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ABSTRACT

We introduce MAmmoTH, a series of open-source large language models (LLMs)
specifically tailored for general math problem-solving. The MAmmoTH models are
trained on MathInstruct, our meticulously curated instruction tuning dataset.
MathInstruct is compiled from 13 math datasets with intermediate rationales,
six of which have rationales newly curated by us. It presents a unique hybrid
of chain-of-thought (CoT) and program-of-thought (PoT) rationales, and also en-
sures extensive coverage of diverse fields in math. The hybrid of CoT and PoT not
only unleashes the potential of tool use but also allows different thought processes
for different math problems. As a result, the MAmmoTH series substantially outper-
form existing open-source models on nine mathematical reasoning datasets across
all scales with an average accuracy gain between 16% and 32%. Remarkably,
our MAmmoTH-7B model reaches 33% on MATH (a competition-level dataset),
which exceeds the best open-source 7B model (WizardMath) by 23%, and the
MAmmoTH-34B model achieves 44% accuracy on MATH, even surpassing GPT-
4’s CoT result. Our work underscores the importance of diverse problem coverage
and the use of hybrid rationales in developing superior math generalist models.
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Weng earns $12 an hour for babysitting. 
Yesterday, she just did 50 minutes of 
babysitting. How much did she earn?

Weng earns 12/60 = 0.2 per minute.
Doing 50 mins, she earned 0.2 x 50 = 10

hourly_rate = 12; time_worked = 50/60;
earnings = hourly_rate * time_worked;
print(round(earnings, 2))

Chain-of-Thought (CoT)

Program-of-Thought (PoT)

MathInstruct Hybrid Instruction Tuning

MAmmoTHDiverse Math Problems

Figure 1: The superior performance of MAmmoTH, a series of models instruction-tuned to solve a
diverse set of mathematical problems using hybrid CoT and PoT rationales. MAmmoTH significantly
outperforms base and SoTA models on both in-domain and out-of-domain test sets, across all scales.

∗Xiang Yue and Wenhu Chen are the leading authors of the paper. They contributed equally to this project.
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1 INTRODUCTION

This work focuses on mathematical reasoning, a critical capability of modern large language models
(LLMs) (OpenAI, 2023; Anil et al., 2023). Despite the recent advances in this field, a noticeable gap
exists between closed-source and open-source LLMs—closed-source models like GPT-4 (OpenAI,
2023), PaLM-2 (Anil et al., 2023), and Claude 2 (Bai et al., 2022) dominate popular mathemat-
ical reasoning benchmarks such as GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021b), while open-source models like Llama (Touvron et al., 2023a;b), Falcon (Penedo et al.,
2023), OPT (Zhang et al., 2022) lag behind on all benchmarks by a wide margin.

Current efforts to bridge this gap are twofold: (1) Continued pre-training like Galactica (Taylor et al.,
2022) and MINERVA (Lewkowycz et al., 2022), which continues to train an LLM on math-related
web data of more than 100B tokens. This approach improves a model’s general scientific reasoning
capability but incurs a high computation cost. (2) Dataset-specific fine-tuning like rejection sampling
fine-tuning (RFT) (Yuan et al., 2023) and WizardMath (Luo et al., 2023), which fine-tunes LLMs
using supervised data specific to certain datasets. Although such approaches improve in-domain
performance, they cannot generalize to a wider range of math reasoning tasks beyond their fine-
tuning data. For instance, both RFT and WizardMath can increase the accuracy on GSM8K (Cobbe
et al., 2021) by 30%+, one of their fine-tuning datasets, but hurt the accuracy on out-of-domain
datasets like MMLU-Math (Hendrycks et al., 2021a) or AQuA (Ling et al., 2017) by up to 10%.

In this paper, we aim to propose a lightweight yet generalizable math instruction-tuning approach to
enhance the general (i.e., not limited to the fine-tuning tasks) mathematical reasoning capabilities of
LLMs. Existing methods (Luo et al., 2023; Yuan et al., 2023; Taylor et al., 2022) primarily focus on
Chain-of-Thought (CoT) approaches (Wei et al., 2022b; Nye et al., 2022) to solve math problems
through step-by-step natural language descriptions. This approach excels in its generality to cover
most math subjects but struggles with computation precision, and complex mathematical or algorith-
mic reasoning procedures (e.g., solving quadratic equation roots and calculating matrix eigenvalues).
In contrast, prompts in the format of code like Program-of-Thought (PoT) approaches (Chen et al.,
2022) and PAL (Madaan et al., 2022; Gao et al., 2023) utilize external tools (i.e., Python interpreter)
to greatly simplify the math solving process. This approach advocates offloading the computation
process to the external Python interpreter to solve complex mathematical and algorithmic reason-
ing procedures (e.g., solving quadratic equations with sympy or calculating matrix eigenvalues with
numpy). However, PoT falls short in dealing with more abstract reasoning scenarios, like common-
sense reasoning, formal logic, and abstract algebra, especially when there exist no built-in APIs.

To leverage the strengths of both CoT and PoT approaches, we introduce a new math hybrid
instruction-tuning dataset MathInstruct, which has two main characteristics: (1) broad cov-
erage of different math fields and complexity levels, and (2) hybrid CoT & PoT rationales.
MathInstruct is based on seven existing math rationale datasets and six newly-curated datasets
(see details in Table 1). We use MathInstruct to fine-tune Llama (Touvron et al., 2023a;b;
Rozière et al., 2023) models of different scales ranging from 7B to 70B. The resulting MAmmoTH
models ( Figure 1) demonstrate unprecedented potential in serving as math generalists.

We evaluate MAmmoTH on a spectrum of datasets, including in-domain (IND) test sets—
GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021b), AQuA-RAT (Ling et al., 2017),
NumGLUE (Mishra et al., 2022b)—and out-of-domain (OOD) test sets—SVAMP (Patel et al.,
2021), SAT (Zhong et al., 2023), MMLU-Math (Hendrycks et al., 2021a), Mathematics (Davies
et al., 2021), and SimulEq (Koncel-Kedziorski et al., 2016). Compared with existing meth-
ods, our models generalize better to OOD datasets and substantially improve the performance
of open-source LLMs in mathematical reasoning. Notably, on the popular competition-level
MATH dataset (Hendrycks et al., 2021b), our 7B model can beat WizardMath (open-source MATH
SoTA) (Luo et al., 2023) by 3.5x (35.2% vs 10.7%), and our 34B MAmmoTH-Coder (fine-tuned on
Code Llama (Rozière et al., 2023)) can even beat the result of GPT-4 (using CoT).

