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Abstract
Instruction-guided speech editing aims to follow
the user’s natural language instruction to manip-
ulate the semantic and acoustic attributes of a
speech. In this work, we construct triplet paired
data (instruction, input speech, output speech)
to alleviate data scarcity and train a multi-task
large language model named InstructSpeech. To
mitigate the challenges of accurately executing
user’s instructions, we 1) introduce the learned
task embeddings with a fine-tuned Flan-T5-XL to
guide the generation process towards the correct
generative task; 2) include an extensive and di-
verse set of speech editing and speech processing
tasks to enhance model capabilities; 3) investigate
multi-step reasoning for free-form semantic con-
tent editing; and 4) propose a hierarchical adapter
that effectively updates a small portion of param-
eters for generalization to new tasks. To assess
instruction speech editing in greater depth, we in-
troduce a benchmark evaluation with contrastive
instruction-speech pretraining (CISP) to test the
speech quality and instruction-speech alignment
faithfulness. Experimental results demonstrate
that InstructSpeech achieves state-of-the-art re-
sults in eleven tasks, for the first time unlocking
the ability to edit the acoustic and semantic at-
tributes of speech following a user’s instruction.
1

1. Introduction
Speech editing (Borsos et al., 2022; Bai et al., 2022) is a
widely-used application that millions engage with every day,
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which allows the user to edit the recorded speech without
degrading the quality and naturalness. However, existing
efforts (Tan et al., 2021; Yang et al., 2023b) are quite lim-
ited due to 1) providing only a predefined set of content
operations such as inserting missed words, replacing mis-
pronounced words, and removing unwanted speech, while
the acoustic attributes (e.g., timbre, volume, speed, emotion,
and style) have been relatively overlooked, and 2) requiring
a user-drawn mask, or per-example prompt to ensure that
iterative edits are applied only to the target region.

To address the aformentioned issues, instruction-based
speech editing aims to follow the user’s natural language
instruction to manipulate both semantic and acoustic at-
tributes in speech, which benefits practicality as such guid-
ance is more aligned with human intuition. For instance, a
user can provide a model with a speech sample and instruct
it to “Make it sound happy” or “Speed up pronunciation”,
effortlessly describing editing goals using natural language
instructions. Despite the significant benefits, achieving high-
quality instruction-guided speech inpainting remains chal-
lenging due to 1) data scarcity and 2) the complexity of
accurately executing instruction.

In this work, we propose InstructSpeech, introducing the
first speech editing model to follow human-written instruc-
tions. To mitigate the data scarcity, we generate triplet
paired data (instruction, input speech, output speech) by
combining large models pretrained on text and speech
modality. InstructSpeech casts conditional generation as
a sequence-to-sequence modeling task and trains a large
language model (LLM) using instruction and input speech
as conditions and generating output (edited) speech.

To accurately process a variety of instructions, we 1) include
the learned task embeddings to steer the generation process
toward the correct generative task and fine-tune a Flan-T5-
XL to identify the task given any instruction, and 2) train
a LLM on an extensive and diverse set of tasks, including
both speech editing and speech processing tasks to enhance
its capabilities; 3) investigate the multi-step reasoning in
free-form semantic editing to alleviate the difficulties of
following human’s instruction; 4) propose a hierarchical
adapter and show that InstructSpeech can generalize to new

1

https://InstructSpeech.github.io
https://InstructSpeech.github.io


InstructSpeech: Following Speech Editing Instructions via Large Language Models

“Make it sounds angry”Input “Convert it to surprise” “Lower down the volume” “Add hey to the front”Hey

Figure 1: Multi-turn speech editing. Each subsequent speech is derived from the prior one, using its associated instruction.

tasks by solely updating a small portion of parameters in
few-shot adaptation.

To assess instruction speech editing in greater depth, a com-
prehensive benchmark with contrastive instruction-speech
pretraining (CISP) is introduced, InstructSpeech exhibits
superior speech quality and instruction-speech alignment
faithfulness. Experimental results demonstrate that Instruct-
Speech achieves state-of-the-art results in eleven tasks, for
the first time unlocking the ability to edit the acoustic and
semantic attributes of speech following a user’s instruction.
Key contributions of the paper include:

• We collect triplet training data (instruction, input speech,
output speech) and propose InstructSpeech - the first
speech editing model to follow human instructions.

• We introduce the learned task embeddings and train In-
structSpeech on an extensive and diverse set of tasks to
enhance its capabilities.

• We investigate multi-step reasoning to eliminate the diffi-
culties in free-form speech editing.

• We propose a hierarchical adapter for efficient adaptation
to new tasks, only updating 1% parameters on top.

• We introduce a benchmark evaluation with contrastive
instruction-speech pretraining (CISP), and present state-
of-the-art quantitative results with qualitative findings.

2. Related Work
2.1. Speech editing

Speech editing systems expect to correct mispronunciation
and improve fluency. EdiTTS (Tae et al., 2021) is an off-
the-shelf speech editing methodology based on score-based
generative modeling for pitch control and content replace-
ment. VoiceBox (Le et al., 2024) supports region-based
content editing, which is created by filling frames mapped
to unreplaced phones with the original frames and leaving
those for new phones with zeros. AudioBox (Vyas et al.,
2023) takes as input a masked speech with an accompanying
transcript and an optional description and infills the masked
portion. EditSpeech (Tan et al., 2021) allows a user to per-
form deletion, insertion, and replacement of words in a given

speech utterance, where partial inference and bidirectional
fusion are proposed to achieve smooth transition at both left
and right boundaries. Another line of works operates on
acoustic attributes (e.g., timbre, emotion, and prosody) and
keeps the semantic content representation unchanged: voice
conversion (Qian et al., 2019; Chan et al., 2022) aims to
alter the voice of a person to suit different styles while con-
serving the linguistic content. However, these methods still
require a user-drawn mask or per-example prompt and are
constrained by a predefined set of operations. In this work,
we train the speech editing model to follow human-written
instructions on an extensive and diverse set of tasks.

