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Abstract

Both transduction and rejection have emerged as
important techniques for defending against ad-
versarial perturbations. A recent work by (Gold-
wasser et al., 2020) showed that rejection com-
bined with transduction can give provable guaran-
tees (for certain problems) that cannot be achieved
otherwise. Nevertheless, under recent strong ad-
versarial attacks (GMSA (Chen et al., 2022)),
Goldwasser et al.’s work was shown to have low
performance in a practical deep-learning setting.
In this paper, we take a step towards realizing the
promise of transduction+rejection in more realis-
tic scenarios. Our key observation is that a novel
application of a reduction technique in (Tramèr,
2022), which was until now only used to demon-
strate the vulnerability of certain defenses, can
be used to actually construct effective defenses.
Theoretically, we show that a careful application
of this technique in the transductive setting can
give significantly improved sample-complexity
for robust generalization. Our theory guides us to
design a new transductive algorithm for learning
a selective model; extensive experiments using
state of the art attacks (AutoAttack, GMSA) show
that our approach provides significantly better ro-
bust accuracy (81.6% on CIFAR-10 and 57.9% on
CIFAR-100 under l∞ with budget 8/255) than ex-
isting techniques (Croce et al., 2020). The imple-
mentation is available at https://github.com/
nilspalumbo/transduction-rejection.

*Equal contribution 1Depart of Computer Sciences, Univer-
sity of Wisconsin-Madison, Madison, WI, USA 2Google. Corre-
spondence to: Nils Palumbo <npalumbo@wisc.edu>, Yang Guo
<yguo@cs.wisc.edu>.

Proceedings of the 41st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
A recent line of research (Goldwasser et al., 2020; Mon-
tasser et al., 2021; Goodfellow, 2019; Wang et al., 2021;
Wu et al., 2020) has investigated augmenting models with
transduction (leveraging unlabeled test input to revise the
learned model) and rejection (allowing a model to reject on
certain input) to defend against adversarial perturbations.
There are in general two classes of algorithms. One class
is transduction-only. For example, (Montasser et al., 2021)
showed that robust learning with transduction allows for
significant improvements in sample complexity, reducing
dependency on VC dimension from exponential to linear;
however, this comes at the cost of significantly greater as-
sumptions on the data (OPTU2 for the realizable case rather
than the OPTU of the inductive setting 1).

The other class is to have both transduction and rejection.
For example, (Goldwasser et al., 2020) studied this setting
and showed even more surprising results, not achievable
with transduction or rejection alone. However, one promi-
nent limitation of these works seems to be that none has yet
resulted in practical robust learning mechanisms in the deep
learning setting typically considered.

In this paper, we take a step towards realizing the promise
of transduction+rejection in more realistic scenarios. Com-
pared to (Goldwasser et al., 2020), which considers arbitrary
perturbations, we focus on the classic and practical scenario
of bounded perturbations for deep learning. Somewhat sur-
prisingly, we show that a novel application of Tramèr’s
classifier-to-detector technique (Tramèr, 2022), which has
thus far only been applied to indicate that certain defenses
are vulnerable, in the transductive setting can give signifi-
cantly improved sample-complexity for robust generaliza-
tion, noting that bounded perturbations are critical for the
construction to work. To obtain these improvements, we
do not require stronger assumptions on the data, as with
(Montasser et al., 2021); in the realizable case, we only

1The optimal robust risk is OPTU =
infh∈H Pr(x,y)∼D

[
∃z ∈ U(x) : h(z) , y

]
. For U which are per-

turbations up to ϵ in some metric,Ux is a perturbation of up to xϵ,
see Section 3 for more details.
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need to assume OPTU2/3 = 0, which is even better than the
OPTU = 0 assumption in the inductive case.

Our theory guides us to identify a practical transductive
algorithm for learning a robust selective model. As a com-
ponent, we present a simple empirical approximation to
the reduction which enables the computationally efficient
realization of the improvement to robustness offered by re-
jection; our experiments show that the the robustness of
models utilizing our rejection-only defense very closely
matches the theoretical bound (i.e. the robustness achiev-
able to adversarial budget ϵ/2). While our approach does
not have the theoretical guarantees of the computationally
inefficient construction, it is a significant step towards de-
veloping an efficient reduction, left as an open problem
by (Tramèr, 2022).

In addition, we present an objective for general adaptive
attacks targeting selective classifiers based on our algorithm.
Our transductive defense algorithm gives strong empirical
performance on image classification tasks, both against our
adaptive attack and against existing state-of-the-art attacks
such as AutoAttack and standard GMSA. On CIFAR-10, we
obtain 81.6% transductive robust accuracy with rejection, a
significant improvement on the current state-of-the-art result
of 71.1% (Peng et al., 2023; Croce et al., 2020) for robust
accuracy up to the perturbation considered (l∞ with budget
ϵ = 8/255); on CIFAR-100, we obtain 57.9% transductive
robust accuracy with rejection, significantly exeeding the
strongest existing baseline of 42.7% (Wang et al., 2023;
Croce et al., 2020) with the same adversarial budget.

The rest of the paper is organized as follows. Section 2
reviews main related work, and Section 3 presents some
necessary background. We develop our theory results in
Section 4. Guided by our theory, Section 5 develops a prac-
tical robust learning algorithm, leveraging both transduction
and rejection. We provide systematic experiments in Sec-
tion 6, and conclude in Section 7.

2. Related Work
In recent years, there have been extensive studies on adver-
sarial robustness in the traditional inductive learning setting,
where the model is fixed during the evaluation phase (Car-
lini & Wagner, 2017; Goodfellow et al., 2015; Moosavi-
Dezfooli et al., 2016). Most popular and effective methods
are adversarial training, such as PGD (Madry et al., 2018),
TRADES (Zhang et al., 2019). These methods are effec-
tive against adversaries on small dataset like MNIST, but
still ineffective on complex dataset like CIFAR-10 or Im-
ageNet (Croce et al., 2020). Defenses beyond adversarial
training have been proposed but most are broken by strong
adaptive attacks (Croce & Hein, 2020; Tramer et al., 2020).

To break this robust bottleneck, recent work has proposed

alternative settings with relaxed yet realistic assumptions,
particularly by allowing rejection and transduction. In ro-
bust learning with rejection (a.k.a., abstain), we allow rejec-
tion of adversarial examples instead of correctly classifying
all of them (Tramèr, 2022). Variants of adversarial train-
ing with rejection option have been considered (Laidlaw
& Feizi, 2019; Pang et al., 2022; Chen et al., 2021; Kato
et al., 2020; Sotgiu et al., 2020; He et al., 2022), including
generalizations to unseen attacks (Stutz et al., 2020) and to
certified robustness (Sheikholeslami et al., 2020; Baharlouei
et al., 2022; Sheikholeslami et al., 2022). (Tramèr, 2022)
proves an equivalence between robust learning with rejec-
tion and standard robust learning in the inductive setting
and shows that the evaluation of past defenses with rejection
was unreliable.

The other approach is to define an alternative notion of
adversarial robustness via transductive learning, i.e. "dy-
namically" ensuring robustness on the particular given test
samples rather than on the whole distribution. Similar set-
tings have been studied but under the view of "test-time
defense" or "dynamic defense" (Goodfellow, 2019; Wang
et al., 2021; Wu et al., 2020). (Goldwasser et al., 2020) is
the first paper to formalize transductive learning for robust
learning, and the first to consider transduction+rejection.
It considers general adversaries on test data and presents
novel theoretical guarantees. (Chen et al., 2022) formally
defines the notion of transductive robustness as a maximin
problem and presents a principled adaptive attack, GMSA.
(Montasser et al., 2021) discusses robust transductive learn-
ing against bounded perturbation from a learning theory
perspective and obtains corresponding sample complexity.

3. Preliminaries
Let X denote the input space, Y the label space, D the
clean data distribution over X ×Y. We will assume binary
classification for our theoretical analysis: Y = {±1}. Let
U(x) denote the set of possible perturbations of an input x,
e.g., for ℓp norm perturbation of budget ϵ,U is the ℓp ball of
radius ϵ: U(x) = {z : ∥z − x∥p ≤ ϵ}. We assumeU satisfies
∀x ∈ X, x ∈ U(x); essentially all interesting perturbations
satisfy this. Let U2(x) := {z : ∃t ∈ U(x), such that z ∈
U(t)}, andU−1(x) := {z : x ∈ U(z)}. If a perturbation set Λ
satisfies Λ2 = U, then we say Λ = U1/2;U−1/2 = (U−1)1/2.
When U is the ℓp ball of radius ϵ, U2 is that of radius 2ϵ,
U−1 = U, and U1/2 is that of radius ϵ/2; we define U3,
U1/3, andU−1/3 similarly.

All learners are provided with n i.i.d. training samples 2

(x,y) = (xi, yi)n
i=1 ∼ D

n. There are m i.i.d. test samples
(x̃, ỹ) ∼ Dm, and the adversary can perturb x̃ to z̃ ∈ U(x̃).

2Here x = (xi)n
i=1 and similarly with y, x̃, ỹ, etc. We will also

overload the notationU, e.g.,U(x) := {u ∈ Xn : ui ∈ U(xi)}.
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Table 1. Summary of generalization bounds for the four settings. Compared to transduction alone and (Goldwasser et al., 2020), our
defense weakens the necessary conditions in the realizable case and improves the asymptotic error in the agnostic case. Compared to
induction and rejection alone, sample complexity has a linear rather than exponential dependence on the VC dimension. Compared to
(Goldwasser et al., 2020), the dependence on the error bound ϵ improves from inverse quadratic to inverse linear in the realizable case.
Note that (Goldwasser et al., 2020) requires the existence of a hypothesis with bounded error on the perturbed data in the agnostic case,
and hence does not tolerate all possible perturbations.

Realizable
Agnostic Generalization BoundSoundness Completeness Generalization

Condition Condition Bound

Induction (Montasser et al., 2019) OPTU = 0 OPTU = 0 O

(
2VC(H) log(n)+log(1/δ)

n

)
OPTU + O

(√
2VC(H)+log(1/δ)

n

)
Transduction (Montasser et al., 2021) OPTU2 = 0 OPTU2 = 0 O

(
VC(H) log(n)+log(1/δ)

n

)
2OPTU2 + O

(√
VC(H)+log(1/δ)

n

)
Rejection (Theorem A.2, A.6) OPTrej

U
= 0 OPTrej

U
= 0 O

(
2VC(T (H)) log(n)+log(1/δ)

n

)
OPTrej

U
+ O

(√
2VC(T (H))+log(1/δ)

n

)
Transduction+Rejection (Goldwasser et al., 2020) OPTU = 0 OPTU = 0 O

(√
VC(H) log(n)

n +
log(1/δ)

n

)
2 OPTU +2

√
2 OPTI + O

(√
VC(H) log n+log(1/δ)

n

)
Transduction+Rejection (Theorem 4.1, A.12) OPTU2/3 = 0 OPTU2 = 0 O

(
VC(H) log(n)+log(1/δ)

n

)
2OPTU2/3 + O

(√
VC(H)+log(1/δ)

n

)

Table 2. Summary of the robust error in all settings. Note that transductive error of the learner A is the corresponding notion of error
where h = A(x,y, z̃).

Robust Error Robust Error (with Rejection)

Inductive errU(h; x, y) := supz∈U(x) 1{h(z) , y} errrej
U

(h; x, y) := supz∈U(x) 1{h(z) < {y,⊥} ∨ h(x) , y}

Transductive errU(h;x,y, z̃, ỹ) := 1
m

∑m
i=1 1 {h (z̃i) , ỹi} errrej

U
(h;x,y, x̃, z̃, ỹ) := 1

m
∑m

i=1 1

{
(h (z̃i) < {ỹi} ∧ z̃i = x̃i)
∨ (h (z̃i) < {ỹi,⊥} ∧ z̃i , x̃i)

}

We describe the main settings below; the corresponding
notions of error are in Table 2. For each setting, we define
risk as the expected worst-case error up to the perturbation
U, and empirical risk similarly.

Induction. In the traditional robust classification setting
(e.g., (Madry et al., 2018)); also called the inductive setting
or simply induction), the learning algorithm (the defender)
is given training set (x,y), learns a classifier h : X 7→ Y
from some hypothesis classH .

Rejection. In the setting of robust classification with re-
jection, the classifier has the extra power of abstaining (i.e.,
outputting a rejection option denoted by ⊥), and further-
more, rejecting a perturbed input does not incur an error.
The learning algorithm is given training set (x,y) and learns
a selective classifier, defined as a function

h : X 7→ Y ∪ {⊥} (1)

from some hypothesis class H which, given a sample x,
either outputs a label y ∈ Y or abstains from prediction with
an output of ⊥. An error occurs only when h rejects a clean
input, or accepts and misclassifies. We define additionally
OPTrej

U
:= infh∈H Rrej

U
(h;D).