We highlight our contributions from two perspectives: (1) From the data engineering perspective,
we present MathInstruct, a high-quality math instruction tuning dataset, combining a vari-
ety of math problems and hybrid rationales. (2) From the modeling perspective, we investigate
the impact of various data sources and input-output formats through training and evaluating over
50 different models and baselines ranging from 7B to 70B. Our models, including MAmmoTH and
MAmmoTH-Coder, achieve substantial accuracy gains over existing open-source models.
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Training Dataset Type Annotation # Samples Characteristics Fields

GSM8K (Cobbe et al., 2021) CoT Human 7K Grade Schol Exam ∎

GSM8K-RFT (Yuan et al., 2023) CoT Llama 28K Llama + Validated ∎

AQuA-RAT (Ling et al., 2017) CoT Human 90K GRE/GMAT Exam ∎

MATH (Hendrycks et al., 2021b) CoT Human 7K Math Competition ∎ ∎ ∎ ∎ ∎ ∎ ∎

TheoremQA (Chen et al., 2023)? CoT GPT-4 600 GPT4 + Validated ∎ ∎ ∎ ∎ ∎

Camel-Math (Li et al., 2023a) CoT GPT-4 50K GPT4 (Unvalidated) ∎ ∎ ∎ ∎ ∎

College-Math? CoT GPT-4 1.8K GPT4 (Unvalidated) ∎

GSM8K? PoT GPT4 14K GPT4 + Validated ∎

AQuA-RAT? PoT GPT4 9.7K GPT4 + Validated ∎

MATH? PoT GPT4 7K GPT4 + Validated ∎ ∎ ∎ ∎

TheoremQA? PoT GPT4 700 GPT4 + Validated ∎ ∎ ∎ ∎ ∎

MathQA (Amini et al., 2019) PoT Human 25K AQuA-RAT Subset ∎

NumGLUE (Mishra et al., 2022a) PoT Human 13K Lila Annotated ∎

MathInstruct 260K (72% CoT, 28% PoT) ∎ ∎ ∎ ∎ ∎ ∎ ∎

Table 1: Overview of our MathInstruct. ?means with NEW rationales curated by us by
prompting GPT-4. We have filtered out augmented samples that have answers inconsistent with the
original dataset’s annotations. Different colored squares represent different fields in mathematics: ∎
Pre-Algebra; ∎ Inter-Algebra; ∎ Algebra; ∎ Probability; ∎ NumTheory; ∎ Calculus; ∎ Geometry.

2 OUR APPROACH

Mathematical reasoning serves as a vital gauge for assessing the ability of LLMs to execute com-
plex multi-hop and quantitative reasoning. Previously, this has been a challenging task for neural
networks, which struggle to solve even basic addition and subtraction problems (Yang et al., 2023).
However, recent LLMs have considerable advancements in mathematical reasoning. Key break-
throughs have been made through CoT prompting (Wei et al., 2022b; Nye et al., 2022) and PoT
prompting (Chen et al., 2022; Gao et al., 2023). CoT prompting encourages LLMs to solve prob-
lems incrementally on a scratchpad, enhancing both accuracy and explainability in mathematical
reasoning. This approach contrasts with traditional methods that generate answers directly. PoT
prompting, on the other hand, formulates the intermediate reasoning process as a program, executed
with an external tool like Python, to compute the answer. This method improves robustness in solv-
ing complex mathematical problems by offloading the calculations to external tools. However, most
existing work (Zhou et al., 2023a) in PoT is limited to proprietary models like GPT-4 (OpenAI,
2023) and Codex (Chen et al., 2021). The PoT potential of open-source models is yet to be seen.
Our work aims at optimizing LLMs’ CoT and PoT reasoning capabilities through instruction tuning.

2.1 CURATING A DIVERSE AND HYBRID INSTRUCTION TUNING DATASET

Our study aims to compile a list of high-quality and diverse math instruction-tuning datasets, stand-
ing out with two main characteristics: (1) broad coverage of different mathematical fields and com-
plexity levels, and (2) hybrid CoT & PoT rationales.

Broad Coverage of Different Math Fields and Complexity Levels: We aim for a broad repre-
sentation of math fields and complexity levels in our dataset. This ensures exposure to a diverse set
of mathematical knowledge, fostering versatility in our models. Based on these criteria, we narrow
down our choices to a few high-quality datasets that are widely adopted and encompass different
math fields and complexity levels, such as GSM8K, MATH, AQuA, Camel, and TheoremQA. Fur-
thermore, we notice a lack of coverage for college-level math knowledge, such as abstract algebra
and formal logic, in existing datasets. To rectify this, we use GPT-4 to synthesize CoT rationales for
questions in TheoremQA and create question-CoT pairs through Self-Instruct (Wang et al., 2023h),
utilizing a few seed exemplars found online.

Hybrid CoT and PoT Rationales: Contrary to previous work (Yuan et al., 2023; Luo et al., 2023;
Lee et al., 2023; Wang et al., 2023g) that focus on CoT, our dataset strategically combines both.
This integration enhances the dataset’s versatility, catering to varying mathematical problem-solving
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approaches. However, most existing datasets provide limited program rationales, leading to an im-
balance between CoT and PoT rationales. To fill the gap, we utilize GPT-4 to supplement the PoT
rationales for selected datasets, including MATH, AQuA, GSM8K, and TheoremQA. We further
enhance the dataset quality by meticulously removing near-duplicated solutions. These GPT-4 syn-
thesized programs are then validated by comparing their executed results with ground truth, ensuring
the high quality and reliability of the rationales. The validation subet ratio is shown in Table 6.

Following these guidelines, our instruction dataset, detailed in Table 1, encompasses 260K (instruc-
tion, response) pairs, covering a wide range of core mathematical fields (arithmetic, algebra, proba-
bility, calculus, and geometry, etc.), including hybrid CoT and PoT rationales, and offering diversity
in both language and difficulty levels. This attests to its high quality and unique characteristics.

2.2 TRAINING SETUP

We unify all the subsets in our MathInstruct to conform to the structure of an Alpaca-like
instruction dataset (Taori et al., 2023). This standardization ensures that the fine-tuned models can
process data consistently, regardless of the original dataset formats. We choose the open-source
models Llama-2 (Touvron et al., 2023b) and Code Llama (Rozière et al., 2023) as our base models.
We fine-tune these models including 7B, 13B, 34B, and 70B on MathInstruct, which allows us
to validate our MathInstruct at multiple scales. We fine-tune all the models with Huggingface
transformers library (Wolf et al., 2019). We use a learning rate of 2e-5 for the 7B and 13B models,
and 1e-5 for the 34B and 70B models. We set the batch size at 128 and used a cosine scheduler with
a 3% warm-up period for three epochs. To efficiently train the computationally intensive 34B and
70B models, we employ DeepSpeed training with ZeRO-3 stage (Rajbhandari et al., 2020).

2.3 EVALUATION SETUP

Our hybrid training enables models to solve problems using either the CoT or PoT approach. By
default, the model provides the CoT solution. To switch to the PoT approach, one can add the trigger
phrase “Let’s write a program to solve the problem” following the question.

Our preliminary evaluation reveals that PoT generally outperforms CoT, notably in open-form ques-
tions like GSM8K and MATH, as programmable solutions are better at solving complex mathemati-
cal and algorithmic reasoning procedures. However, PoT struggles with abstract reasoning scenarios
such as commonsense reasoning, formal logic, and abstract algebra, particularly in the absence of
built-in APIs. To further combine the power of both approaches, we introduce a simple hybrid de-
coding strategy: The model first attempts PoT prompting. If the program is not executable, we fall
back to CoT prompting. This heuristic can further enhance our model’s overall performance (see
more discussions in Table 3.4). We also report the performance of self-consistency decoding method
(Wang et al., 2023f) in Table 8.

