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ABSTRACT

We introduce a theoretical framework for sampling from unnormalized densities
based on a smoothing scheme that uses an isotropic Gaussian kernel with a single
fixed noise scale. We prove one can decompose sampling from a density (minimal
assumptions made on the density) into a sequence of sampling from log-concave
conditional densities via accumulation of noisy measurements with equal noise
levels. Our construction is unique in that it keeps track of a history of samples,
making it non-Markovian as a whole, but it is lightweight algorithmically as the
history only shows up in the form of a running empirical mean of samples. Our
sampling algorithm generalizes walk-jump sampling (Saremi & Hyvärinen, 2019).
The “walk” phase becomes a (non-Markovian) chain of (log-concave) Markov
chains. The “jump” from the accumulated measurements is obtained by empirical
Bayes. We study our sampling algorithm quantitatively using the 2-Wasserstein
metric and compare it with various Langevin MCMC algorithms. We also report a
remarkable capacity of our algorithm to “tunnel” between modes of a distribution.

1 INTRODUCTION

Markov chain Monte Carlo (MCMC) is an important class of general-purpose algorithms for sampling
from an unnormalized probability density of the form p(x) = e−f(x)/Z in Rd. This is a fundamental
problem and appears in a variety of fields, e.g., statistical physics going back to 1953 (Metropolis
et al., 1953), Bayesian inference (Neal, 1995), and molecular dynamics simulations (Leimkuhler &
Matthews, 2015). The biggest challenge facing MCMC is that the distributions of interest lie in very
high dimensions and are far from being log-concave, therefore the probability mass is concentrated
in small pockets separated by vast empty spaces. These large regions with small probability mass
make navigating the space using Markov chains very slow. The second important challenge facing
MCMC is that the log-concave pockets themselves are typically ill-conditioned—highly elongated,
spanning different directions for different pockets—which only adds to the complexity of sampling.

The framework we develop in this paper aims at addressing these problems. The general philosophy
here is that of smoothing, by which we expand the space from Rd to Rmd for some integer m and “fill
up” the empty space iteratively with probability mass in an approximately isotropic manner, the degree
of which we can control using a single smoothing (noise) hyperparameter σ. The map from (noisy
samples in) Rmd back to (clean samples in) Rd is based on the empirical Bayes formalism (Robbins,
1956; Miyasawa, 1961; Saremi & Hyvärinen, 2019; Saremi & Srivastava, 2022). In essence, a single
“jump” using the empirical Bayes estimator removes the masses that were created during sampling.
We prove a general result that, for any large m, the problem of sampling in Rd can be reduced to
sampling from a sequence of log-concave densities: once log-concave, always log-concave. The
trade-off here is the linear time cost of accumulating noisy measurements over m iterations.

More formally, instead of sampling from p(x), we sample from the density p(y1:m) that is associated
with Y1:m := (Y1, . . . , Ym), where Yt = X + Nt, t ∈ [m], Nt ⊥ X , and Nt ∼ N(0, σ2I) all
independent. As we show in the paper, there is a duality between sampling from p(x) and sampling
from p(y1:m) in the regime where m−1/2σ is small, irrespective of how large σ is. This is related
to the notion of universality class underlying the smoothed densities. Crucial to our formalism is
keeping track of the history of all the noisy samples generated along the way using the factorization

p(y1:m) = p(y1)

m∏
t=2

p(yt|y1:t−1). (1.1)
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Figure 1: Chain of log-concave Markov chains. Here, (y(i)t )i∈[nt] are samples from a Markov chain,
which is used to generate independent draws from p(yt|y1:t−1) for t ∈ [m]. The blue arrows indicate
the non-Markov aspect of our sampling scheme: the accumulation of noisy measurements. The
wiggly arrows indicate the denoising “jumps”. In this example, p(yt|y1:t−1) is log-concave for all t,
but the jumps asymptotically sample the target density (a mixture of two Gaussians) as t increases.

An important element of this sampling scheme is therefore non-Markovian. However, related to our
universality results, this history only needs to be tracked in the form of an empirical mean, so the
memory footprint is minimal from an algorithmic perspective. See Fig. 1 for a schematic.

A more technical summary of our contributions and the outline of the paper are as follows:

• In Sec. 2, we prove universality results underlying the smoothed densities p(y1:m).

• We study anisotropic Gaussians in Sec. 3, proving a negative result regarding the condition
number of p(y1:m) in comparison to p(y1) in the same universality class. This analysis
becomes a segue to our factorization (1.1), where in remarkable contrast we show that the
condition number monotonically improves upon accumulation of measurements.

• Sec. 4 is at the heart of the paper, where we prove several results culminating in Theorem 1,
which shows that a broad class of sampling problems can be transformed into a sequence
of sampling from strongly log-concave distributions using our measurement accumulation
scheme. (This is a feasibility result; in particular, we do not prove here that the log-concave
sampling strategy is optimal.) We examine the theorem by algebraically studying an example
of a mixture of Gaussians in detail. In Sec. 4, we also outline our general sampling algorithm.

• We validate our algorithm on carefully designed test densities in Sec. 5. In particular, our
algorithm results in lower 2-Wasserstein metric compared to sampling from p(x) using
Langevin MCMC (without any smoothing). We also qualitatively report the capacity of our
log-concave sampling scheme to tunnel to a mode of a distribution with a small probability
mass in a small number of steps when it is initialized at a mode with much higher mass.

1.1 RELATED WORK

Our solution, sketched above, has its roots in walk-jump sampling (Saremi & Hyvärinen, 2019) and
its recent generalization (Saremi & Srivastava, 2022). Both papers were framed within the context
of generative modeling, i.e., sampling from an unknown distribution from which one has access
to independent samples. In contrast, this work lays the theoretical foundation for the fundamental
problem of sampling from an unnormalized density when there are no samples available. In addition,
regarding the recent development, we show analytically that the intuition expressed by Saremi &
Srivastava (2022) regarding the distribution p(y1:m) being well-conditioned is not correct. This
nontrivial negative result motivates our analysis of the non-Markovian scheme for sampling p(y1:m).
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Our methodology is agnostic to the algorithm used for sampling from p(yt|y1:t−1) in (1.1). However,
we have been particularly motivated by the research on Langevin MCMC which is a class of gradient-
based sampling algorithms obtained by discretizing the Langevin diffusion (Parisi, 1981). There
is a growing body of work on the analysis of Langevin MCMC algorithms of various complexity
(overdampled, Metropolis-adjusted, underdamped, higher-order) for sampling from log-concave
distributions (Dalalyan, 2017; Durmus & Moulines, 2017; Cheng et al., 2018; Dwivedi et al., 2018;
Shen & Lee, 2019; Cao et al., 2021; Mou et al., 2021; Li et al., 2022).

There is a significant body of work on sequential methods for sampling, rooted in annealing methods
in optimization (Kirkpatrick et al., 1983), which became popular in the MCMC literature due to Neal’s
seminal paper on annealed importance sampling (Neal, 2001). Diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020) are a related class of sequential methods for generative modeling. Our
sequential scheme is distinguished from earlier methods from separate angles: (I) Although we
sample the conditional densities with Markov chains, we condition on all the previous samples that
were generated. As a whole, our scheme is strictly non-Markovian. (II) In our sequential scheme,
we are able to guarantee that we sample from (progressively more) log-concave densities. To our
knowledge, no other sampling frameworks can make such guarantees. (III) Compared to diffusion
models, the noise level in our framework is held fixed. This is an important feature of our sampling
algorithm and it underlies many of its theoretical properties. (IV) All prior sequential schemes rely
on a noising/annealing schedule which is hard to tune, and their performance is sensitive to the choice
of the schedule (Karras et al., 2022; Syed et al., 2022). In contrast, our sequential scheme is free of
scheduling and relies on only two parameters: the noise level σ and the number of measurements m.1

Notation. We use p to denote probability density functions and adopt the convention where we
drop the random variable subscript to p when the arguments are present, e.g., p(x) := pX(x),
p(y2|y1) := pY2|Y1=y1

(y2). We reserve f to be the energy function associated with p(x) ∝ e−f(x).
We use λ to denote the spectrum of a matrix, e.g., λmax(C) is the largest eigenvalue of C. We use
the shorthand notations [m] = {1, . . . ,m}, y1:m = (y1, . . . , ym), and y1:m = 1

m

∑m
t=1 yt.