Transduction. In the setting of robust classification with
transduction (e.g., (Montasser et al., 2021)), the learning

algorithm (the transductive learner) has access to the un-
labeled test input data; the goal is to predict labels only
for these given test inputs (a transductive learner need not
generalize). The learner A is given the training data (x,y)
and the (potentially perturbed) test inputs z̃, and outputs
m labels h(z̃) = (h(z̃i))m

i=1 as predictions for z̃. That is, the
learner is a mapping A : (X × Y)n × Xm 7→ Ym. A special
case is when A learns a classifier h and use it to label z̃; the
labels are also denoted as h(z̃).

Our setting: Transduction+Rejection. A transductive
learner for selective classifiers A is given (x,y, z̃), and out-
puts rejection or a label for each input in z̃. That is, the
learner is a mapping A : (X ×Y)n × Xm 7→ (Y ∪ {⊥})m. An
error occurs when it rejects a clean test input or accepts and
misclassifies. Hence, we present the appropriate notion of
error in Table 2, the natural extension of the rejection-only
error to the transductive setting, with the key difference
being that we penalize rejection only if the sample is not
perturbed (as transductive learners produce outputs only on
the provided test data, there is no notion of rejecting x̃i if it
has been perturbed).

4. Theoretical Analysis
In this section, we present theoretical results which guide the
design of our algorithm (see Section 5). We show that, by
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applying an algorithm which produces a hypothesis robust
with reduced ϵ about an intermediate perturbation and incor-
porating rejection (via Tramèr’s classifer-to-detector reduc-
tion (2022)), we can derive an algorithm with strong guaran-
tees up to the full ϵ; in particular, the full algorithm obtains
linear dependence on the VC dimension with greatly re-
duced necessary conditions compared to transduction alone.
This suggests that this simple approach may provide signif-
icant improvements to robustness. We find in that this is
indeed the case: our algorithm, described in Section 5, ob-
tains significantly improved robustness compared to existing
baselines; see Section 6 for more details.

We focus on the realizable case for the setting with trans-
duction+rejection here, for more details and results for
the agnostic case and the setting with rejection alone see
Appendix A. For comparison with existing results in the
inductive-only and transduction-only settings (Montasser
et al., 2019; 2021), we follow their setup: assume there ex-
ists a classifier (without rejection) with 0 robust error from
a hypothesis classH of VC-dimension VC(H); the goal is
to design a learner with a small robust error.

Theorem 4.1. For any n ∈ N, δ > 0, hypothesis classH of
classifiers without rejection, perturbation setU such that
U = U−1 andU1/3 exists, and distributionD over X ×Y
satisfying OPTU2/3 = 0, there exists a transductive learner
A that constructs a set of selective classifiers (of the form
Equation (1)) ∆ s.t. the following is true: with probability
≥ 1− δ over (x,y) ∼ Dn, (x̃, ỹ) ∼ Dn, we have that for any
z̃ ∈ U(x̃), if ∆ , ∅, then for any h ∈ ∆, 3

errrej
U

(h;x,y, x̃, z̃, ỹ) ≤
VC(H) log(2n) + log(1/δ)

n
.

For U satisfying our conditions (including lp balls), we
obtain a stronger guarantee than those using only transduc-
tion or only rejection. First, compared to the guarantee for
transduction without rejection (Montasser et al., 2021) (see
Table 1), our result requires weaker assumptions on the data:
we need OPTU2/3 = 0 rather than OPTU2 = 0. For example,
consider the ℓp norm perturbation: U(x) = {z : ∥z− x∥p ≤ ϵ}.
Transduction alone requires that there exists a classifier with
0 robust error up to the perturbation U2, i.e. up to an ℓp

norm perturbation of adversarial budget 2ϵ. In contrast,
our result shows that using both transduction and rejection
only requires there exists a classifier with 0 robust error
up to perturbationU2/3, corresponding to adversarial bud-
get of 2ϵ/3. Equivalently, for a data distribution with a
margin 2ϵ, transduction without rejection can only handle
adversarial perturbations with budget ϵ, while combining
transduction and rejection can handle adversarial perturba-
tions with budget 3ϵ, tolerating three times the adversarial

3Note that ∆ is a function of x, y, and z̃, so this is more
precisely a bound of supz̃∈U(x̃),h∈A(x,y,z̃) errrej

U
(h;x,y, x̃, z̃, ỹ).

magnitude. Second, compared to rejection only (see Ta-
ble 1), this bound has a linear sample complexity rather
than exponential. Therefore, combining transduction and
rejection has the benefits of both techniques.

Furthermore, note that the result bounds the rate of incorrect
rejections as well, i.e. the rate of rejections on clean data,
with the same bound as a direct consequence of the defini-
tion of robust error under transduction and rejection. How-
ever, the result, while potentially very strong, comes with the
caveat that the defense is not guaranteed to find a nonempty
∆ (i.e., the defense is sound but may not be complete) under
conditions weaker than OPTU2 = 0; by Lemma A.14 in
Appendix A.3, ∆ is guaranteed to be nonempty, and hence
we have completeness, under the same conditions as trans-
duction alone. Hence, the result is strictly stronger than the
result for transduction alone (Montasser et al., 2021).

Consider an adversarial budget ϵ, and suppose z̃ is the given
potentially perturbed test input and x̃ is the corresponding
clean test input. To obtain the guarantee, we need to find
a model which is ϵ/3-robust at q = x̃ + (z̃ − x̃)/3. Such a
model always exists when OPTU2/3 = 0. However, given
only z̃ without knowing q or x̃, our algorithm finds a model
ϵ/3-robust at every perturbation within 2ϵ/3 of z̃ and thus ∆
may be empty.

While weaker conditions don’t guarantee that we find a
model satisfying the conditions, the result still provides
intuition for the success of our derived empirical defense.
For typical data distributions and hypothesis classes, it might
be expected that, if we fail to find a ϵ-robust hypothesis
at the fully-perturbed data, we will nevertheless be more
likely to find a model which is robust nearer the clean data
distribution (i.e. where the condition is required by the
theory) rather than further away. Determining conditions
for this is an interesting direction for future research.

Such conditions do exist: in Appendix A.3 we present a
distribution D, hypothesis class H , and perturbation U
for which ∆ is guaranteed to be nonempty and the error
bound above applies, but where trasduction has a minimum
asymptotic error of 1/2.

Proof Sketch. For intuition, think of U as the ℓp norm
perturbation with adversarial budget ϵ. We omit tech-
nical details; see Appendix A.3 for the complete proof.
Consider some clean training set x,y, clean test set x̃, ỹ,
with perturbed test data z̃ with z̃i within ϵ of x̃i. Let
z̃′ = x̃ + (z̃ − x̃)/3 be the intermediate perturbation a
third of the way between x̃ and z̃.

First, following (Montasser et al., 2021), define
the set of robust hypotheses ∆U

1/3

H
(x,y, z̃′) as

∆U
1/3

H
(x,y, z̃′) = {RU1/3 (h;x,y) = 0 ∧ RU1/3 (h; z̃′) = 0}

where RU(h; z,y) = supx̃∈U(z)
1
n
∑n

i=1 1{h(x̃i) , yi} and
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(a) (b)

Figure 1. (a) h is ϵ/3-robust at z̃; ĥ correctly classifies z̃.
(b) h is not ϵ/3-robust at z̃; ĥ rejects z̃.

RU(h; z) = RU(h; z, h(z)).

That is, we find those classifiers that satisfy: (1) they are
ϵ/3-robustly correct (i.e., correct and robust to perturbations
of budget ϵ/3) on the training data (x,y); (2) they have
ϵ/3 margin on the intermediate perturbations z̃′ (i.e., have
the same prediction for all perturbations of budget ϵ/3).
This then guarantees, as shown in (Montasser et al., 2021),
that with high probability, for any h ∈ ∆U

1/3

H
(x,y, z̃′) the

robust error facing perturbation of budget ϵ/3 is bounded
by VC(H) log(2n)+log(1/δ)

n if OPTU2/3 = 0.

Next, following (Tramèr, 2022), define a transformation
FU1/3 that maps a classifier without rejection, h, to the selec-
tive classifier (see Equation 1) ĥ = FU1/3 (h):

ĥ(x) =

h(x) if ∀x′ ∈ U−1/3(x) , h(x′) = h(x)
⊥ otherwise

. (2)

That is, ĥ rejects x if it is within ϵ/3 from h’s decision
boundary, otherwise accepts and predicts h(x).

Now, consider a clean test sample (x̃, ỹ) and x̃’s adversarial
perturbation z̃. Define an intermediate perturbation z̃′ =
x̃ + (z̃ − x̃)/3. We will show that if h is correct at z̃′, then ĥ
makes no error at z̃.

If z̃ = x̃, then z̃′ = x̃ = z̃. Since h is ϵ/3-robust at z̃′,
h(z̃) = h(z̃′) = ỹ and so ĥ(z̃) = ỹ which is correct. Otherwise,
we need to consider two cases: (a) h is ϵ/3-robust at z̃; (b) h
is not. See visualization in Figure 1. In both cases, the ϵ/3-
balls about z̃ and z̃′ intersect. Let z̃′′ be some point in the
intersection. Since h is ϵ/3-robust at z̃′, h(z̃′′) = h(z̃′) = ỹ.
Now, in case (a) where h is ϵ/3-robust at z̃, h(z̃) = h(z̃′′) = ỹ,
which is correct. In case (b) where h is not ϵ/3-robust at z̃,
ĥ rejects z̃ and makes no error.

Hence if h is correct at z̃′, then ĥ makes no error at z̃. So the
error bound for h implies the desired error bound for any ĥ
in the set

∆′ =
{
ĥ = FU1/3 (h) : h ∈ ∆U

1/3

H
(x,y, z̃′)

}
. (3)

As we have access only to the adversarial test data z̃, to
ensure ϵ/3-robustness at the unknown z̃′, we need to ensure
ϵ-robustness at z̃. Let

∆′′ := ∪

ĥ = FU1/3 (h) : h ∈
⋂

z̃′∈U−2/3(z̃)

∆U
1/3

H
(x,y, z̃′)


(4)

and let ∆̂ =
⋃

z̃′∈U−2/3(z̃) ∆
U1/3

H
(x,y, z̃′). By the above, as

∆′′ ⊆ ∆′, any ĥ in ∆′′ achieves the desired bound. If |∆̂| = 1,
then |∆′| = 1 and as ∆′ ⊆ ∆̂, ∆̂ = ∆′ and so any ĥ in ∆′′ ∪ ∆̂
likewise achieves the bound.

Hence, if we let

∆ =

∆′′ ∪ ∆̂ |∆̂| = 1,
∆′′ otherwise

, (5)

we obtain the theorem statement.

5. Defense by Transduction and Rejection
The analysis of Theorem 4.1 suggests the following defense
algorithm: (1) first obtain a classifier h that is robust and
correct on the training data and also robust on the test inputs,
(2) then transform h to a selective classifier ĥ by rejecting
inputs too close to the decision boundary of h. We describe
the resulting defense below:

Step (1) To get h, we perform adversarial training on both
the training set and the test set, using a robust cross-entropy
objective. As in TADV (Chen et al., 2022) we train with
private randomness. Specifically, we train a model with
softmax output as the class prediction probabilities hs and
the class prediction is h(x) = arg maxy∈Y hs

y(x). Given the la-
beled training data (x,y) and the test inputs z̃, we optimize
the following objective:

min
h

 1
n
∑

(x,y)∈(x,y)

[
LCE(hs(x), y)
+maxx′∈U(x)LCE (hs(x′), y)

]
+ λm

∑
z̃∈z̃

[
maxz̃′∈U(z̃)LCE (hs(z̃′), h(z̃))

]
 (6)

where LCE is the cross-entropy loss and λ > 0 is a hyper-
parameter.

Step (2) Having learned h, we now turn h into a selective
classifier ĥ. To do this, we need to compute the transfor-
mation FU1/3 , however, the construction following (Tramèr,
2022) is computationally inefficient and as such is not prac-
tical for an empirical defense. Hence, we present a simple
but effective approach which performs similarly in practice,
as we show in Section 6.4.

Empirical Classifier to Selective Classifier Transfor-
mation: Recall that ĥ rejects the input x if there exists
x′ ∈ U1/3(x) with h(x) , h(x′); otherwise accepts and
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predicts the label h(x). So we only need to determine the
existence of x′ ∈ U1/3(x) with h(x) , h(x′).

We use a standard inductive attack, PGD, for this by solving:

arg max
x′∈U1/3(x)

LCE(hs(x′), h(x)). (7)

WhenU is ℓp norm ball of radius ϵ, the constraint is then
∥x′ − x∥ ≤ ϵ/3. In practice, we can generalize this to ∥x′ −
x∥ ≤ ϵdefense where ϵdefense is a hyper-parameter we call the
rejection radius.

Taken together, we obtain a strong defense with transduction
and rejection which significantly outputerforming existing
baselines (see Section 6.3), which we refer to as TLDR
(Transductive Learning Defense with Rejection).

Discussion on Computational Cost. The computational
cost of training with TLDR is higher than that of standard
adversarial training, in particular, by a factor of at most two;
the cost of the transformation FU1/3 is the same as that of
PGD. As with general transductive defenses, the training
process must be repeated for each new batch of samples;
hence TLDR is suited to applications with minimal latency
requirements, which may amortize the cost of training over
a large batch of test samples, on the order of the full training
set.