3 EXPERIMENTS

3.1 EVALUATION DATASETS

We have selected diverse evaluation datasets (Table 2), encompassing a variety of in-domain and
out-of-domain samples across diverse fields of mathematics, to assess the models’ capabilities in
general mathematical reasoning.

For the in-domain datasets, we consider GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021b), AQuA-RAT (Ling et al., 2017), and NumGLUE (Mishra et al., 2022b). For
the out-of-domain datasets, we choose SVAMP (Patel et al., 2021), Mathematics (Davies et al.,
2021), SimulEq (Koncel-Kedziorski et al., 2016), SAT-Math (Zhong et al., 2023), and MMLU-
Math (Hendrycks et al., 2021a). The wide selection of evaluation datasets includes math problems
from elementary, high school, and college levels. Some of the datasets even include formal logic and
commonsense reasoning. The choice of these datasets is to ensure a comprehensive evaluation of
the models’ capabilities to generalize to unfamiliar situations and different math fields. The chosen
evaluation datasets consist of both open-formed questions and multi-choice questions.
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Eval Dataset # Samples In-Domain? Answer Form Fields

GSM8K (Cobbe et al., 2021) 1319 YES Open-formed ∎

MATH (Hendrycks et al., 2021b) 5000 YES Open-formed ∎ ∎ ∎ ∎ ∎ ∎ ∎

AQuA-RAT (Ling et al., 2017) 254 YES Multi-choice ∎

NumGLUE (Mishra et al., 2022b) 1042 YES Open-formed ∎

SVAMP (Patel et al., 2021) 1000 NO Open-formed ∎

Mathematics (Davies et al., 2021) 1000 NO Open-formed ∎ ∎ ∎ ∎

SimulEq (Koncel-Kedziorski et al., 2016) 514 NO Open-formed ∎

SAT-Math (Zhong et al., 2023) 220 NO Multi-choice ∎ ∎ ∎

MMLU-Math (Hendrycks et al., 2021a) 974 NO Multi-choice ∎ ∎ ∎ ∎

Table 2: Comprehensive overview of our evaluation datasets, featuring a variety of in-domain and
out-of-domain problems across diverse fields of mathematics. Different colored squares repre-
sent different fields in mathematics: ∎ Pre-Algebra; ∎ Inter-Algebra; ∎ Algebra; ∎ Probability;
∎ NumTheory; ∎ Calculus; ∎ Geometry.

3.2 BASELINES

We partition our baselines into the following four categories:

• Closed-source LLMs: We consider 4 closed-source LLMs including GPT-4 (OpenAI, 2023),
GPT-4 (Code Interpreter), PaLM-2 Unicorn (Anil et al., 2023), Claude-2 (Bai et al., 2022) and
Codex (Chen et al., 2021). GPT-4, PaLM-2, and Claude-2 use CoT prompting while GPT-4 (Code
Interpreter) and Codex use PoT prompting.

• Llama Base: For the base models, we consider Llama-1/2 (Touvron et al., 2023a;b), Llama-2-
Chat (Touvron et al., 2023b).

• Coder Model: To compare with different coder models, we choose Code-Llama (Rozière et al.,
2023), CodeT5+ (Wang et al., 2023i) and CodeGen (Nijkamp et al., 2023).

• STEM Pre-training: We cover Galactica (Taylor et al., 2022) mainly to understand the perfor-
mance of models specialized in STEM knowledge.

• Instruction Tuning: We include Orca-Platypus (Mukherjee et al., 2023), Vicuna-1.5 (Zheng
et al., 2023b), Tulu (Wang et al., 2023g), Platypus-2 (Lee et al., 2023) and Guanaco (Dettmers
et al., 2023). We cover a wide spectrum of models trained with different types of datasets.

• Dataset-Specific Tuning: We include both RFT (Yuan et al., 2023) and WizardMath (Luo et al.,
2023), which specifically tune the models to adapt to GSM8K and MATH datasets. We include
them to understand their generalization.

For most baselines, we choose CoT prompting to maximize their performance due to their incom-
petence in program generation. All the ‘Code Model’ use PoT prompting. For GSM8K, MATH,
AQuA, and NumGLUE, we will evaluate both 8-shot in-context-learning and zero-shot setups to
report the highest score. For SVAMP, Mathematics, SimulEq, SAT, and MMLU, we use 5-shot
in-context-learning to maintain consistency with prior work (Wei et al., 2022b; Chen et al., 2023).
Our few-shot exemplars are mostly taken from PHP1 (Zheng et al., 2023a). For MAmmoTH and
MAmmoTH-Coder, we always evaluate under 0-shot setting. For all models, we allow a maximum
sequence length of 2048 tokens for decoding. For multiple-choice questions, if the generated answer
lacks an option, we map it by re-prompting the model: “Please find the closest option to [generated
answer]. The options are [options]”.

3.3 MAIN RESULTS

We report our in-domain and out-of-domain results in Table 3 and Table 4 respectively. Overall, we
can see that MAmmoTH and MAmmoTH-Coder are able to outperform the SoTA model at different
scales. In general, the performance gain for OOD datasets is more significant than IND datasets.
These results show us the potential of our models as a mathematical generalist. On several datasets,
MAmmoTH-Coder-34B and MAmmoTH-70B are even surpassing closed-source LLMs.

1https://github.com/chuanyang-Zheng/Progressive-Hint
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Model Base Math-SFT? GSM8K MATH AQuA NumGLUE Avg

Closed-source Model

GPT-4 - Unknown 92.0† 42.5† 72.6† 74.7 70.5
GPT-4 (Code-Interpreter) - Unknown 97.0† 69.7† - - -
PaLM-2 - Unknown 80.7† 34.3† 64.1 - -
Claude-2 - Unknown 85.2† 32.5† 60.9 - -
Codex (PoT) - No 71.6† 36.8† 54.1† - -
ART (InstructGPT) - Unknown 71.0 - 54.2 - -

7B Parameter Model

Llama-1 - No 10.7† 2.9† 22.6 24.7 15.5
Llama-2 - No 14.6† 2.5† 30.3 29.9 19.3
Galactica-6.7B GAL GAL-Instruct 10.2 2.2 25.6 25.8 15.9
Code-Llama (PoT) - No 25.2 13.0 24.0 26.8 22.2
AQuA-SFT Llama-2 AQuA 11.2 3.6 35.6 12.2 15.6
Llama-1 RFT Llama-1 GSM8K 46.5† 5.2 18.8 21.1 22.9
WizardMath Llama-2 GSM8K+MATH 54.9† 10.7† 26.3 36.1 32.0

MAmmoTH Llama-2 MathInstruct 53.6 31.5 44.5 61.2 47.7
MAmmoTH-Coder Code-Llama MathInstruct 59.4 33.4 47.2 66.4 51.6
∆ +5 +21 +12 +30 +20