2.2. Learning to follow instructions

Several recent studies propose to control audio style through
instruction-guided generative models. Prompt-TTS (Guo
et al., 2023) takes a prompt with both style and content de-
scriptions as input to synthesize the corresponding speech.
Prompt-TTS 2 (Leng et al., 2023) adopts a variation net-
work to provide variability information of voice not captured
by text prompts. Instruct-TTS (Yang et al., 2023a) takes
advantage of cross-modal learning and captures semantic
information from the style prompts to control the speaking
style. AUDIT (Wang et al., 2023b) proposes to edit back-
ground sound effects, and InstructME (Han et al., 2023)
offers a latent diffusion model for instruction-guided music
editing and remixing. However, previous works focus on
TTS or instruction-guided music/sound editing, following
instructions to edit human speech is relatively overlooked.

2.3. Adapting speech generative models

Speech generative models have achieved remarkable ad-
vances in recent years, opening up a wide array of appli-
cations that leverage their power by adapting models. Uni-
Audio (Yang et al., 2023b) is designed to continuously sup-
port new generation tasks (e.g., audio editing) through fine-
tuning the whole parameters. Liu et al. (2023) achieve bet-
ter performance by finetuning low-rank adaptation (LoRA)
which adds the linear input projection to each self-attention
layer. Vyas et al. (2023) include two-stage full fine-tuning
to improve our model fidelity and quality where all param-
eters are optimized together. Chen et al. (2021) introduce
conditional layer normalization and fine-tune this part in
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addition to speaker embedding for new speaker adaptation.
In this work, we present a hierarchical adapter to efficiently
fine-tune the cross-attention mechanism in the global trans-
former and bias/norm for the local transformer, which up-
dates only 1% of the parameters on top.

3. Multi-Task Dataset for Instruction Speech
Editing

Region-Based Semantic Content Editing
Add: Insert a new word into the speech given mask.
Remove: Erase a word from the speech given mask.
Replace: Replace the word by another given mask.

Free-Form Semantic Content Editing
Add: Insert a new word following instruction.
Remove: Erase a word following instruction.
Replace: Replace the word following instruction.

Acoustic Editing
Style: Change the style of speech.
Emotion: Change the emotion of speech.
Speed: Change the speaking speed of speech.
Volume: Change the volume of speech.
Gender: Change the gender of speech.

Speech tasks
TTS: Convert phone into corresponding audio.
Frame-level TTS: Convert frame-level phone into audio.
VC: Transform the timbre of a speech.
ASR: Transcribe speech into corresponding text.
Duration: Predict the frame-level phone alignment.

Table 1: Description of the tasks forming the InstructSpeech
dataset.

Training a robust and accurate speech editing model to fol-
low human-written instructions typically requires a highly
diverse dataset on an extensive and diverse set of tasks,
while there are very few resources providing triplet paired
data (instruction, input speech, output speech) due to the
heavy workload.

Table 1 includes the complete list of tasks. To mitigate the
data scarcity, we combine the abilities of two large-scale
pretrained models that operate on different modalities: a text
large language model (i.e., GPT-3.5-Turbo) and a speech
generative model to generate triplet paired data.

3.1. Generating paired speech

We use several different pre-trained speech generative mod-
els to synthesize speech samples (after editing) that align
well with human instruction.

Emotion, gender and style editing. We train a large-scale,
in-context learning Speech LLM and use the speech prompt

on the ESD (Zhou et al., 2022), LibriTTS (Zen et al., 2019),
and LibriTTS-style datasets to respectively control the emo-
tion, gender, and style. The models are trained in wild data at
the scale of around 100K hours (e.g., Librilight (Kahn et al.,
2020)), which leads to better generalization for synthesizing
unseen speech styles in a zero-shot fashion. To construct
LibriTTS-style, we use texts from LibriTTS and 19 pro-
vided styles in Microsoft Azure TTS API [6] to synthesize
corresponding speech.More details have been included in
Appendix B.

Content editing with adding, removing, replacing words.
We train a speech editing model to generate target-edited
speech samples, which require a user-drawn mask to ensure
that editions are applied only to the target region. In practice,
we train a TTS model and randomly choose some phonemes
to mask during the training stage, where we expect it to
recover the whole speech based on the phoneme sequence.
In the inference stage, we can mask the region we want to
update in the speech and input the new words to obtain the
speech samples after the edit.

Speed editing. We train a multi-speaker non-autoregressive
TTS model (Popov et al., 2021) with duration predictor
to tell us how many frames each element of text input
lasts. Following common practice, we control speech tempo
by multiplying predicted durations by some factor λ. We
set λ = 0.5, 1.0, 1.3 to generate speech respectively with
“slow”, “normal”, and “fast” pronouncing speed while keep-
ing the speaker/content unchanged.

Energy editing. We build three categories of “low”,
“medium”, and “high”, indicating the amplitude root mean
square (RMS) ranges of [0.02, 0.04], [0.07, 0.10] and
[0.16, 0.20], respectively. To construct the dataset, we
rescale audio into different ranges dynamically.

3.2. Generating text instruction

For each task, we leverage GPT-3.5-Turbo to generate di-
verse instructions, where we provide the LLM with a task
description and a few task-specific exemplars. For acous-
tic editing (e.g., timbre, emotion, and prosody), we expect
the LLM to output diverse instructions such as “Make this
speech sound happy”, or “change the style to broadcasting”.
For semantic content editing, we randomly choose opera-
tions (i.e., add, remove, and replace) and indicate the edited
words, such as “Add sunny between good and day”, “Delete
the word sunny”, “Replace the word today by tomorrow”.

