
An Automata-Based Symbolic Approach for
Verifying Programs on Relaxed Memory Models

Alexander Linden and Pierre Wolper

Institut Montefiore, B28
Université de Liège

B-4000 Liège, Belgium
{linden,pw@montefiore.ulg.ac.be}

Abstract. This paper addresses the problem of verifying programs for
the relaxed memory models implemented in modern processors. Specifi-
cally, it considers the TSO (Total Store Order) relaxation, which corre-
sponds to the use of store buffers. The proposed approach proceeds by
using finite automata to symbolically represent the possible contents of
the store buffers. Store, load and commit operations then correspond to
operations on these finite automata.

The advantage of this approach is that it operates on (potentially infinite)
sets of buffer contents, rather than on individual buffer configurations.
This provides a way to tame the explosion of the number of possible
buffer configurations, while preserving the full generality of the analysis.
It is thus possible to check even designs that exploit the relaxed memory
model in unusual ways. An experimental implementation has been used
to validate the feasibility of the approach.

1 Introduction

Modern multiprocessor systems do not implement the traditional Sequential
Consistency [1] (SC) model of memory access. This fact is usually referred to by
describing these processors as implementing relaxed memory models that per-
mit executions not allowed in SC. Thus verification tools such as SPIN that are
based on the SC model do not reliably verify programs to be run on widely
used current processors. It is quite disturbing to observe that even simple mu-
tual exclusion algorithms such as Peterson’s do not run correctly on a standard
modern multicore computer. This situation is nevertheless mostly hidden from
the programmer since process synchronization is done through system provided
functions, which are correctly implemented, forcing memory synchronization if
needed. This is a safe approach, but leads to a suboptimal use of multicores.
Having tools for analyzing programs with respect to the implemented relaxed
memory models would be of great help in designing code that does not unduly
force synchronization. It would also be most useful for checking that code de-
signed for the SC memory model can be safely ported to processors implementing
relaxed memory models or, if needed for minimally correcting such code.



2 Alexander Linden and Pierre Wolper

The exact memory model that is implemented varies and deciphering proces-
sor documentation on this topic is, to put it mildly, quite challenging. However,
the topic is being more and more studied and clear models of memory access
models have been proposed. These models can be either axiomatic, giving con-
straints on possible memory accesses, or operational, giving a program-like de-
scription of the shared memory model. Of these models, one of the most studied
is the Total Store Order (TSO) model. It has a simple axiomatics characteri-
zation and a clear equivalent operational description in terms of store buffers.
In TSO, processor writes are buffered and each processor reads the last value
written to its buffer, while others only see the values committed to main mem-
ory. This model was the one implemented in SPARC processors [2] and [3] and
closely corresponds to the one implemented in X86 processors [4]. Furthermore,
store buffers are an essential ingredient of even more relaxed memory models [5]
and thus being able to analyze TSO is an important stepping stone in developing
verification tools for relaxed memory models. This paper will thus exclusively
focus on TSO.

Since TSO can be modeled by a memory accessed through buffers, an obvious
approach to verifying programs under this memory model is to explicitly include
the store buffers in the program being analyzed. This has of course already been
tried, but requires overcoming two problems. The first is that there is no natural
bound on the size of the buffers, the second is the explosion in the number of
states due to the introduction of store buffers. For the first problem, one can
arbitrarily bound the size of the buffers, which, at best, leads to verification
that is unsatisfactorily hardware dependent. For the second problem, various
techniques such as SAT based bounded model-checking have been tried with
some success [6], but at the cost of limits on what can be verified.

In this paper, we develop an approach inspired by the techniques developed
in [7] for verifying systems with unbounded buffers. The main idea is that, since
a buffer content can be viewed as a word, sets of buffer contents are languages
that can be represented by finite automata. This allows infinite sets of contents
to be represented and manipulated by operations on automata. Of course, in a
step by step exploration of the state space, infinite sets of buffer contents will
never be generated. Acceleration techniques are thus required and these take the
form of algorithms for directly computing the possible contents of buffers after
repeating a program cycle an arbitrary number of times.