13-15B Parameter Model

Llama-1 - No 17.8† 3.9† 26.0 24.8 18.1
Llama-2 - No 28.7† 3.9† 25.1 8.8 16.6
Code-Llama (PoT) - No 36.1 16.4 28.7 29.2 27.6
CodeT5+ (PoT) - No 12.5 2.4 20.5 19.4 13.7
CodeGen+ (PoT) - No 12.7 3.4 24.5 22.5 15.7
Vicuna-1.5 Llama-2 No 28.4† 5.8 24.8 36.9 23.9
Llama-1 RFT Llama-1 GSM8K 52.1† 5.1 16.1 24.5 24.4
Orca-Platypus Llama-2 Platypus 38.4 3.0 18.9 35.3 23.9
Platypus Llama-2 Platypus 25.7 2.5 33.4 42.3 25.9
WizardMath Llama-2 GSM8K+MATH 63.9† 14.0† 21.2 40.8 34.9

MAmmoTH Llama-2 MathInstruct 62.0 34.2 51.6 68.7 54.1
MAmmoTH-Coder Code-Llama MathInstruct 64.7 36.3 46.9 66.8 53.7
∆ +1 +20 +18 +26 +19

30-34B Parameter Model

Llama-1 - No 35.6† 7.1† 33.4 28.4 26.1
Code-Llama (PoT) - No 44.0 23.1 25.2 29.3 30.4
Llama-1 RFT Llama-1 GSM8K 56.5† 7.4† 18.5 24.3 26.6
Galactica-30B GAL GAL-Instruct 41.7 12.7 28.7 34.7 29.4
Platypus Llama-1 Platypus 37.8 9.3 27.9 40.5 28.8
Tulu Llama-2 Tulu 51.0 10.8 25.5 43.4 32.6

MAmmoTH-Coder Code-Llama MathInstruct 72.7 43.6 54.7 71.6 60.7
∆ +16 +21 +21 +28 +28

65-70B Parameter Model

Llama-1 - No 50.9† 10.6† 35.0 50.2 36.6
Llama-2 - No 56.8† 13.5† 40.9 50.4 40.4
Llama-2-Chat Llama-2 No 54.9 18.6 37.0 51.6 40.5
Guanaco Llama-2 No 59.2 4.1 45.2 53.5 40.5
WizardMath Llama-2 GSM8K+MATH 81.6† 22.7† 20.0 48.9 43.3
Platypus Llama-2 Platypus 70.6 15.6 51.2 55.4 48.1

MAmmoTH Llama-2 MathInstruct 76.9 41.8 65.0 74.4 64.5
∆ -5 +19 +14 +19 +16

Table 3: The table compiles all the in-domain evaluation results. Results marked as † are copied
from other papers, which can be found on paperswithcode leaderboards. Math-SFT? means whether
the model has been instruction-tuned on any math reasoning datasets. Pink numbers highlight the
highest number within the corresponding scale and dataset. Note that there does not exist a 30B+
version for Llama-2 or a 70B version for Code-Llama.

From Table 3, we can observe that our main competitors for IND datasets are WizardMath (Luo
et al., 2023) and Platypus (Lee et al., 2023). WizardMath’s training is heavily rooted in GSM8K
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Model SVAMP Mathematics SimulEq SAT-Math MMLU-Math Avg

Closed-source Model

GPT-4 97.0† 60.8 83.1 95† 74.9 82.1
Codex (PoT) 85.2† - - 68† - -

7B Parameter Model

Llama-1 24.5 6.2 4.6 22.7 30.6 17.7
Llama-2 34.5 6.0 5.0 26.8 29.8 20.4
Code-Llama (PoT) 49.4 21.7 3.5 28.6 26.9 26.0
Llama-1 RFT 21.1 5.1 11.0 12.5 21.7 14.3
Galactica-6.7B 25.6 4.6 4.2 17.5 28.0 16.0
WizardMath 36.1 9.3 12.8 25.4 31.1 28.6
Toolformer 29.4† - - - - -

MAmmoTH 67.7 46.3 41.2 42.7 42.6 48.1
MAmmoTH-Coder 71.4 55.4 45.9 40.5 48.3 52.3
∆ +22 +34 +33 +14 +17 +24

13B Parameter Model

Llama-1 34.7 6.9 5.4 27.7 30.7 21.0
Llama-2 35.1 11.5 5.8 32.7 34.4 23.9
Code-Llama (PoT) 60.0 21.3 3.8 25.9 27.7 27.7
Vicuna-1.5 55.7 10 6.6 34.0 34.1 28.1
Llama-1 RFT 46.5 6.7 10.1 13.2 21.6 19.6
WizardMath 51.9 14.1 14.9 24.5 32.1 27.5
Platypus 55.4 11.4 7.4 36.8 35.5 29.3
Orca-Platypus 56.8 12.6 7.9 29.5 41.6 29.7

MAmmoTH 72.4 49.2 43.2 46.8 47.6 51.8
MAmmoTH-Coder 73.7 61.5 47.1 48.6 48.3 55.8
∆ +14 +40 +33 +12 +7 +26

30-34B Parameter Model

Llama-1 48.8 12.8 11.2 33.4 39.0 29.0
Code-Llama (PoT) 69.1 34.5 6.8 26.8 21.6 31.7
Llama-1 RFT 55.4 7.6 12.8 20.4 37.9 26.8
Galactica-30B 41.6 11.8 13.2 37.7 37.9 28.4
Tulu 59.0 10.7 10.3 31.3 39.8 30.2
Platypus 51.7 13.8 13.6 38.6 41.0 31.7

MAmmoTH-Coder 84.3 65.4 51.8 60.9 53.8 63.2
∆ +15 +31 +38 +22 +13 +32

65-70B Parameter Model

Llama-1 55.3 14.2 15.2 37.4 44.1 33.2
Llama-2 63.8 20.5 14.0 51.3 47.1 39.3
Llama-2-Chat 71.5 19.2 21.7 44.1 46.9 40.6
WizardMath 71.8 17.1 37.9 13.2 27.4 33.4
Guanaco 66.8 17.8 20.2 50.0 47.3 40.4
Platypus 51.8 26.3 21.7 55.9 52.5 41.6

MAmmoTH 82.4 55.6 51.4 66.4 56.7 62.5
∆ +11 +29 +14 +11 +4 +21

Table 4: The table compiles all the out-of-domain evaluation results. Results marked as † are copied
from other papers, which can be found on paperswithcode leaderboards.

and MATH datasets. Therefore, WizardMath’s results are highly competitive on these two datasets.
However, the dataset-specific training can be detrimental to OOD datasets like AQuA. In contrast,
Platypus fine-tunes LLMs on a wide range of text and math reasoning datasets. it improves the open-
source SoTA on several datasets. Similarly, MAmmoTH can achieve universal improvement across
the board. A major observation is that MAmmoTH is particularly strong at solving more complex
math problems in MATH, where the gain of our model over WizardMath (open-source SoTA on
MATH) can exceed 25% at different scales.
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Figure 2: Investigation of the influence of CoT & PoT hybrid training on the 7B Llama-2 model.
“Out-of-domain” refers to the five datasets detailed in Table 2. Key insights include: 1) The SoTA
model, utilizing dataset-specific CoT fine-tuning on GSM and MATH, displays strong performance
within its domains but struggles in OOD scenarios; 2) Diverse data sources in MathInstruct
enable better math generalist model; 3) Fine-tuning on the PoT subsets generally outperforms fine-
tuning on the CoT subsets; 4) Hybrid training yields the best-performing model. The breakdown
results on each dataset can be found in Appendix Table 9.