Discussion on Evaluation. Adversarial evaluations of
novel defenses are well known to be challenging (Chen
et al., 2022; Zimmermann et al., 2022); hence, we con-
struct an adaptive attack targeting our defense in Section 5.1
and thorougly evaluate it in Section 6. As we incorporate
GMSA (Chen et al., 2022) in our attack, we must perform
multiple iterations of training in evaluation, each of which
is computationally costly. Hence, attacking and evaluating
TLDR is extremely computationally expensive.

5.1. Adaptive Attacks

Since no strong adaptive attacks exist for the new trans-
duction+rejection setting to our knowledge, we design one
here. Our attack is based on GMSA in (Chen et al., 2022),
which has been shown to be a strong attack for transductive
defense (without rejection).

The goal of the attack is to find perturbations z̃ of the clean
test inputs x̃ such that the transductive learner has a large
error when given (x,y, z̃). GMSA runs in stages; in each
stage t, it simulates the transductive learner on the current
data set (x,y, z̃t) to get a classifier ht, and then maximizes
the minimum or average loss of {hi}

t
i=1 to get the updated

perturbations of the test inputs z̃t+1 (called GMSAMIN and
GMSAAVG, respectively). See (Chen et al., 2022) for the
details.

GMSA does not directly apply to our setting since we have
selective classifiers ĥ with a rejection option which is not

considered in GMSA. Our contribution is to design a method
to get the updated perturbations z̃ of the test inputs in each
stage such that the selective classifier incurs a large error.
Recall that ĥ constructed from h incurs error in two cases:
(1) it accepts z̃ and misclassifies with h(z̃) , y; (2) z̃ = x̃ and
it rejects z̃. We consider the two cases below.

Case (1) We will propose a novel loss measuring the loss of
a selective classifier ĥ on a perturbation (z̃, y) from a clean
test point (x̃, y) for such kind of error; maximizing this loss
gives the desired z̃. Recall that we need z̃ to be accepted
and also the prediction h(z̃) , y. For the latter, we can
maximize LCE(hs(x̃), y) where hs is the class probabilities
of h (i.e., its softmax output). The former is equivalent to
minh(z̃′),h(z̃) ∥z̃ − z̃′∥ ≥ ϵdefense.

Now, suppose LDB,h(z̃′) is a surrogate loss function on the
closeness to the decision boundary; it increases when z̃′

gets closer to the decision boundary of h. Then the con-
dition is equivalent to ∥z̃ − p(z̃)∥ = ϵdefense where p(z̃) =
arg max∥z̃′−z̃∥≤ϵdefense

LDB,h(z̃′). Now, as the maximum value
of ∥z̃ − p(z̃)∥ is exactly ϵdefense, we would like to maximize
∥z̃ − p(z̃)∥ to satisfy the condition.

Summing up, for this case, we would like to maximize:

LREJ(z̃, y) := LCE(hs(z̃), y) + λ′ ∥z̃ − p(z̃)∥ ,
where p(z̃) = arg max

∥z̃′−z̃∥≤ϵdefense

LDB,h(z̃′) (8)

and λ′ > 0 is a hyper-parameter. Finally, for LDB,h,
the following definition works well in our experiments:
LDB,h(z̃′) := rank2 hs(z̃′) −max hs(z̃′), which is maximized
at the decision boundary as the top-two class probabilities
are equal.

Case (2) A critical step in an effective application of LREJ
to a transductive attack is the selection of which points to
perturb. To do this, we apply a post-processing step after
finding z̃ by maximizing (equation 8). We must predict
whether ĥ is more likely to incur error on z̃ or on the clean
input x̃ (i.e., ĥ(x̃) , y). If we expect that the clean point
is likely to be incorrectly classified or rejected, then we
update z̃ to x̃. In GMSA, we have access to a series of
models trained on previous attack iterations; we estimate the
likelihood of success at z̃ and x̃ by the fraction of previous
models which fail at each point.

Summing up the two cases and combining with GMSA gives
our final attack (details in Algorithm 1 in Appendix B.5).

6. Experiments
This section performs experiments to evaluate the proposed
method TLDR and compare it with baseline methods (e.g.,
those using only rejection or transduction). Our main find-
ings are: 1) TLDR outperforms the baselines significantly
in robustness, confirming the advantage of combining trans-
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Table 3. Robust accuracy by different attacks on TLDR. The
strongest attack is boldfaced.

Attack MNIST CIFAR-10

PGD (LCE) 0.991 0.794
PGD (LREJ) 0.988 0.781
AutoAttack 0.989 0.756
GMSA (LCE) 0.988 0.853
GMSA (LREJ) 0.972 0.739

Table 4. Robust accuracy under different attack losses on a fixed
adversarially trained model with rejection, AutoAttack for compar-
ison. The strongest attack is boldfaced.

Loss MNIST CIFAR-10

AutoAttack (Croce & Hein, 2020) 0.980 0.592

LCE 0.977 0.524
LREJ(LCE) 0.974 0.470
LREJ 0.973 0.458

duction and rejection. 2) Our adaptive attack is significantly
stronger than existing attacks which were not designed for
the new setting, providing a strong evaluation. 3) Rejection
rates rise steadily with the rejection radius, but few clean
samples are rejected and the robust accuracy remains stable.

6.1. Datasets and Defense/Attack Setup

We evaluate on MNIST (LeCun, 1998) and CIFAR-
10 (Krizhevsky et al., 2009). We consider an adversarial
budget of ϵ = 0.3 in l∞ on MNIST and ϵ = 8/255 in l∞
on CIFAR-10. For defense, on MNIST, we use a LeNet
architecture; on CIFAR-10 we use a ResNet-20 architecture.
In both cases, we train for 40 epochs with a learning rate of
0.001 using ADAM for optimization. On MNIST, we use
40 iterations of PGD during training with a step size of 0.01.
On CIFAR-10, we use 10 iterations of PGD in training with
a step size of 2/255. In training TLDR, we set λ = 0.176
after a warm start period in which λ = 0. We use a rejection
radius of ϵ/4 for selective classifiers. For attack, we use 10
iterations of GMSA on both datasets. On MNIST, we use
200 steps of PGD with a stepsize of 0.01 while generating
adversarial examples. On CIFAR-10, the PGD attacks use
100 steps with a stepsize of 1/255. Defense settings used
while training models in GMSA (including internal PGD
settings) are the standard defense settings. Internal optimiza-
tions in the calculation of LREJ use 10 steps of PGD with a
stepsize of 15% of the rejection radius. We use λ′ = 1 in
LREJ; we observe little sensitivity to the parameter.

6.2. Attack Evaluation

Table 3 shows the results of different attack methods on
TLDR. Previous work (Chen et al., 2022) shows that
transduction-aware attacks are necessary against transduc-
tive defenses; we observe that attacks (PGD on LCE or LREJ
and AutoAttack) from the traditional setting perform poorly
against our defense. We can also see that GMSA signifi-
cantly outperforms even a rejection-aware transfer attack
(referred to as PGD targeting LREJ; note that PGD and Au-
toAttack do not target the final model in this case, given the
transductive setting, but instead target a proxy trained by
the adversary); see Algorithm 2 in Appendix B.5 for the full
details.

This shows that GMSA is critical for attacking a transductive
defender; while PGD and AutoAttack are strong against an
inductive model, they performs poorly facing transduction.
Finally, we observe that GMSA with LCE is much weaker
than GMSA with LREJ. This shows another key component
in our adaptive attack, the loss LREJ, is also critical to get a
strong attack against our defense.

To further investigate the importance of LREJ, we attack
an adversarially trained model with rejection with PGD on
different losses: LREJ, cross-entropy LCE, and LREJ with
LDB,h replaced by LCE, with AutoAttack given for compari-
son. Table 4 shows that LREJ significantly outperforms both
PGD targeting alternative losses and AutoAttack. See Ap-
pendix C for an evaluation of the effectiveness with which
LREJ targets rejection using the binarization test (Zimmer-
mann et al., 2022).

6.3. Robustness of TLDR

Baselines. (1) AT: adversarial training (Madry et al.,
2018); (2) AT (with rejection): adversarial training (AT)
with rejection; (3) RMC (Wu et al., 2020); (4) DANN (Ganin
et al., 2016); (5) TADV (Chen et al., 2022); (6) Rejec-
tron (Goldwasser et al., 2020). Among them, (1) is in the
traditional induction setting, (2) is rejection only, (3)(4)(5)
are transduction only, and (6) incorporates both transduction
and rejection.

Evaluation. We attack the defenses and report the robust
accuracy (1 - the robust error defined in Section 3). To attack
inductive classifiers, we use AutoAttack (Croce & Hein,
2020). For inductive selective classifiers, we use PGD on
the rejection-aware lossLREJ from Eqn (8). For transductive
classifiers, we use GMSA which has been shown to be a
strong adaptive attack on transduction (Chen et al., 2022).
Finally, for our transductive selective classifiers, we use
our adaptive attack in Section 5.1 (roughly GMSA with
LREJ). For Rejectron (Goldwasser et al., 2020) we use
GMSA with a loss function LDISC targeting their defense;
see Appendix B.6 for the details. We include an ablation
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Table 5. Results on MNIST and CIFAR-10. Robust accuracy is 1 - robust error; see Section 3. pREJ is the percentage of inputs rejected.
The baseline results are from (Chen et al., 2022). The strongest attack against each defense is shown. The best result is boldfaced.

Setting Defense Attacker MNIST CIFAR-10
pREJ Robust accuracy pREJ Robust accuracy

Induction AT (Madry et al., 2018) AutoAttack – 0.897 – 0.448

Rejection only AT (with rejection) PGD (LREJ) 0.852 0.968 0.384 0.634

Transduction only RMC (Wu et al., 2020) GMSA (LCE) – 0.588 – 0.396
DANN (Ganin et al., 2016) GMSA (LCE) – 0.062 – 0.055
TADV (Chen et al., 2022) GMSA (LCE) – 0.943 – 0.541

Transduction+Rejection URejectron (Goldwasser et al., 2020) GMSA (LDISC) 0.274 0.721 0.000 0.145
Transduction+Rejection TLDR (ours) GMSA (LREJ) 0.126 0.972 0.208 0.739

Table 6. Comparison with state-of-the-art (Peng et al., 2023; Wang et al., 2023; Croce et al., 2020) on CIFAR-10 and CIFAR-100 under l∞
perturbations with budget 8/255. The best result is boldfaced.

Setting Defense Architecture Attacker CIFAR-10 CIFAR-100
pREJ Robust accuracy pREJ Robust accuracy

Induction (Peng et al., 2023) Ra WideResNet-28-10 AutoAttack – 0.651 – 0.372
Induction (Peng et al., 2023) Ra WideResNet-70-16 AutoAttack – 0.711 – 0.388
Induction (Wang et al., 2023) WideResNet-28-10 AutoAttack – 0.673 – 0.388
Induction (Wang et al., 2023) WideResNet-70-16 AutoAttack – 0.707 – 0.427

Transduction+Rejection TLDR (ours) ResNet-20 GMSA (LREJ) 0.208 0.739 – –
Transduction+Rejection TLDR (ours) WideResNet-28-10 GMSA (LREJ) 0.111 0.816 0.171 0.579

of the two core components of TLDR (the transductive loss
term and the transformation into a selective classifier) in
Appendix C.

For transductive models, we report the stronger of
GMSAMIN and GMSAAVG. Inductive models are trained
with standard adversarial training (Goodfellow et al., 2015),
and transductive models with the TLDR loss in Eqn (6). As
Rejectron depends heavily on a key hyperparameter deter-
mining confidence needed to reject, we report the results
for the parameter value strongest against our attack. The
best-performing value on CIFAR-10 effectively eliminated
the possibility of rejection (hence the rejection rate of 0);
other choices resulted in near-0 robust accuracy.

Comparison of Defenses. Table 5 shows the robust accu-
racy and rejection rate of different methods. We observe
that either transduction or rejection can improve the perfor-
mance, while combining both techniques leads to the best
results. In particular, our defense outperforms existing trans-
ductive defenses such as RMC and DANN. Results for l2
perturbations are given for l2 in Appendix C. See Table 6 for
a comparison to the state-of-the-art. With a much smaller
ResNet-20 architecture, TLDR outperforms the strongest
existing baseline on CIFAR-10, and, with a WideResNet-
28-10 architecture, we obtain an in robust accuracy; on
CIFAR-100 of over 10%, we obtain an improvement in
robust accuracy of over 15%.

Discussion on Evaluation. As our key focus is on demon-
strating the potential advantages of one setting (transduc-
tion+rejection) over others, comparisons between settings
are necessary. In each setting, robust accuracy represents
the same concept, the fraction of samples on which we are
correct. The difference between settings lies in their differ-
ent notions of “correctness”; each concept of correctness
incorporates both the potential advantages and the disad-
vantages of each setting, e.g. in the rejection case, a new
type of error is possible: rejecting a clean sample. Hence,
we compare the fraction of samples on which we can be
correct between settings (and between defenses in the same
setting).