2 UNIVERSAL (σ,m)-DENSITIES

Consider the multimeasurement (factorial kernel) generalization of the kernel density by Saremi &
Srivastava (2022) for m isotropic Gaussian kernels with equal noise level (kernel bandwidth) σ:

p(y1:m) ∝
∫
Rd

e−f(x) exp
(
− 1

2σ2

m∑
t=1

∥∥x− yt
∥∥2)dx. (2.1)

We refer to p(y1:m) as the (σ,m)-density. Equivalently, Yt|x iid∼ N(x, σ2I), t ∈ [m]. Clearly,
p(y1:m) is permutation invariant p(y1, . . . , ym) = p(yπ(1), . . . , yπ(m)), where π : [m] → [m] is a
permutation of the m measurements. We set the stage for the remainder of the paper with a calculation
that shows the permutation invariance takes the following form (see Appendix A):

log p(y1:m) = φ(y1:m;m−1/2σ) +
m

2σ2

(
∥y1:m∥2 −

1

m

m∑
t=1

∥yt∥2
)
+ cst, (2.2)

where
φ(y;σ) := log

∫
e−f(x) exp

(
− 1

2σ2

∥∥x− y
∥∥2)dx. (2.3)

The calculation is straightforward by grouping the sums of squares in (2.1):

−
m∑
t=1

∥x− yt∥2 = m
(
−∥x− y1:m∥2 + ∥y1:m∥2 −

1

m

m∑
t=1

∥yt∥2
)
+ cst.

In addition, the Bayes estimator of X given Y1:m = y1:m simplifies as follows (see Appendix A):

E[X|y1:m] = y1:m +m−1σ2∇φ(y1:m;m−1/2σ). (2.4)
These calculations bring out a notion of universality class that is associated with p(y1:m) formalized
by the following definition and proposition.

1Our method can be viewed as a discretization scheme in the stochastic localization method, which we plan
to formalize in future research.
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Definition 1 (Universality Class). We define the universality class [σ̃] as the set of densities p(y1:m),
in the family of (σ,m)-densities, such that for all (σ,m) ∈ [σ̃] the following holds: m−1/2σ = σ̃.

Proposition 1. If Y1:m ∼ p(y1:m), let p̂σ,m be the distribution of E[X|Y1:m], and define p̂σ = p̂σ,1.
Then p̂σ,m = p̂m−1/2σ . In other words, p̂σ,m is identical for densities in the same universality class.

Proof. We are given X ∼ e−f(x), Yt = X + εt, εt ∼ N(0, σ2I) independently for t ∈ [m]. It
follows Y 1:m = X + ε̃, where ε̃ ∼ N(0, σ̃2I), where σ̃2 = m−1σ2. Using (2.4), E[X|y1:m] is
distributed as

X + ε̃+ σ̃2∇φ(X + ε̃; σ̃),

which is identical for all densities p(y1:m) in [σ̃].

2.1 DISTRIBUTION OF E[X|y1:m] VS. pX : UPPER BOUND ON THE 2-WASSERSTEIN DISTANCE

Our goal is to obtain samples from pX , but in walk-jump sampling the samples are given by
E[X|y1:m], where y1:m ∼ p(y1:m) (Saremi & Hyvärinen, 2019; Saremi & Srivastava, 2022). Next,
we address how far p̂σ,m is from the density of interest pX .
Proposition 2. The squared 2-Wasserstein distance between pX and p̂σ,m is bounded by

W2(pX , p̂σ,m)2 ⩽
σ2

m
d.

The proof is given in Appendix B. As expected, the upper bound is expressed in terms of σ̃2 = σ2/m.
A close inspection of the proof shows that the bound above is loose as it is obtained from the rate
resulting from replacing the empirical Bayes estimator E[X|y1:m] with the empirical mean Y 1:m.
Note, however, that when the prior p(x) is “strong” (e.g., low entropy), the dependence on σ2/m can
be significantly improved.

3 THE GEOMETRY OF (σ,m)-DENSITIES

In this section we analyze at the problem of sampling from p(y1:m) where we consider p(x) to be an
anisotropic Gaussian, X ∼ N(0, C), with a diagonal covariance matrix:

C = diag(τ21 , . . . , τ
2
d ). (3.1)

The density pX is strongly log-concave with the property τ−2
maxI ≼ ∇2f(x) ≼ τ−2

minI , therefore its
condition number is κ = τ−2

minτ
2
max. Log-concave densities with κ≫ 1 are considered ill-conditioned.

Since Y1 ∼ N(0, C + σ2I), the condition number for (single-measurement) smoothed density, which
we denote by κσ,1 is given by:

κσ,1 = (1 + σ−2τ2max)/(1 + σ−2τ2min). (3.2)
Next, we give the full spectrum of the precision matrix associated with (σ,m)-densities.
Proposition 3. Consider an anisotropic Gaussian density X ∼ N(0, C) in Rd, where Cij = τ2i δij .
Then the (σ,m)-density is a centered Gaussian in Rmd: Y1:m ∼ N(0, F−1

σ,m). For m ⩾ 2, the
precision matrix Fσ,m is block diagonal with d blocks (indexed by i) of size m×m, each with the
following spectrum: (i) There are m− 1 degenerate eigenvalues equal to σ−2, (ii) The remaining
eigenvalue equals to (σ2 +mτ2i )

−1. The condition number κσ,m associated with the (σ,m)-density
is given by:

κσ,m =
λmax(Fσ,m)

λmin(Fσ,m)
= 1 +m · σ−2τ2max.

Remark 1 (The curse of sampling all measurements at once). The above proposition is a negative
result regarding sampling from p(y1:m) if—this is an important “if”—all m measurements y1:m are
sampled in parallel (at the same time). This is because mσ−2 = σ̃−2 remains constant for m > 1
for (σ,m) ∈ [σ̃]—even worse, the condition number κσ,m is strictly greater than κσ̃,1 for m > 1.

This negative result regarding the sampling scheme by Saremi & Srivastava (2022), we call joint
multimeasurement sampling (JMS), leads to our investigation below into sampling from p(y1:m)
sequentially using the factorization (1.1) that we call sequential multimeasurement sampling (SMS).
Now, we perform the analysis in Proposition 3 for the spectrum of the conditional densities in (1.1).
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Proposition 4. Assume X ∼ N(0, C) is the anisotropic Gaussian in Proposition 3. Given the
factorization of p(y1:m) in (1.1), for t > 1, the conditional density p(yt|y1:t−1) is a Gaussian with a
shifted mean, and with a diagonal covariance matrix:

−2σ2 log p(yt|y1:t−1) =

d∑
i=1

(1−Ati) ·
(
yti −

Ati

1−Ati

t−1∑
k=1

yki

)2
+ cst,

where Ati is short for Ati =
(
t+ σ2τ−2

i

)−1
. The precision matrix associated with p(yt|y1:t−1),

denoted by Ft|1:t−1, has the following spectrum

σ2λi(Ft|1:t−1) = 1−
(
t+ σ2τ−2

i

)−1
,

with the following condition number

κt|1:t−1 =
1− (t+ σ2τ−2

min)
−1

1− (t+ σ2τ−2
max)−1

.

Lastly, the condition number κt|1:t−1 is monotonically decreasing as t increases (for any m > 1):

1 < κm|1:m−1 < · · · < κ3|1:2 < κ2|1 < κ1, (3.3)

where κ1 := κσ,1 is given by (3.2).

The proofs for Proposition 3 and Proposition 4 are given in Appendix C. These two propositions stand
in a clear contrast to each other: in the SMS setting of Proposition 4, sampling becomes easier by
increasing t as one goes through accumulating measurements y1:t sequentially, where in addition κ1

can itself be decreased by increasing σ. Next, we analyze the SMS scheme in more general settings.

4 CHAIN OF LOG-CONCAVE MARKOV CHAINS

Can we devise a sampling scheme where we are guaranteed to always sample log-concave densities?
This section is devoted to several results in that direction. We start with the following two lemmas.

Lemma 1. Assume ∀x ∈ Rd, ∇2f(x) ≼ LI and ∥∇f(x)∥ ⩾ µ∥x− x0∥ −∆ for some x0. Then,
∀y ∈ Rd:

∇2(log p)(y) ≼
(
−1 + 3Ld

µ2σ2
+

3∆2

µ2σ2
+ 3
∥x0 − y∥2

µ2σ6

) I

σ2
.