Compared to the general problem of analyzing programs using unbounded
buffers, the specific case of TSO buffers offers both simplifications and added
difficulties. The main simplification is that each process only writes to a single
buffer, which makes a separate representation of each buffer the natural choice.
Among the difficulties are the operations on the store buffers, which are not quite
like those on communication buffers. Indeed, if a store is very much like a buffer
write and a commit to memory is similar to a buffer read, a load operation is
special. Indeed, it should retrieve the most recently written value and, when there
is a choice of such values, a repeated read should yield an identical result. One
of our contributions is thus to define these operations precisely when applied to



Symbolic Verification on Relaxed Memory Models 3

sets of store buffer contents and to show how they can be implemented. Another
is adapting the cycle iteration acceleration technique to the specific context of
store buffers.

To validate our approach we have built an experimental implementation to
test the feasibility of the proposed method. Our implementation uses the BRICS
automata manipulation package [8] and has allowed us to fully verify (or find
errors) in simple synchronization protocols. Since each process writes to its own
buffer, the cycle iteration acceleration needs to favor progress by a single process.
Partial-order verification techniques [9], and in particular “sleep sets”, have been
helpful with respect to this. Indeed, it turned out that using sleep sets yielded a
significant performance improvement by avoiding the repeated detection of the
same cycle from different global control points.

The verification problem we consider has already been addressed in several
papers going back at least a decade. In [10] the problem is clearly defined and
it is shown that behaviors possible under TSO but not SC can be detected
by an explicit state model checker. Later work, [6], uses SAT-based bounded
model checking with success for detecting errors with respect to relaxed memory
executions. A more recent paper [11] aims at distinguishing programs that can
safely be analyzed under SC, even if run in a relaxed memory model environment.
Finally, [12] proves decidability and undecidability results for relaxed memory
models considering store buffers to be infinite. In this it is very close to our work,
but its goal is purely theoretical and it proceeds by reducing the problem to lossy
buffer communication. This is very elegant for obtaining decidability results, but
of uncertain value for doing actual verification. Indeed, the reduction to lossy
buffers implies an elaborate coding of buffer contents. In contrast, our approach
works with a direct representation of the store buffer contents and is oriented
towards doing actual verification. To our knowledge, it is the first verification
technique for relaxed memory models allowing the full generality coming from
unbounded store buffer contents.

2 Concurrent Programs and Memory Models

We consider a very simple model of concurrent programs in which a fixed set of
finite-state processes interact through a shared memory. A concurrent program
is thus defined by a finite set P = {p1, . . . , pn} of processes and a finite set
M = {m1, . . . ,mk} of memory locations. The memory locations can hold values
from a data domain D. The initial content of the memory is given by a function
I :M→D.

Each process pi is defined by a finite set L(pi) of control locations, an initial
location `0(pi) ∈ L(pi), and transitions between control locations labeled by
operations from a set O. A transition of a process pi is thus an element of
L(pi)×O×L(pi), usually written as `

op→ `′. The set of operations contains the
following memory operations:



4 Alexander Linden and Pierre Wolper

– store(pi,mj , d), i.e. process pi stores value d ∈ D to memory location mj

(note that since transitions are process specific, mentioning the process in
the operation is redundant, but will turn out to be convenient),

– load(pi,mj , d), i.e. process pi loads the value stored in mj and checks that
its value is d. If the stored value is different from d, the transition is not
possible.

The SC semantics of such a concurrent program is the usual interleaving
semantics in which the possible behaviors are those that are interleavings of the
executions of the various processes and in which stores are immediately visible
to all processes.

In TSO, each process sees the result of its loads and stores exactly in the
order it has performed them, but other processes can see an older value than
the one seen by the process having performed a store. This leads to executions
that are not possible in SC. For instance, in the program given in Table 1, both
processes could terminate their executions, whereas under SC semantics, either
p1 or p2 will find the value 1 when performing the last load operation. TSO is
thus also referred to as the store→ load order relaxation.