6.4. Rejection-Only Defense

(Tramèr, 2022) shows that the existence of a classifier with
x robust accuracy with adversarial budget ϵ implies the ex-
istence of a selective classifier with x robust accuracy with
adversarial budget 2ϵ; however, as the construction used is
computationally inefficient, this has not yet been realized
in practice. Table 7 evaluates our rejection-only defense by
comparing its results on the full adversarial budget (8/255)
to the theoretical bound obtained by a classifier with the
half-budget of 4/255. In each case, our empirical transforma-
tion results in a robust accuracy is very close to the results
obtained by Tramèr’s idealized computationally inefficient
approach. In this way, our approach enables practical real-
ization of Tramèr’s upper bound on gains from rejection in
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Table 7. Comparison of our rejection-only defense with budget ϵ to induction-only defenses with budget ϵ/2.

Dataset Model Defense Attacker ϵ (training) ϵ (attack) Robust accuracy

CIFAR-10 Resnet-20 AT (Madry et al., 2018) PGD (LCE) 8/255 8/255 0.478
CIFAR-10 Resnet-20 AT (Madry et al., 2018) PGD (LCE) 4/255 4/255 0.564
CIFAR-10 Resnet-20 AT (with rejection) [ours] PGD (LREJ) 4/255 8/255 0.564

CIFAR-10 WideResnet-28-10 AT (Madry et al., 2018) PGD (LCE) 8/255 8/255 0.429
CIFAR-10 WideResnet-28-10 AT (Madry et al., 2018) PGD (LCE) 4/255 4/255 0.602
CIFAR-10 WideResNet-28-10 AT (with rejection) [ours] PGD (LREJ) 4/255 8/255 0.601

CIFAR-100 WideResNet-28-10 AT (Madry et al., 2018) PGD (LCE) 8/255 8/255 0.181
CIFAR-100 WideResnet-28-10 AT (Madry et al., 2018) PGD (LCE) 4/255 4/255 0.307
CIFAR-100 WideResNet-28-10 AT (with rejection) [ours] PGD (LREJ) 4/255 8/255 0.307

the inductive case.

7. Conclusion
Existing works on leveraging transduction and rejection
gave mixed results on their benefits for adversarial robust-
ness. In this work we take a step in realizing their promise
in practical deep learning settings. Theoretically, we show
that a novel application of Tramèr’s results give improved
sample complexity for robust learning in the bounded per-
turbations setting. Guided by our theory, we identified a
practical robust learning algorithm leveraging both trans-
duction and rejection. Systematic experiments confirm the
benefits of our constructions. There are many future avenues
to explore, such as improving the theoretical bounds, and
improving the efficiency of our algorithms.

Impact Statement
The rapid advance of ML methods in recent years has co-
incided with increasing deployment in safety-critical ap-
plications. Hence, the potential societal risks associated
with unreliable models, in particular those which can eas-
ily be misled by adding imperceptible noise, has increased
significantly. Our work presents a principled yet practical
adversarial defense, helping to limit these risks.
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Appendix

A. Proof Details
Before introducing the proof for the generalization results, we first need to make some additional definitions. We define the
empirical robust risk as

R̂U(h; S ) =
∑

(x,y)∈S

 sup
z∈U(x)

1{h(z) , y}


And we can define the empirical robust risk under rejection accordingly:

R̂rej
U

(h; S ) =
∑

(x,y)∈S

 sup
z∈U(x)

1{h(x) , y ∨ h(z) < {y,⊥}}


And we can define the corresponding robust empirical risk minimization procedure (under rejection) as follows:

RERMH (S ) := argmin
h∈H

R̂U(h; S )

RERMrej
H

(S ) := argmin
h∈H

R̂rej
U

(h; S )

A.1. Rejection Only: Realizable Case

Definition A.1 (Realizable Robust PAC Learnability under Rejection). For Y = {0, 1}, ∀ϵ, δ ∈ (0, 1),H = Hc × Hr, the
sample complexity of realizable robust (ϵ, δ) - PAC learning of H with respect adversaryU under rejection, denoted as
MRE(ϵ, δ;H ,U), is defined as the smallest m ∈ N ∪ {0} for which there exists a learning ruleA : (X×Y)m 7−→ (Y∪ {⊥})X

s.t. for every data distribution D over (X × Y)m where there exists a predictor with rejection option h∗ ∈ H with 0 risk,
RU,rej(h∗;D) = 0 with probability at least 1 − δ over S ∼ Dm,

Rrej
U

(A(S );D) ≤ ϵ

If no such m exists,MRE(ϵ, δ;H ,U) = ∞. We say thatH is robustly PAC learnable under rejection in the realizable setting
with respect to adversaryU if ∀ϵ, δ ∈ (0, 1),MRE(ϵ, δ;H ,U) is finite.

Theorem A.2 (Sample Complexity for Realizable Robust PAC Learning under Rejection). In the realizable setting, for any
H = Hc ×Hr andU, and any ϵ, δ ∈ (0, 1/2),

MRE(ϵ, δ;H ,U) = 2O((dr+dc) log(dr+dc)) 1
ε

log
(

1
ε

)
+ O

(
1
ε

log
(

1
δ

))
(9)

where dr = VC(Hr), dc = VC(Hc).

The idea of the proof is to adapt the classical sample compression argument (Littlestone&Warmuth, 1986) with improvements
based on (Montasser et al., 2019; Hanneke et al., 2019; Moran & Yehudayoff, 2016). The generalization result in the
inductive case directly comes from Equation (34).

Proof. First, we define the concept of sample compression scheme and sample compression algorithm.

Definition A.3 (Sample Compression Scheme). Given ∀m ∈ N samples, S ∼ Dm, a sample compression scheme of size k is
defined by the following pair of functions:

1. Compression function κ : (X ×Y)m 7→ (X ×Y)≤k.

2. Reconstruction function: ρ : (X ×Y)≤k 7→ H .

An algorithmA is a sample compression algorithm if ∃κ, ρ s.t. A(S ) = (κ ◦ ρ)(S ).

12
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Fix ϵ, δ ∈ (0, 1), m > 2(dr + dc) log(dr + dc). Let the compression parameter, n = O
(
(dr + dc) log (dr + dc)

)
. Let D

be any distribution, then by realizability of the learner, infh∈H Rrej
U

(h;D) = 0. Thus, ∀S sampled from D, we have

R̂
rej
U (RERMrej

H
(S ); S ) = 0.

Compression First, we define a compression function κ as through the following inflation and discretization procedure.
Given the training data S := {(xi, yi)}i∈[m], we define the following index mapping:

I(x) = min{i ∈ [m] : x ∈ U(xi)}, ∀x ∈
⋃
i∈[m]

U(xi). (10)

In another word, this index function outputs the first indexed training sample to include x in its neighborhood.

Then, we consider the set of RERM mapping learned by a size n subset of the training data:

Ĥ = {RERMrej
H

(L) : L ⊆ S , |L| = n}. (11)

Note that

|Ĥ | ≤ |{L : L ⊆ S , |L| = n}| =
(

m
n

)
≤

(em
n

)n
. (12)

Then, we inflate the data in the following way:

SU =
⋃
i∈[m]

{(
xI(x), x, yI(x)

)
: x ∈ U (xi)

}
. (13)

Note that xI(x) can be different from xi.

Let’s define the following transformation T :

T (h)(x, x′, y) := 1{h(x) , y ∨ h(x′) < {y,⊥}}, h ∈ H . (14)

And we can obtain the transformed hypothesis class T (H) := {T (h)|h ∈ H}.

Now, we proceed to define the dual space G of T (H) as the following set of functions.

G := {g(x,x′,y)|g(x,x′,y)(t) = t(x, x′, y), t ∈ T (H)}. (15)

We denote the VC dimension of the dual space as VC∗(T (H)) := VC(G).

By Lemma A.1,

VC(T (H)) = O
(
(dr + dc) log (dr + dc)

)
. (16)

By the classic result in (Assouad, 1983), the VC dimension of the dual space satisfies the following inequality:

VC∗(T (H)) < 2VC(T (H))+1. (17)

Now, we can construct the compressed dataset ŜU as the following. For each (x, x′, y) ∈ SU , {g(x,x′,y)(t)}t∈T (Ĥ) gives a
labeling. When ranging over (x, x′, y) ∈ SU , the labeling may not be unique. So for each unique labeling, we choose a
representative (x, x′, y) ∈ SU , and let ŜU be the set of the representatives. That is:

ŜU =
{
(x, x′, y) ∈ SU

∣∣∣∣∣ {g(x,x′,y)(t)}t∈T (Ĥ) provides a unique labeling
}
. (18)

Intuitively, ŜU split the infinite size dataset SU into finite size according to the labeling of T (Û) on the dual space. Thus,
ŜU is not necessarily unique but always exists. And |ŜU | equals the number of possible labeling for T (Ĥ).

13
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Let d∗ := VC(G) = VC∗(T (H)) denote the VC-dimension of G, the dual hypothesis class of T (Ĥ) (Assouad, 1983). By
applying Sauer’s Lemma, we obtain that for |T (Ĥ)| > d∗,

|ŜU | ≤
e|T (Ĥ)|

d∗

d∗

. (19)

Let n = Θ (VC (T (H))). For m ≥ n, we have

|ŜU | ≤
(
e|T (Ĥ)|

)d∗
(20)

≤
(
e|Ĥ |

)d∗
(21)

≤

(
e
(em

n

)n)d∗
(22)

≤

(
e2m

n

)nd∗

(23)

=

(
e2m

VC(T (H))

)Θ(VC(T (H))·VC(T (H∗)))

. (24)

Now we have obtain the compression map: κ(S ) = ŜU .

Reconstruction Now, we want to reconstruct a hypothesis from ŜU . First, suppose we have a data distribution over ŜU ,
denoted as P. This distribution P over samples will be later used in the α−boosting procedure.

Then, we sample the set of n i.i.d. samples from P and obtain S ′ ∈ ŜU . By classic PAC learning guarantee (Blumer
et al., 1989), for n = Θ(VC(T (H))) = Θ(dr + dc) log(dr + dc), we have with non-zero probability ∀t ∈ T (H) with∑

(x,x′,y)∈S ′ t(x, x′, y) = 0 implies E(x,x′,y)∼Pt(x, x′, y) < 1/9. Let L = {(x, y) : (x, x′, y) ∈ S ′} ⊆ S , and tP = T (RERMrej
H

(L)).

Since R̂
rej
U (RERMrej

H
(L); L) = 0, ∀(x, x′, y) ∈ S ′, tP(x, x′, y) = 0. Thus, ∀P over ŜU , there exists a weak learner tP ∈ T (Ĥ),

s.t. E(x,x′,y)∼P tP(x, x′, y) < 1/9.

Now, we use tP as a weak hypothesis in a boosting algorithm, specifically α−boost algorithm from (Schapire & Freund,
2012) with ŜU as the dataset and Pk generated at each round of the algorithm. Then with appropriate choice of α, running
α−boosting for K = O(log(|ŜU |)) rounds gives a sequence of hypothesis h1, . . . , hK ∈ Ĥ and the corresponding ti = T (hi)
such that ∀(x, x′, y) ∈ ŜU ,

1
K

K∑
k=1

1{hk(x) , y ∨ hk(x′) < {y,⊥}} (25)

=
1
K

K∑
k=1

tk(x, x′, y) (26)

<
2
9
<

1
3
. (27)

Since ŜU includes all the unique labellings, 1
K

∑K
k=1 tk(x, x′, y) < 1

3 , ∀(x, x′, y) ∈ ŜU implies

1
K

K∑
k=1

tk(x, x′, y) <
1
3
, ∀(x, x′, y) ∈ SU . (28)

Let h̄ := Majority(h1, . . . , hK), i.e., h̄ outputs the prediction in Y ∪ {⊥} that receives the most votes from {h1, . . . , hK}. Then
∀(x, x′, y) ∈ ŜU ,

1{h̄(x) , y ∨ h̄(x′) < {y,⊥}} = 0. (29)

14
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This is because: (1) on x, less than 1/3 of hi’s do not output y, so h̄(x) = y; (2) on x′, less than 1/3 of hi’s do not output y or
⊥, so the majority vote must be in y or ⊥, i.e., h̄(x) ∈ {y,⊥}.