The proof is given in Appendix D.

Lemma 2. Consider the density p(x) associated with the random variable X in Rd and the (σ,m)-
density given by (2.1). Then in expectation, for any m ⩾ 1 the conditional densities become more
log-concave upon accumulation of measurements:2

Ey1∇2
y1

log p(y1) ≽ Ey1:2∇2
y2

log p(y2|y1) ≽ · · · ≽ Ey1:m∇2
ym

log p(ym|y1:m−1).

Proof. The full proof of the lemma is given in Appendix D, where we derive the following:

∇2
ym

log p(ym|y1:m−1) = −σ−2I + σ−4cov(X|y1:m).

The proof follows through since due to the law of total covariance the mean of the posterior covariance
Ey1:mcov(X|y1:m) can only go down upon accumulation of measurements.

These two lemmas paint an intuitive picture that we expand on in the remainder of this section: (i)
by increasing σ we can transform a density to be strongly log-concave (Lemma 1) which we can
sample our first measurement from, (ii) and by accumulation of measurements we expect sampling
to become easier, where in Lemma 2 this is formalized by showing that on average the conditional
densities become more log-concave by conditioning on previous measurements. Next, we generalize
these results with our main theorem, followed by an example on a mixture of Gaussians.

2Note that here no assumption is made on the smoothness of p(x).
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Figure 2: (a,b) The negative conditional Hessian for two values of σ are plotted as a function of y1:m
and m assuming X is distributed according to (4.4) in 1D, where we set µ = 3, τ = 1 (see (4.5)). (c)
The upper bound in (4.1) is sharp for this example; σ2ζ(m) is plotted vs. m for different σ.

Theorem 1 (Once log-concave, always log-concave). Consider Z to be a random variable in Rd with
a compact support, i.e., almost surely ∥Z∥2 ⩽ R2, and take X = Z+N0, N0 ⊥ Z, N0 ∼ N(0, τ2I).
Then, for any m ⩾ 1, the conditional Hessian is upper bounded

∇2
ym

log p(ym|y1:m−1) ≼ ζ(m)I, (4.1)

where:

ζ(m) =
1

σ2

( τ2

mτ2 + σ2
− 1
)
+

R2

(mτ2 + σ2)2
(4.2)

is a decreasing function of m, in particular:

ζ ′(m) = −τ2(2R2σ2 + σ2τ2 +mτ4)

σ2(σ2 +mτ2)3
⩽ 0.

As a corollary, p(y1) associated with Y1 = X +N1, N1 ∼ N(0, σ2I) is strongly log-concave if

σ2 > R2 − τ2, (4.3)

and stays strongly log-concave upon accumulation of measurements.

Proof. The full proof is given in Appendix D and it is a direct consequence of the following identity:

∇2
ym

log p(ym|y1:m−1) =
1

σ2

( τ2

mτ2 + σ2
− 1
)
· I + 1

(mτ2 + σ2)2
cov(Z|y1:m),

which we derive, combined with cov(Z|y1:m) ≼ R2I due to our compactness assumption.

Remark 2. Theorem 1 spans a broad class of sampling problems, especially since τ can in principle
be set to zero. The only property we loose in the setting of τ = 0 is that the upper bound ζ(m)I does
not monotonically go down as measurements are accumulated.

4.1 EXAMPLE: MIXTURE OF TWO GAUSSIANS

In this section we examine Theorem 1 by studying the following mixture of Gaussians for α = 1/2:

p(x) = αN(x;µ, τ2I) + (1− α)N(x;−µ, τ2I). (4.4)

This is an instance of the setup in Theorem 1, where p(z) = 1
2δ(z−µ)+ 1

2δ(z+µ), and R2 = µ⊤µ.
By differentiating (2.2) twice we arrive at the following expression for∇2

ym
log p(ym|y1:m−1):

∇2
ym

log p(ym|y1:m−1) = ∇2
ym

log p(y1:m) = σ−2(m−1 − 1)I +m−2H(y1:m;m−1/2σ), (4.5)

where H(y;σ) := ∇2φ(y;σ); see (2.3) for the definition of φ. In Appendix D we show that for the
mixture of Gaussian here, (4.4) with α = 1/2, we have

H(y;σ) =
1

(σ2 + τ2)

(
−I + 2µµ⊤

σ2 + τ2
·
(
1 + cosh

( 2µ⊤y
σ2 + τ2

))−1)
, (4.6)
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which takes its maximum at y = 0. By using (4.5), it is then straightforward to show that (4.1), (4.2),
and (4.3) all hold in this example, with the additional result that the upper bound is now tight. In
Fig. 2, these calculations are visualized in 1D for µ = 3, τ = 1, and for different values of σ; in
panel (c) we also plot 1− 1/m which is the large m behavior of σ2ζ(m). This can be seen from two
different routes: (4.2) and (4.5).
Remark 3 (Monotonicity). The monotonic decrease of the upper bound in Theorem 1, together with
the monotonicity result in Lemma 2, may lead one to investigate whether the stronger result

∇2
y1

log p(y1) ≽ ∇2
y2

log p(y2|y1) ≽ . . . ≽ ∇2
ym

log p(ym|y1:m−1), (4.7)

could hold, e.g., for the mixture of Gaussians we studied here, especially since the upper bound (4.1)
is sharp for this example. For (4.7) to hold, cov(Z|y1:m) ≼ cov(Z|y1:m−1) almost surely. However,
we can imagine a scenario where y1 + · · ·+ ym−1 is very large, so that cov(Z|y1:m) ≈ 0, while ym
is such that y1 + · · ·+ ym−1 + ym is close to mE[Z], where cov(Z|y1:m) will be large.

4.2 ALGORITHM: NON-MARKOVIAN CHAIN OF (LOG-CONCAVE) MARKOV CHAINS

Below, we give the pseudo-code for our sampling algorithm. In the inner loop, MCMCσ is any MCMC
method, but our focus in this paper is on Langevin MCMC algorithms3 that use∇yt

log p(yt|y1:t−1)
to sample the new measurement Yt conditioned on the previously sampled ones Y1:t−1.

Algorithm 1: Sequential multimeasurement walk-jump sampling referred to by SMS. See Fig. 1
for the schematic. A version of MCMCσ is given in Appendix E.

1: Parameter noise level σ
2: Input number of measurements m, number of steps for each measurement nt

3: Output X̂
4: Initialize Y 1:0 = 0
5: for t = [1, . . . ,m] do
6: Initialize Y

(0)
t

7: for i = [1, . . . , nt] do
8: Y

(i)
t = MCMCσ(Y

(i−1)
t , Y 1:t−1)

9: end for
10: Yt = Y

(nt)
t

11: Y 1:t = Y 1:t−1 + (Yt − Y 1:t−1)/t
12: end for
13: return X̂ ← E[X|Y1:m] according to (2.4)

4.2.1 ESTIMATING ∇ log p(y)

So far we have assumed we know the smoothed score function g(y;σ) := ∇(log p)(y) = ∇φ(y;σ),
and in experiments below we consider cases where we know g(y;σ) in closed form. In general
settings, we would like to estimate g in terms of the unnormalized p(x) ∝ e−f(x). Given (2.3) and
(2.4), we write a an expression for g(y;σ) which can be turned into various estimators:

g(y;σ) =
1

σ2
·
(
E[X̌]− y

)
, X̌ ∼ e−f̌(·; y,σ), where f̌(x; y, σ) := f(x) +

1

2σ2
∥x− y∥2. (4.8)

See Appendix F, where we also give two estimators for g depending on how E[X̌] in (4.8) is estimated:
ĝplugin (F.1) is a plug-in estimator obtained by importance sampling, ĝlangevin (F.2) is obtained by
sampling X̌ using Langevin MCMC. Finally, use (2.2) to write∇yt

log p(yt|y1:t−1) in terms of g:

∇yt log p(yt|y1:t−1) = ∇yt log p(y1:t) =
1

t
g(y1:t;

σ√
t
) +

1

σ2
(y1:t − yt). (4.9)

The above expression is used in the inner loop of Algorithm 1 to sample from p(yt|y1:t−1) sequentially.
We conduct experiments to investigate this aspect of the problem (replacing g with ĝ) in the appendix.