Table 1. Intra-processor forwarding, given in [13]

initially:
x = y = 0;

Processor 1 Processor 2

store(p1, x, 1) store(p2, y, 1)
load(p1, x, 1) load(p2, y, 1)
load(p1, y, 0) load(p2, x, 0)

To define TSO formally, one uses the concepts of program order and memory
order [2, 14]. Program order, <p is a partial order in which the instructions
of each process are ordered as executed, but instructions of different processes
are not ordered with respect to each other. Memory order, <m, is a total order
on the memory operations, which is fictitious but characterizes what happens
during relaxed executions.

Let l denote any load operation, s any store operation, la a load operation
on location a, and sa a store operation on location a. Furthermore, let val(l)
or val(s) be the value returned (stored) by a memory operation. A TSO execu-
tion is then one for which there exists a memory order satisfying the following
constraints:

1. ∀la, lb : la <p lb ⇒ la <m lb
2. ∀l, s : l <p s⇒ l <m s
3. ∀sa, sb : sa <p sb ⇒ sa <m sb

4. val(la) = val(max
<m

{sa | sa <m la∨sa <p la}). If there is no such a sa, val(la)

is the initial value of the corresponding memory location.



Symbolic Verification on Relaxed Memory Models 5

The first three rules specify that the memory order has to be compatible with
the program order, except that a store can be postponed after a load, i.e. the
store → load order relaxation. The last rule specifies that the value retrieved
by a load is the one of the last store in memory order that precedes the load in
memory or in program order, the latter ensuring that a process can see the last
value it has stored. If there is no such store, the initial value of that memory
location is loaded.

For example, the following is a valid TSO memory order for the program
of Table 1 that allows the program to terminate: load(p1, x, 1), load(p1, y, 0),
load(p2, y, 1), load(p2, x, 0), store(p1, x, 1), store(p2, y, 1). Note that in SC, mem-
ory order has to be fully compatible with program order, and thus this memory
order is not possible.

The characterization of TSO we have just given is useful in dealing with TSO
axiomatically, but not adapted for applying state-space exploration verification
techniques. Fortunately, there exists a natural equivalent operational description
of TSO. In this description (see Fig. 1), stores from each process are buffered and
eventually committed to main memory in an interleaved way. When a process
executes a load, it reads the most recent value in its store buffer or, if there is
none, the value present in the shared memory.

Switch

P2

Stores

Pn

Stores

P1

Loads Loads Loads
Stores

Single Port Memory

Buffers
Store
FIFO

Fig. 1. Operational definition of TSO of Appendix K of [2]

This model can be formalized as follows. One introduces a set

B = {bp1 , . . . , bpn
}



6 Alexander Linden and Pierre Wolper

of store buffers, one for each process1. A global state is thus composed of the
content of the memory, and, for each process, a control location and a store
buffer. The content [bp] of a buffer bp is then a word in (M,D)∗ and the pro-
gram executes load and store operations on these buffers. Furthermore a commit
operations that removes the oldest store operations from a buffer and writes
the corresponding value to memory can nondeterministically be executed at all
times. The precise semantics of these operations can be described as follows.

store operation: store(p,m, d):

[bp]← [bp](m, d).

load operation: load(p,m, d):

Let [bp] = (m1, d1)(m2, d2) . . . (mf , df ) and let i = max{j ∈ {1 . . . f} | mj =
m}. If i exists, then the result of the load is the test di == d. If not, it is the
result of the test [m] == d, where [m] denotes the content of the memory
location m.

commit operation: commit(p):

Let [bp] = (m1, d1)(m2, d2) . . . (mf , df ). Then, if [bp] 6= ε, the result of the
commit operation is

[bp]← (m2, d2) . . . (mf , df )

and
[m1]← d1.

If [bp] = ε, the commit operation has no effect.

Finally, in programs we will also use an operation sync whose effect is to
commit to memory the full content of all buffers.

3 Representing Sets of Buffer Contents

If store buffers are unbounded, introducing them leads to a potentially infinite
state space. Furthermore, even if store buffers are bounded, they very quickly
lead to unmanageably large state spaces, even for very simple programs.