4. InstructSpeech
We train a large language model (LLM) using instruc-
tion and input speech as conditions and generating output
(edited) speech. In this section, we overview the discrete
speech tokens and text representation, and then introduce
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Figure 2: A high-level overview of InstructSpeech. We use B/N to denote the bias tuning and norm tuning.

the decoder-only architecture with differentiable multiscale
transformers. Next, we introduce the designs of hierarchical
adapter for few-shot adaptation in Section 4.4, as well as
the chain-of-thought reasoning in Section 4.5.

4.1. Speech Representation

For semantic tokens, we apply Hubert (Hsu et al., 2021)
and use k-means to discretize 12th-layer embeddings into
semantic tokens with a codebook of size 1000 and a to-
tal downsampling rate of 320. For acoustic tokens, We
tokenize speech clips with the pre-trained SoundStream tok-
enizer (Zeghidour et al., 2021; Défossez et al., 2022). The
audio encoder E of codec models consists of several convo-
lutional blocks with a total downsampling rate of 320 and
generates representations at every 20-ms frame in 16kHz,
where we flatten nq codebooks.

4.2. Text representation

Text-guided synthesis models need powerful text encoders
to capture the meaning of arbitrary language inputs. We use
pre-trained Flan-T5-XL (Raffel et al., 2020) Ti and freeze
the weights to derive text representation, which is trained on
text-only corpus significantly larger than multimodal data,
thus being exposed to a rich distribution of the text.

As illustrated in Figure 2(a), to guide the generation process
toward the correct task, we further signal to the model which
task it should perform on a given input by prefixing the
information with a tag specifying the task. In the inference
stage, we predict the task index by fine-tuning a Flan-T5-
XL model Tt to identify the task at hand given the input
instruction. As expected, conditioning InstructSpeech on

task embedding demonstrates a high accuracy in recognizing
task categories from human instruction. We refer the reader
to Section 7.3 for our findings.

4.3. Architecture

InstructSpeech θ is built upon end-to-end differentiable mul-
tiscale transformers (Yu et al., 2023; Yang et al., 2023b) to
predict long sequences with sub-quadratic self-attention.

As illustrated in Figure 2(b): 1) the token embedding ma-
trix EG maps integer-valued tokens a1, a2, ..., c2, c3 to m
dimensional embeddings, and concatenate with continu-
ous T5 representation in time axis, following which 2) we
chunk it into patches of size P of length K = T

P , 3) a
large global transformer θglobal

AR module outputs patch repre-
sentations G1:K

o = θglobal
AR (G0:K−1

i ), and 4) a small lo-
cal transformer module operates on a single patch con-
taining P elements, each of which is the sum of an out-
put from the global model and an embedding of the pre-
vious tokens, and autoregressively predict the next patch
L1:K
o = θlocal

AR (L0:K−1
i +G1:K

o ).

InstructSpeech presents the improvements from scaling the
models’ size in depth and width without the requirement
of scattered model-specific methodologies. As expected,
scaling the model size (160M (base), 520M (medium), and
1.2B (large) parameter) results in better scores. We refer the
reader to Section7.3 for our findings.

4.4. Few-shot adaptation

To enable few-shot learning for generalization to new tasks,
we propose a hierarchical adapter to finetune the LLM given
a few examples of a new task. For the global transformer, we
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adopt a set of learnable adaption prompts P and learn a new
task embedding Ee. Ee denotes a new learnable randomly-
initialized embedding vector for task adaptation, which is
learned by the language modeling loss objective given a few
examples of a new task. For the local transformer, we in-
clude a normalization tuning bias tuning strategy, where all
parameters in normalization layers as well as the bias/scale
in linear layers are set to be updated.

Suppose we have instruction representation I ∈ RK×C of
new tasks with length K and feature dimension C, we ini-
tialize learnable adaption prompt {Pl}Ll=1 for L transformer
layers, where we have each layer’s prompt Pl ∈ RK×C

and speech tokens Tl ∈ RM×C . Then, the refined tokens is
conducted an element-wise addition with instruction tokens:
P ′
l = Pl + I ∈ RK×C .

Suppose the model is processing with the speech to-
kens Tl and refined tokens P ′

l , The attention score re-
lated to the learnable prompt is calculated as Sp

l =

Attention(Tl, P
′
l , P

′
l ) = Softmax(TlP

′
l
T
/
√
C)P ′

l , and
we have St

l self-attention score for original speech tokens.

We consider a learnable gating factor (Zhang et al., 2023a)
and inject the encoded adaptation prompts to different Trans-
former layers, gradually providing instruction semantics
to avoid disturbing the speech tokens at the beginning of
training. A learnable gating factor gl is adapted to adap-
tively control the importance of Sp

l in the attention with
Sl = Sp

l gl + St
l , which represents how much information

the learnable prompt contributes. Initialized by zero, gl can
first eliminate the influence of under-fitted prompts and then
increase its magnitude to provide more instruction semantics.
We compare different adaptation methods in Section 7.3.

4.5. Multi-step reasoning

In this section, we investigate the multi-step reasoning ca-
pabilities in InstructSpeech. Multi-step reasoning includes
a step-by-step thought process for arriving at the answer,
where solutions typically come before the final answer.
Specifically, we use multi-step reasoning for free-form
semantic editing tasks to perform “add”, “remove” and
“replace” operations following the user’s instruction without
a predefined mask region. For example, when being asked
“Delete the word sunny”, InstructSpeech decomposes the
problems into intermediate steps as shown in Algorithm 1.

As such, InstructSpeech tackles the challenges of accurately
locating and manipulating the target context following the
user’s instruction. We refer the reader to Section 7.2 for a
summary of our findings.

Algorithm 1 Multi-step reasoning for free-form editing.
We use EASR, EDur, EI respectively to denote the task
embedding of automatic speech recognition, frame-level
duration prediction, and task categories prediction tasks.