3We experimented with a variety of Langevin MCMC algorithms to sample from p(yt|y1:t−1) in the inner
loop of Algorithm 1. The results are reported in the appendix due to space constraints. After extensive tuning,
we found the algorithm by Sachs et al. (2017) to be the best performing for the test densities we considered.
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Figure 3: (a, b) Sliced 2-Wasserstein distance vs. d and (c, d) Sliced 2-Wasserstein distance vs. σ
for varying d for the elliptical Gaussian and Gaussian mixture target densities using SMS.

5 EXPERIMENTS

We evaluate the performance of Algorithm 1 alongside related sampling schemes on carefully
designed test densities. We compare the following sampling schemes:

• Sequential multimeasurement walk-jump sampling (SMS), Algorithm 1 with m = 1000,

• Joint multimeasurement walk-jump sampling (JMS),

• Single-measurement walk-jump sampling (“m = 1”),

• Langevin MCMC by Sachs et al. (2017) without any smoothing (“σ = 0”),

• Exact samples from p̂σ,m (“Oracle”).4

Metric. We use the sliced 2-Wasserstein metric (Bonneel et al., 2015; Peyré & Cuturi, 2019) to
quantify the consistency of the obtained samples with the target density pX . We use 1,000 projection
directions drawn from the Gaussian distribution (Nadjahi et al., 2021, Eq.9).

MCMC algorithms. For all the results in this section, we implement MCMC sampling based on
underdamped Langevin diffusion (ULD). The particular algorithm used for the results shown in this
section extends the BAOAB integration scheme using multiple time steps for the O-part (Sachs et al.,
2017). In Appendix H, we present the full comparison across other MCMC algorithms, including
other recent ULD variants (Cheng et al., 2018; Shen & Lee, 2019) as well as the Metropolis-adjusted
Langevin algorithm (MALA) (Roberts & Tweedie, 1996; Dwivedi et al., 2018).

Score estimation. In Appendix I, we compare sampling with the analytic score function, the plug-in
estimator of the score function given in (F.1) with varying numbers of MC samples n, and the
Langevin estimator of the score function given in (F.2).

Hyperparameter search. The hyperparameters were tuned for each sampling scheme and the total
number of iterations was kept fixed in our comparisons reported here. See Appendix G for details.

5.1 ELLIPTICAL GAUSSIAN

The elliptical Gaussian features a poorly conditioned covariance: X ∼ N(0, C), where we set
τ21 = 0.1, τ22 = · · · = τ2d = 1 in (3.1). For each d, the noise level σ and other hyperparameters of
the sampling algorithm, such as step size and friction, were tuned. Fig. 3(a) plots the 2-Wasserstein
distance with varying d. Our main observation here is that SMS outperforms JMS, which is expected
from our theoretical analysis in Sec. 3. In addition, as Fig. 3(c) shows, SMS was robust to the choice
of σ particularly for large d in our experiments. Finally, the underdamped Langevin MCMC by Sachs
et al. (2017) does quite well when friction is carefully tuned; we would like to investigate this for
larger condition numbers in future research.

4Oracle is short for the SMS oracle. For the test densities considered here we can draw exact samples from
p̂σ,m, the distribution of E[X|Y1:m]. This baseline is used to separate the issue of the closeness of p̂σ,m to pX
from the problem of sampling p̂σ,m itself.
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Figure 4: Tunneling phenomenon. Trajectories of three walkers (a) under our SMS sampling scheme
using Langevin MCMC by Sachs et al. (2017) in the inner loop of Algorithm 1 (b) the same Langevin
MCMC without any smoothing. Purple and green indicate the beginning and end of trajectories,
respectively. (c, d) The final samples for 100 random trajectories (using identical seeds). Fewer
samples reach the smaller mode in Langevin MCMC compared to SMS.

5.2 MIXTURE OF GAUSSIANS

To evaluate mixing of multiple modes, we consider the test density (4.4) with α = 1/5, τ = 1, and
µ = 3 · 1d, where 1d is the d-dimensional vector (1, . . . , 1)⊤. As Fig. 3(a) shows, SMS achieves
consistently low (sliced) 2-Wasserstein distance with increasing d, whereas other sampling schemes
deteriorate in performance. We observe, in Fig. 3(b), that SMS outperforms the best-performing
underdamped Langevin MCMC (σ = 0) in our experiments for at least one σ value for all d. Higher
d requires larger σ. In addition, we would like to highlight the following: (I) Vanilla walk-jump
sampling (m = 1) is highly ineffective as the dimensions increase. This is in contrast to the sampling
from anisotropic Gaussian (already log-concave) in Sec. 5.1. (II) The optimal σ here is in fact larger
than the noise level needed to make p(y1) log-concave. This is related to the benefits of sampling from
better-conditioned log-concave distributions, which is well-known in the literature. In Appendix J,
we include results for a mixture of correlated Gaussians supporting the same conclusion.

5.3 TUNNELING PHENOMENA

Fig. 4 illustrates the trajectories of three walkers (a) under our SMS sampling scheme and (b) using
Langevin MCMC. Each walker has the same random seed between (a) and (b) and was initialized at
(3, 3), the dominant mode with 80% of the mass. With SMS, a walker is able to tunnel to the smaller
mode fairly quickly, whereas for Langevin MCMC (without smoothing) all three walkers are stuck
around the dominant mode. In panels (c) and (d) we also show the histogram of final samples in the
same setup with initialization at (3, 3) for 100 walkers after 100 K steps.

In summary, we have consistently observed that the same (Langevin) MCMC algorithm, when used
in the inner loop of Algorithm 1, is more effective than when used without Gaussian smoothing.

6 CONCLUSION

In this paper, we established a theoretical framework that reduces the general problem of sampling
from an unnormalized distribution to that of log-concave sampling defined by a single noise parameter.
We conclude with two main limitations of this work at the present time: (I) Our results do not make
it clear if the log-concave sampling strategy is optimal. The issue of “optimality” is challenging
as it is inherently problem-dependent and additionally depends on the MCMC algorithm used in
the inner loop of Algorithm 1. (II) Related to the issue of optimality is the fact that for general
sampling problems, the smoothed score functions required to sample from p(yt|y1:t−1), t ∈ [m] using
gradient-based methods need to be estimated. This is a complex problem and should be investigated
in future research. Finally, an immediate application of the machinery we developed here is the
problem of generative modeling, as the m smoothed score functions needed in running Algorithm 1
can indeed be learned (approximated) using empirical Bayes least-squares denoising objectives. This
approach is similar to training diffusion models; however, our sampling scheme is fundamentally
different, as it relies on the accumulation of measurements, controlled by a single noise parameter, σ.
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A DERIVATIONS FOR SEC. 2

A.1 DERIVATION FOR (2.2)

In this section we derive a general expression for the (σ,m)-densities p(y1:m), short for pσ(y1:m):

p(y1:m) =

∫
Rd

p(x)

( m∏
t=1

p(yt|x)
)
dx

=

∫
Rd

1

Z
e−f(x)

( m∏
t=1

1

(2πσ2)d/2
exp
(
− 1

2σ2

∥∥x− yt
∥∥2))dx

∝
∫
Rd

e−f(x) exp
(
− 1

2σ2

m∑
t=1

∥∥x− yt
∥∥2)dx.

The (σ,m)-density p(y1:m) is permutation invariant under the permutation of measurement indices:

π : [m]→ [m].

In the calculation below we derive a general form for p(y1:m) where this permutation invariance
becomes apparent in terms of the empirical mean of the m measurements

y1:m =
1

m

m∑
t=1

yt.

and the empirical mean of {∥yt∥2}mt=1. We start with a rewriting of log p(y1:m|x):

−2σ2 log p(y1:m|x) =
m∑
t=1

∥∥yt − x∥2 + cst

= m∥x∥2 − 2⟨
m∑
t=1

yt, x⟩+
m∑
t=1

∥yt∥2 + cst

= m
(
∥x− y1:m∥2 − ∥y1:m∥2 +

1

m

m∑
t=1

∥yt∥2
)
+ cst,

where cst is a constant that does not depend on y1:m. Using the above expression, we arrive at:

log p(y1:m) = log

∫
e−f(x)p(y1:m|x) dx+ cst

= log

∫
e−f(x) exp

(
− m

2σ2

∥∥x− y1:m
∥∥2)dx+

∥y1:m∥2 −m−1
∑m

t=1 ∥yt∥2
2m−1σ2

+ cst.