To cope with this problem, we turn to the techniques that have been pro-
posed in [15] and in [7] to represent sets of buffer contents by finite automata. In
this approach, sets of possible buffer contents are represented by finite automata
and the state-space of the system is explored by manipulating sets of possible
contents for each control location as a single object. It is clear that while explor-
ing the state-space of a system, one can combine into a single representation the
1 Note that we introduce a buffer per process rather than by processor. This is a safe

approach for verification since it allows more behaviors than a model in which some
processes share the same buffer. Furthermore, when analyzing a program it is usually
impossible to know which processes will run on the same processor.



Symbolic Verification on Relaxed Memory Models 7

buffer contents corresponding to identical control locations. However, this will
only lead to finite sets of contents being represented as a single object, whereas
real gains can only come from manipulating together infinite sets of buffer con-
tents. For achieving this, acceleration techniques are needed. Similarly to what
is done in the previously cited work, we will focus on cycles in the program code
and provide algorithms for directly computing the effect of iterating a sequence
of operations and unbounded numbers. Before turning to this, we will first intro-
duce the representation of sets of buffer contents by automata and see how load
store and commit operations can be extrapolated to operations on automata
representing sets of buffer contents.

We represent the possible contents of each buffer by a separate automaton
over the alphabet M×D and use the following definition.

Definition 1. A buffer automaton associated to a process p is a finite automa-
ton Ap = (S,Σ,∆, S0, F ), where

– S is a finite set of states,
– Σ =M×D is the alphabet of buffer elements,
– ∆ ⊆ S × (Σ ∪ {ε})× S is the transition relation,
– S0 ⊆ S is a set of initial states, and
– F is a set of final states.

A buffer automaton Ap represents a set of buffer contents L(Ap), which is the
language of the words accepted by the automaton according to the usual definition.

We have defined buffer automata to be nondeterministic, but for implementa-
tion purposes we will usually work with reduced deterministic automata. In this
case, the transition relation becomes a transition function δ : S × Σ → S and
the set of initial states becomes a single state s0.

Operations on buffers can be extrapolated to operations on buffer automata
as follows.

store operation: store(p,m, d):

The result of the operation is an automaton A′p such that

L(A′p) = L(Ap) · {(m, d)}

One thus simply concatenates that new stored value to all words in the
language of the automaton.

load operation: load(p,m, d):

Load operations are nondeterministic since a buffer automaton can represent
several possible buffer contents. Thus it is possible that a load operation can
succeed on some represented buffer contents and fail on others. If this is the
case, the load operation must lead to a state in which the set of possible
buffer contents has been restricted to those on which the load operation
succeeds.



8 Alexander Linden and Pierre Wolper

For a load operation to succeed, the tested value must be found either in the
store buffer or in main memory. Precisely, a load operation succeeds when
at least one of the following two conditions is satisfied:
1. The language

L1 = L(Ap) ∩ (Σ∗ · (m, d) · (Σ\{(y, v) | y 6= m ∧ v ∈ D})∗)

is nonempty.
2. The language

L2 = L(Ap) ∩ (Σ\{(m, v) | v ∈ D})∗

is nonempty and [m] = d.
The load operation then leads to a state with a modified store buffer au-
tomaton A′p such that

L(A′p) = L1 ∪ L2

if [m] = d and
L(A′p) = L1

otherwise. Of course, if L1∪L2 = ∅, the load operation is simply not possible.

commit operation: commit(p):

For the commit operation, we first extract the stores that can be committed
to memory. These are the stores (m,α) such that

(m,α) ∈ first(L(Ap)),

where first(L) denotes the language of the first symbols of the words of L.
Since there can be more than one such store, we need to modify the store
buffer automaton according to the committed store (m,α). We have

L(A′p((m,α))) = suffix1(L(Ap) ∩ ((m,α) ·Σ∗)),

where suffix1(L) denotes the language obtained by removing the first symbol
of the words of L.