1: Input: InstructSpeech θ, tuned Flan-T5-XL α, speech
before edit x, instruction c, task embedding matrix E

2: Predict phone y = θ(EASR, x).
3: Predict phone frame-level duration alignment dMFA =

θ(EDur, x, y).
4: Predict task categories I = α(c).
5: Obtain masked speech xm given predicted alignment

dMFA and derive phones to be edited ỹ from instruction
c.

6: Deteriorating to region-based semantic content editing:
x̃ = θ(EI, xm, ỹ).

7: RETURN x̃

4.6. Reconstructing High-Fidelity Waveforms

We train a unit-based neural vocoder from scratch for the
acoustic unit to waveform generation. Inspired by BigV-
GAN (Lee et al., 2022), the synthesizer includes the genera-
tor and multi-resolution discriminator (MRD). The genera-
tor is built from a set of look-up tables (LUT) that embed
the discrete representation and a series of blocks composed
of transposed convolution and a residual block with dilated
layers. The transposed convolutions upsample the encoded
representation to match the input sample rate. Details are
included in Appendix D.1.

5. Evaluating Instruction-guided Speech
Editing Models

We create the benchmark to evaluate instruction-guided
speech editing models. Specifically, for each pair of input
speech and editing instructions, we use the following the
metrics:

Speech intelligibility. We report word error rate (WER)
or phone error rate (PER) to evaluate the intelligibility of
speech by transcribing it using a whisper (Radford et al.,
2023) ASR system following (Wang et al., 2023a).

Style similarity. SIM assesses the coherence of the gen-
erated speech in relation to the speaker’s characteristics,
and we employ the speaker verification model WavLM-
TDNN (Chen et al., 2022) to evaluate the speaker similarity.
F0 Frame Error (FFE) measures the prosody similarity of
synthesized and reference audio. For emotion and style,
we train the classifiers to recognize the categories of output
speech with GE2E loss (Wan et al., 2018), which measures if
the model can accurately produce the target style or emotion
given instruction. For pitch, speaking speed, and volume,
we adopt a soft-margin mechanism for accuracy calculation

5



InstructSpeech: Following Speech Editing Instructions via Large Language Models

in Appendix G.1.

Constrastive instruction-speech pretraining score eval-
uation. Most existing contrastive pretraining models are
optimized using image (CLIP (Radford et al., 2021)) or au-
dio (CLAP (Elizalde et al., 2023)) data, which are difficult
to distinguish human speech’s fine-grained prosody informa-
tion such as speaking speed, volume, style or emotion. As
such, we fine-tune the CLAP model to learn a multimodal
space of speech and text encoders in our instruction datasets
using contrastive loss (Vyas et al., 2023). After training, we
evaluate the model in downstream audio-text and text-audio
retrieval tasks, where we compute the similarity between
the audio and text embeddings. Take audio-text retrieval as
an example, top-N descriptions are computed by picking the
descriptions corresponding to the top N values in similarity.
More details are included in Appendix C.

Text → Audio Audio → Text
R@1 R@5 R@10 R@1 R@5 R@10

Base 6.7 26.7 36.7 4.5 17.3 31.2
Ours 56.6 86.6 96.7 90.5 99.3 99.8

Table 2: Retrieval accuracy using a contrastive instruction-
speech pretraining model.

As can be seen in Table 2, the constrastive instruction-speech
pretraining model (ours) achieves the highest retrieval accu-
racy with T2A R@10 96.7 and A2T R@10 99.8. It indicates
the outperformed capabilities in assessing the coherence of
the generated speech in relation to the natural language
instruction. After training the CISP model, we use it to
evaluate instruction-guided speech editing models by calcu-
lating: 1) CISP text-speech direction similarity (CISPtext) –
measuring alignment between instruction and edited speech,
and 2) CISP speech similarity (CISPspeech) – measuring
the change between edited and input speech.

Subjective evaluation. We also conduct a crowd-sourced
human evaluation via Amazon Mechanical Turk, which is re-
ported with 95% confidence intervals (CI), and analyze two
aspects: style similarity (speaker, emotion, and prosody) and
audio quality (clarity, high-frequency), respectively scoring
SMOS and MOS. More information on evaluation has been
attached in Appendix G.2.

6. Training setup
6.1. Dataset

For speech processing and speech editing tasks, we use Lib-
rilight (Kahn et al., 2020), LibriSpeech (Panayotov et al.,
2015), LibriTTS (Zen et al., 2019), and VCTK (Veaux
et al., 2017) datasets. Besides, the ESD (Zhou et al.,
2022) dataset with 5 emotion categories and the synthe-

sized dataset LibriTTS-style with 19 style categories are
further included, respectively for emotion and style edit-
ing. For region-based content editing, we adopt Montreal
Forced Aligner (McAuliffe et al., 2017) to calculate the
alignment between phoneme and speech. We tokenize text
into the phoneme sequence with an open-source grapheme-
to-phoneme conversion tool (Sun et al., 2019) and convert
the sampling rate of all data to 16kHz. The detailed data
statistics for each task are included in Appendix A.

6.2. Model Configurations

For acoustic representation, we train the SoundStream
model with 12 quantization levels, each with a codebook
of size 1024 and the same downsampling rate of 320. We
train three sets of InstructSpeech, with 160M (base), 520M
(medium), and 1.2B (large) parameters. As for the unit-
based vocoder, we use the modified V1 version of BigV-
GAN. A comprehensive table of hyperparameters is avail-
able in Appendix D. Except explicitly stated, we use our
520M (medium) model for downstream evaluation.

During training, we train InstructSpeech for 100K steps
using 8 V100 GPUs with a batch size of 6000 tokens for
each GPU on the publicly-available fairseq framework (Ott
et al., 2019). Adam optimizer is used with β1 = 0.9, β2 =
0.98, ϵ = 10−9. BigVGAN is optimized with a segment
size of 8192 and a learning rate of 1 × 10−4 until 500K
steps using 4 V100 GPUs. For sampling, we employ top-
p (Holtzman et al., 2019) sampling with p = 0.25.

