
Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Ontology Engineering
Lecture 7: Top-down (and middle-out) Ontology Development

II

Maria Keet
email: mkeet@cs.uct.ac.za

home: http://www.meteck.org

Department of Computer Science
University of Cape Town, South Africa

Semester 2, Block I, 2019

1/59

mkeet@cs.uct.ac.za
http://www.meteck.org

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Outline

1 Parts
Meronymy
Mereology
Implementation

2 Taxonomy of types of part-whole relations
The taxonomy
Using the taxonomy of part-whole relations
RBox Compatibility

3 Extending the foundations for broader use

4 Ontology Design Patterns

2/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Outline

1 Parts
Meronymy
Mereology
Implementation

2 Taxonomy of types of part-whole relations
The taxonomy
Using the taxonomy of part-whole relations
RBox Compatibility

3 Extending the foundations for broader use

4 Ontology Design Patterns

3/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Some questions and problems (not exhaustive)

Is Cape Town a more specific instance of Western Cape
Province, or a part of it?

Is a tunnel part of the mountain?

What is the difference, if any, between how Cell nucleus

and Cell are related and how Receptor and Cell wall are
related?

And w.r.t. Brain part of Human and/versus Hand part

of Boxer? (assuming boxers must have their own hands)

A classical example: hand is part of musician, musician part of
orchestra, but clearly, the musician’s hands are not part of the
orchestra. Is part-of then not transitive, or is there a problem
with the example?

4/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Some questions and problems (not exhaustive)

Is Cape Town a more specific instance of Western Cape
Province, or a part of it?

Is a tunnel part of the mountain?

What is the difference, if any, between how Cell nucleus

and Cell are related and how Receptor and Cell wall are
related?

And w.r.t. Brain part of Human and/versus Hand part

of Boxer? (assuming boxers must have their own hands)

A classical example: hand is part of musician, musician part of
orchestra, but clearly, the musician’s hands are not part of the
orchestra. Is part-of then not transitive, or is there a problem
with the example?

4/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Some questions and problems (not exhaustive)

Is Cape Town a more specific instance of Western Cape
Province, or a part of it?

Is a tunnel part of the mountain?

What is the difference, if any, between how Cell nucleus

and Cell are related and how Receptor and Cell wall are
related?

And w.r.t. Brain part of Human and/versus Hand part

of Boxer? (assuming boxers must have their own hands)

A classical example: hand is part of musician, musician part of
orchestra, but clearly, the musician’s hands are not part of the
orchestra. Is part-of then not transitive, or is there a problem
with the example?

4/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Some questions and problems (not exhaustive)

Is Cape Town a more specific instance of Western Cape
Province, or a part of it?

Is a tunnel part of the mountain?

What is the difference, if any, between how Cell nucleus

and Cell are related and how Receptor and Cell wall are
related?

And w.r.t. Brain part of Human and/versus Hand part

of Boxer? (assuming boxers must have their own hands)

A classical example: hand is part of musician, musician part of
orchestra, but clearly, the musician’s hands are not part of the
orchestra. Is part-of then not transitive, or is there a problem
with the example?

4/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Some questions and problems (not exhaustive)

Is Cape Town a more specific instance of Western Cape
Province, or a part of it?

Is a tunnel part of the mountain?

What is the difference, if any, between how Cell nucleus

and Cell are related and how Receptor and Cell wall are
related?

And w.r.t. Brain part of Human and/versus Hand part

of Boxer? (assuming boxers must have their own hands)

A classical example: hand is part of musician, musician part of
orchestra, but clearly, the musician’s hands are not part of the
orchestra. Is part-of then not transitive, or is there a problem
with the example?