4 State Space Exploration and Cycle Detection

Our state-space exploration algorithm is based on a classical depth-first search.
The major modification we introduce is the detection of cycles and an accel-
eration technique for directly computing the effect of repeatedly executing a
detected cycle. The cycles we detect are those that only modify a single store
buffer. This might seem restrictive, but notice that the use of store buffers in-
troduces a lot of independence between processes and experiments show that
considering only single process cycles is sufficient. The independence induced by
store buffers has however a drawback, which is that it makes the same cycles
possible from many different global control locations. Proceeding naively thus



Symbolic Verification on Relaxed Memory Models 9

results in detecting the same cycle many times over, which is unnecessary and
very wasteful. To avoid this, we used the sleep set partial order reduction of [9].
This reduction avoids re-exploring transitions after executing other independent
transitions. In general, the sleep set reduction does not reduce the number of
states visited, but only the number of transitions followed. This is already very
valuable when working with automata symbolic representations, since these in-
crease the cost of comparing states. Furthermore, the fact that we are working
with sets of states and not individual states does make sleep sets yield a reduc-
tion of the size of the state graph that needs to be explored, as we will illustrate
by an example further down.

In the sleep set exploration algorithm, a set of transitions, called a sleep set,
is associated with each state. Initially, the sleep set is empty. Once a transition
is executed, it is added to the sleep set of the resulting state, but transitions in
the sleep set that are not independent with respect to the executed transition
are removed. Transitions in the sleep set associated to a state are not executed
from that state. The basic depth-first search algorithm using sleep sets is given
in Algorithm 1 and Algorithm 2. We will use a crude but sufficient notion of
independence. In a state s,

1. transitions of the same process are never independent;
2. transitions of different processes other than commit or sync are always inde-

pendent;
3. a commit(p) transition of a process p is independent with the transitions of

a process p′, provided that, for every memory location m affected by this
commit operation, either p′ does not use m, or p′ has a value for m in its
store buffer, i.e., all words of the language L(Ap) contain an occurrence of
(m, v) for some v ∈ D.

4. a sync operation is not independent with any other transition.

Algorithm 1 Initialization of depth first search
1: init(Stack)
2: init(H) /* Table of visited states */
3: s0 = initial state
4: s0.Sleep = ø
5: push s0 onto Stack
6: DFS()

What we add to this is cycle detection and acceleration. Cycle detection is
done when there is a state on the current search stack that only differs from the
state being generated by the content of one store buffer. The modified recur-
sive procedure called within the initialization process is the procedure given in
Algorithm 3, DFS() cycle().

First, we need to define when a state is included in another. A state s is
included in another state s′ if



10 Alexander Linden and Pierre Wolper

Algorithm 2 Recursive DFS() procedure using sleep sets
1: s = top(Stack)
2:
3: if (s ∈ H) then
4: Texecuted = enabled(s) \ H(s).Sleep
5: s.Sleep = s.Sleep ∩ H(s).Sleep
6: H(s).Sleep = s.Sleep
7: else
8: enter s in H
9: Texecuted = ø

10: end if
11:
12: T = (enabled(s) \ s.Sleep) \ Texecuted

13:
14: for all t ∈ T do
15: ssucc = succ(s,t)
16: ssucc.Sleep = {tt | tt ∈ s.Sleep ∧ (t, tt) independant in s}
17: push ssucc onto Stack
18: DFS()
19: end for
20: pop(Stack)

1. s and s′ are identical with respect to control locations and memory content,
and

2. for each process p, L(Ap(s)) is included in L(Ap(s′))

Next, we need to make explicit the cycleCondition(ss,s) predicate. For
this predicate to be true, three conditions have to be satisfied by the pair of
global states ss, s. Remembering that global states are composed of the control
location of each process, the content of the memory and the buffer automata of
each process, these conditions can be defined as follows.

1. s and ss are identical, except for the store buffer automaton of a single
process p.

2. The languages represented by the store buffer automaton of p in ss can be
extended to match the language of the store buffer automaton of p in s, i.e.
there exists a word w such that (L(Ap(s)) = L(Ap(ss)) · {w}.