6.3. Baseline models

We also compare the InstructSpeech with other systems,
including 1) GT, the ground-truth audio; 2) GT (voc.),
where we first convert the ground-truth audio into tokens
and then convert them back to audio using BigVGAN; 3)
EditSpeech (Tan et al., 2021) and A3T (Bai et al., 2022) per-
form region-based content editing with deletion, insertion
and replacement of words in a given speech utterance; 4)
YourTTS (Casanova et al., 2022), as we are investigating a
new task with no previous work to compare with, we train
YourTTS with speech prompt for emotion or style guidance.

7. Results
7.1. Quantitative Results

The objective and subjective evaluation is presented in Ta-
bles, and extensive experiments are included in Appendix F.

Semantic content editing. We first test the intelligibility
of speech in semantic content editing: 1) For region-based
semantic editing, InstructSpeech has achieved a WER of
5.6 averaged across different operations, indicating that
InstructSpeech could generate accessible speech of good
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Speed Volume Emotion Style CISP score Subjective evaluation
Acc Acc Acc FFE Acc FFE CISPtext CISPspeech MOS SMOS

GT 86.4 91.6 86.9 / 96.1 / / / 4.32±0.08 /
GT (voc.) 86.2 90.9 82.8 0.04 93.1 0.03 0.62 0.71 4.25±0.07 4.21±0.06

YourTTS / / 38.7 0.39 30.3 0.29 / / 3.91±0.07 3.86±0.06

Base 81.2 88.1 46.3 0.42 88.3 0.46 0.58 0.66 3.98±0.07 3.92±0.08
Medium 84.0 90.6 55.2 0.41 90.6 0.52 0.59 0.68 4.01±0.06 3.95±0.07
Large 84.9 91.3 57.3 0.39 92.3 0.38 0.61 0.69 4.05±0.07 4.04±0.06

Table 3: Acoustic editing results. We modify YourTTS to include speech prompt for emotion or style guidance.

Add Remove Replace SIM

GT 5.8 5.7 7.5 0.98

EditSpeech 9.2 5.9 6.5 0.97
A3T 7.5 7.8 6.9 0.96

Base 6.3 4.2 5.9 0.97
Medium 6.4 5.5 5.8 0.98
Large 5.1 4.9 5.6 0.98

Table 4: Region-based content editing. We report WER of
adding, removing, and replacing operation, as well as the
overall SIM in LibriSpeech-test set.

Multi-step reasoning Results

Step 1: Phone recognition PER: 7.3

Step 2: Alignment Prediction Acc: 62.8; MAE: 0.61

Step 3: Overall WER Add Remove Replace

Base 13.3 12.5 15.0
Medium 13.1 12.0 14.5
Large 12.6 11.9 14.1

Table 5: Multi-step reasoning for free-form content editing.
We evaluate our models in LibriSpeech-test set.

quality as previous non-autoregressive speech editing fami-
lies. 2) For free-form semantic editing, InstructSpeech has
demonstrated an overall PER of 7.3 in phone recognition,
as well as a mean absolute error (MAE) of 0.61 in frame-
level phone alignment prediction averaged across different
operations. InstructSpeech is aware of the speech segmen-
tation and their corresponding phones, which to the best of
our knowledge is first model available for free-form editing
following human’s instruction, attributing to the multi-step
reasoning.

Acoustic attribute editing. We also evaluate our model to
manipulate acoustic attributes (e.g., gender, emotion, and
style) and keep the semantic content unchanged: 1) Re-
garding similarity, InstructSpeech scores the highest accu-
racy of 55.2 and 90.6 respectively in emotion and style

editing, showing that InstructSpeech excels at transferring
the prosody of custom voices following instruction. Infor-
mally, InstructSpeech is optimized in a large amount of
self-supervised data, which contains many speakers with
various accents and diverse demographics to improve robust-
ness and generalization. 2) For speed and volume, Instruct-
Speech also effectively alters its speaking style guided by
human instruction. Note that speed alteration only supports
speeches in the LJSpeech speaker identity. 3) Regarding
CISP direction similarity (CISPtext and CISPSpeech), In-
structSpeech presents that strong coherence of 0.59 between
text instruction and edited speech, as well as a high simi-
larity of 0.68 between the speech before and after edit. It
suggests the precise speech editing following user’s instruc-
tion while keeping the other attributes in consistent with the
speech before edit.

Subjective Human Evaluation The evaluation of the in-
struction editing models is very challenging due to its sub-
jective nature in perceptual quality, and thus we include a
human evaluation: InstructSpeech achieves the high per-
ceptual quality with MOS of and SMOS of 4.01 and 3.95.
It indicates that raters prefer our model synthesis against
baselines in terms of audio naturalness and faithfulness.

7.2. Qualitative Findings

Firstly, we explore the region-based content editing and
compare the results with baseline models (i.e., A3T or Edit-
Speech). As shown in Figure 4, InstructSpeech presents a
smooth transition (i.e., pitch contours) between the edited
and origin region and demonstrates good intelligibility. We
attach more mel-spectrograms of edited samples and corre-
sponding pitch tracks in Appendix E.