In summary, given the same m training samples, we can simply find a h̄ with 0 robust error on S :

R̂
rej
U (h̄;D) =

m∑
i=1

 sup
z∈U(x)

1{h̄(x) , y ∨ h̄(z) < {y,⊥}}
 = 0. (30)

Now we have the compression set with size:

nK = O(VC(T (H)) log(|ŜU |)) = O(VC(T (H))2 VC∗(T (H)) log(m/VC(T (H))))

Then, we apply Lemma 11 of (Montasser et al., 2019) (Replacing RU with Rrej
U

still holds), we obtain for sufficiently large
m, with probability at least 1 − δ,

Rrej
U

(h̄;D) ≤ O
(
VC(T (H))2 VC∗(T (H))

1
m

log(m/VC(T (H))) log(m) +
1
m

log(1/δ)
)
. (31)

We then can extend the sparsification procedure from (Moran & Yehudayoff, 2016; Montasser et al., 2019) to the rejection
scenario. Since t1, . . . , tK ∈ T (Ĥ), the classic uniform convergence results (Shalev-Shwartz & Ben-David, 2014) implies
that we can sample N = O(VC∗(T (H))) i.i.d. indices i1, . . . , iN ∼ Uniform([K]) and obtain:

sup
(x,x′,y)∈SU

∣∣∣∣∣∣∣∣ 1
N

N∑
j=1

ti j (x, x′, y) −
1
K

T∑
i=1

ti(x, x′, y)

∣∣∣∣∣∣∣∣ < 1
18

(32)

And thus, we can combine Equation (25) with Equation (32) and obtain:

∀(x, x′, y) ∈ SU ,
1
N

N∑
j=1

ti j (x, x′, y) ≤ −
1
18
+

1
K

K∑
i=1

tk(x, x′, y) < −
1

18
+

4
9
=

1
2

we can further obtain an improved hypothesis t̄′ := Majority(ti1 , . . . tiN ) with

t̄′(x, x′, y) = 0,∀(x, x′, y) ∈ SU

Thus, the compression set has a reduced size:

nN = O(VC(T (H)) · VC∗(T (H)))

Now, we apply Lemma 11 of (Montasser et al., 2019) and can obtain the following improved bound. Applying similar
strategy from Equation (29), we can obtain

h̄
′

:= Majority(hi1 , . . . hiN ) = ρ(ŜU) = A(S ) (33)

which is our full reconstruction map.

Then, for large sample size m ≥ c VC(T (H)) VC∗(T (H)) (c is a sufficiently large constant), with probability at least 1 − δ,

RU,rej(h̄′;D) ≤ O
(
VC(T (H)) VC∗(H)

1
m

log(m) +
1
m

log(1/δ)
)

(34)

Plugging in Lemma Appendix A.1 and solving for m gives

MRE(ϵ, δ;H ,U) = 2O(VC(T (H))) 1
ε

log
(

1
ε

)
+ O

(
1
ε

log
(

1
δ

))
(35)

= 2O((dr+dc) log(dr+dc)) 1
ε

log
(

1
ε

)
+ O

(
1
ε

log
(

1
δ

))
(36)

□
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Lemma [VC dimension of robust loss with rejection] Let VC(Hc) = dc, and VC(Hr) = dr. Then, VC(T (H)) =
O

(
(dr + dc) log (dr + dc)

)
.

Proof. Suppose d > dr + dc.

By definition of VC dimension, the max number of labeling of d points is 2d on h ∈ T (H). And since the label of h is a
deterministic function of hc and hr, by Sauer’s Lemma, the number of labeling of h is at most O(ddr ) × O(ddc ) = O(ddr+dc ).

Thus, 2d = O(ddr+dc ). And d = O((dr + dc) log(dr + dc)).

If d < dr + dc, d = O(dr + dc) log(dr + dc) by definition.

□

A.2. Rejection Only: Agnostic Case

Now, we define notion of PAC learnability in the agnostic case under rejection setting as the follows:

Definition A.4 (Robust PAC Learnability under Rejection). For Y = {0, 1}, ∀ϵ, δ ∈ (0, 1),H = Hc × Hr, the sample
complexity of robust (ϵ, δ) - PAC learning ofH with respect to perturbationU under rejection, denoted asMAG(ϵ, δ;H ,U),
is defined as the smallest m ∈ N ∪ {0} for which there exists a learning ruleA : (X ×Y)m 7−→ (Y ∪ {⊥})X s.t. for every data
distributionD over (X ×Y)m,

Rrej
U

(A(S );D) ≤ OPTrej
U
+ ϵ

with probability at least 1 − δ over S ∼ Dm. If no such m exists,MAG(ϵ, δ;H ,U) = ∞. We say that H is robustly PAC
learnable under rejection ifMAG(ϵ, δ;H ,U) is finite for all ϵ, δ ∈ (0, 1).

Lemma A.5. LetMRE =MRE(1/3, 1/3;H ,U). Then,

MAG(ϵ, δ;H ,U) = O
(
MRE

ϵ2
log2

(
MRE

ϵ

)
+

1
ϵ2

log
(

1
δ

))
(37)

Proof. The proof detail follows exactly the same from the Proof of Theorem 8 from (Montasser et al., 2019) with the loss
replaced. □

Theorem A.6 (Sample Complexity for Agnostic Robust PAC Learning under Rejection). In the agnostic setting, for any
H = Hc ×Hr andU, and any ϵ, δ ∈ (0, 1/2),

MAG(ϵ, δ;H ,U) = O
(
VC(T (H)) VC∗(T (H)) log (VC(T (H)) VC∗(T (H))) (38)

1
ε2 log2

(
VC(T (H)) VC∗(T (H))

ε

)
+

1
ε2 log

(
1
δ

))
(39)

= 2O(VC(H)) 1
ε2 log2

(
1
ε

)
+ O

(
1
ε2 log

(
1
δ

))
(40)

= 2O((dr+dc) log(dr+dc)) 1
ε2 log2

(
1
ε

)
+ O

(
1
ε2 log

(
1
δ

))
(41)

where dr = VC(Hr), dc = VC(Hc).

Proof. Combining results from Lemma Lemma A.5 and Theorem A.2 gives the complexity result.

Solving Equation (40) gives the following generalization result given in Table 1

Pr
(x,y)∼Dn

[
Rrej
U

(A(x,y);D) ≤ ϵ
]
≥ 1 − δ

where ϵ = O
(√

2VC(T (H))+log(1/δ)
n

)
. □

16



Two Heads are Actually Better than One

A.3. Transduction+Rejection: Realizable Case

We will prove a more general result which then implies Theorem 4.1. First, the training data can also be perturbed, i.e., the
adversary perturbs z ∈ U(x) and z̃ ∈ U(x̃), and the learner A are given (z,y, z̃) instead of (x,y, z̃). The criterion in the
transductive rejection error (see Table 2) is then the worst case over both z ∈ U(x) and z̃ ∈ U(x̃). Second, we will consider
OPTU3 = 0 and prove the guarantee toleratingU2. This then implies the guarantee toleratingU when OPTU3/2 = 0.

In general the set of optimally learned classifiers ∆ is defined as follows (Montasser et al., 2021):

∆U
H

(z,y, z̃) =

{h ∈ H : RU−1 (h; z,y) = 0 ∧ RU−1 (h; z̃) = 0} (Realizable Case)
arg min

h∈H
max {RU−1 (h; z,y),RU−1 (h; z̃)} (Agnostic Case)

where

RU(h; z,y) = sup
x̃∈U(z)

1
n

n∑
i=1

1{h(x̃i) , yi}

and
RU(h; z) = RU(h; z, h(z)).

Recall the transformation F which we define following Tramèr (Tramèr, 2022) in Section 4.

Then, we define the relaxed robust shattering dimension following (Montasser et al., 2021):

Definition A.7 (Relaxed Robust Shattering Dimension). A sequence z1, . . . , zk ∈ X is relaxed U-robustly shattered by
H , if ∀y1, . . . , yk ∈ {±1}: ∃xy1

1 , . . . , x
yk
k ∈ X and ∃h ∈ H such that zi ∈ U(xyi

i ) and h(U(xyi
i )) = yi, ∀1 ≤ i ≤ k. The

relaxedU-robust shattering dimension rdimU(H) is defined as the largest k for which there exist k points that are relaxed
U-robustly shattered byH .

Define the set of intermediate perturbations as follows:

Definition A.8 (Intermediate Perturbations). Given x and z and perturbationsU1 andU2, the set of possible intermediate
perturbations between x and z is

ipU1,U2
(x, z) =

{x} if x = z
U1(x) ∩U−1

2 (z) otherwise

Theorem A.9. For any n ∈ N, δ > 0, classH , perturbation setU, and distributionD over X ×Y satisfying OPTU−1U = 0:

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀z ∈ U3(x),∀z0 ∈ ipU,U2 (x, z),∀z̃ ∈ U3(x̃),∀z̃0 ∈ ipU,U2 (x̃, z̃),
∀ĥ ∈ FU

(
∆U
H

(z0,y, z̃0)
)

: errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ ϵ

]
≥ 1 − δ

where ϵ = rdim
U−1 (H) log(2n)+log(1/δ)

n ≤
VC(H) log(2n)+log(1/δ)

n .

Proof. We adapt the strategy of Theorem 5 of (Tramèr, 2022) for the rejection scenario.

By setting z = z0, z̃ = z̃0 and applying Theorem 1 of (Montasser et al., 2021), we obtain the following

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀z0 ∈ U(x),∀z̃0 ∈ U(x̃),∀h ∈ ∆U

H
(z0,y, z̃0) : errz̃0,ỹ(h) ≤ ϵ

]
≥ 1 − δ (42)

as OPTU−1(U) = 0.

Suppose (x,y), (x̃, ỹ) ∼ Dn. Now, let z ∈ U3(x), z̃ ∈ U3(x̃) and take some z0 ∈ ipU,U2 (x, z), z̃0 ∈ ipU,U2 (x̃, z̃), both of
which are necessarily nonempty asU3 = U2U, and ĥ ∈ FU

(
∆U
H

(z0,y, z̃0)
)
.

Write ĥ = FU(h) for some h ∈ ∆U
H

(z0,y, z̃0).

From Equation (42) (replacing z with z0 and z̃ with z̃0), it is enough to show that

errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ errz̃0,ỹ(h).
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Suppose that ĥ incurs an error under rejection at point z̃i; it is enough to show that h incurs an error at z̃0i . Furthermore, note
that because h ∈ ∆U

H
(z0,y, z̃0), we have that h(U−1(z̃0i )) = {h(z̃0i )} as z̃0i ∈ U

−1(z̃0i ). Write h(z̃0i ) = ŷi.

We have one of the following:

1. ĥ(z̃i) , ỹi and z̃i = x̃i

2. ĥ(z̃i) < {ỹi,⊥} and z̃i , x̃i

In the first case, we must have z̃0i = x̃i as well as z̃0i is an intermediate perturbation between x̃i and z̃i, so, as h(U−1(z̃i)) =
h(U−1(z̃0i )) = ŷi, ĥ does not reject z̃0i and ĥ(z̃0i ) = ŷi. Hence, h(z̃0i ) = ŷi as well so, as ĥ makes an error at z̃i, ŷi , y and so h
makes an error at z̃0i .

In the second case, if h(U−1(z̃i)) , {h(z̃i)}, then ĥ would reject z̃i and hence not incur an error. So h(U−1(z̃i)) = {h(z̃i)} and so
ĥ(z̃i) = h(z̃i). Since z̃0i ∈ U(x̃i) ∩U−2(z̃i), there exists some z̃′0i

∈U(z̃0i ) ∩U
−1(z̃i) and so, h(z̃0i ) = h(z̃′0i

) = h(z̃i) = ĥ(z̃i) = ŷi,
so h incurs an error at z̃0i .

In either case, we have that h makes an error at z̃0i , showing the result. □

Remark: More direct approaches may seem possible, but have surprising pitfalls. At first glance, this approach may seem
less natural than simply applying the analysis of (Montasser et al., 2021) to a potential z̃′ ∈ U1/2(x̃) with the condition of
OPTU , obtaining aU1/2-robust classifer h′, and deriving an ϵ-robust selective classifier by the transformation FU1/2 . While
this seems possible at first, as (Tramèr, 2022) shows that applying this transformation results in doubled robustness, this
isn’t possible in this situation, as h′ is only guaranteed to beU1/2-robust at z̃′, not at every ϵ/2 perturbation of x̃ as needed
by the analysis. Similarly, it might seem possible to obtain an ϵ/2-robust classifier at z̃ using (Montasser et al., 2021), and
derive the desired ϵ-robust classifier from FU1/2 ; this, however, requires the condition OPTU2 , as the analysis of (Montasser
et al., 2021) only applies on perturbations up to half the margin; hence, this approach gains no advantage from rejection.

Sample Complexity Given ϵ and δ, we need

rdimU−1 (H) log(2n) + log(1/δ)
n

≤ ϵ

for the result to hold.

Now, noting that log(2n) = 1 + log n ≤ 1 +
√

n for n ≥ 16; hence we need to solve for the n such that

rdimU−1 (H)(1 +
√

n) + log(1/δ)
n

= ϵ

or, equivalently
rdimU−1 (H) + log( 1

δ
) +
√

n

n
= ϵ

or
√

n = nϵ − rdimU−1 (H) − log(
1
δ

)

or

n = n2ϵ2 − 2ϵ
(
rdimU−1 (H) + log(

1
δ

)
)

n +
(
rdimU−1 (H) + log(

1
δ

)
)2

or

n2ϵ2 −

(
2ϵ

(
rdimU−1 (H) + log(

1
δ

)
)
+ 1

)
n +

(
rdimU−1 (H) + log(

1
δ

)
)2

= 0.