3. The store buffer automaton obtained for s is load equivalent to the one of ss,
i.e. the results of loads will be the same, whether starting from s or ss. Since
the only difference between L(Ap(s)), and L(Ap(ss)) is the suffix w, this will
be verified by checking the following condition. For all memory locations m
for which there is a store operation store(p,m, v) in w, let vlast be the value
in the last store operation in w. Then the operation load(p,m, vlast) must
be simultaneously possible in both s and ss and must not modify the store
buffer automata Ap(s) and Ap(ss).

Finally, once a possible cycle content w has been detected and the conditions
for a cycle are satisfied, we need to store the buffer automaton representing



Symbolic Verification on Relaxed Memory Models 11

Algorithm 3 Recursive DFS cycle() procedure using sleep sets, cycle detection
and acceleration
1: s = top(Stack)
2:
3: /* Go through stack from top to bottom */
4: for all ss in (Stack \ top(Stack)) do
5: if (cycleCondition(ss,s)) then
6: s = cycle(ss,s)
7: break
8: end if
9: end for

10:
11: if (∃sI ∈ H | s ⊆ sI) then
12: iSleep =

T
∀sI∈H|s⊆sI H(sI).Sleep

13: Texecuted = enabled(s) \ iSleep
14: s.Sleep = s.Sleep ∩ iSleep
15: if (s ∈ H) then
16: H(s).Sleep = s.Sleep
17: else
18: enter s in H
19: end if
20: else
21: enter s in H
22: Texecuted = ø
23: end if
24:
25: T = (enabled(s) \ s.Sleep) \ Texecuted

26:
27: for all t ∈ T do
28: ssucc = succ(s,t)
29: ssucc.Sleep = {tt | tt ∈ s.Sleep ∧ (t, tt) independant in s}
30: push ssucc onto Stack
31: DFS cycle()
32: end for
33: pop(Stack)



12 Alexander Linden and Pierre Wolper

the buffer contents that can be obtained by repeating the cycle, eventually in-
terleaved with previously detected cycles. For a language L, let W c

i (L) be the
maximal sets of suffixes of words in L that can be repeated while remaining
in L, i.e. each W c

i (L) is a maximal set such that L · (W c
i (L))∗ ⊆ L. In prac-

tice, one computes the W c
i (L) as the languages that allow an accepting state

to be reached from itself. The modified store buffer automaton will then be the
automaton Acycle

p (ss) accepting
⋃

i L(Ap(ss)) · (W c
i (L(Ap(ss))∪ {w})∗. The op-

eration cycle(ss, s) of our search algorithm thus simply replaces the store buffer
automaton for process p in state s by the automaton Acycle

p (ss).

Example 1. We illustrate the state-space reduction that can be obtained by the
use of sleep sets. Fig. 2 shows the control graph of two processes p0 and p1. In
Fig. 3, part of the global state graph of this system is shown. In state 4, a cycle
has been detected for the store buffer of p0, yielding

(x, 1)((x, 0)(x, 1))∗

as set of possible contents. In state 6, the buffer has become

(x, 1)(x, 0)(x, 1)((x, 0)(x, 1))∗,

and thus, state 6 is included in state 4. In state 5, if we don’t add the transition
st(p0, x, 1) (which led to state 6) to the sleep set of state 7, we will end up
generating states 8 and 9 before detecting any state inclusion and add many
more states to the search graph.

12

st(p1, y, 0)

12

st(p0, x, 0)

st(p0, x, 1)

p0 p1

st(p1, y, 1)

Fig. 2. Control graphs of two processes p0 and p1

5 Experimental Results

We have implemented our method in a prototype tool. This tool takes as input
a slightly modified (the store, load and sync instructions have been added) and
simplified version of Promela. The prototype has been implemented in Java, and
uses the BRICS automata-package [8] to handle our store-buffers.

We have tested our implementation on several programs and protocols. One
of our test programs is a program (see Fig. 4)2 where the first process may
2 For readability, the operations store and load are written as st and ld.