From Table 4, we can observe that our main competitor for OOD datasets is Platypus (Lee et al.,
2023). Similar to in-domain results, Platypus is able to yield gains over the baseline models univer-
sally across the board, especially on the MMLU-Math dataset, which is tied with MAmmoTH-70B. It
is worth noting that the performance gains of our model on OOD datasets are even more significant
than on in-domain datasets. This demonstrates our models’ remarkable generalizability to unseen
math problems. Notably, MAmmoTH-7B also boosts the CoT performance of WizardMath-7B greatly
on MMLU-Math by 9%, which contains a substantial number of questions beyond the subjects we
covered in our training dataset.

Comparison between Different Base Models. In our experiments, we experimented with both
Llama-2 and Code-Llama as the base models. From the two tables, we can observe that Code-
Llama is consistently better than Llama-2, especially on OOD datasets. The gap between MAmmoTH
and MAmmoTH-Coder can even reach up to 5%. Surprisingly, the average performance on
OOD datasets of MAmmoTH-Coder (34B) is actually higher than MAmmoTH (70B). We believe
MAmmoTH-Coder benefits greatly from the continuous code training of Code-Llama, which not
only enhances the PoT capabilities but also improves Llama’s general reasoning skills.

3.4 ABLATION STUDY ON DATA SOURCE

Ablation of the Data Source. In order to better understand what factors contribute to the great gain
of MAmmoTH over existing baselines, we set up a group of control experiments in Figure 2. We study
the following setups:

(1) MAmmoTH (MathInstruct- CoT): This experiment aims to understand how much our curated
CoT data could improve the generalization over the SoTA model WizardMath (Luo et al., 2023)
trained specifically on GSM + MATH. As can be seen, while sacrificing accuracy on GSM + MATH
by 3%, our CoT subset fine-tuning improves the overall nine-dataset accuracy from 27% to 32%.

(2) MAmmoTH (MathInstruct- PoT): This experiment aims to understand the advantage of our
PoT subset. As can be observed, our PoT subset fine-tuning can significantly improve the overall ac-
curacy from 27% to 41%. This ablation reflects the importance of unlocking the program generation
capabilities of our model.

(3) MAmmoTH (MathInstruct- Hybrid): We further combine CoT and PoT as the hybrid training
data to achieve the best overall performance of 47.9%. This combined gain comes from two aspects:

• The CoT subset helps maintain generic language-based reasoning skills to handle scenarios where
PoT cannot handle well, e.g., abstract reasoning multi-choice questions in AQuA and MMLU.

• The PoT subset can teach the model how to utilize Python APIs to solve complex math problems
with high precision, e.g., the MATH problems requiring complex computation.
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Training Data GSM MATH AQuA NumG SVA Mat Sim SAT MMLU AVG

- 14.6 2.5 30.3 29.9 34.5 6.0 5.0 26.8 29.8 -25.3

G 56.6 9.2 24.4 32.1 65.4 20.5 12.3 27.2 25.2 30.3
M 27.1 25.5 27.8 32.1 47 49.4 10.5 26.4 27.4 30.4
A 15.3 5.8 39.7 15.5 15.3 6.3 7.2 32.7 36.6 19.4
G + M 58.1 28.2 26.0 34.7 64.8 50.1 17.1 28.6 28.4 37.3

G + M + T 56.5 26.5 27.4 35.5 64.4 50.6 18.8 29.1 29.1 37.5
G + M + C 57.4 28.5 26.2 37.5 65.3 50.4 17.7 29.3 28.7 37.9
G + M + A 56.1 27.1 37.8 37.2 64.8 48.2 19.8 35.4 39.8 40.7

G + M + C + A 57.5 29.1 46.9 42.2 65.8 49.6 32.7 42.3 43.1 45.5
M + C + A + N 24.7 26.1 39.4 59.7 61.6 48.6 43.4 36.4 41.2 42.3
G + M + C + N 50.8 26.2 20.9 65.5 65.8 48.5 41.4 26.4 24.7 41.1
G + C + A + N 51.3 14.8 41.7 58.8 66.3 31.0 42.2 34.1 40.5 42.3

G + M + C + A + T 55.4 28.6 42.5 44.9 65.4 50.8 34.9 41.3 42.5 45.1
G + M + C + A + N 56.5 28.9 38.2 63.7 64.1 47.9 40.8 38.6 44.5 47.0

G + M + C + A + N +T 53.8 27.0 38.2 60.8 65.9 50.8 41.8 42.5 42.7 47.1
G + M + C + A + N + MQA 55.7 28.8 42.5 62.1 64.6 45.9 38.9 41.3 45.0 47.2

MathInstruct 53.6 31.5 44.5 61.2 67.7 46.3 41.2 42.7 42.6 47.9

Table 5: Influence of different major subsets in MathInstruct based on Llama-2 7B. G: GSM8K,
M: MATH, C: Camel, A: AQuA, N: NumGLUE, MQA: MathQA. “Existing data”: the subset of
MathInstruct in Table 1 by excluding all the NEW rationales curated by us. We shorten Math-
ematics as Mat, SimulEq as Sim, NumGLUE as NumG, and SVAMP as SVA to save space.

We put some case studies in Appendix B to demonstrate the respective advantages of PoT and CoT
in solving different types of math problems. To summarize, we attribute our substantial gain to: 1)
diverse data sources covering different math fields and complexity levels and 2) a hybrid of CoT &
PoT instruction tuning and decoding strategy.

Influence of Major Subsets. Given the diverse sources of MathInstruct used in training
MAmmoTH, it is important to understand how each dataset contributes to the overall performance of
the model. We focus on five significant subsets: GSM8K, MATH, Camel, AQuA, and NumGLUE.
We conduct an experiment gradually adding each dataset into training and compare the performance
with the one fine-tuned on the whole MathInstruct. These results underscore the significant im-
pact of diverse data sources on MAmmoTH performance, a core aspect of making MAmmoTH a math
generalist. The results also provide valuable insights for future data curation and collection efforts
(e.g., we should always collect diverse data and avoid collecting only specific types of data).

To help understand the contribution of the 6 newly curated datasets as shown in Table 1, we remove
them from MathInstruct, and train a model on the existing data. As shown in the last two rows
of Table 5, our new curated data substantially improves the performance on many datasets and leads
to a 9% overall increase, which reflects the importance of the NEWLY curated dataset.