We present the free-form semantic editing examples in Ta-
ble 9: InstructSpeech step-by-step recognizes the phone se-
quence and frame-level duration alignment, in the following
InstructSpeech leverages the region-based speech editing
with user-drawn mask to manipulate the sequence. As such,
the multi-step reasoning process tackles the challenges of
executing user’s instructions, enpowering InstructSpeech to
accurately locate and manipulate the target.
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Task Content editing Emotion editing
WER SIM Acc FFE

InstructSpeech 5.9 0.98 55.2 0.41
w/o multitask 7.4 0.97 51.3 0.43

(a) Multitask learning

Task embedding Acc

GT embed 100%
Predicted embed 100%

w/o embed 73.2%

(b) Task embedding conditions

Params WER SIM

All 438M 0.32 0.86
Lora 8.97M 0.41 0.84
HA 3.03M 0.38 0.85

(c) Finetuning in emotion task

Table 6: Ablation studies. In Figure (a), we train two models on all tasks except frame-level TTS and VC task, and test them
respectively in region-based content editing and emotion editing. In Figure (c), we use HA to denote the hierarchical adapter.

To visualize whether different style are identified in gen-
erated samples, we randomly sample 19 styles; Each is
converted into a 256-dimensional embedding and reduced
to 2-dimensional with Uniform Manifold Approximation
and Projection (UMAP). As can be seen in Figure 3, In-
structSpeech presents style-aware acoustic editing with sig-
nificant inter-class distance. We also include the UMAP of
emotional samples in Figure 6 in Appendix E.

Figure 3: UMAP of style manipulation results.

7.3. Analysis and Ablation Studies

To verify the capabilities of InstructSpeech, we conduct
ablation studies and discuss the key findings in this section.

Combining speech tasks. To demonstrate the effectiveness
of optimizing instruction editing models on an extensive
and diverse set of tasks, we train two additional models
on all tasks except: (i) frame-level TTS task, and (ii) VC
task. As we show in Table 6, adding the frame-level TTS
improves the model performance in region-based content
editing, where it assists to encode aligned phone sequences
and generate intelligible speech. Similarly, VC assists the
model in understanding semantic representation, thereby
improving model robustness and generalization.

Scalability to improve performance. We also report re-
sults for different model sizes, namely 160M (base), 520M
(medium), and 1.2B (large) parameter models. As expected,
scaling the model size results in better scores. For exam-

Before Edit A3T

OursEditSpeech

Twelve years passed Twelve years passedsilence

Twelve years passedsilenceTwelve years passedsilence

Figure 4: Region-based speech editing results. We add the
word “silence” to the speech “Twelve years passed”.

ple, increasing the model size from 520M to 1.2B leads to
a 0.75% reduction in WER averaged across region-based
speech editing tasks and 3.7% accuracy improvement in
speed manipulation tasks.

Task embedding. Inspired by (Sheynin et al., 2023), we
compare to condition InstructSpeech on the ground-truth
task embedding or the task embedding predicted by the task
predictor. Additionally, a model without a task embedding
(still having T5 instruction condition) is also investigated.
To conclude, the T5 task embedding predictor demonstrates
high accuracy in recognizing task categories from human
instruction, and thus, whether the task embedding is pre-
dicted or not makes no difference. In contrast, we observe
that without conditioning on the task type, the model may
perform the wrong editing operation.

Few-shot learning with hierarchical adapter. To enable
few-shot learning of new tasks without losing the general
abilities, we fine-tune InstructSpeech in only 1-hour unseen
ESD data, and compare the results among different adap-
tation methods. Illustrated in Table 6(c), as a lightweight
plug-and-play module, the proposed hierarchical adapter
enjoys superior training efficiency with only 1% parame-
ters in contrast to lora or full finetuning and demonstrates

8
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the outperformed WER and SIM score. This enables us to
fine-tune instruction-editing LLMs on cheap devices.

8. Conclusion
In this work, we presented InstructSpeech with the first at-
tempt to edit the acoustic and semantic attributes of speech
given a user’s instruction input. To steer the generation
process toward the correct generative task, we included
learned task embeddings and fine-tuned a Flan-T5-XL to
identify the task given the input instruction. InstructSpeech
included multitask learning on an extensive and diverse
set of speech editing and speech processing tasks, enhanc-
ing its capabilities to manipulate a speech’s semantic and
acoustic attributes. We investigated the multi-step reasoning
to alleviate the difficulties in following human instruction,
and thus, InstructSpeech was the only model available for
free-form semantic editing. To generalize to unseen tasks,
we proposed a hierarchical adapter to update only 1% of
parameters efficiently. The comprehensive metrics with con-
trastive instruction-speech pretraining (CISP) demonstrated
that InstructSpeech achieved state-of-the-art results in 11
editing tasks with superior speech quality and instruction-
speech alignment faithfulness. We envisage that our work
serves as a basis for future speech editing studies.

Impact Statement
This paper aims to advance open-domain instruction-guided
speech editing, which will ease the effort of speech and
digital art creation. The multitask learning on an extensive
and diverse set of speech editing and speech processing
tasks, enhancing its capabilities to manipulate a speech’s
semantic and acoustic attributes. A negative impact is the
risk of misinformation. To alleviate it, we can train an
additional classifier to discriminate the fakes. We believe
the benefits outweigh the downsides.

InstructSpeech lowers the requirements for high-quality
instruction-guided speech editing, which may cause un-
employment for people with related occupations, such as
speech engineers and radio hosts. In addition, there is the
potential for harm from non-consensual voice cloning or the
generation of fake media, and the voices in the recordings
might be overused than they expect.
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Appendices
InstructSpeech: Following Speech Editing Instructions via Large Language

Models

A. Data

Semantic Editing

Add/Remove/Replace: LibriTTS, VCTK

Acoustic Editing
Style: LibriTTS-style
Emotion: ESD
Speed/Volume/Gender: LibriTTS
Background sound: Audioset

Speech tasks
TTS: VCTK, LibriTTS
VC: Librilight
ASR: LibriSpeech

Table 7: Original data to construct instruction speech editing dataset.

B. Instruction speech editing dataset construction
To construct instruction speech editing datasets, we train speech LLMs to synthesize speech samples (after editing) that
align well with human instruction, where we use the same training objective and architecture as InstructSpeech. Specifically,
we 1) tokenize speech samples and construct sequence for in-context learning. 2) build the architecture upon end-to-end
differentiable multiscale transformers to predict long sequences as described in Section 4.3; and 3) train the model with a
language modeling objective (i.e., next-token prediction task) with the same configurations in Section 6.2.

