 72.34
25% 74.92 75.37 68.84 77.90 51.71 69.75
30% 72.31 73.56 63.69 73.40 47.61 66.11

Phi-2

Dense 79.11 75.77 73.83 78.32 54.18 72.24
20% 71.87 67.80 57.76 58.00 35.32 58.15
25% 69.21 65.35 52.40 53.70 31.66 54.46
30% 65.94 63.14 47.56 53.03 30.29 51.99

16



Published as a conference paper at ICLR 2024

Table 7: Downstream zero-shot task performance of OPT, LLAMA-2 and Phi-2 models when slicing
using the Alpaca dataset.

Model Slicing PIQA WinoGrande HellaSwag ARC-e ARC-c Avg. Score

OPT 1.3B

Dense 72.42 59.27 53.72 50.97 29.52 53.18
20% 69.91 55.49 47.88 49.66 27.05 50.00
25% 69.37 55.72 45.82 48.70 26.62 49.25
30% 68.55 55.33 43.92 47.26 26.45 48.30

OPT 2.7B

Dense 74.81 61.01 60.58 54.42 31.14 56.39
20% 71.87 58.09 54.98 54.04 29.44 53.68
25% 70.95 58.09 52.62 53.03 29.61 52.86
30% 69.64 56.43 49.45 51.81 28.33 51.13

OPT 6.7B

Dense 76.39 65.19 67.16 60.14 34.64 60.70
20% 74.54 62.67 62.84 59.18 33.36 58.52
25% 73.78 62.59 60.99 59.01 33.70 58.01
30% 73.34 61.80 58.93 58.33 32.85 57.05

OPT 13B

Dense 76.82 64.80 69.81 61.87 35.67 61.79
20% 76.01 65.19 66.15 61.57 34.73 60.73
25% 74.65 64.64 65.02 60.65 35.07 60.00
30% 74.86 63.46 63.16 61.36 34.56 59.48

OPT 30B

Dense 78.07 68.19 72.27 65.24 38.23 64.40
20% 78.35 66.61 70.64 65.19 37.46 63.65
25% 77.48 65.82 69.58 65.91 37.63 63.28
30% 76.93 64.96 68.66 65.70 37.12 62.67

OPT 66B

Dense 79.82 68.90 74.85 67.21 40.02 66.16
20% 79.49 68.19 73.69 67.26 39.25 65.58
25% 79.11 68.35 73.30 67.00 38.74 65.30
30% 79.05 68.75 72.62 66.29 38.31 65.00

LLAMA-2 7B

Dense 79.11 69.06 75.99 74.58 46.25 69.00
20% 76.50 65.51 65.20 69.99 41.21 63.68
25% 74.21 64.01 60.55 66.88 38.91 60.91
30% 72.25 59.83 55.86 63.93 37.80 57.93

LLAMA-2 13B

Dense 80.47 72.22 79.39 77.48 49.23 71.76
20% 77.97 68.90 69.64 74.71 45.99 67.44
25% 76.88 67.40 65.85 72.52 44.54 65.44
30% 74.10 65.82 60.91 68.43 42.41 62.34

LLAMA-2 70B

Dense 82.70 77.98 83.84 80.98 57.34 76.57
20% 81.99 76.87 78.93 80.26 54.10 74.43
25% 80.69 77.98 76.97 79.67 52.65 73.59
30% 79.33 77.27 73.11 77.44 51.19 71.67

Phi-2

Dense 79.11 75.77 73.83 78.32 54.18 72.24
20% 76.17 68.75 61.95 72.18 45.48 64.90
25% 75.68 64.88 58.19 70.41 43.43 62.52
30% 74.05 62.12 53.31 67.26 39.42 63.47

17



Published as a conference paper at ICLR 2024

Table 8: Downstream zero-shot task performance of LLAMA-2 and Phi-2 models when slicing and
recovery fine-tuning using the WikiText2 dataset.

Model Slicing PIQA WinoGrande HellaSwag ARC-e ARC-c Avg. Score

LLAMA-2 7B

Dense 79.11 69.06 75.99 74.58 46.25 69.00
20% 69.86 64.72 61.07 54.25 36.43 57.27
25% 69.26 64.96 58.65 52.36 35.75 56.20
30% 67.41 63.22 55.65 50.76 34.13 54.23

LLAMA-2 13B

Dense 80.47 72.22 79.39 77.48 49.23 71.76
20% 74.10 68.51 66.94 70.54 43.77 64.77
25% 71.27 68.98 64.12 63.76 40.87 61.80
30% 69.64 66.85 59.93 59.55 38.65 58.93