The equation above reduces to (2.2) with the following definition

φ(y;σ) = log

∫
e−f(x) exp

(
− 1

2σ2

∥∥x− y
∥∥2)dx.

A.2 DERIVATION FOR (2.4)

Next, we derive the expression for x̂(y1:m) = E[X|y1:m] given in (2.4):

E[X|y1:m] = yt + σ2∇yt log p(y1:m)

= yt + σ2
(
m−1∇φ(y1:m;m−1/2σ) + σ−2(y1:m − yt)

)
= y1:m +m−1σ2∇φ(y1:m;m−1/2σ).

(A.1)

The first equation above comes from the generalization of the Bayes estimator to factorial ker-
nels (Saremi & Srivastava, 2022), and for the second equation we used (2.2).
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B SMOOTHED SCORE FUNCTIONS

In this section, we give several different expressions related to smoothed densities used in the paper.
We consider Y ∼ N(X,σ2I) where X ∼ e−f(x) in Rd, thus with the density

p(y) =

∫
1

Z
e−f(x) 1

(2πσ2)d/2
e−

1
2σ2 ∥x−y∥2

dx ∝
∫

e−f(x)e−
1

2σ2 ∥x−y∥2

dx.

We have the following expressions for log p(y):

log p(y) = log

∫
e−f(x)e−

1
2σ2 ∥x−y∥2

dx+ cst,

log p(y) = log

∫
e−f(x+y)e−

1
2σ2 ∥x∥2

dx+ cst,

leading to

∇(log p)(y) =
∫
e−f(x)e−

1
2σ2 ∥x−y∥2 x−y

σ2 dx∫
e−f(x)e−

1
2σ2 ∥x−y∥2

dx
=

1

σ2
(E[X|y]− y), (B.1)

∇(log p)(y) = −
∫
e−f(x+y)∇f(x+ y)e−

1
2σ2 ∥x∥2

dx∫
e−f(x+y)e−

1
2σ2 ∥x∥2

dx

= −
∫
e−f(x)∇f(x)e− 1

2σ2 ∥x−y∥2

dx∫
e−f(x)e−

1
2σ2 ∥x−y∥2

dx
= −E[∇f(X)|y]. (B.2)

This in turn leads to three expressions for the Hessian:

∇2(log p)(y) = − 1

σ2
I +

1

σ4

(
E
[
x(x− y)⊤|y

]
− E [x|y]E [x− y|y]⊤

)
= − 1

σ2
I +

1

σ4

(
E
[
xx⊤|y

]
− E [x|y]E [x|y]⊤

)
= − 1

σ2
I +

1

σ4
cov(X|y), (B.3)

∇2(log p)(y) = −E[∇2f(X)|y] + E[∇f(X)∇f(X)⊤|y] + E[∇f(X)|y]E[∇f(X)|y]⊤

= −E[∇2f(X)|y] + cov(∇f(X)|y), (B.4)

∇2(log p)(y) = − 1

σ2

(
E
[
(x− y)∇f(x)⊤|y

]
− E [(x− y)|y]E [∇f(x)|y]⊤

)
= − 1

σ2

(
E
[
x∇f(x)⊤|y

]
− E [x|y]E [∇f(x)|y]⊤

)
= − 1

σ2
cov(X,∇f(X)|y).

B.1 GAUSSIAN EXAMPLE

If X ∼ N(µ,C), then Y ∼ N(µ,C + σ2I), and then

E[X|Y ] = µ+ C(C + σ2I)−1(Y − µ),

cov(X|Y ) = C − C(C + σ2I)−1C.

Therefore, E[X|Y ] is Gaussian with mean µ and the covariance matrix C(C + σ2I)−1C. We have
−∇2(log p)(y) = (C + σ2I)−1.

B.2 DISTRIBUTION OF E[X|Y ]

If Y is sampled from pY , let p̂σ be the distribution of E[X|Y ] = Y + σ2∇(log p)(Y ). We can
bound the 2-Wasserstein distance between p and p̂σ, by sampling X from pX , and taking x̂ =
Y + σ2∇ log p(Y ), where Y ∼ N(X,σ2I). This leads to a particular “coupling” (Villani, 2021)
between p and p̂σ . It follows:

W2(p, p̂σ)
2 ⩽ EX,Y ∥E[X|Y ]−X∥2.

Given that the conditional expectation E[X|Y ] is the optimal estimator for the square loss, the last
expression is less than the trival estimator Y , that is,

W2(p, p̂σ)
2 ⩽ EX,Y ∥Y −X∥2 = σ2d. (B.5)
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B.3 PROPOSITION 2

The calculations in Sec. B.2 that resulted in (B.5) leads to the following:

Proof for Proposition 2. Using Proposition 1, we have

W2(p, p̂σ,m) = W2(p, p̂m−1/2σ),

which is then combined with (B.5):

W2(p, p̂σ,m)2 ⩽
σ2

m
d.

C PROOFS FOR SEC. 3

C.1 PROPOSITION 3

Proof for Proposition 3. We start with an expression for log p(y1:m):

log p(y1:m) = log

∫
Rd

(
m∏

k=1

N(x; yk, σ
2I)

)
N(x; 0, C) dx

=

d∑
i=1

log

∫
R
exp

(
−

m∑
k=1

(yki − xi)
2

2σ2
− x2

i

2τ2i

)
dxi + cst

=

d∑
i=1

log

∫
R
exp

(
− (xi − αi)

2

2β2
i

− γi

)
dxi + cst.

(C.1)

The expressions for αi, βi, and γi are given next by completing the square via matching second, first
and zeroth derivative (in that order) of the left and right hand sides below

−
m∑
t=1

(yti − xi)
2

2σ2
− x2

i

2τ2i
= − (xi − αi)

2

2β2
i

− γi

evaluated at xi = 0. The following three equations follow:

1

β2
i

=
m

σ2
+

1

τ2i
,

αi

β2
i

=

m∑
t=1

yti
σ2
⇒ αi =

1

m+ σ2τ−2
i

m∑
t=1

yti,

− α2
i

2β2
i

− γi = −
m∑
t=1

y2ti
2σ2
⇒ γi =

m∑
t=1

y2ti
2σ2
− 1

2σ2(m+ σ2τ−2
i )

( m∑
t=1

yti

)2
.

It is convenient to define:
Ati =

1

t+ σ2τ−2
i

. (C.2)

Using above expressions, (C.1) simplifies to:

log p(y1:m) = −
d∑

i=1

γi + cst = −
m∑
t=1

∥yt∥2
2σ2

+
1

2σ2

d∑
i=1

Ami

( m∑
t=1

yti

)2
+ cst. (C.3)

The energy function can be written more compactly by introducing the matrix Fσ,m:

log p(y1:m) = −1

2
y⊤1:mFσ,my1:m,

σ2[Fσ,m]ti,t′i′ = ((1−Ami)δtt′ −Ami(1− δtt′)) δii′ .
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In words, the md ×md dimensional matrix Fσ,m is block diagonal with d blocks of size m ×m.
The blocks themselves capture the interactions between different measurements indexed by t and t′:
The m×m blocks of the matrix Fσ,m, indexed by i ∈ [d] thus have the form:

σ2F (i)
σ,m = (1−Ami)Im +Ami(Im − 1m1⊤m),

where 1⊤m = (1, 1, . . . , 1) is m-dimensional. It is straightforward to find the m eigenvalues of the
m×m matrix F

(i)
σ,m for i ∈ [d]:

• m− 1 degenerate eigenvalues equal to σ−2 corresponding to the eigenvectors

{(1,−1, 0, . . . , 0)⊤, (1, 0,−1, . . . , 0)⊤, . . . , (1, 0, 0, . . . ,−1)⊤},

• one eigenvalue equal to σ−2(1−mAmi) corresponding to the eigenvector (1, 1, . . . , 1)⊤.

Since mAmi > 0 we have:
λmax(Fσ,m) = σ−2,

which is (m− 1)d degenerate. The remaining d eigenvalues are {σ−2(1−mAmi)}i∈[d], the smallest
of which is given by

λmin(Fσ,m) = σ−2

(
1− m

m+ σ2τ−2
max

)
=

σ−2

1 +mσ−2τ2max

.

Thus we have:
κσ,m = λmax(Fσ,m)/λmin(Fσ,m) = 1 +mσ−2τ2max.