Symbolic Verification on Relaxed Memory Models 13

st(p0,x,1)

st(p0,x,0)

st(p0,x,1)

2

4

3

1

5

6

st(p0,x,0)

st(p0,x,1)

7

8

9

st(p0,x,1)

st(p0,x,0)

st(p1,y,1)

st(p1,y,0)

st(p0,x,0)

st(p0,x,1)

· · ·

st(p1,y,1)
13

10

11

12

4 ⊃

7 ⊃

10 ⊃

st(p1,y,1)

st(p1,y,1)

st(p1,y,1)

st(p1,y,1)

· · ·

· · ·

· · ·

· · ·

st(p1,y,1)

· · ·

st(p1,y,0)

st(p0,x,1)

st(p1,y,1)

· · ·

Fig. 3. Global exploration graph showing reduction using sleep sets



14 Alexander Linden and Pierre Wolper

cycle indefinitely from the initial state, but where the second depends on the
global memory being modified to be able to move. Indeed, p0 can directly cycle
indefinitely, writing the infinite sequence (x, 1)(x, 0)(x, 1)(x, 0)(x, 1)(x, 0) . . . to
its store buffer. This cycle is detected and all possible contents of p0’s store
buffer represented. Then, the process p1 can, once the cycle in the buffer of p0 is
established, “consume” this cycle, which unlocks its own cycle. For example, a
global state such as (1, 1, 0, 0, ((x, 1)(x, 0))∗, ((y, 1)(y, 0))∗) (where the notation
is (p0, p1, m1, m2, b0, b1)) will eventually be reached. Consuming means that
store operations are committed to the global memory, without the process itself
doing any action.

1

4

1

4

ld(p1, x, 0)

22

33

ld(p0, y, 1)

st(p1, y, 1)

st(p1, y, 0)st(p0, x, 0)

ld(p0, y, 1)
ld(p1, x, 1)

p0 p1

initially: x = 1; y = 1

st(p0, x, 1)

Fig. 4. Example program unlocking a cycle

Moreover, under SC, if both processes are in state 4, the program is in a
deadlock. In TSO, there is the possibility of deadlock, but it is also possible
for the program to continue (if there are buffered store operations), and thus
the values of x and y may change value. Interestingly, both behaviors have also
been observed while running a C implementation of this program on a dual core
processor.

Other classical algorithms often analyzed in the context of relaxed memory
models are Dekker’s and Peterson’s algorithm for mutual exclusion. We have
considered single entry and repeated entry versions of these algorithms. In the
single entry version, the two processes attempt to enter into their critical section
only once. Verifying this can be done with our implementation, as well as with
other tools, such as those of [6], [5] or [16]. Verification becomes more difficult
when considering the repeated entry version. In these versions, both processes
attempt to enter their critical section an arbitrary number of times. Using our
prototype, we could complete the exploration, finding the errors, or, when ap-



Symbolic Verification on Relaxed Memory Models 15

propriately adding sync operations, showing the absence of errors. In Table 2,
we give experimental results for Dekker’s and Peterson’s algorithms, both for
the single entry and the repeated entry versions, with and without the sync
operations needed to make them correct.

Table 2. Experimental results for Dekker’s and Peterson’s Algorithm for mutual ex-
clusion

Dekker (2 Proc) States Stored States Visited Time Max Depth Nb Errors

single entry 183 301 2,446 s 22 2

single entry + sync 111 161 1,194 s 22 0

repeated entry 3236 6231 22,881 s 785 36

repeated entry + sync 343 631 3,016 s 79 0

Peterson (2 Proc) States Stored States Visited Time Max Depth Nb Errors

single entry 120 173 1,969 s 15 2

single entry + sync 54 66 0,399 s 13 0

repeated entry 355 432 3,097 s 50 10

repeated entry + sync 65 92 0,392 s 22 0

All experiments were obtained by running our Java-program on a 2.0GHz
Intel Core Duo laptop running Ubuntu Linux.