Solving, the result holds if

n ≥
2ϵ

(
rdimU−1 (H) + log( 1

δ
)
)
+ 1 +

√
(2ϵ

(
rdimU−1 (H) + log( 1

δ
)
)
+ 1)2 − 4

(
rdimU−1 (H) + log( 1

δ
)
)2
ϵ2

2ϵ2

= O

 rdimU−1 (H) + log( 1
δ
)

ϵ
+

√
rdimU−1 (H) + log( 1

δ
)

ϵ
3
2


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and, similarly, using
rdimU−1 (H) log(2n) + log(1/δ)

n
≤

VC(H) log(2n) + log(1/δ)
n

we have the result if

n = O

VC(H) + log( 1
δ
)

ϵ
+

√
VC(H) + log( 1

δ
)

ϵ
3
2


Remark: If OPTU−1U = 0, we can guarantee the existence of an ĥ which satisfies our conditions, but we can’t guarantee
that we will find it, as we cannot find ∆U

H
(z0,y, z̃0) without z0 and z̃0. We can, however, construct that an algorithm which,

if it returns a model, always returns on which meets the conditions.

Simplified Result To obtain a bound which does not involve an intermediate perturbation step, we may let

∆Urej,H (z,y, z̃) :=

∆̂ ∪ ∆U′rej,H (z,y, z̃) ∆̂U
H

(z,y, z̃)(z̃)| = 1, and

l∆U′rej,H (z,y, z̃) otherwise

where
∆U′rej,H (z,y, z̃) =

⋂
z̃′∈U−2(z̃)

∆U
H

(z,y, z̃′)

where
∆̂U
H

(z,y, z̃) =
⋃

z̃′∈U−2(z̃)

∆U
H

(z,y, z̃′).

If |∆̂U
H

(z,y, z̃)(z̃)| = 1, then as ∆U
H

(z0,y, z̃0)(z̃) ⊆ ∆̂U
H

(z,y, z̃)(z̃), ∆̂U
H

(z,y, z̃)(z̃) = ∆U
H

(z0,y, z̃0)(z̃) since ∆U
H

(z0,y, z̃0)
is nonempty as OPTU−1(U) = 0.

Note that for common classes of perturbations, we can simplify the ∆′rej. Note that the conditions of the theorem hold for
perturbations defined via ϵ-balls in a metric.

Let
∆
U,U′

H
(z,y, z̃) = {h ∈ H : RU−1 (h; z,y) = 0 ∧ RU′−1 (h; z̃) = 0} .

Lemma A.10. In the realizable case, ifU =U−1,

∆U′rej,H (z,y, z̃) = ∆U,U
3

H
(z,y, z̃)

Proof. Suppose h ∈ ∆U′rej,H (z,y, z̃). Then by the definitions of ∆rej and ∆, RU−1 (h; z,y) = 0 and for any z′ ∈ U−2(z), z̃′ ∈
U−2(z̃), we have that, for any x ∈ U−1(z′) and x̃ ∈ U−1(z̃′), h(xi) = h(z′i) and h(x̃i) = h(z̃′i). Now, as there exists some
z′′ ∈ U(z′) ∩U−1(bz) and h(x) = h(z′) = h(z′′) = h(z) by an argument similar to that in Theorem A.9 and similarly for x̃
and z̃, we have that for any x ∈ U−3(z) and x̃ ∈ U−3(z̃), h(xi) = h(zi) and h(x̃i) = h(z̃i), and so

∆U′rej,H (z,y, z̃) ⊆ ∆U,U
3

H
(z,y, z̃)

Now, if h ∈ ∆U,U
3

H
(z,y, z̃), we have that, RU−1 (h; z,y) = 0 and for any x ∈ U−3(z) and x̃ ∈ U−3(z̃), h(xi) = h(zi) and

h(x̃i) = h(z̃i). Now, suppose z′ ∈ U−2(z), z̃′ ∈ U−2(z̃). Since x ∈ U(x) for all x, z′ ∈ U−3(z), z̃′ ∈ U−3(z̃) as well.
Hence, h(z′i) = h(zi) and h(z̃′i) = h(z̃i). Now, if x ∈ U−1(z′) and x̃ ∈ U−1(z̃′), we have x ∈ U−3(z) and x̃ ∈ U−3(z̃) and so
h(xi) = h(zi) and h(x̃i) = h(z̃i). But then h(xi) = h(z′i) and h(x̃i) = h(z̃′i). Hence, we have that

∆
U,U3

H
(z,y, z̃) ⊆ ∆U′rej,H (z,y, z̃)

and the result follows. □

From this, we immediately derive the corollary

∆Urej,H (z,y, z̃) ⊇ ∆U
3

H
(z,y, z̃).
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Remark: Note that this means that ∆U′rej,H (z,y, z̃) is nonempty if OPTU6 = 0, and, by the definition of ∆, ∆ is also

nonempty if |∆̂U
H

(z,y, z̃)(z̃)| = 1, i.e. if there exists only one possible labeling of the z̃ which is robust at some possible
intermediate perturbation.

Now, by the above and from Theorem A.9 we may immediately derive Theorem 4.1 by noting that ifU = U−1,U−1U = U2,
and if ĥ ∈ FU(∆U

H
(z,y, z̃)) = FU1/3 (∆U

1/3

rej,H (z,y, z̃)) then we have ĥ ∈ FU1/3

(
∆U

1/3

H
(z0,y, z̃0)

)
for some z0 ∈ ipU1/3,U2/3 (x, z)

and z̃0 ∈ ipU1/3,U2/3 (x̃, z̃).

Furthermore, following from Lemma A.10, ∆U
1/3

rej,H (z,y, z̃) is nonempty is OPTU2 = 0, showing completeness that the ∆
of Theorem 4.1 is nonempty under that condition, as well as, as noted above, under the condition that there exists only one
possible labeling consistent on a potential intermediate perturbation.

Now, we demonstrate that there exists a data distribution for which the transductive learner implied by ∆ finds a solution for
which the bound applies, but where no transductive learner has zero asymptotic robust error

Theorem A.11. There exists a distribution D over X × Y, a hypothesis class H , and perturbation set U for which,
with probability ≥ 1 − 21−n, for any (x,y), (x̃, ỹ) ∼ Dn and any z̃ ∈ U3(z̃), ∆Urej,H (x,y, z̃) is nonempty and for all

h ∈ ∆Urej,H (z,y, z̃), errrej
U

(h;x,y, x̃, z̃, ỹ) = 0 but, there exists no transductive learner (without rejection) A for which

limn→∞ E
[
supz̃∈U(x̃) errU(A(x,y, z̃);x,y, z̃, ỹ)

]
< 1/2.

Proof. Consider the simple discrete distributionD with (x, y) ∼ D is (1, 1) with probability 1/2 and (−1, 0) with probability
1/2. Now, letU(x) = {y | |y − x| < 1.5} and letH be the class of

Now, letH be the class of threshold functions hw(x) = 1x≥w and h−w(x) = 1x<w for integer w.

First, note that with probability 1 − 21−n both (−1, 0) and (1, 1) appear in x. In that case, any h ∈ ∆U
H

(x,y, z̃′) must be
robust at −1 and 1 up to a radius of 1/2; and hence h must be hw for some w ∈ [−1/2, 1/2] (and hence, w = 0). Hence,
|∆̂| ≤ 1; note that for any possible perturbation of −1 or 1 is withinU2 (i.e. within 1 unit of) either −1 or 1; hence, there
always exists some z̃′ where ∆U

H
(x,y, z̃′) is nonempty.

But then, there must exist exactly one element in ∆̂, and so ∆ is nonempty. Consider z̃i. We have two cases:

If z̃i ∈ [−1,−1/2] ∪ [1/2, 1], then, as h is robustly correct with radius 1/2 about 1 and −1, then x̃i = sign(z̃i) and hence
h(x̃i) = sign(z̃i). If x̃i = z̃i we do not reject as h is robust with radius 1/2 about −1 and 1. Thus, we do not incur an error at
z̃i.

If z̃i ∈ (−1/2, 1/2), then z̃i must be perturbed. But we have both positive and negative values within 1/2 of z̃i, and so
FU(z̃i) =⊥. Hence, we do not occur an error at z̃i.

In all cases, we do not incur an error if both x = −1 and x = 1 appear in the training data, and so errrej
U

(h;x,y, x̃, z̃, ỹ) is 0
with probability ≥ 1 − 21−n.

To see that there exists no transductive algorithm (without rejection) that can have asympotic error below 1/2, note that any
x̃ can be perturbed to z̃ where all z̃ are 0; hence, samples from class 0 and class 1 are indistinguishable and the minimum
error on z̃ achievable by h is the minimum of the fraction of the x̃ which are −1 and the fraction which are 1. As n→ ∞,
these both tend to 1/2 and the result follows. □

A.4. Transduction+Rejection: Agnostic Case

Note that, ifU can be decomposed into a formU = (U1/3)3 whereU1/3 = U−1/3 (as with standard perturbations in lp),
we obtain a bound which depends on OPTU2/3 rather than OPTU2 , enabling, for ĥ satisfying the conditions, much stronger
guarantees if OPTU2/3 << OPTU2 . Note that as ∀x x ∈ U(x), ∀xU2/3(x) ⊆ U2(x), and so OPTU2/3 ≤ OPTU2 .

Theorem A.12. For any n ∈ N, δ > 0, classH , perturbation setU, and distributionD over X ×Y:

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀z ∈ U3(x),∀z0 ∈ ipU,U2 (x, z),∀z̃ ∈ U3(x̃),∀z̃0 ∈ ipU,U2 (x̃, z̃),
∀ĥ ∈ FU

(
∆U
H

(z0,y, z̃0)
)

: errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ ϵ

]
≥ 1 − δ
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where

ϵ = min

2 OPTU−1U +O


√

VC(H) + log(1/δ)
n

 , 3OPTU−1U + O


√

rdimU(H) ln(2n) + ln(1/δ)
n


 .

Proof. Suppose (x,y), (x̃, ỹ) ∼ Dn. Now, let z ∈ U3(x), z̃ ∈ U3(x̃) and take some z0 ∈ ipU,U2 (x, z), z̃0 ∈ ipU,U2 (x̃, z̃),
both of which are necessarily nonempty, and ĥ ∈ FU

(
∆U
H

(z0,y, z̃0)
)
.

Write ĥ = FU(h) for some h ∈ ∆U
H

(z0,y, z̃0).

We will begin as in Theorem A.9. As before, there are two cases in which ĥ can incur an error at z̃i:

1. ĥ(z̃i) , ỹi and z̃i = x̃i

2. ĥ(z̃i) < {ỹi,⊥} and z̃i , x̃i

Now, if z̃i = x̃i, an error occurs if ĥ rejects z̃i or if h robustly predicts some ŷi , ỹi; hence an error occurs if h is not
U−1-robust at z̃0i or if h(z̃0i ) , ỹi.

Otherwise, h must beU−1-robust at z̃i, as, otherwise, ĥ would reject z̃i. Hence, as there exists some z̃′0i
∈ U(z̃0i ) ∩U

−1(z̃i),
if h isU-robust at z̃0i , we must have h(z̃i) = h(z̃0i ), and so, if ĥ makes an error, h is notU−1-robust at z̃0i or h(z̃0i ) , ỹi.

Now, in both cases, errors only occur if h is notU−1-robust at z̃0i or h(z̃0i ) , ỹi. As x̃i ∈ U
−1(z̃0i ), we have, equivalently, that

an error occurs if h is notU−1-robust at z̃0i or h(x̃i) , ỹi.

Hence,
errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ errrej(h; x̃, ỹ) + RU−1 (h; z̃0)

Now, the right hand is exactly what is bounded in Theorem 2 of (Montasser et al., 2021); as we have h ∈ ∆U
H

(z0,y, z̃0), we
have

errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ errrej(h; x̃, ỹ) + RU−1 (h; z̃0) ≤ ϵ

where

ϵ = min

2 OPTU−1U +O


√

VC(H) + log(1/δ)
n

 , 3OPTU−1U + O


√

rdimU(H) ln(2n) + ln(1/δ)
n




with probability ≥ 1 − δ by its proof. □

As in the realizable case, we can immediately derive the following corollary. However, we cannot simplify the definition of
∆rej as before; see Lemma A.14.

Corollary A.13. For any n ∈ N, δ > 0, classH , perturbation setU whereU = U−1, and distributionD over X ×Y:

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

 ∀z ∈ U3(x),∀z̃ ∈ U3(x̃),∀ĥ ∈ FU
(
∆Urej,H (z,y, z̃)

)
:

errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ ϵ

 ≥ 1 − δ

where

ϵ = min

2 OPTU−1U +O


√

VC(H) + log(1/δ)
n

 , 3OPTU−1U + O


√

rdimU(H) ln(2n) + ln(1/δ)
n


 .