LLAMA-2 70B

Dense 82.70 77.98 83.84 80.98 57.34 76.57
20% 77.86 76.16 72.91 81.27 55.89 72.82
25% 76.71 73.72 71.41 79.88 54.69 71.28
30% 75.14 73.56 69.91 74.79 51.71 69.02

Phi-2

Dense 79.11 75.77 73.83 78.32 54.18 72.24
20% 71.27 67.17 54.86 56.61 38.91 57.76
25% 69.91 65.19 52.48 52.78 35.49 55.17
30% 66.16 63.54 49.72 46.38 32.68 51.70

Table 9: Downstream zero-shot task performance of LLAMA-2 and Phi-2 models when slicing and
recovery fine-tuning using the Alpaca dataset.

Model Slicing PIQA WinoGrande HellaSwag ARC-e ARC-c Avg. Score

LLAMA-2 7B

Dense 79.11 69.06 75.99 74.58 46.25 69.00
20% 76.55 65.59 68.26 71.84 45.05 65.46
25% 75.79 63.22 65.12 68.22 42.83 63.04
30% 74.59 61.64 63.06 66.54 40.87 61.34

LLAMA-2 13B

Dense 80.47 72.22 79.39 77.48 49.23 71.76
20% 79.27 68.27 73.21 74.37 49.83 68.99
25% 78.84 67.64 71.21 73.57 49.66 68.18
30% 76.11 68.03 68.58 71.42 47.10 66.35

LLAMA-2 70B

Dense 82.70 77.98 83.84 80.98 57.34 76.57
20% 81.94 77.74 79.39 81.57 58.45 75.82
25% 81.88 77.11 79.04 81.36 58.70 75.62
30% 80.30 75.85 77.13 80.05 58.19 74.30

Phi-2

Dense 79.11 75.77 73.83 78.32 54.18 72.24
20% 77.42 72.14 65.33 74.20 49.91 67.80
25% 76.17 68.75 63.39 70.45 47.44 65.24
30% 75.24 65.59 60.10 70.16 46.25 63.47

18



Published as a conference paper at ICLR 2024

A.7 BENCHMARKING THROUGHPUT EXPERIMENT

Table 10: Benchmarking throughput for OPT and LLAMA-2 models on 80GB H100 GPUs. We set
the sequence length to 128 and find the maximum throughput by doubling the batch size until the
GPUs run out of memory or the throughput drops off.

Model Slicing GPUs Batchsize Tokens/s

OPT 13B
Dense 1 512 2518
25% 1 512 2846 (1.13×)
50% 1 512 3071 (1.22×)

OPT 66B
Dense 2 16 141
25% 2 16 152 (1.08×)
50% 1 32 441 (6.26×)

LLAMA-2 13B
Dense 1 512 2707
25% 1 512 2878 (1.06×)
50% 1 512 3122 (1.15×)

LLAMA-2 70B
Dense 2 128 541
25% 2 256 839 (1.55×)
50% 1 128 1014 (3.75×)

A.8 BENCHMARKING INFERENCE TIME OF SLICEGPT AGAINST SPARSEGPT

We use the CuSparseLT 0.5 library to run sparse matrix multiplications on an 80 GB A100 GPU,
replicating the size of the matrix-matrix multiplications in three different-sized LLAMA-2 models.
We used PyTorch to run similar matrix multiplications for the dense equivalent, and for SliceGPT
(which is also straightforward dense matmul, but smaller). We chose a sequence length of 2048,
and took the matrix sizes from the HuggingFace config files. We took the median runtime over 103
attempts.

Each LLAMA-2 layer requires a gated FFN with one up projection, one down projection, and a gated
projection. In attention, the architecture of the model means that the query matrix multiplication is a
different size to the key and value matrix multiplications. The following table shows the time taken
in ms to run each matrix multiplication in the model, plus a “total” time and a relative speedup.

Table 11: Results of timing the matrix multiplications involved in each layer of LLAMA-2 models. For
larger models, SliceGPT (25%) gives the same speedup as SparseGPT 2:4 but with better WikiText-2
perplexity. For smaller models SparseGPT 2:4 provides better speedup albeit at worse perplexity.
Slicing at 50% trades off perplexity for even greater speedups.