6 Conclusions

Compared to earlier methods used to verify programs under relaxed memory
models, ours differs by the techniques being used (automata-based symbolic
methods) and the scope of the verification that can be done. Indeed, whereas
other methods such as those of [17] are limited to very short executions, we
analyse arbitrarily long executions. This is clearly not always necessary for de-
tecting errors, but can be essential for robustly establishing correctness in tricky
situations.

A natural question about an approach like the one presented in this paper is
how well it can scale up. We do not yet have significant data, but our approach
will most likely never be usable for large programs. However, this is not the
drawback it might at first seem to be. Indeed, while writing larger programs, one
uses synchronization primitives that isolate the programmer from the complexity
of relaxed memory models. Verifying under relaxed memory will thus only be
needed for the rather small programs that implement these primitives, and we
believe that this can be handled.

References

1. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28(9) (1979) 690–691



16 Alexander Linden and Pierre Wolper

2. SPARC International, Inc., C.: The SPARC architecture manual: version 8.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1992)

3. SPARC International, Inc., C.: The SPARC architecture manual (version 9).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1994)

4. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M., eds.: Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,
August 17-20, 2009. Proceedings. Volume 5674 of Lecture Notes in Computer Sci-
ence., Springer (2009) 391–407

5. Mador-Haim, S., Alur, R., Martin, M.: Plug and play components for the explo-
ration of memory consistency models. Technical report, University of Pennsylvania
(2010)

6. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of
concurrent data types on relaxed memory models. In Ferrante, J., McKinley,
K.S., eds.: Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, San Diego, California, USA, June 10-13,
2007, ACM (2007) 12–21

7. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs (extended
abstract). In Hentenryck, P.V., ed.: Static Analysis, 4th International Symposium,
SAS ’97, Paris, France, September 8-10, 1997, Proceedings. Volume 1302 of Lecture
Notes in Computer Science., Springer (1997) 172–186

8. Møller, A.: Package dk.brics.automaton. http://www.brics.dk/automaton/ (2001-
2009) DFA/NFA Java implementation.

9. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem. Volume 1032 of Lecture Notes in
Computer Science. Springer (1996)

10. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for rmo
(relaxed memory order). In: SPAA ’95: Proceedings of the seventh annual ACM
symposium on Parallel algorithms and architectures, New York, NY, USA, ACM
(1995) 34–41

11. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In Gupta, A., Malik, S., eds.: Computer Aided Verification, 20th Interna-
tional Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings.
Volume 5123 of Lecture Notes in Computer Science., Springer (2008) 107–120

12. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In Hermenegildo, M.V., Palsberg, J., eds.:
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, ACM
(2010) 7–18

13. Intel Corporation: Intel R©64 and IA-32 Architec-
tures Software Developer’s Manual. Specification (2007)
http://www.intel.com/products/processor/manuals/index.htm.

14. Loewenstein, P., Chaudhry, S., Cypher, R., Manovit, C.: Multi-
processor memory model verification. In: AFM (Automated For-
mal Methods), FLOC Workshop, http://fm.csl.sri.com/AFM06/. (2006)
http://www.scientificcommons.org/43465152.

15. Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In Dill, D.L.,
ed.: Computer Aided Verification, 6th International Conference, CAV ’94, Stanford,
California, USA, June 21-23, 1994, Proceedings. Volume 818 of Lecture Notes in
Computer Science., Springer (1994) 55–67



Symbolic Verification on Relaxed Memory Models 17

16. Hangal, S., Vahia, D., Manovit, C., Lu, J.Y.J., Narayanan, S.: TSOtool: A program
for verifying memory systems using the memory consistency model. In: 31st In-
ternational Symposium on Computer Architecture (ISCA 2004), 19-23 June 2004,
Munich, Germany, IEEE Computer Society (2004) 114–123

17. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Analyzing the intel ita-
nium memory ordering rules using logic programming and sat. In Geist, D., Tronci,
E., eds.: Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5
Advanced Research Working Conference, CHARME 2003, L’Aquila, Italy, Octo-
ber 21-24, 2003, Proceedings. Volume 2860 of Lecture Notes in Computer Science.,
Springer (2003) 81–95