C.2 PROPOSITION 4

Proof for Proposition 4. Using (C.3) and (C.2) we have:

−2σ2 log p(y1:t) =

t∑
k=1

∥yk∥2 −
d∑

i=1

Ati

( t∑
k=1

yki

)2
.

Since log p(yt|y1:t−1) = log p(y1:t)− log p(y1:t−1), we have:

−2σ2 log p(yt|y1:t−1) = ∥yt∥2 −
d∑

i=1

Atiyti

(
yti + 2

t−1∑
k=1

yki

)
+ cst

=

d∑
i=1

(1−Ati) ·
(
yti −

Ati

1−Ati

t−1∑
k=1

yki

)2
+ cst,

Therefore the conditional density p(yt|y1:t−1) is the Gaussian N(µt|t−1, F
−1
t|t−1) with a shifted mean

µt|t−1 =
( Ati

1−Ati

t−1∑
k=1

yki

)
i∈[d]

,

and with an anisotropic, diagonal covariance/precision matrix whose spectrum is given by:

σ2λi(Ft|t−1) = 1− (t+ σ2τ−2
i )−1.

Thus:

κt|t−1 =
λmax(Ft|t−1)

λmin(Ft|t−1)
=

1− (t+ σ2τ−2
min)

−1

1− (t+ σ2τ−2
max)−1

.

Lastly, to prove monotonicity result (3.3) we do an analytic continuation of κt|t−1 to continuous
values by defining η(t) = κt|t−1 and taking its derivative, below R = σ2τ−2

min, r = σ2τ−2
max, thus
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R > r:

η′(t) =
(t+R)−2

1− (t+ r)−1
− (1− (t+R)−1)(t+ r)−2

(1− (t+ r)−1)2

=
(t+ r)(t+ r − 1)

(t+R)2(t+ r − 1)2
− (t+R− 1)(t+R)

(t+ r − 1)2(t+R)2

=
(t+ r)2 − r − (t+R)2 +R

(t+ r − 1)2(t+R)2

=
(r −R)(2t+ r +R− 1)

(t+ r − 1)2(t+R)2
< 0.

D PROOFS FOR SEC. 4

D.1 LEMMA 1

Proof for Lemma 1. We would like to find an upper bound for∇2(log p)(y). By using

∇2(log p)(y) = −σ−2I + σ−4cov(X|y),
derived in Appendix B, we need to upper bound cov(X|y). It suffices to study E[∥X − x0∥2|y] since

cov(X|y) = cov(X − x0|y) ≼ E[∥X − x0∥2|y] I.

We have by a convexity argument5:

E[∥X − x0∥2|y] =
∫
e−f(x)− 1

2σ2 ∥x−y∥2∥x− x0∥2dx∫
e−f(x)− 1

2σ2 ∥x−y∥2

dx

⩽

∫
e−f(x)+ 1

σ2 (x−x0)
⊤(y−x0)∥x− x0∥2dx∫

e−f(x)+ 1
σ2 (x−x0)⊤(y−x0)dx

.

(D.1)

Next, we find an upper bound for ∥x− x0∥2 itself. Using the assumption in the lemma we have:

∥∇f(x) + σ−2(x0 − y)∥ ⩾ ∥∇f(x)∥ − σ−2∥x0 − y∥ ⩾ µ∥x− x0∥ −∆− σ−2∥x0 − y∥,
leading to µ∥x− x0∥ ⩽ ∥∇f(x) + σ−2(x0 − y)∥+∆+ σ−2∥x0 − y∥ and thus

µ2∥x− x0∥2 ⩽ 3∥∇f(x) + x0 − y

σ2
∥2 + 3∆2 + 3

∥x0 − y∥2
σ4

.

Finally, using (D.1), we only need to find an upper-bound for ∥∇f(x) + σ−2(x0 − y)∥2 under the
distribution p̃(x) ∝ e−f̃(x), where f̃(x) = f(x)− σ−2(x− x0)

⊤(y − x0). This is achieved with:∫
p̃(x)∥∇f(x) + x0 − y

σ2
∥2dx =

∫
p̃(x)∥∇f̃(x)∥2dx =

∫
p̃(x) tr∇2f(x)dx ⩽ Ld,

where second equality is obtained using integration by parts akin to score matching (Hyvärinen,
2005), and for the last inequality we used our assumption ∇2f(x) ≼ LI . Putting all together we
arrive at:

∇2(log p)(y) ≼
(
−1 + 3Ld

µ2σ2
+

3∆2

µ2σ2
+

3∥x0 − y∥2
µ2σ6

) I

σ2
.

5We consider the exponential family

p(x|ν) = exp
(
−f(x) +

1

σ2
(x− x0)

⊤(y − x0)−
ν

2σ2
∥x− x0∥2 −

ν

2σ2
∥y − x0∥2 − a(ν)

)
.

Since a(ν) is convex (Wainwright & Jordan, 2008), we have a′(1) ⩾ a′(0), which is exactly the desired
statement.
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D.2 LEMMA 2

Since log p(yt|y1:t−1) = log p(y1:t)− log p(y1:t−1), we have

∇k
yt
log p(yt|y1:t−1) = ∇k

yt
log p(y1:t).

Start with the score function (k = 1):

∇yt
log p(y1:t) =

∫
σ−2(x− yt)p(x)

∏t
i=1 p(yi|x)dx∫

p(x)
∏t

i=1 p(yi|x)dx
= σ−2 (E[X|y1:t]− yt) .

Next, we derive the Hessian∇2
yt
log p(y1:t) = −σ−2I +At −Bt, where At and Bt are given by:

At =

∫
σ−4(x− yt)(x− yt)

⊤p(x)
∏t

i=1 p(yi|x)dx∫
p(x)

∏t
i=1 p(yi|x)dx

= σ−4 E[(X − yt)(X − yt)
⊤|y1:t],

Bt = σ−4

(∫
(x− yt)p(x)

∏t
i=1 p(yi|x)dx∫

p(x)
∏t

i=1 p(yi|x)dx

)(∫
(x− yt)p(x)

∏t
i=1 p(yi|x)dx∫

p(x)
∏t

i=1 p(yi|x)dx

)⊤

= σ−4 (E[X|y1:t]− yt) (E[X|y1:t]− yt)
⊤
.

By simplifying At −Bt, the yt cross-terms cancel out and the posterior covariance matrix emerges:

∇2
yt
log p(y1:t) = −σ−2I + σ−4cov(X|y1:t). (D.2)

The lemma is proven since the mean of the posterior covariance Ey1:t
cov(X|y1:t) can only go down

upon accumulation of measurements (conditioning on more variables).

D.3 THEOREM 1

Proof for Theorem 1. We start with the definition of (σ,m)-density:

p(y1:m) =

∫
Z

p(z)p(y1:m|z)dz ∝
∫
Z

p(z)

(∫
X

exp

(
− 1

2τ2
∥x− z∥2 − 1

2σ2

m∑
t=1

∥x− yt∥2
)
dx

)
dz,

which we express by integrating out x. We have

p(y1:m|z) ∝
∫
X

exp

(
− 1

2τ2
∥x− z∥2 − m

2σ2

(
∥x− y1:m∥2 − ∥y1:m∥2 +

1

m

m∑
t=1

∥yt∥2
))

dx

∝ exp

(
− m

2(mτ2 + σ2)
∥z − y1:m∥2 +

m

2σ2
∥y1:m∥2 −

1

2σ2

m∑
t=1

∥yt∥2
)
.

We can then express∇ym
log p(y1:m) in terms of E[Z|y1:m]:

∇ym
log p(y1:m) =

mτ2

σ2(mτ2 + σ2)
y1:m −

ym
σ2

+
1

mτ2 + σ2
E[Z|y1:m].

Next, we take another derivative:

∇2
ym

log p(y1:m) =
( τ2

σ2(mτ2 + σ2)
− 1

σ2

)
· I + 1

mτ2 + σ2
∇ymE[Z|y1:m].