4/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Part-whole relations in natural language (meronymy)

Part of?
? Centimeter part of Decimeter
? Decimeter part of Meter
— therefore Centimeter part of Meter
? Meter part of SI
— but not Centimeter part of SI

Transitivity?
? Person part of Organisation
? Organisation located in Rondebosch
— therefore Person located in Rondebosch?
— but not Person part of Rondebosch

5/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Part-whole relations in natural language (meronymy)

Part of?
? Centimeter part of Decimeter
? Decimeter part of Meter
— therefore Centimeter part of Meter
? Meter part of SI
— but not Centimeter part of SI

Transitivity?
? Person part of Organisation
? Organisation located in Rondebosch
— therefore Person located in Rondebosch?
— but not Person part of Rondebosch

5/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Part-whole relations in natural language (meronymy)

Part of?
? Centimeter part of Decimeter
? Decimeter part of Meter
— therefore Centimeter part of Meter
? Meter part of SI
— but not Centimeter part of SI

Transitivity?
? Person member of Organisation
? Organisation located in Rondebosch
— therefore Person located in Rondebosch?
— but not Person member of Rondebosch

6/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Part-whole relations in natural language (meronymy)

Which part of?
? CellMembrane structural part of RedBloodCell
? RedBloodCell part of Blood
— but not CellMembrane structural part of Blood
? Receptor structural part of CellMembrane
— therefore Receptor structural part of RedBloodCell

7/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Part-whole relations in natural language (meronymy)

Which part of?
? CellMembrane structural part of RedBloodCell
? RedBloodCell contained in? Blood
— but not CellMembrane structural part of Blood
? Receptor structural part of CellMembrane
— therefore Receptor structural part of RedBloodCell

8/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Analysis of the issues from diverse angles

Mereological theories (Varzi, 2004), usage & extensions (e.g.
mereotopology, relation with granularity, set theory) –
Ontology

Early attempts with direct parthood, SEP triples, and other
outstanding issues, some still remaining

Cognitive & linguistic issues from meronymy

Their use in conceptual modelling and ontology engineering
(e.g. UML’s aggregation)

Subject domains: everywhere

9/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Ground Mereology

Reflexivity (everything is part of itself)

∀x(part of (x , x)) (1)

Antisymmetry (two distinct things cannot be part of each other, or: if they are, then they are the same

thing)

∀x , y((part of (x , y) ∧ part of (y , x))→ x = y) (2)

Transitivity (if x is part of y and y is part of z, then x is part of z)

∀x , y , z((part of (x , y) ∧ part of (y , z))→ part of (x , z)) (3)

Proper parthood

∀x , y(proper part of (x , y) ≡ part of (x , y) ∧ ¬part of (y , x)) (4)

10/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Ground Mereology
Proper parthood

∀x , y(proper part of (x , y) ≡ part of (x , y) ∧ ¬part of (y , x)) (5)

Asymmetry (if x is part of y then y is not part of x)

∀x , y(proper part of (x , y)→ ¬proper part of (y , x)) (6)

Irreflexivity (x is not part of itself)

∀x¬(proper part of (x , x)) (7)

Transitivity

∀x , y , z((proper part of (x , y)∧proper part of (y , z))→ proper part of (x , z))
(8)

11/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Defining other relations with part of

Overlap (x and y share a piece z)

∀x , y(overlap(x , y) ≡ ∃z(part of (z , x) ∧ part of (z , y))) (9)

Underlap (x and y are both part of some z)

∀x , y(underlap(x , y) ≡ ∃z(part of (x , z) ∧ part of (y , z)))
(10)

The ‘other direction’: has part

∀x , y(has part(x , y) ≡ part of −(x , y)) (11)

12/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Defining other relations with part of

Overlap (x and y share a piece z)

∀x , y(overlap(x , y) ≡ ∃z(part of (z , x) ∧ part of (z , y))) (9)

Underlap (x and y are both part of some z)

∀x , y(underlap(x , y) ≡ ∃z(part of (x , z) ∧ part of (y , z)))
(10)

The ‘other direction’: has part

∀x , y(has part(x , y) ≡ part of −(x , y)) (11)

12/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

With x as part, what to do with the ‘remainder’ that makes
up y?