Model Method PPL Operation (ms) Total in ms
Down Proj Up/Gate Proj K,V Q Out (speedup)

LLAMA-2 7B

Dense 5.47 0.89 0.87 0.34 0.34 0.34 3.99
SparseGPT 2:4 8.69 0.56 0.61 0.23 0.23 0.23 2.70 (1.48×)

SliceGPT (25%) 7.24 0.67 0.64 0.26 0.25 0.27 2.99 (1.33×)
SliceGPT (50%) 17.17 0.46 0.44 0.18 0.18 0.18 2.06 (1.94×)

LLAMA-2 13B

Dense 4.88 1.29 1.28 0.52 0.52 0.52 5.93
SparseGPT 2:4 7.07 0.81 0.95 0.31 0.31 0.31 3.95 (1.50×)

SliceGPT (25%) 6.30 1.03 0.98 0.39 0.39 0.41 4.57 (1.30×)
SliceGPT (50%) 13.71 0.68 0.67 0.26 0.27 0.30 3.11 (1.91×)

LLAMA-2 70B

Dense 3.32 4.63 4.27 0.21 1.27 1.27 16.13
SparseGPT 2:4 4.98 2.87 3.69 0.14 0.84 0.83 12.20 (1.32×)

SliceGPT (25%) 4.60 3.4 3.26 0.16 0.96 1.00 12.20 (1.32×)
SliceGPT (50%) 8.86 2.28 2.34 0.15 0.69 0.68 8.63 (1.87×)

We also benchmarked the OPT architecture in the same way. In this case, the matrix multiplications
associated with Key, Value, Query and Out are all the same size, and there are just two matrix
multiplications in the MLP section (FC1 and FC2).

19



Published as a conference paper at ICLR 2024

Table 12: Results of timing the matrix multiplications involved in each layer of OPT models. For
larger models, SliceGPT (25%) gives slightly better speedup than SparseGPT 2:4, and with better
WikiText-2 perplexity. For smaller models SparseGPT 2:4 provides better speedup albeit at worse
perplexity. Slicing at 50% trades off perplexity for even greater speedups.

Model Method PPL Operation (ms) Total in ms
FC2 FC1 K,V,Q,Out (speedup)

OPT 13B

Dense 10.12 1.89 1.89 0.52 7.75
SparseGPT 2:4 11.80 1.18 1.50 0.31 5.42 (1.43×)

SliceGPT (25%) 10.94 1.50 1.45 0.38 5.92 (1.31×)
SliceGPT (50%) 15.39 0.96 0.99 0.26 3.98 (1.95×)

OPT 30B

Dense 9.56 10.29 1.28 0.52 5.93
SparseGPT 2:4 10.53 0.81 0.95 0.31 3.95 (1.50×)

SliceGPT (25%) 10.04 1.03 0.98 0.39 4.55 (1.30×)
SliceGPT (50%) 12.47 0.68 0.67 0.26 3.06 (1.94×)

OPT 66B

Dense 9.33 4.63 4.27 0.21 14.01
SparseGPT 2:4 10.22 2.87 3.69 0.14 10.81 (1.30×)

SliceGPT (25%) 9.68 3.40 3.26 0.16 10.56 (1.33×)
SliceGPT (50%) 11.39 2.28 2.34 0.15 7.56 (1.85×)

A.9 RECOVERY FINE-TUNING COST

All LLAMA-2 , OPT and Phi-2 models can be sliced on a single GPU in 1 to 3 hours. With recovery
fine-tuning we compress all LMs in 1 to 5 hours total, as shown in Table 13.

Table 13: Compute cost of slicing 30% with SliceGPT and performing recovery fine-tuning using the
Alpaca dataset. Here we use a calibration set size of 1024 for LLAMA-2 models and 2048 for Phi-2 ,
and calibration sequence length 2048 in all cases.

Model SliceGPT 30% Recovery fine-tuning TotalTime GPUs Time GPUs

LLAMA-2 7B 0h44m 1xH100 80GB 0h23m 1xH100 80GB 1h07m
LLAMA-2 13B 1h08m 1xH100 80GB 0h44m 1xH100 80GB 1h52m
LLAMA-2 70B 3h31m 1xH100 80GB 1h35m 4xH100 80GB 5h06m

Phi-2 0h49m 1xV100 32GB 1h59m 1xV100 32GB 2h48m

20


	Introduction
	Background
	Transformer Networks
	Related work

	SliceGPT
	Computational invariance in transformer networks
	LayerNorm Transformers can be converted to RMSNorm
	A transformation per block
	Slicing

	Experimental Validation
	Results

	Conclusion and Future Work
	Appendix
	Proof of Equation 2
	Single Precision Eigenvalue Calculation
	Sensitivity to the calibration set size and sequence length
	Spectrum Analysis of Llama-0.82 and OPT Models
	Zero-shot Accuracy Ablation over Calibration Dataset
	Detailed Zero-shot Results
	Benchmarking Throughput Experiment
	Benchmarking Inference Time of SliceGPT against SparseGPT
	Recovery Fine-tuning Cost