Influence of Hybrid Decoding. To demonstrate the effectiveness of the hybrid decoding method,
we conduct an experiment as outlined in subsection 2.3. By default, we initially attempt the PoT
decoding method for a given question. If it fails to generate an executable query, we then transition to
the CoT decoding method. The performance of different decoding methods (CoT, PoT, and Hybrid)
is shown in Table 10. This hybrid decoding improves performance on every test set, showcasing that
our model can effectively leverage the strengths of both CoT and PoT decoding strategies.

4 CONCLUSION

In this paper, we propose a novel math instruction tuning approach to activate open-source LLMs’
mathematical reasoning capabilities. Through a comprehensive study, we show that our models
can outperform the SoTA performance at different scales by a huge margin. Our models benefit
massively from: 1) the broad coverage of different math fields and complexity levels, and 2) a
hybrid of CoT and PoT training. Our instruction tuning dataset contains 260K samples, which
makes fine-tuning highly affordable even for academic labs. Our work paves the road for future
studies to activate LLMs’ core capabilities in specialized domains.

9



Published as a conference paper at ICLR 2024

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 2357–2367, 2019. doi: 10.18653/v1/N19-1245. URL https://
aclanthology.org/N19-1245.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
ArXiv preprint, abs/2305.10403, 2023. URL https://arxiv.org/abs/2305.10403.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. ArXiv preprint, abs/2212.08073, 2022. URL https://arxiv.
org/abs/2212.08073.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. ArXiv preprint, abs/2107.03374, 2021. URL https://
arxiv.org/abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. ArXiv preprint,
abs/2211.12588, 2022. URL https://arxiv.org/abs/2211.12588.

Wenhu Chen, Ming Yin, Max Ku, Elaine Wan, Xueguang Ma, Jianyu Xu, Tony Xia, Xinyi
Wang, and Pan Lu. Theoremqa: A theorem-driven question answering dataset. ArXiv preprint,
abs/2305.12524, 2023. URL https://arxiv.org/abs/2305.12524.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. ArXiv preprint, abs/2210.11416, 2022. URL https://arxiv.org/abs/2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. ArXiv preprint, abs/2110.14168, 2021. URL https://arxiv.
org/abs/2110.14168.

Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
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A RELATED WORK

A.1 MATHEMATICAL REASONING DATASETS

Our work builds upon the existing mathematical reasoning literature. Early on, mathematical rea-
soning is mostly focused on solving synthetic basic math problems like AddSub (Hosseini et al.,
2014) and other arithmetic reasoning datasets (Koncel-Kedziorski et al., 2015; Roy & Roth, 2015;
Patel et al., 2021). Later on, more difficult math word problem datasets (Cobbe et al., 2021; Amini
et al., 2019; Ling et al., 2017; Hendrycks et al., 2021b) have been proposed to focus on addressing
realistic math word problems. NumGLUE (Mishra et al., 2022b) and LiLA (Mishra et al., 2022a)
compile the existing literature to build a more diversified dataset collection. However, these datasets
are mostly focused on grade school math problems. To further test LLMs’ limits in addressing more
complex math problems, MMLU (Hendrycks et al., 2021a) includes college math problems in its
evaluation suite. More recently, (Chen et al., 2023; Wang et al., 2023e) have proposed to tackle
more challenging college-level science and math problems. Our instruction tuning dataset is built
upon existing work to include a diversified collection of math problems from different subfields.

A.2 REASONING WITH LARGE LANGUAGE MODELS

LLMs have demonstrated great capabilities to reason with the help of Chain-of-Thought prompt-
ing (Wei et al., 2022b; Kojima et al., 2022; Wang et al., 2023f). Suzgun et al. (2022) have shown
that CoT can already surpass human performance on challenging BIG-Bench tasks. Later on, sev-
eral other works (Drozdov et al., 2023; Zhou et al., 2023c; Nye et al., 2022; Wang et al., 2022a;
2023a; Li et al., 2023b; Wang et al., 2023d; Yu et al., 2023) also propose different approaches to
utilize LLMs to solve reasoning tasks by allowing intermediate steps. ReAct Yao et al. (2023) pro-
poses to leverage external tools like search engines to enhance LLM reasoning skills. Another trend
is to enable LLMs’ capabilities to use programs as thought processes like PoT (Chen et al., 2022).
Some follow-up works include self-critic (Gou et al., 2023), self-eval (Xie et al., 2023), plan-and-
solve (Wang et al., 2023c). These methods propose to enhance LLMs’ capabilities to solve math
problems with PoT. Self-critic (Gou et al., 2023) and self-eval (Xie et al., 2022) both adopt self-
evaluation to enhance the robustness of the generated program. Plan-and-solve (Wang et al., 2023c)
instead adopts more detailed planning instructions to help LLMs create a high-level reasoning plan.
These methods all prove to bring decent improvements over PoT.

A.3 INSTRUCTION TUNING IN LANGUAGE MODELS

Instruction tuning is part of a line of work designed to “align” language models with more use-
ful objectives and human preferences. The instruction tuning step is seen as a major step to acti-
vate LLMs’ certain capabilities to respond to human instructions. Previously, instruction tuning is
mainly focused on enhancing LLMs’ general-purpose instruction following abilities. Since 2021,
CrossFit (Ye et al., 2021) and NaturalInstruction (Wang et al., 2022b), FLAN (Wei et al., 2022a)
and T0 (Sanh et al., 2022) are amongst the first wave of instruction tuning effort to understand
LLMs’ generalization capabilities. Later on, FLAN-v2 (Chung et al., 2022; Longpre et al., 2023)
have been proposed to understand the effect of scaling up the instruction datasets to understand its
impact on model performance. These approaches mainly adopt human-annotated datasets to build
the instruction following dataset. More recently, multiple works (Wang et al., 2023h; Xu et al.,
2023; Peng et al., 2023; Zhou et al., 2023b; Wang et al., 2023g) propose to utilize synthetic instruc-
tion following data distilled from GPT-3/4 to align open-source LLMs. The most similar effort to
ours is Platypus (Lee et al., 2023) which aims to utilize a domain-specialized dataset to construct a
small-scale instruction following dataset to enhance LLMs’ reasoning capabilities.
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B CASE STUDY

We conduct a comparison between our PoT results vs. CoT results in Figure 3, Figure 4 and
Figure 5. In the first example, even though PoT and CoT can both solve the problem, CoT gives
a very tedious solution to derive the answer. Such solution is not only slow but also unstable. In
the second and third case, we can further see the advantages of PoT over CoT by utilizing external
tools and Python packages to greatly simplify the solution. Figure 6 shows some types of questions
(especially the formal logic question) that are not easily handled by programs. In order to address
these types of questions, CoT is a better choice.

PoT

from sympy import factorial

value = factorial(factorial(3)) / factorial(3)
print(value)

>>> 120

First, we need to understand the given expression: !! !
!!

Step 1: Simplify the expression inside the parentheses. 
3! = 3	×2	×1 = 6
So, the expression becomes: # !

#
Step 2: Recall the property of factorials that states 𝑛! $ = 𝑛! for any 
positive integer 𝑘 and any positive integer 𝑛	 ≥ 𝑘. In our case, we have 
𝑛	 = 	6 and 𝑘	 = 	6. 
Using this property, we can rewrite the expression as: #!