Weak supplementation: every proper part must be
supplemented by another, disjoint, part. MM
Strong supplementation: if an object fails to include another
among its parts, then there must be a remainder. EM

Problem with EM: non-atomic objects with the same proper
parts are identical, because of this (extensionality principle),
but sameness of parts may not be sufficient for identity E.g.: two

objects can be distinct purely based on arrangement of its parts, differences statue and its marble

(multiplicative approach)

13/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

With x as part, what to do with the ‘remainder’ that makes
up y?

Weak supplementation: every proper part must be
supplemented by another, disjoint, part. MM
Strong supplementation: if an object fails to include another
among its parts, then there must be a remainder. EM

Problem with EM: non-atomic objects with the same proper
parts are identical, because of this (extensionality principle),
but sameness of parts may not be sufficient for identity E.g.: two

objects can be distinct purely based on arrangement of its parts, differences statue and its marble

(multiplicative approach)

13/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

General Extensional Mereology (extra)

Strong supplementation [EM]

¬part of (y , x)→ ∃z(part of (z , y) ∧ ¬overlap(z , x)) (12)

And add unrestricted fusion [GEM]. Let φ be a property or
condition, then for every satisfied φ there is an entity
consisting of all entities that satisfy φ. 1 Then:

∃xφ→ ∃z∀y(overlap(y , z)↔ ∃x(φ ∧ overlap(y , x))) (13)

Note that in EM and upward we have identity, from which one
can prove acyclicity for ppo

There are more mereological theories, and the above is not
uncontested (more about that later)

1Need to refer to classes, but desire to stay within FOL. Solution: axiom
schema with only predicates or open formulas

14/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Relations between common mereological theories
5

Ground Mereology
M

Minimal Mereology
MM

Extensional Mereology
EM

Closure Mereology
CM

Extensional Closure Mereology
CEM = CMM

General Mereology
GM

General Extensional Mereology
GEM = GMM

Fig. 1: Hasse diagram of mereological theories; from
weaker to stronger, going uphill (after [44]).

We can define the sum σ and product π in GEM, which enables one to succinctly
rewrite sum (20), product (21), remainder (22), complement (23), and universal indi-
vidual (24). See [44] sections 4.2 and 4.3 for further detail and discussion.

x+ y = σz(part of(z, x) ∨ part of(z, y)) (20)

x× y = σz(part of(z, x) ∧ part of(z, y)) (21)

x− y = σz(part of(z, x) ∧ ¬overlap(z, y)) (22)

∼ x = σz(¬overlap(z, x)) (23)

U = σz(part of(z, z)) (24)

Given these basics, we can proceed to its mathematical analysis and some interesting
properties, which are described in the next section.

2.2 GEM and set theory

Set theory provides structural relations to abstract mathematical entities called sets
by using the is element of relation (see [19] for a brief online introduction, among
many sources and books). However, its grounding in reality is debatable due to the
many abstract ingredients, which mereology may overcome at least to some extent (see
e.g. the introduction of [6] for arguments and §5.2 below). Since mereological theories
are formulated in predicate logic (see above in §2.1), one can assess how they relate
to set theory from a mathematical perspective, comprehensively assessed by Pontow
and Schubert [30].

15/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Can any of this be represented in a decidable fragment of first
order logic for use in ontologies and (scalable) software
implementations?

16/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

What we can(not) implement with DLs

Table: Properties of parthood and proper parthood compared to their
support in DLRµ, SHOIN and SROIQ. ∗: properties of the parthood
relation (in M); ‡: properties of the proper parthood relation (in M).