Lemma A.14. In the agnostic case, we have that ifU = U−1,

∆Urej,H (z,y, z̃) ⊆ ∆U
3

H
(z,y, z̃)
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Proof. By the definition of R, we have

RU−3 (h; z̃) =
1
n

n∑
i=1

1
{
∃x̃i ∈ U

−3 (z̃i) : h (x̃i) , h (z̃i)
}

=
1
n

n∑
i=1

1
{
∃z̃′i ∈ U

−2 (z̃i)∃x̃i ∈ U
−1

(
z̃′i
)

: h (x̃i) , h (z̃i)
}

= max
z̃′i∈U

−2(z̃i)

1
n

n∑
i=1

1
{
∃x̃i ∈ U

−1 (
z̃′i
)

: h (x̃i) , h (z̃i)
}

= max
z̃′i∈U

−2(z̃i)
RU−1 (h; z̃′)

where the last equality holds as x ∈ U(x) for all x and asU = U−1, which together show that if for some z̃i and z̃′i ∈ U
−2(z̃i)

we have that h(z̃′i) , h(z̃i), that either there exists some z̃′′i ∈ U = U
−1(z̃′i) such that h(z̃′′i ) , h(z̃′i) or there exists some

z̃′′i ∈ U = U
−1(z̃i) such that h(z̃′′i ) , h(z̃i) (as before, note that z̃i = U(z̃′′i ) for some z̃′′i ∈U(z̃′i) by the definition ofU3); the

reverse is similar.

We can derive a result for RU−3 (h; z,y) similarly.

Suppose h ∈ ∆Urej,H (z,y, z̃). Then, h minimizes max {RU−1 (h; z′,y),RU−1 (h; z̃′)} for all z′ ∈ U−2(z), z̃′ ∈ U−2(z̃), so by
the above, h must also minimize

max
z′∈U−2(z),z̃′∈U−2(z̃)

max
{
RU−1 (h; z′,y),RU−1 (h; z̃′)

}
= max

{
max

z′∈U−2(z)
RU−1 (h; z′,y), max

z̃′∈U−2(z̃)
RU−1 (h; z̃′)

}
= max {RU−3 (h; z̃),RU−3 (h; z,y)}

and so h ∈ ∆U
3

H
(z,y, z̃).

However, minimizing
max

z′∈U−2(z),z̃′∈U−2(z̃)
max

{
RU−1 (h; z′,y),RU−1 (h; z̃′)

}
does not necessarily imply that h minimizes max {RU−1 (h; z′,y),RU−1 (h; z̃′)} for all z′ ∈ U−2(z), z̃′ ∈ U−2(z̃), so the
reverse may not hold. □

A.5. Extension to Unbalanced Training and Test Data

We provide a sketch of a proof that allows extending Theorem 1 of (Montasser et al., 2021) to unbalanced training and test
sets; however, for simplicity, we will work with the original form. The assumptions are the same, except that we have n
training points and m test points.

The proof is exactly as before up to the "Finite robust labelings" portion (which points are and are not labelled don’t matter
up to then and the symmetry arguments still apply). The basic idea of determining the probability of zero loss on the training
and test sets and error > ϵ on the test examples with permutation still applies. Let Eσ,x be the event that there exists a
labelling ĥ(xσ(1:n+m)) in the allowable set where this occurs.

We have
Pr
σ

[
Eσ,x

]
≤ Pr
σ

[
∃ĥ ∈ ΠU

H
(x1, . . . , xn+m) : errxσ(1:n),yσ(1:n) (ĥ) = 0 ∧ errxσ(n:n+m),yσ(n:n+m) (ĥ) > ϵ

]
and, as in (Montasser et al., 2021), note the probability of choosing such a perturbation σ for a fixed ĥ is at most( m

n + m

)s
≤

( m
n + m

)⌈ϵm⌉
=

(n + m
m

)−⌈ϵm⌉
≤

(n + m
m

)⌈−ϵm⌉
if we assume the number of total errors s ≥ ⌈ϵm⌉ without loss of generality (otherwise, err > ϵ would be impossible).

Hence, by a union bound,

Pr
σ

[
Eσ,x

]
≤

∣∣∣ΠU
H

(x1, . . . , xn+m)
∣∣∣ (n + m

m

)⌈−ϵm⌉
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and so

Pr
σ

[
Eσ,x

]
≤ (n + m)rdim

U−1 (H)
(n + m

m

)⌈−ϵm⌉
by Sauer’s Lemma (in the form of Lemma 3 of (Montasser et al., 2021)).

Now, we bound the probability by δ, we need

(n + m)rdim
U−1 (H)

(n + m
m

)⌈−ϵm⌉
≤ δ

which, solving, gives us

ϵ ≥
rdimU−1 (H) log n+m

m
(n + m) + log n+m

m

1
δ

m
=

rdimU−1 (H) log(n + m) + log 1
δ

m log
(
1 + m

n

)
Which reduces to the original result if n = m (note that the logarithms are base-2).

Corollary If we fix n + m,H , and δ, the guarantee is strongest (i.e. we minimize ϵ) when n = m. To see this, consider the
denominator. Write α = m

n . Then, we wish to maximize nα log(1 + α) (or equivalently f (α) = α log(1 + α) subject to α ≥ 0.
Now, note that f ′(α) = log(1 + α) − 1 = 0 when α = 1, i.e. when m = n.

Also, we can see from the result above, that if we fix m and δ, then the minimum value of ϵ tends towards∞ as n→ ∞, so
there does not necessarily exist a labelled training set sampled fromD which provides a guarantee with high probability of
arbitrarily low error on a fixed test set.

B. Experimental Details
B.1. Computing Infrastructure

We used a SLURM cluster with A100 GPUs to run our experiments.

B.2. Baseline Details

The baselines are trained with standard adversarial training (Goodfellow et al., 2015) (Madry et al., 2018). Attacks against
AT without rejection use standard PGD with a cross-entropy objective, while attacks against AT with rejection use PGD
targeting LREJ as described in algorithm 3. In all cases, the parameters for PGD in training are the same as those used in
TLDR’s training process for the same dataset.

B.3. Defense

In our implementation, we begin to incorporate the transductive term in our objective (see Equation (6)) after initially
training the model with the inductive loss term only; this allows learning a better baseline before we begin to enforce
robustness about the test points. In our experiments, we use the transductive loss in the final half of the training epochs.

B.4. Adaptive Attack

Solving for the perturbation x̃ by iteratively optimizing LREJ poses several difficulties.

First, the rejection-avoidance term
∥∥∥x̃ − arg max||x′−x̃||≤ϵ LDB,h(x′)

∥∥∥ is not differentiable with respect to x̃. While it is possible
to approximate the derivative with the derivative of a proxy (e.g. differentiating though some fixed number of PGD steps,
necessitating second-order optimization), this is extremely expensive and does not improve results in our experiments (see
below).

Intuitively, we might see that this would be the case: if the decision boundary is smooth, we might expect the maximizers in
U(x + ∆) andU(x) to be the same for small ∆ unless x′ is near the border ofU(x) given thatU(x + ∆) ≈ U(x). In this case,
approximating x′ as constant with respect to x is reasonable.

In addition, note that if h(x) = y, the adversary must find a x̃ where h(x̃) , y which is not rejected: if maximizing LREJ with
PGD, the rejection-avoidance term penalizes moving x̃ towards the decision boundary. As this is necessary to find a valid
attack (when h(x̃) = y at initialization), we adjust λ adaptively during optimization by setting it to zero when h(x̃) = y.
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B.5. Transductive Attack Details

We present two rejection-aware transductive attacks: a stronger but more computationally intensive rejection-aware GMSA
(Algorithm 1) and a weaker but faster rejection-aware transfer attack which takes the transductive robust rejection risk into
account (Algorithm 2).

Algorithm 1 Rejection-Aware GMSA
Require: A clean training set T , a clean test set E, a transductive learning algorithm for classifiers A, an adversarial budget of ϵ, mode

either MIN or AVG, a radius used for rejection ϵdefense, and a maximum number of iterations N ≥ 1. E|X refers to the projection on the
feature space for E.

1: Search for a perturbation of the test set which fools the model space induced by (T,U(E|X)).
2: E′ = E
3: Ê = E
4: errmax = − inf
5: for i=0,. . . ,N-1 do
6: Train a transductive model on the perturbed data.
7: h(i) = A(T, E′|X)
8:

err =
1
|E′|

|E′ |∑
i=1

1
{(

F(h(i)) (x̃i) < {ỹi} ∧ x̃i = xi

)
∨

(
F(h(i)) (x̃i) < {ỹi,⊥} ∧ x̃i , xi

)}
{The x̃i and the xi are the ith datapoints of E′ and E, repectively; yi is the true label.}

9: if errmax < err then
10: Ê = E′
11: end if
12: for j = 1, . . . , |E| do
13: if mode = MIN then
14:

x̃ j = arg max
∥x̃−x j∥≤ϵ

min
1≤k≤i
LREJh(k) (x̃, y j)

15: else
16:

x̃ j = arg max
∥x̃−x j∥≤ϵ

1
i

i∑
k=1

LREJh(k) (x̃, y j)

17: end if
{Select whether to perturb by comparing success rates against past models for the clean and perturbed samples.}

18:
errclean =

1
i

∑
0≤k≤i

1
[
F

(
h(k)

)
(x j) , y j

]
19:

errperturbed =
1
i

∑
0≤k≤i

1
[
F

(
h(k)

)
(x̃ j) < {y j,⊥}

]
{Do not perturb if the perturbation reduces robust rejection accuracy less on average than leaving the points unchanged.}

20: if errperturbed < errclean then
21: x̃ j = x j
22: end if
23: E′j = x̃ j, yi

24: end for
25: end for
26: Return: Ê

Finally, note the attack with LREJ, without GMSA, is effective against selective classifiers based on the transformation F
(and via Tramèr’s equivalency, selective classifiers in general). So we summarize this attack on a fixed model in Algorithm 3.

B.6. Rejectron Experiments

Goldwasser et al.’s implementation of Rejectron (Goldwasser et al., 2020) trains a classifier (call it hc) on the training set and
a discriminator (hd) to distinguish between the (clean) training and (potentially-perturbed) test data. Samples are rejected if
the discriminator classifies them as test data; otherwise, the classifier’s prediction is returned. Our adaptive attack is then
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Algorithm 2 Transductive Rejection-Aware Transfer
Require: A model h, a clean labelled test point (x, y), an adversarial budget of ϵ, and a radius used for rejection ϵdefense.

{Search for a perturbation x̃ of x for which h predicts ŷ , y robustly.}
1:

x̃ = arg max
∥x̃−x∥≤ϵ

[
LCE(hs(x̃), y) + λ

∥∥∥∥∥x̃ − arg max
∥x′−x̃∥≤ϵdefense

LDB,h(x′)
∥∥∥∥∥ , ]

where LCE is the cross-entropy loss, hs returns the softmax activations of h and where
LDB,h(x) = rank2hs(x) −max hs(x).
{If the attack did not succeed against h (in other words, if h does not robustly predict ŷ , y), check whether to leave x unperturbed.}

2:
x′ = arg max

∥x′−x̃∥≤ϵdefense
LCE(hs(x′), h(x̃))

3: if h(x′) , h(x̃) ∨ h(x̃) = y then
4: Leave x unperturbed if F(h) rejects it, or if h(x) , y.
5:

x′′ = arg max
∥x′′−x∥≤ϵdefense

LCE(hs(x′′), h(x))

6: if h(x) , y ∨ h(x′′) , h(x) then
7: x̃ = x
8: end if
9: end if

10: Return: x̃

Algorithm 3 Inductive Rejection-Aware Attack
Require: A model h, and a clean labelled test point (x, y), an adversarial budget of ϵ, and a radius used for rejection ϵdefense.
1: Search for a perturbation x̃ of x for which h predicts ŷ , y robustly.

x̃ = arg max
∥x̃−x∥≤ϵ

[
LCE(hs(x̃), y) + λ

∥∥∥∥∥x̃ − arg max
∥x′−x̃∥≤ϵdefense

LDB,h(x′)
∥∥∥∥∥ ]

where LCE is the cross-entropy loss, hs returns the softmax activations of h and where
LDB,h(x′) = rank2hs(x′) −max hs(x′)

2: Return: x̃

very simple: we follow the approach of Algorithm 1 but with a loss function LDISC which targets the defense.

Given a sample (x, y), the attacker’s goal is to flip the label, and, simultaneously, to avoid rejection; hence, we maximize the
following loss:

LDISC(x, y) = LCE(hs
c(x), y) + λLCE(hs

d(x), 1)

where class 1 for hd corresponds to test data, signalling rejection, and where hs returns the softmax activations of h.
Maximizing LDISC then minimizes the confidence in the true label and the probability of rejection.

Figures 2 and 3 show our adaptive attack’s performance on MNIST and CIFAR-10. τ is a key hyperparameter of Rejectron,
which determines the confidence needed by hd to reject a sample; to evaluate Rejectron fairly, we report the results on
best-performing value of τ, based on (transductive) robust rejection accuracy; see Table 5. On CIFAR-10, performance is
near-zero and rejection rate is near 100% for small values of τ. The best-performing value of τ is 1 (effectively eliminating
the possibility of rejection), leading to a rejection rate of 0; this behavior on CIFAR-10 illustrates the algorithm’s struggles
with the practical high-complexity deep learning setting.