#
Step 3: Simplify the expression further by applying the property 
mentioned in Step 2. 6! 	= 	6	×5	×4	×3	×2	×1	 = 	720
So, the expression becomes: %&'

#
Step 4: Divide 720 by 6. 720	 ÷ 6	 = 	120
So, the final simplified expression is: 120
Therefore, the value of !! !

!!
is 120 .

The answer is: 𝟏𝟐𝟎

CoT
What is the value of !! !

!!
?

Figure 3: Example 1: PoT and CoT can both solve the problem, however, CoT gives a very tedious
solution to derive the answer.

PoT
from sympy import factorial

word = "TEEPE"
n = len(word)
d = word.count('E')
ways = factorial(n)/factorial(d)
print(ways)

>>> 20

First we count the arrangements if all the letters are unique, which is 4!. 
Then since the E's are not unique, we divide by 2! for the arrangements 
of the two E's, for an answer of 4!

2!
= 60 .

The answer is: 𝟔𝟎

CoT
Determine the number of ways to arrange the letters of the word TEPEE.

Figure 4: Example 2: PoT generates the correct solution while CoT fails.
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Question:	𝑎 is chosen from the set {1,2,3,4}, and 𝑏 is chosen from the set 
{5,6,7,8,9}.What is the probability that the product 𝑎𝑏 is a prime number?PoT

from sympy import isprime
# define the sets
a_set = {1,2,3,4}
b_set = {5,6,7,8,9}
n_a = len(a_set)
n_b = len(b_set)
prime_count = 0
prime_ab_count = 0
prime_a_count = prime_ab_count
prime_b_count = prime_ab_count
# iterate over all possible pairs
for a in a_set:
for b in b_set:
if isprime(a) or isprime(b):
if isprime(a*b):
# increment the counters
prime_count += 1
prime_ab_count += 1
# check if a is prime
if isprime(a):
prime_a_count += 1
if isprime(b):
prime_b_count += 1
probability = prime_ab_count / (n_a * n_b)

print(probability) 
>>> 0.1

First, we need to find the total number of possible combinations of 
choosing a number from each set. There are 4 numbers in the first set 
and 5 numbers in the second set. So, there are 4	 ⋅ 5	 = 	20 possible 
combinations.

Now, let's consider the prime numbers. A prime number is a number 
greater than 1 that has no divisors other than 1 and itself. We need to 
find the pairs of (a, b) where either a or b is a prime number, or both.

1. If a is a prime number, there are 4 prime numbers in the first set: 2, 
3, 5, and 7. So, there are 4 possible combinations where a is a prime 
number.
2. If b is a prime number, there are 5 prime numbers in the second set: 
3, 5, 7, 11, and 13. So, there are 5 possible combinations where b is a 
prime number.
3. If both a and b are prime numbers, we need to find the pairs where 
the prime numbers are 2, 3, 5, or 7. There are 4 pairs in this case: (2, 3), 
(2, 5), (2, 7), and (3, 5).

Now, let's add up the number of combinations where either a or b is a 
prime number: 4 (a is prime) + 5 (b is prime) + 4 (both are prime) = 13.

So, there are 13 combinations where either a or b is a prime number. 
Since there are 20 possible combinations in total, the probability that 
the product ab is a prime number is !"

#$

Therefore, the probability is !"
#$

The answer is: 𝟏𝟑
𝟐𝟎

CoT

Figure 5: Example 3: PoT generates the correct solution while CoT fails.

If 𝑛 is such that 36	 ≤ 	𝑛	 ≤ 	72, then 𝑥 = 𝑛2 + 2 𝑛 𝑛 + 4 + 16 / 𝑛 + 4 𝑛 + 4 satisfies.
Answer Choices: (A) 20	 < 	𝑥	 < 	54 (B) 23	 < 	𝑥	 < 	58 (C) 25	 < 	𝑥	 < 	64 (D) 28	 < 	𝑥	 < 	60 (E) None of these

Which of the following could NOT be the sides of an isosceles triangle?
Answer Choices: (A) 2,2,3 (B) 2,2,4 (C) 4,12,12 (D) 5,5,5

The expression in the numerator can be rewritten as 𝑛 + 2 𝑛 + 4 !, and so the expression is equal to 
𝑛 + 2 𝑛 + 4. We substitute the smallest value of 𝑛, which is 36, and get 42. We substitute the largest 
value of 𝑛, which is 72, and get 88. So the answer is (E) None of these

This is because in an isosceles triangle, the lengths of two sides are equal, and the length of the third side must be 
less than the sum of the lengths of the other two sides. In this case, 4 is equal to the sum of the other two 
sides (2+2), not less. Therefore, the answer is (B) 2,2,4.

Select the best translation into predicate logic. Some CEO is wealthier than everyone. (𝐶𝑥: 𝑥 is a CEO; 𝑃𝑥: 𝑥 is a 
person; 𝑊𝑥𝑦: 𝑥 is wealthier than 𝑦)
Answer Choices: (A) ∃𝑥 𝐶𝑥 • ∀𝑦 𝑃𝑦 • 𝑊𝑥𝑦 (B) ∃𝑥 𝐶𝑥 ⊃ ∀𝑦 𝑃𝑦 ⊃ 𝑊𝑥𝑦
(C) ∃𝑥 𝐶𝑥 • ∀𝑦 𝑃𝑦 ⊃ 𝑊𝑥𝑦 (D) ∀𝑥 𝑃𝑥 ⊃ ∃𝑦 𝐶𝑦 ⊃ 𝑊𝑥𝑦

∃𝑥: There exists some 𝑥	𝐶𝑥: 𝑥 is a CEO, and
∀𝑦: For all 𝑦	𝑃𝑦: 𝑦 is a person, and 𝑊𝑥𝑦: 𝑥 is wealthier than 𝑦
So, in plain English, this expression says: "There exists some 𝑥 such that 𝑥 is a CEO and for all 𝑦, if 𝑦 is a person 
then 𝑥 is wealthier than 𝑦." Which matches the original statement. 
Therefore, the answer is (A) ∃𝒙 𝑪𝒙 • ∀𝒚 𝑷𝒚 • 𝑾𝒙𝒚

CoT

CoT

CoT

Figure 6: Example 4: Some types of questions (e.g., formal logic) are hard to be solved by PoT but
could be handled by CoT.
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C KEY INSIGHTS

We show the results in Table 5. And our key findings are summarized as follows:

• When the model is trained on individual datasets (GSM8K, MATH, or AQuA), it demonstrates
strong performance in tasks closely related to the respective training dataset. However, it generally
struggles to generalize this performance to other tasks.

• The datasets GSM8K, MATH, and AQuA emerge as crucial components in the training process.
Training the model on a combination of these datasets leads to a marked improvement in its overall
performance, indicative of the complementary nature of these datasets. Omitting any one of these
datasets results in a noticeable decline in overall performance.