Language ⇒ DLRµ SHOIN SROIQ DL-LiteA
Feature ⇓ (∼ OWL-DL) (∼ OWL 2 DL) (∼ OWL 2 QL)

Reflexivity ∗ + – + –
Antisymmetry ∗ – – – –
Transitivity ∗ ‡ + + + –
Asymmetry ‡ + + + +
Irreflexivity ‡ + – + –

Acyclicity + – – –

17/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Definitions in OBO Relations Ontology

Instance-level relations

c part of c1 at t - a primitive relation between two continuant
instances and a time at which the one is part of the other
p part of p1, r part of r1 - a primitive relation of parthood,
holding independently of time, either between process
instances (one a subprocess of the other), or between spatial
regions (one a subregion of the other)
c contained in c1 at t , c located in c1 at t and not c
overlap c1 at t
c located in r at t - a primitive relation between a continuant
instance, a spatial region which it occupies, and a time

18/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Definitions in OBO Relations Ontology

Class-level relations

C part of C1 , for all c , t, if Cct then there is some c1 such
that C1c1t and c part of c1 at t.
P part of P1 , for all p, if Pp then there is some p1 such
that: P1p1 and p part of p1.
C contained in C1 , for all c , t, if Cct then there is some c1

such that: C1c1t and c contained in c1 at t

Need to commit to a foundational ontology.

Same labels, different relata and only a textual constraint:
Label the relations differently

19/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Definitions in OBO Relations Ontology

Class-level relations

C part of C1 , for all c , t, if Cct then there is some c1 such
that C1c1t and c part of c1 at t.
P part of P1 , for all p, if Pp then there is some p1 such
that: P1p1 and p part of p1.
C contained in C1 , for all c , t, if Cct then there is some c1

such that: C1c1t and c contained in c1 at t

Need to commit to a foundational ontology.

Same labels, different relata and only a textual constraint:
Label the relations differently

19/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Outline

1 Parts
Meronymy
Mereology
Implementation

2 Taxonomy of types of part-whole relations
The taxonomy
Using the taxonomy of part-whole relations
RBox Compatibility

3 Extending the foundations for broader use

4 Ontology Design Patterns

20/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Overview

Mereological part of (and subtypes) versus ‘other’ part-whole
relations

Categories of object types of the part-whole relation changes

Structure these relations by (non/in)transitivity and kinds of
relata

Simplest mereological theory, M.

Commit to a foundational ontology: DOLCE (though one also
could choose, a.o., BFO, OCHRE, GFO, ...)

21/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Overview

Mereological part of (and subtypes) versus ‘other’ part-whole
relations

Categories of object types of the part-whole relation changes

Structure these relations by (non/in)transitivity and kinds of
relata

Simplest mereological theory, M.

Commit to a foundational ontology: DOLCE (though one also
could choose, a.o., BFO, OCHRE, GFO, ...)

21/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

DOLCE categories

PT
Particular

ED
Endurant

PD
Perdurant

PED
Physical
Endurant

NPED
Non-physical

Endurant

AS
Arbitrary

Sum

EV
Event

ST
Stative

ACH
Achievement

ACC
Accomplishment

ST
State

PRO
Process

NPOB
Non-physical

object

MOB
Mental object

SOB
Social object

POB
Physical
object

F
Feature

M
Amount
of matter

NAPO
Non-agentive

physical object

APO
Agentive

physical object

…

…

… … … …

… …

22/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Part-whole relations (small version)

Part-whole relation

part-of

s-part-of
(objects)

spatial-part-of involved-in
(processes)
stuff-part-of
(different stuffs)

portion-of
(same stuff)

located-in
(2D objects)

contained-in
(3D objects)

member-of
(object/role-
collective)

constitutes
(stuff-object)

participates-in
(object-process)

mpart-of

23/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Part-whole relations (meronymic ones)
“member-bunch”, collective nouns (e.g. Herd, Orchestra) with
their members (Sheep, Musician)

∀x , y(member ofn(x , y) , mpart of (x , y) ∧ (POB(x) ∨ SOB(x))
∧SOB(y))

“material-object”, that what something is made of (e.g., Vase and
Clay)

∀x , y(constitutesit(x , y) ≡ constituted ofit(y , x) , mpart of (x , y)∧
POB(y) ∧M(x))