C. Additional Experiments
C.1. Ablation Study of TLDR

Compared to traditional defenses, TLDR has two novel components: using the given test inputs in training the classifier (the
second term in Equation (6), referred to as Ltest), and transforming the trained classifier into one with rejection. Table 8
shows the results of the ablation study on these two components. In all cases, rejection significantly improves results. The
use of transduction is helpful on CIFAR-10, but reduces performance on MNIST, potentially due to the lower difficulty of
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Figure 2. Effects of τ on performance of Rejectron on MNIST with
attacker GMSA (LDISC).
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Figure 3. Effects of τ on performance of Rejectron on CIFAR-10
with attacker GMSA (LDISC).

TLDR Components Attacker MNIST CIFAR-10
Rejection Ltest pREJ Robust accuracy pREJ Robust accuracy

✓ ✓ GMSA (LREJ) 0.588 0.967 0.208 0.739

✓ × GMSA (LREJ) 0.646 0.975 0.179 0.725

× ✓ GMSA (LCE) – 0.900 – 0.516

× × GMSA (LCE) – 0.935 – 0.516

Table 8. Ablation study of TLDR. The best result is boldfaced.

Table 9. Effects of warm start period on TLDR.

Warm start (epochs) Rejection Rate Robust Rejection Accuracy
0 0.813 0.153
500 0.531 0.177
1000 0.830 0.171

deriving robust predictions on MNIST; hence, the knowledge of the specific test inputs is less useful.

C.2. Warm Start in TLDR

Here we perform experiments showing that in training TLDR, it is best to first trains a baseline model without transductive
regularization Ltest in the early stage (warm start) and then add transductive regularization for later training.

We generate the data with 100 Gaussians (one per class) equally spaced in l∞ with a separation of 3 units between means.
The adversarial budget is 2 units, and we ensure that the data is sparse by generating 10 samples per class. The models are
10 layer feedforward networks with skip connections.

The synthetic models are trained for 1000 epochs total; we see the best performance when the model has transductive
regularization but is allowed to learn an initial baseline model before transductive regularization is used in training. Doing
so reduces the risk of the regularization term harming performance.

C.3. GMSA Method

We present extended results of our defense ablation and compare the results of GMSAAVG, which optimizes the average loss
of past iterations, and GMSAMIN, which optimizes the worst-case loss. See (Chen et al., 2022). We can see that while the
two perform about the same on the full TLDR defense (GMSAMIN performs slightly better), GMSAAVG is much stronger
for models not incorporating both components.
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Table 10. Full ablation results of TLDR.

TLDR Components Attacker MNIST CIFAR-10
Rejection Transductive Regularization pREJ Robust accuracy pREJ Robust accuracy

✓ ✓ GMSAAVG (LREJ) 0.796 0.968 0.195 0.744
✓ ✓ GMSAMIN (LREJ) 0.588 0.967 0.208 0.739
✓ × GMSAAVG (LREJ) 0.646 0.975 0.179 0.725
✓ × GMSAMIN (LREJ) 0.202 0.980 0.182 0.733
× ✓ GMSAAVG (LCE) – 0.900 – 0.516
× ✓ GMSAMIN (LCE) – 0.914 – 0.601
× × GMSAAVG (LCE) – 0.935 – 0.516
× × GMSAMIN (LCE) – 0.942 – 0.556

C.4. Rejection Radius
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Figure 4. Effects of rejection radius ϵdefense on MNIST (inductive) with attacker PGD (LREJ).

The rejection radius ϵdefense is an important hyper-parameter for TLDR; however, the model’s performance is not very
sensitive to it. Figure 4 shows the trend of robust accuracy, the rejection rate on adversarial test data, and the rejection rate
on clean test data, for the inductive classifier on MNIST; Figure 5 shows those for TLDR. The robust accuracy remains
stable. The theoretical analysis suggests setting the radius to ϵ/3 where ϵ is the adversarial budget. Given TLDR’s low
sensitivity to the parameter, we use ϵ/4 for consistency as the inductive case performs best with that setting. The rejection
rate on the adversarial test data rises rapidly with the rejection radius (reaching 0.949 for TLDR for ϵdefense = ϵ), but the
rejection rate on clean data increases much more slowly (0.108 when ϵdefense = ϵ). So among all rejected inputs only a few
are clean inputs, leading to low errors as desired.

The rejection rate on clean inputs is presented for the transductive case in order to illustrate the difference in effects on clean
and perturbed data, but, as the adversary may select to perturb, some clean points were not in the training set, and, hence,
the clean rejection rates should not be considered reliable. The rejection rates rise with the rejection radius: adversarial
rejection rates increase rapidly as the rejection radius increases, while clean rejection rates increase only slowly. In all cases,
far more perturbed samples are rejected than clean samples.

C.5. Binarization test on PGD (LREJ)

Finally, to evaluate the effectiveness with which LREJ targets rejection, we apply the binarization test (Zimmermann et al.,
2022). As the binarization test is designed for inductive defenses we evaluate on PGD (LREJ), and as the binarization test
assumes that rejection does not depend on the generated dataset or the modified model, we modified LREJ to target the
original model in the calcuation of LDB,h (e.g. we wish to avoid rejection as if the model was unchanged).

For the inverted case, we modified λ′, setting it to -10 (we are seeking rejection, not avoiding it). As noted in Appendix C
, we drop the rejection-avoidance term when h(x̃) = y; hence, the negated second term poses issues for maximization in
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Figure 5. Effects of rejection radius ϵdefense on MNIST (TLDR) with attacker GMSA (LREJ).

Table 11. Results of the binarization test applied to PGD (LREJ).

MNIST CIFAR-10

Decision Boundary Closeness ASR RASR Inverted ASR Inverted RASR ASR RASR Inverted ASR Inverted RASR

0.9 0.935 0.451 1.0 0.375 0.973 0.824 0.971 0.781

0.999 0.945 0.394 1.0 0.447 0.976 0.813 0.964 0.790

0.99999 0.953 0.414 0.981 0.434 0.974 0.819 0.938 0.813

PGD (e.g. PGD would preferentially select perturbations which do not succeed). To avoid this issue, we have added an
additional success indicator to our attack objective, which we use to ensure that PGD selects the loss-maximizing successful
perturbation. Without these modifications, we observed low attack success rates in the inverted test; however, the results
with these simple changes do indicate that our attack does take the rejection component of the defense into account, the key
purpose of the inverted test.

The attack settings for the regular test are unchanged from those used for evaluation. For the test settings, we chose values
as close as possible to those used in (Zimmermann et al., 2022), with a single boundary sample, with 200 samples sampled
from each of the surfaces and corners of the l∞ ball, with 512 trials per experiment. We used 81 inner samples for MNIST,
and 253 inner samples for CIFAR-10, selected to maximize subject to the requirement that the total sample count is below
the dimensionality of the features. In both cases, the base model is a standard adversarially trained model trained on that
dataset, transformed into a selective classifier with the transformation F.

We ran the test for a range of values for the decision boundary closeness, a hyperparameter determining the test hardness.
ASR is the rate at which the attack successfuly found a perturbation which both flips the label and evades detection; RASR
is the maximum of the success rates on surfaces and corners. While the ASR values in some experiments are slightly below
the cutoff of 0.95 and are technically failures, they do indicate that the attack is successfully targeting the defense. While a
slightly stronger attack may exist, these results do not indicate significant unreliability in our evaluation of the robustness of
TLDR.

C.6. Ablation on Attacks: Attack Radius

The theory suggests that incorporating rejection can allow a transductive learner to tolerate perturbations twice as large;
we investigate how transduction and rejection affects the robustness as ϵ grows (models are adversarially trained with the
corresponding ϵ and the selective classifiers use a rejection radius of ϵ/2). The results are shown for the natural choice of
adversary, as in the experiment section (e.g. GMSA with LREJ for the transduction+rejection). For selective classifiers, the
rejection rate scaling is shown.

We see that the combination of rejection and transduction does indeed maintain high accuracy for larger ϵ; at ϵ = 0.6, it
has 96.2% of the robust accuracy that transduction alone had for ϵ = 0.3. This aligns with the theory, given the increased
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Figure 6. Robustness scaling with adversarial budget ϵ on MNIST
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Figure 7. Rejection rate scaling with adversarial budget ϵ on MNIST.

constant factors of OPTU2 in Corollary A.13 compared to the results for classifiers in (Montasser et al., 2021).

Note also the behavior of the inductive classifier: accuracy improves past ϵ = 0.6. To see why, note that a model adversarially
trained for ϵ ≥ 1 will return near-uniform predictions for all classes (resulting in a robust accuracy of approximately 10%, as
seen), making finding adversarial examples slightly more difficult than for smaller ϵ where this does not occur. The decline
in rejection rate for very large ϵ is a similar phenomenon.

C.7. Weighting of LREJ

We examine the effect of the hyperparameter λ′ between the cross-entropy and rejection-avoidance terms in LREJ on MNIST;
see Equation 8. In the inductive case, as shown in Figure 8, there is little sensitivity to λ′ in either attack success rate or
rejection rate. When targeting TLDR, there is little sensitivity in terms of attack success rate as seen in Figure 9; rejection
rate is highest for intermediate values of λ′ but, as expected, rejection rate declines with λ′ beyond that.

C.8. Robustness to l2

To evaluate our defense’s generality, we consider robustness to l2 as well and compare to the strongest defenses from each
setting in Table 12; on MNIST we use ϵ = 5 and on CIFAR-10 we use ϵ = 128/255. We observe strong performance from
TLDR, outperforming defenses with transduction or rejection alone.

C.9. Generalization of TLDR

To evaluate how closely TLDR’s generalization follows the our provided bounds in Theorems A.9 and A.12, we apply
TLDR to randomly-sampled subsets of the MNIST training and test sets. In each case, we run ten trials and present the
robust error (1 - robust accuracy) with attacker GMSA (LREJ). Given the large VC dimension of the model considered
(LeNet) (Bartlett et al., 2017), the results shown are consistent with Theorem A.12; we wish to determine whether the actual
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Figure 8. Effects of λ′ on results of PGD optimizing LREJ targeting adversarial training with rejection on MNIST.
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Figure 9. Effects of λ′ on results of GMSA optimizing LREJ targeting TLDR on MNIST.

errors observed follow the inverse-square relationship of the theorem.

In Figure 10, the size of the training set is set equal to the size of the test set (the standard assumption for our results);
in Figure 11, the full training set is used and only the test set size is changed. See Appendix A.5 for a discussion of
generalization bounds for train and test sets of differing sizes.

As the bounds are in PAC form, we use an estimate of the 99th percentile of error in order to evaluate the generalization of
TLDR; these are calculated with a best-fit beta distribution of the results on each instance size.

We then consider the inverse-square-root fit of these 99th percentile error estimates; as the gurarantee takes the form of an
upper bound, and error is upper bounded by 1, we exclude any error values equal to 1 (corresponding to instances where all
trials had a robust accuracy of 0). We find that in the case where train size is fixed, the 99th percentile errors closely follow
the inverse-square-root trend in the test set size m; while the results for equal train and test set sizes more closely follow an
inverse-cube-root relationship in m.

D. Limitations
While our framework is theoretical-sound with lower sampled complexity than the rejection-only case and with more relaxed
optimality condition than the transductive-only case, our sample complexity proof under the transductive rejection case
requires the non-emptiness of ∆ in Theorem 4.1. While weaker conditions don’t guarantee that we find a model satisfying
the conditions, the result demonstrate that empirical defense incorporating both transduction and rejection have the potential
to outperform others. Our proposed defense algorithm TLDR, though effective at improving the robust accuracy under
rejection, incurs a high computational cost relative to standard adversarial training due to the joint training with the unlabeled
data. If it is possible to delay evaluation until a sufficiently large batch of samples arrives, the cost can be made insignificant
via amortization. The need to perform a full training process prior to evaluation means, however, that the defense is not
suitable for latency-sensitive applications. Our adaptive attack is even more costly, as effectively attacking this defense using
GMSA requires multiple iterations of the full transductive training process; hence, adversaries attacking TLDR require
substantial resources.
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Table 12. Results on MNIST and CIFAR-10 up to l2 budget. The strongest attack against each defense is shown. The best result is
boldfaced.

Setting Defense Attacker MNIST CIFAR-10
pREJ Robust accuracy pREJ Robust accuracy

Induction AT (Madry et al., 2018) AutoAttack – 0 – 0.445

Rejection only AT (with rejection) PGD (LREJ) 0.112 0.921 0.130 0.754

Transduction only TADV (Chen et al., 2022) GMSA (LCE) – 0.913 – 0.813

Transduction+Rejection TLDR (ours) GMSA (LREJ) 0.078 0.933 0.007 0.845
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Figure 10. Generalization of TLDR with equal train and test size on MNIST.
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Figure 11. Generalization of TLDR with full training set on MNIST.
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