Next, we compute ∇ymE[Z|y1:m]:

∇ymE[Z|y1:m] =
1

mτ2 + σ2
E[ZZ⊤|y1:m] +

mτ2

mτ2 + σ2
E[Z|y1:m]y⊤1:m −

1

σ2
E[Z|y1:m]y⊤m

− E[Z|y1:m]

(
1

mτ2 + σ2
E[Z|y1:m] +

mτ2

mτ2 + σ2
y1:m −

1

σ2
ym

)⊤

=
1

mτ2 + σ2
cov(Z|y1:m).
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Putting all together, we arrive at:6

∇2
ym

log p(y1:m) =
1

σ2

( τ2

mτ2 + σ2
− 1
)
· I + 1

(mτ2 + σ2)2
cov(Z|y1:m). (D.4)

Finally, since ∥Z∥2 ⩽ R2 almost surely, we have cov(Z|y1:m) ≼ R2I, therefore

∇2
ym

log p(ym|y1:m−1) = ∇2
ym

log p(y1:m) ≼ ζ(m)I,

where

ζ(m) =
1

σ2

( τ2

mτ2 + σ2
− 1
)
+

R2

(mτ2 + σ2)2
.

D.4 DERIVATION FOR (4.6)

In this example, we have X = Z + N0, N0 ∼ N(0, τ2I), and Y = X + N1, N1 ∼ N(0, σ2I),
therefore

Y = Z +N, N ∼ N(0, (σ2 + τ2)I), (D.5)
where Z ∼ p(z),

p(z) =
1

2
δ(z − µ) +

1

2
δ(z + µ),

δ is the Dirac delta function in d-dimensions. Alternatively, we have p(y) =
∫
p(z)p(y|z)dz, where

p(y|z) = N(y; z, (σ2 + τ2)I).

Using (B.3), adapted for (D.5), we have:

H(y) = −∇2(log p)(y) =
1

σ2 + τ2

(
I − 1

σ2 + τ2
cov(Z|y)

)
. (D.6)

Next, we derive an expression for cov(Z|y):
cov(Z|y) = E[ZZ⊤|y]− E[Z|y]E[Z|y]⊤.

We have:

E[ZZ⊤|y] = µµ⊤,

E[Z|y] = µ · e
−A − e−B

e−A + e−B
,

A =
∥y − µ∥2
2(σ2 + τ2)

,

B =
∥y + µ∥2
2(σ2 + τ2)

.

It follows:

cov(Z|y) = µµ⊤ ·
(
1−

(e−A − e−B

e−A + e−B

)2)
=

2µµ⊤

1 + cosh(B −A)

= 2µµ⊤ ·
(
1 + cosh

( 2µ⊤y
σ2 + τ2

))−1

.

(D.7)

By combining (D.6) and (D.7) we arrive at (4.6).
6Not required for the proof, but we can also relate cov(X|y1:m) and cov(Z|y1:m) directly since as we know

(see the proof of Lemma 2):

∇2
ym log p(y1:m) = − 1

σ2
I +

1

σ4
cov(X|y1:m). (D.3)

By combining (D.4) and (D.3), it follows:

cov(X|y1:m) =
σ2τ2

mτ2 + σ2
I +

( σ2

mτ2 + σ2

)2

cov(Z|y1:m).
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E DETAILED ALGORITHM

Algorithm 2: MCMCσ in Algorithm 1 via Underdamped Langevin MCMC by Sachs et al. (2017)

1: Input Y (i−1)
t , Y 1:t−1

2: Parameters current MCMC iteration i, current measurement index t, step size δ, friction γ,
steps taken nt, estimated smoothed score function ĝ(y;σ), Lipschitz parameter L, noise level σ

3: Output Y (i)
t

4: Initialize Y
(i,0)
t ∼ Unif([0, 1]d) +N(0, σ2I)

5: Initialize V ← 0
6: for k = [0, . . . ,K − 1] do
7: Y

(i,k+1)
t = Y

(i,k)
t + δ

2 V

8: Y 1:t = Y 1:t−1 + (Y
(i,k+1)
t − Y 1:t−1)/t

9: G = t−1ĝ(Y 1:t; t
−1/2σ) + σ−2(Y 1:t − Y

(i,k+1)
t ) according to (4.9)

10: V ← V + δ
2L G

11: B ∼ N(0, I)

12: V ← exp(−γδ)V + δ
2L G+

√
1
L (1− exp(−2γδ))B

13: Y
(i,k+1)
t ← Y

(i,k+1)
t + δ

2 V
14: end for
15: return Y

(i)
t = Y

(i,K)
t

F ESTIMATORS FOR ∇ log p(y)

The purpose of this section is to derive estimators for the smoothed score function

g(y;σ) = ∇(log p)(y) = ∇φ(y;σ),
which can be used to run Algorithm 2, in turn running Algorithm 1. We first derive (4.8) by rewriting
(B.1) as follows:

g(y;σ) =
1

σ2

∫
(x− y) exp

(
−f̌(x; y, σ)

)
dx∫

exp
(
−f̌(x; y, σ)

)
dx

=
1

σ2
(E[X̌]− y), X̌ ∼ e−f̌(·;y,σ),

where

f̌(x; y, σ) := f(x) +
∥x− y∥2

2σ2
.

F.1 THE PLUG-IN ESTIMATOR ĝplugin

We can arrive at a simple plug-in estimator for g(y;σ) by rewriting (B.1) as follows:

∇φ(y;σ) = 1

σ2

EN∼N(0;σ2I)[Ne−f(N+y)]

EN∼N(0;σ2I)[e−f(N+y)]
,

We then simply estimate the numerator and denominator above using i.i.d. Gaussian draws:

ĝplugin(y;σ) =
1

σ

∑n
i=1 εi exp (−f(σεi + y))∑n
i=1 exp (−f(σεi + y))

, εi
iid∼ N(0, I). (F.1)

(Above, we used one set of i.i.d. draws for estimating the numerator and denominator used in our
experiments. Of course, one should take independent draws if computation budget is not an issue.)

Gradient-based plug-in estimator. One can also obtain a different type of plug-in estimator for
∇ log p(y) using (B.2) that directly takes the gradient information ∇f(x) into consideration. This
estimator should have better properties, but we did not experiment with it in this paper. Intuitively,
such plug-in estimators (gradient-aware or not) will suffer from the curse of dimensionality.
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Connections to importance sampling. One can also arrive at (F.1) by using importance sampling
to estimate E[X̌] in (4.8), which is insightful. In particular, in importance sampling instead of
sampling from the probability measure ν associated with exp(−f̌(·; y, σ)) (which is hard to sample
from) we sample from an easier probability measure µ, which in our case we took it to be the
Gaussian measure N(y;σ2I). With this setup, the estimator (F.1) follows through. It is known that
the number of samples required to have an accurate estimator based on importance sampling is of
order exp(KL(ν||µ)), where KL(ν||µ) is the Kullback-Leibler divergence of µ from ν (Chatterjee &
Diaconis, 2018). This further highlights the limitations of the estimator (F.1).

F.2 THE LANGEVIN ESTIMATOR ĝlangevin

A better way to estimate E[X̌] in (4.8) is to use MCMC — in particular, the gradient-based Langevin
MCMC. For any y, this is done by running Langevin MCMC using the score function

ǧ(x; y, σ) = −∇f(x)− x− y

σ2
.

As an example, and to be concrete, for any y one can sample X̌ by discretizing the overdamped
Langevin diffusion:

dX̌s =
(
−∇f(X̌s)−

X̌s − y

σ2

)
ds+

√
2dBs.

Given n such independent samples, (X̌i)
n
i=1 drawn by running the Langevin dynamics, we then use

(4.8) to arrive at ĝlangevin:

ĝlangevin(y;σ) =
1

σ2
·
( 1
n

n∑
i=1

X̌i − y
)
. (F.2)

The procedure above for drawing a sample X̌ from e−f̌(x;y,σ) using overdamped Langevin MCMC
is given in Algorithm 3.

Algorithm 3: Draw X̌ ∼ e−f̌(x;y,σ) with Langevin MCMC for the estimator (F.2)
1: Parameter noise level σ
2: Input current y for which we need to estimate g(y;σ)
3: Hyperparameters step size δ, number of iterations K
4: Output X̌
5: x0 = y
6: for k = [1, . . . ,K] do
7: ǧ = −∇f(xk−1)− σ−2(xk−1 − y)
8: ε ∼ N(0, I)

9: xk = xk−1 + δǧ +
√
2δ ε

10: end for
11: return X̌ ← xK

We should highlight that in our experiments, instead of using the overdamped Langevin MCMC
above, we used the more sophisticated underdamped Langevin MCMC algorithm by Sachs et al.
(2017).