• TheoremQA, despite its smaller scale, exerts some influence on the model’s performance. It tends
to enhance the model’s capabilities on datasets like Mathematics and SimulEq, yet it may slightly
impede performance on GSM8K and MATH. Nevertheless, its inclusion in the training regimen
is favored, as it introduces a broader variety of questions and could potentially aid the model in
generalizing to other complex problems that require advanced computational skills.

• Incorporating a wider range of datasets into the training consistently improves the model’s perfor-
mance across most tasks. This suggests that a broad and diverse knowledge base is instrumental
in enhancing the model’s ability to generalize.
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D ADDITIONAL RESULTS

We added some additional results here. The results provides how much of GPT-4 generated data are
being filtered (see Table 6). The results also include the generalization benefits of MathInstruct vs.
only training on GSM (see Table 7). We also include different self-consistency setup to show how
far our method can reach with ensemble decoding methods.

GPT-4 Rationales Validated Ratio

AQuA-PoT 75% (9772 /13000)
MATH-PoT 51% (7088 / 14000)
TheoremQA-PoT 44% (703 / 1600)
TheoremQA-CoT 37% (592 / 1600)
GSM8K - PoT 81% (14591 / 18000)

Table 6: The validated ratio of GPT-4 distilled rationales of newly curated subsets in Table 1.

GSM MATH AQUA NumG SVA Mat Sim SAT MMLU AVG

CodeLlama - 7B - GSM8K 63.2 18.4 25.4 32.9 67.6 40.1 16.3 26.4 26.1 35.2
CodeLlama - 7B - MathInstruct 59.4 33.4 47.2 66.4 71.4 55.4 45.9 40.5 48.3 52.0

Table 7: CodeLlama 7B trained on GSM8K and MathInstruct. Training exclusively on a single
dataset like GSM8K leads to challenges in generalizing to other datasets

Decoding Method GSM MATH

1 PoT 58.8 32.1
1 PoT + 1 CoT backup 59.4 33.4

5 PoT + 5 CoT self-consistency 66.4 37.0
10 PoT self-consistency 67.0 37.8
10 PoT + 10 CoT self-consistency 69.6 38.2
20 PoT self-consistency 70.1 38.6

Table 8: Exploration of different decoding methods. Though the self-consistency Wang et al. (2023f)
decoding can further improve the performance, it introduces significantly larger inference. Our
chosen strategy, while straightforward, strikes an optimal balance between complexity, performance,
and practical applicability.
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Model GSM MATH AQuA NumG SVA Mat Sim SAT MMLU Overall

Base 14.6 2.5 30.3 29.9 34.5 6.0 5.0 26.8 29.8 19.9

WizzardMath 54.9 10.7 26.3 36.1 36.1 9.3 12.8 25.4 31.1 27.0

MAmmoTH (MathInstruct- CoT) 49.2 9.9 42.2 37.1 48.5 9.5 17.3 34.1 39.8 32.0
MAmmoTH (MathInstruct- PoT) 50.8 28.9 28.6 52.7 65.0 46.7 42.0 25.9 28.3 41.0
MAmmoTH (MathInstruct) 53.6 31.5 44.5 61.2 67.7 46.3 41.2 42.7 42.6 47.9

Table 9: Breakdown results of Figure 2. Investigation of the influence of CoT & PoT hybrid training
on the 7B Llama-2 model.

Model Decoding GSM MATH AQuA NumG SVA Mat Sim SAT MMLU AVG

MAmmoTH-7B
CoT 50.5 10.4 43.7 44.0 47.3 9.2 18.9 32.7 39.9 33.0
PoT 51.6 28.7 43.3 52.3 65.1 41.9 48.2 39.1 44.6 46.1
Hybrid 53.6 31.5 44.5 61.2 67.7 46.3 41.2 42.7 42.6 47.9

MAmmoTH-Coder-7B
CoT 22.4 7.9 36.2 36.0 37.0 8.2 7.2 32.7 34.6 24.7
PoT 58.8 32.1 47.2 57.1 71.1 53.9 44.6 40.0 47.8 50.3
Hybrid 59.4 33.4 47.2 66.4 71.4 55.4 45.9 40.5 48.3 52.0

MAmmoTH-13B
CoT 56.3 12.9 45.3 45.6 53.8 11.7 22.4 43.6 42.3 37.1
PoT 61.3 32.6 48.8 59.6 72.2 48.5 40.3 46.8 45.4 50.6
Hybrid 62.0 34.2 51.6 68.7 72.4 49.2 43.2 46.8 47.6 52.9

MAmmoTH-Coder-13B
CoT 32.1 10.2 40.6 36.2 43.0 9.6 10.1 40.9 36.6 28.8
PoT 64.3 35.2 46.8 54.2 73.2 60.0 44.2 48.2 48.2 52.7
Hybrid 64.7 36.3 46.9 66.8 73.7 61.5 47.1 48.6 48.3 54.9

MAmmoTH-Coder-34B
CoT 34.3 11.6 39.0 36.2 44.6 10.8 10.9 46.4 42.9 30.7
PoT 72.3 42.8 53.8 59.6 84.0 64.7 50.6 58.6 52.7 59.9
Hybrid 72.7 43.6 54.7 71.6 84.3 65.4 51.8 60.9 53.8 62.1

MAmmoTH-70B
CoT 72.4 21.1 57.9 58.9 71.6 20.0 31.9 57.3 52.1 49.2
PoT 76.7 40.1 60.2 64.3 81.7 55.3 45.3 64.1 53.5 60.1
Hybrid 76.9 41.8 65.0 74.4 82.4 55.6 51.4 66.4 56.7 63.4

Table 10: Influence of different decoding methods on each dataset.
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E LIMITATIONS

Despite their training on a diverse set of mathematical rationale datasets, the MAmmoTH models
might exhibit limitations when faced with problems outside their primary domain of expertise like
mathematical analysis, complex analysis, graph theory, numerical analysis, etc. Thus, our models
are not suitable for solving more complex problems in these fields. Also, they have not been trained
with proof-type problems, thus their theorem-proving capability is also limited. In the future, we
would like to expand the models’ skill set to cover more fields and theorem-proving problems.

There is also a risk of the MAmmoTH models generating potentially harmful, offensive, or biased
content, especially if they are asked to answer questions beyond math. The MAmmoTH series could
be misused for malicious purposes, such as spreading misinformation or probing sensitive topics.
Developers should conduct safety testing and tuning tailored to their specific applications before
deploying any MAmmoTH model. While we have made every effort to ensure the cleanliness and
purity of our training data, we cannot guarantee absolute perfection. It is unlikely but not impossible
that some inappropriate questions slipped through the curation process.

Future work may continue to explore how to further improve the robustness and generalizability
of MAmmoTH in mathematical reasoning. For example, recent work identifies “sycophancy” and
“Clever Hans effect” in reasoning: LLMs cannot maintain truthful solutions to reasoning tasks when
challenged by the user’s absurdly invalid arguments and critiques (Wang et al., 2023b). Potential
methods to improve the models’ reasoning robustness could involve the exploration of synthetic
data intervention methods as explored in (Wei et al., 2023).
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