As illustrated in Figure (a), given a training sample (phone a and speech b pair) in the ESD dataset, the overall token
sequence includes 1) phones a or Hubert tokens [5] of b, where we use k-means to discretize 12th-layer embeddings into
Hubert tokens with a codebook of size 1000; 2) emotion prompt (acoustic tokens of a randomly chosen sample with the
same emotion as b’s), 3) speaker prompt (acoustic tokens of a randomly chosen sample with the same speaker as b’s), and 4)
acoustic tokens of b.

During inference, the model can be prompted with phones/Hubert tokens and emotion, speaker prompts to generate the
target with acoustic attributes to be coherent with the prompt. For example, given a sample and instruction with “convert it
into happy emotion”, we take its phone or Hubert tokens as input, and utilize a randomly chosen “happy” sample as the
emotion prompt, and a randomly chosen sample with the same timbre as the speaker prompt, to synthesize speech samples
(after editing) that align well with human instruction.

Librilight is included to promote the data scale. As illustrated in Figure 2 (a), given a training speech, the overall token
sequence becomes 1) Hubert tokens [5], 2) emotion prompt (acoustic tokens of a randomly chosen Librilight sample to
denote the Neutral emotion), 3) speaker prompt (acoustic tokens of a randomly chosen sample with the same speaker), and
4) acoustic target. Inspired by [4], we combine both unsupervised and supervised datasets in speech generative models for
better generalization to unseen speaking style prompts, in a zero-shot fashion.

C. Contrastive instruction-speech pretraining (CISP)
The CISP model jointly trains audio and text encoder to learn a common multimodal space using contrastive learning. Let
the training data be D = {(Xa

i , X
t
i )}

i=N
i=1 . Let faudio be the audio encoder and ftext be the text encoder which are learnable

embedding functions. The audio encoder converts the raw audio into a log Mel spectrogram followed by a learnable
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embedding function.

The model is trained with the contrastive learning paradigm between the audio Ea
i and text embeddings Et

i in pair:

Ea
i = MLPaudio (faudio (Xa

i ))

Et
i = MLPtext

(
ftext

(
Xt

i

)) (1)

L =
1

2N

N∑
i=1

(
log

exp (Ea
i · Et

i/τ)∑N
j=1 exp

(
Ea

i · Et
j/τ
) + log

exp (Et
i · Ea

i /τ)∑N
j=1 exp

(
Et

i · Ea
j /τ

)) (2)

Where τ is a learnable temperature parameter for scaling the loss, and N is the number of data. Following (Radford et al.,
2021; Elizalde et al., 2023), two logarithmic terms consider either audio-to-text logits or text-to-audio logits.

Text 
Encoder

Convert the speech 
to Happy

Audio 
Encoder

Mel-
FilterBank

t1 t2 t3 tn…
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…

1

1
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Figure 5: The contrastive instruction-speech pretraining process.

D. Model Architectures
In this section, we list the model hyper-parameters of InstructSpeech in Table 8.

Hyperparameter MVoice

Global Base

Transformer Layer 16
Transformer Embed Dim 768

Transformer Attention Headers 12
Number of Parameters 114 M

Global Medium

Transformer Layer 20
Transformer Embed Dim 1152

Transformer Attention Headers 16
Number of Parameters 320 M

Global Large

Transformer Layer 24
Transformer Embed Dim 1536

Transformer Attention Headers 32
Number of Parameters 930 M

Local

Transformer Layer 6
Transformer Embed Dim Same as global

Transformer Attention Headers 8
Number of Parameters 46/101/303 M

BigVGAN Vocoder

Upsample Rates [5, 4, 2, 2, 2, 2]
Hop Size 320

Upsample Kernel Sizes [9, 8, 4, 4, 4, 4]
Number of Parameters 121.6M

Table 8: Hyperparameters of InstructSpeech.
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D.1. Unit-based Vocoder

The generator of the unit-based vocoder is built from a set of look-up tables (LUT) that embed the discrete representation,
and a series of blocks composed of transposed convolution and a residual block with dilated layers. We train the enhanced
vocoder with the weighted sum of the least-square adversarial loss, the feature matching loss, and the spectral regression
loss on mel-spectrogram, where the training objective formulation and hyperparameters follow (Kong et al., 2020; Lee et al.,
2022).

E. Case study
In this section, we visualize pairs of speech samples (i.e., before and after the edit) via semantic or acoustic manipulation
using InstructSpeech.

Figure 6: UMAP of emotion manipulation results.

EmotionBefore Edit Before Edit Volume

Figure 7: Acoustic editing results. Left: “manipulate the emotion to angry”. Right: “changes its volume to high”

We present several examples sampled from the free-form editing in Table 9,

Instruction: Add the word “virtue” between the word “I” and “have”
Source: I have played the flute to the hurricane.
Target: I virtue have played the flute to the hurricane.
Target frame-level duration alignment 13
Predicted frame-level duration alignment 12

Instruction: Add the word “preceded” between the word “were” and “of”
Source: The walls were of mud, the roof was of straw
Target: The walls were preceded of mud, the roof was of straw
Target frame-level duration alignment 37
Predicted frame-level duration alignment 37

Table 9: Two examples comparing free-form editing produced by InstructSpeech.
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F. Extensive experimental results
In this section, we include the detailed extensive experiments to further demonstrate the results.

F.1. Region-based content editing

For region-based content editing, We include a subjective evaluation by respectively scoring MOS and SMOS, rated from 1
to 5 and reported with 95% confidence intervals (CI). For easy comparison, the results are compiled and presented in the
following table.