“noun-feature/activity”, entity participates in a process, like
Enzyme that participates in CatalyticReaction

∀x , y(participates init(x , y) , mpart of (x , y) ∧ ED(x) ∧ PD(y))

24/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Part-whole relations (mereology)

“quantity-mass”, e.g., Salt as subquantity of SeaWater—different
types of amounts of matter. partial formalisation:

∀x , y(sub quantity ofn(x , y) , part of (x , y) ∧M(x) ∧M(y))

“portion-object”, relating a smaller (or sub) part of an amount of
matter to the whole; same type of stuff; e.g. glass of wine & bottle
of wine. partial formalisation:

∀x , y(portion of (x , y) , part of (x , y) ∧M(x) ∧M(y))

25/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Part-whole relations (mereology)
processes and sub-processes (e.g. Chewing is involved in the
grander process of Eating)

∀x , y(involved in(x , y) , part of (x , y) ∧ PD(x) ∧ PD(y))

Object and its 2D or 3D region, such as contained in(John’s

address book, John’s bag) and located in(Pretoria,

South Africa)

∀x , y(contained in(x , y) , part of (x , y) ∧ R(x) ∧ R(y)∧
∃z ,w(has 3D(z , x) ∧ has 3D(w , y) ∧ ED(z) ∧ ED(w)))

∀x , y(located in(x , y) , part of (x , y) ∧ R(x) ∧ R(y)∧
∃z ,w(has 2D(z , x) ∧ has 2D(w , y) ∧ ED(z) ∧ ED(w)))

∀x , y(s part of (x , y) , part of (x , y) ∧ ED(x) ∧ ED(y))

26/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Using the taxonomy of part-whole relations

Representing it correctly in ontologies and conceptual data
models

Decision diagram
Using the categories of the foundational ontology
Examples
Software application that simplifies all that

Reasoning with a taxonomy of relations

The RBox reasoning service to pinpoint errors

27/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Using the taxonomy of part-whole relations

Representing it correctly in ontologies and conceptual data
models

Decision diagram
Using the categories of the foundational ontology
Examples
Software application that simplifies all that

Reasoning with a taxonomy of relations

The RBox reasoning service to pinpoint errors

27/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Using the taxonomy of part-whole relations

Representing it correctly in ontologies and conceptual data
models

Decision diagram
Using the categories of the foundational ontology
Examples
Software application that simplifies all that

Reasoning with a taxonomy of relations

The RBox reasoning service to pinpoint errors

27/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Decision diagram

X part-of Y → X f-part-of Y
(functional part-of)

Does the part-of role
relate roles?

X part-of Y → X involved-in Y

Is X a member of Y?
(like player-team)

X part-of Y → X member-of Y

Is X made of Y?
(like bike-steel,

vase-clay)

X part-of Y → Y constituted-of X

Is X a portion or subquantity of Y?
(like slice-pie, wine or

other mass noun)

X part-of Y → X sub-quantity-of Y

Is X a spatial part of Y?
(like oasis-desert,

nucleus-cell)

Are X and Y geographical object types?
(as in place-area, like Massif

Central in France)

X part-of Y → X located-in Y

Then
X part-of Y → X contained-in Y

(like a book in the bag)

Is X part of Y and X is also
functionally dependent on Y (or vv)?

(like heart-body, handle-cup)

No

Is X part-of an event Y?
(like bachelor-party,
enzyme-reaction)

X part-of Y → X participates-in Y

Then
X part-of Y → X s-part-of Y

(structural part-of, like shelf-cupboard)

Yes

28/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Example - before

has part part of

ConferenceBag Flap

ShoulderHandle

ConfProceedings

Compartment

Linen

has part part of

has part part of

has part part of

part ofhas part

part of

Env elope

part of

/has part

RegistrationReceipt

WineSample

WineTastingTicketpart ofhas part

WineTastingEv ent

allow s entry to

Winepart ofhas part

part of

/has part

29/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Example - decisions

Envelope is not involved-in, not a member-of, does not
constitute, is not a sub-quantity of, does not participate-in, is
not a geographical object, but instead is contained-in the
ConferenceBag.