Connections to “Entropy SGD”. The problem of estimating smoothed score functions have also
been of interest in the neural network optimization literature under the terminology of entropy
SGD (Chaudhari et al., 2017). There, the smoothed score function (although the kernel smoothing
lexicon is not used there; 1/σ2 is denoted by γ and is referred to as scope) is utilized for optimization,
not for sampling, to arrive at flatter minima of the loss landscape with better generalization properties.
Due to different motivations, Algorithm 3 differs from the one used in entropy SGD, e.g., we do not
have exponential averaging here.
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G EXPERIMENTAL DETAIL

The hyperparameters were tuned on a log-spaced grid. We searched the step size δ over
{0.03, 0.1, 0.3, 1.0}, the effective friction γδ over {0.0625, 0.125, 0.25, 0.5, 1.0}, per-t MCMC
iterations nt over {1, 4, 16}, and the Lipschitz parameter over {1/σ2, 1.0}. We found that the
hyperparameter combinations (δ = 0.03, γδ = 0.0625) and (δ = 1.0, γδ = 0.5) worked well
for most configurations of test density type, σ, d, and MCMC algorithm. For JMS, m ran over
{200, 400, 600, 800, 1000}.
We experimented with two initialization schemes in SMS. At each t, the walkers sampling from
p(yt|y1:t−1) were initialized at (i) warm: E[X|y1:t−1] + ε, where ε ∼ N(0, σ2I), or (ii) cold: at
samples from Unif([−1, 1]d) + N(0, σ2I). For convergence experiments, we report results from
the warm start, as it was more robust to the choice of hyperparameters. The tunneling results were
obtained with cold start. The hyperparameters were tuned for each algorithm while the total number of
iterations was kept fixed at a large value. We define each iteration as an MCMC update step. For SMS,
the total number of iterations is

∑m
t=1 nt, the number of MCMC iterations for each measurement

t, nt, summed up over the m measurements. We had nt ∈ {1, 4, 16} and m = 5, 000. For the
remaining three sampling schemes (JMS, m = 1, and σ = 0), the total number of iterations is simply
the number of MCMC iterations, fixed to 20, 000, but we found these algorithms to converge much
earlier, around 5, 000.

H MCMC ALGORITHMS

Our algorithm is agnostic to the choice of MCMC sampling algorithm used in the Markovian phases.
In this section, we run SMS sampling with four different Langevin MCMC algorithms. The results
presented earlier in Sec. 5 uses an ULD algorithm with an Euler discretization scheme that extends
the BAOAB integration using multiple time steps for the O-part (“Sachs et al.”) (Sachs et al., 2017).
Next, we consider two algorithms that operate on the integral representations of ULD. Recall that
continuous-time ULD is represented by the following stochastic differential equation (SDE):

dvt = −γvtdt− u∇f(xt)dt+ (
√
2γu)dBt,

dxt = vtdt,

where xt, vt ∈ Rd and Bt is the standard Brownian motion in Rd. The solution (xt, vt) to the
continuous-time ULD is

vt = v0e
−γt − u

(∫ t

0

exp (−(t− s))∇f(xs)ds

)
+
√
2γu

∫ t

0

exp (−γ(t− s)) dBs,

xt = x0 +

∫ t

0

vsds. (H.1)

Similarly, the discrete ULD is defined by the SDE

dṽt = −γvtdt− u∇f(x̃0)dt+ (
√
2γu)dBt,

dx̃t = ṽtdt,

which yields the solution

ṽt = ṽ0e
−γt − u

(∫ t

0

exp (−(t− s))∇f(x̃0)ds

)
+
√
2γu

∫ t

0

exp (−γ(t− s)) dBs,

x̃t = x̃0 +

∫ t

0

ṽsds. (H.2)

Shen & Lee (2019) seeks a lower discretization error by using a 2-step fixed point iteration method,
or the randomized midpoint method. The integral in (H.1) is evaluated along uniform random points
between 0 and t. On the other hand, Cheng et al. (2018) computes the moments of the joint Gaussian
over (x̃t, ṽt) in the updates of (H.2). In our comparison we additionally include MALA, an Euler
discretization of the overdamped Langevin dynamics represented by the SDE

dxt = −u∇f(xt)dt+ (
√
2γu)dBt, (H.3)
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Figure 5: W2 vs. m for various MCMCσ algorithms used in the inner loop of Algorithm 1.

accompanied by Metropolis adjustment to correct for the discretization errors (Roberts & Tweedie,
1996).

The algorithms are compared in Fig. 5 for the Gaussian mixture test density introduced in Sec. 5.2
with d = 8. The three (unadjusted) ULD algorithms converge faster than does MALA to a lower W2.
In ULD algorithms, Brownian motion affects the positions xt through the velocities vt, rather than
directly as in MALA, resulting in a smoother evolution of xt that lends itself better to discretization.
The first two dimensions of the final samples are displayed in Fig. 6. MALA samples fail to separate
into the two modes, whereas Cheng et al, Shen and Lee, and Sachs et al have better sample quality,
with Sachs et al performing the best and almost approaching the sample variance of W2 when samples
are directly drawn from pX (the gray band).
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(a) MALA (Roberts & Tweedie, 1996)
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Figure 6: Final X̂ samples for various MCMCσ algorithms used in the inner loop of Algorithm 1.
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I SCORE ESTIMATION

Langevin MCMC requires the smoothed score function g(y;σ) = ∇ log p(y). Results presented
earlier in Sec. 5 assumed access to the analytic score function. Here, we use the plug-in estimator
ĝplugin presented in (F.1) with varying numbers of MC samples n as well as the Langevin estimator
ĝlangevin presented in (F.2).

To prevent numerical underflow, we implemented (F.1) as follows:

A = logsumexpni=1

(
−f(y + σεi)

)
, (I.1)

B+ = logsumexp
n+

j=1

(
log εj − f(y + σεj)

)
, (I.2)

B− = logsumexp
n−
k=1

(
log(−εk)− f(y + σεk)

)
, (I.3)

ĝplugin(y;σ) =
1

σ
·
(
eB+−A − eB−−A

)
, (I.4)

where

logsumexpni=1(ai) := amax + log

n∑
i=1

exp(ai − amax),

amax := maxi ai, and ε ∼ N(0, I). In (I.2) and (I.3), j = 1, . . . , n+ and k = 1, . . . , n− denote the
indices for which ε is positive and negative, respectively, with n+ + n− = n. Note that the same
Gaussian samples ε were used to evaluate the numerator and the denominator.

For a Gaussian mixture density introduced in Sec. 5.2 with d = 2, both the analytic and the ĝplugin
score functions converge to a low W2, as shown in Fig. 7 (a, b). The sample quality is on par with
the analytic score function with n as small as 500 and there is little benefit to increasing the n past
500. The ĝlangevin score function struggles in this low-dimensional example, but catches up to the
highest-n ĝplugin score function at d = 8, as Fig. 7 (c, d) shows. All estimated score functions
significantly underperform the analytic score. This is a preliminary result: for obtaining ĝlangevin we
did not extensively tune the hyperparameters. In addition, for ĝplugin, variance reduction techniques,
such as importance weighting, may help get more mileage from finite n.

J MIXTURE OF CORRELATED GAUSSIANS

In this section, we study a correlated test density, namely a mixture of two 2-dimensional Gaussians
with full covariances:

p(x) = αN(x;µ,Σ0) + (1− α)N(x;−µ,Σ1). (J.1)

We choose µ = 3 · 1d, Σ0 = R diag( 14 , 4) R
T , Σ1 = RT diag(1, 9) R, α = 4

5 , and the rotation
matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
with θ = π/360. Fig. 8 compares the performance of the same Langevin MCMC algorithm (Sachs
et al., 2017) used within the SMS scheme (a) with that used without Gaussian smoothing (b). In
both cases here, we initialized the samplers at the origin (5000 particles total). The total number of
iterations are the same between two algorithms (see Appendix G for details).
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Figure 7: Comparison of the analytic g(y;σ) = ∇ log p(y), the plug-in estimator ĝplugin (F.1) with
varying numbers of MC samples n, and the Langevin estimator ĝlangevin (F.2). The test density was
the mixture of Gaussians introduced in Sec. 5.2 with d = 2 (a, b) and d = 8 (c, d).
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(b) Langevin MCMC

Figure 8: Mixture of correlated Gaussians.
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