Add Remove Replace SIM MOS SMOS

GT 5.8 5.7 7.5 0.98 4.26±0.07 /

EditSpeech 9.2 5.9 6.5 0.97 3.89±0.07 4.02±0.07
A3T 7.5 7.8 6.9 0.96 3.93±0.08 3.98±0.07

Base 6.3 4.2 5.9 0.97 3.95±0.06 4.01±0.06
Medium 6.4 5.5 5.8 0.98 3.96±0.07 4.01±0.07
Large 5.1 4.9 5.6 0.98 3.99±0.09 4.03±0.05

InstructSpeech (medium) achieves high perceptual quality with MOS and SMOS of 3.96 and 4.01. It indicates that raters
prefer our model synthesis against baselines in terms of speech intelligibility and style similarity, which is consistent with
the objective evaluation results.

F.2. Free-form content editing

Model Add Remove Replace

Cascaded 14.5 11.0 17.3

Base 13.3 12.5 15.0
Medium 13.1 12.0 14.5
Large 12.6 11.9 14.1

We include the optimized way for speech editing, which can be decomposed into multiple sub-tasks using the following
external cascaded models:

• The speech sample is transcribed by the whisper ASR system.

• The transcription is tokenized into phones using grapheme-to-phoneme tools.

• We mask the original speech we want to update based on phone-frame duration alignment, which is generated using the
MFA tool trained on LibriTTS dataset.

• Given phone and masked speech, the edited speech is generated by a region-based speech editing model (i.e., Instruct-
Speech).

InstructSpeech prompts step-by-step, significantly tackling the challenges of accurately locating and manipulating the target
context following the user’s instruction. InstructSpeech presents its advantages in multitask prediction since it is trained on
an extensive and diverse set of tasks to enhance capabilities, while these cascaded models are usually optimized in varying
ways and datasets, where the domain gap can lead to cascaded error and quality degradation.

F.3. Acoustic editing

We include the comparison with several baselines (i.e. VALL-E (Wang et al., 2023a) and Spear-TTS (Zhang et al., 2023b))
on the benchmark zero-shot TTS tasks in speaker transferring. Specifically, we report the WER and SIM to respectively
assess the audio quality and style similarity, using a small-scale test set with the examples provided on the demo page. We
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also score MOS and SMOS for subjective evaluation, rated from 1 to 5 and reported with 95% confidence intervals (CI). For
easy comparison, the results are compiled and presented in the following table.

Model MOS (↑) SMOS (↑) WER (↓) SIM (↑)

VALL-E 3.92±0.12 3.81±0.07 6.5 0.79
Spear-TTS 3.97±0.06 3.89±0.04 5.7 0.83
InstructSpeech 4.04±0.08 3.94±0.06 5.0 0.85

InstructSpeech presents a 1.5 lower score WER and 0.06 higher SIM than VALL-E, also achieving superior results compared
to Spear-TTS. To conclude, InstructSpeech avoids cascaded errors (VALL-E’s cascaded NAR and AR models, and Spear-
TTS’s cascaded semantic and acoustic tokens), and trains the LLM on an extensive and diverse set of tasks at the scale of
around 100K hours including both speech editing and speech processing tasks to enhance its capabilities.

G. Evaluation
G.1. Objective Evaluation

For emotion and style controlling accuracy, we train an open-source GE2E with our speech data. We train the emotion and
style classifiers respectively on ESD dataset and the constructed LibriTTS-style dataset with GE2E loss, which achieve
the high accuracy of 99.8 and 97.6 averaged across emotions and styles, serving as metrics to evaluate the similarity of
generated samples.

For controlling accuracies on volume, pitch, and speaking speed, considering that the values of generated singing may slightly
deviate from the boundaries used for categorization, we adopt a soft-margin mechanism for accuracy calculation. Specifically,
we take the accuracy of data falling within the correct range as 100, and calculate the accuracy with 100 ∗ exp (−kϵ) for
data outside the correct range, where ϵ is the error between the data value and the boundary, and k is a hyper-parameter
controlling the decay rate of accuracy at the margins, with larger k corresponding to faster decay. We take accuracy curves
of high vocal-range of female, low speed, and medium volume as examples and illustrate them in Figure 8.

G.2. Subjective Evaluation

All our Mean Opinion Score (MOS) tests are crowd-sourced and conducted by native speakers. The scoring criteria have
been included in Table 10 for completeness. The samples are presented and rated one at a time by the testers, each tester is
asked to evaluate the subjective naturalness of a sentence on a 1-5 Likert scale. The screenshots of instructions for testers
are shown in Figure 9. We paid $8 to participants hourly and totally spent about $400 on participant compensation.

Table 10: Ratings that have been used in the evaluation of speech naturalness of synthetic and ground truth samples.

Rating Naturalness Definition

1 Bad Very annoying and objectionable dist.
2 Poor Annoying but not objectionable dist.
3 Fair Perceptible and slightly annoying dist
4 Good Just perceptible but not annoying dist.
5 Excellent Imperceptible distortions

H. Limitation and Potential Risks
We control synthesized speech tempo by multiplying durations by a factor λ, and thus InstructSpeech supports global speed
editing. To enable fine-grained control, the model may be prompted with phoneme-level durations, which can be left for
future work.

Although InstructSpeech as a voice LLM is successfully applied to zero-shot voice signals at scale, it still suffers from some
limitations: 1) InstructSpeech introduces a strong dependency on the quality of the audio tokenizer. 2) We test in-context
learning ability of our model on manipulation testing set, and there are still challenges in open-domain instruction editing,
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(b) Speed.
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Figure 8: Soft-margin accuracy curve.

(a) Screenshot of MOS testing.

(b) Screenshot of SMOS testing.

Figure 9: Screenshots of subjective evaluations.
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and 3) a longer sequence length typically requires more computational resources, and degradation could be witnessed with
decreased training data.
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