Transitivity holds for the mereological relations: derived facts
are automatically correct, like RegistrationReceipt contained-in

ConferenceBag.

Intransitivity of Linen and ConferenceBag, because a conference
bag is not wholly constituted of linen (the model does not say
what the Flap is made of).

Completeness, i.e. that all parts make up the whole, is implied
thanks to the closed-world assumption. ConferenceBag directly
contains the ConfProceedings and Envelope only, and does not
contain, say, the Flap.

30/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Example - revised

ConferenceBag Flap

ShoulderHandle

ConfProceedings

Compartment

Linen

has s-part s-part of

has f-part f-part of

has s-part s-part of

contained incontains

constitutesconstituted of

Env elope

contained in

/contains

contains contained in

WineTastingTicket

RegistrationReceipt

contained incontains

WineTastingEv ent

allow s entry to

Wine

participates in

WineSample

sub-quantity -of

ConferenceBag Flap

ShoulderHandle

ConfProceedings

Compartment

Linen

has s-part s-part of

has f-part f-part of

has s-part s-part of

contained incontains

constitutesconstituted of

Env elope

contained in

/contains

contains contained in RegistrationReceipt

WineTastingTicketcontained incontains

WineTastingEv ent

allow s entry to

Wine

participates in

WineSample

sub-quantity -of

31/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Using DOLCE’s categories

The participating objects instantiate some category (ED, PD,
etc)

Given the formalisation, one immediately can exclude/identify
appropriate relations, taking a shortcut in the decision
diagram

E.g.: Chewing and Eating are both a kind of (a subtype of)
PD, hence involved in
E.g.: Alcohol and Wine are both mass nouns, or M, hence
sub quantity of

Demo of OntoPartS http:

//www.meteck.org/files/ontopartssup/supindex.html

32/59

http://www.meteck.org/files/ontopartssup/supindex.html
http://www.meteck.org/files/ontopartssup/supindex.html

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Requirements for reasoning over the hierarchy

Represent at least Ground Mereology,

Express ontological categories and their taxonomic relations,

Having the option to represent transitive and intransitive
relations, and

Specify the domain and range restrictions (/relata/entity
types) for the classes participating in a relation.

33/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Current behaviour of reasoners

A1. Class hierarchy with asserted conditions

B. Correct role box (object properties) C. Wrong role box (object properties)

A2. Other class
hierarchy with

the same
asserted

conditions

34/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Current behaviour of reasoners

3. A1+C+racer: class hierarchy is inconsistent 4. A2+C+racer: Chassis reclassified
as PD

1. A1+B+racer: ontology OK 2. A2+B+racer: ontology OK

5: Required inference result A1/A2+C+reasoner:

role hierarchy is inconsistent, with inconsistent roles “domain & range involved-in and part-of are
inconsistent”, which can be fixed by the user, else the reasoner suggests:

Computing superroles reasoner log: “involved-in Moved to pwrelation“ and “part-of Moved to involved-in”

35/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

The RBox Compatibility service – definitions

Definition (Domain and Range Concepts)

Let R be a role and R v C1 × C2 its associated Domain & Range
axiom. Then, with the symbol DR we indicate the User-defined
Domain of R—i.e., DR = C1—while with the symbol RR we
indicate the User-defined Range of R—i.e., RR = C2.

Definition (RBox Compatibility)

For each pair of roles, R,S , such that 〈T ,R〉 |= R v S , check:

Test 1. 〈T ,R〉 |= DR v DS and 〈T ,R〉 |= RR v RS ;

Test 2. 〈T ,R〉 6|= DS v DR ;

Test 3. 〈T ,R〉 6|= RS v RR .

An RBox is said to be compatible iff Test 1 and (2 or 3) hold for
all pairs of role-subrole in the RBox.

36/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

The RBox Compatibility service – behaviour

If Test 1 does not hold: warning that domain & range
restrictions of either R or S are in conflict with the role
hierarchy proposing either

(i) To change the role hierarchy or
(ii) To change domain & range restrictions or
(iii) If the test on the domains fails, then propose a new

axiom R v D ′R × RR , where D ′R ≡ DR u DS
2, which

subsequently has to go through the RBox compatibility
service (and similarly when Test 1 fails on range
restrictions).

2The axiom C1 ≡ C2 is a shortcut for the axioms: C1 v C2 and C2 v C1.
37/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

The RBox Compatibility service – behaviour

If Test 2 and Test 3 fail: warn that R cannot be a proper
subrole of S but that the two roles can be equivalent. Then,
either:
(a) Accept the possible equivalence between the two roles or
(b) Change domain & range restrictions.

Ignoring all warnings is allowed, too

38/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Outline

1 Parts
Meronymy
Mereology
Implementation

2 Taxonomy of types of part-whole relations
The taxonomy
Using the taxonomy of part-whole relations
RBox Compatibility

3 Extending the foundations for broader use

4 Ontology Design Patterns

39/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Extensions in various directions

Mereotopology, with location, GIS, Region Connection
Calculus

Mereogeometry

Mereology and/vs granularity

Temporal aspects of part-whole relations

Any linguistic and/or cultural specifics

40/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Example (1/2)

(Source: Google/AfriGIS)

41/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Exercise – Representation needs

How to represent that:

The Kruger Park overlaps with South Africa
Durban is a tangential proper part of South Africa
Gauteng is a non-tangential proper part of South Africa
Botswana is connected to South Africa (do they share a
border?)
Lesotho is spatially located within the area of South Africa
(but not part of)

Can we do all that with mereology? Use only spatial
relations? Combining mereo+spatial?

42/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Exercise – Representation needs

How to represent that:

The Kruger Park overlaps with South Africa
Durban is a tangential proper part of South Africa
Gauteng is a non-tangential proper part of South Africa
Botswana is connected to South Africa (do they share a
border?)
Lesotho is spatially located within the area of South Africa
(but not part of)

Can we do all that with mereology? Use only spatial
relations? Combining mereo+spatial?

42/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Mereology with spatial notions

Another primitive: Connected, which is reflexive and
symmetric

More and more expressive theories, e.g.:

T: C (x , x) and C (x , y)→ C (y , x)
MT: T and P(x , y)→ E (x , y) where E is enclosure
(E (x , y) =def ∀z(C (z , x)→ C (z , y)))

Two primitives, P and C , or part in terms of C?

P =def ∀z(C (z , x)→ C (z , y))

or perhaps “x and y are connected parts of z” as primitive,
CP(x , y , z), then:
P(x , y) =def ∃z CP(x , z , y) and
C (x , y) =def ∃z CP(x , y , z)

43/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Mereology with spatial notions

Another primitive: Connected, which is reflexive and
symmetric

More and more expressive theories, e.g.:

T: C (x , x) and C (x , y)→ C (y , x)
MT: T and P(x , y)→ E (x , y) where E is enclosure
(E (x , y) =def ∀z(C (z , x)→ C (z , y)))

Two primitives, P and C , or part in terms of C?

P =def ∀z(C (z , x)→ C (z , y))

or perhaps “x and y are connected parts of z” as primitive,
CP(x , y , z), then:
P(x , y) =def ∃z CP(x , z , y) and
C (x , y) =def ∃z CP(x , y , z)

43/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Mereology with spatial notions

Another primitive: Connected, which is reflexive and
symmetric

More and more expressive theories, e.g.:

T: C (x , x) and C (x , y)→ C (y , x)
MT: T and P(x , y)→ E (x , y) where E is enclosure
(E (x , y) =def ∀z(C (z , x)→ C (z , y)))

Two primitives, P and C , or part in terms of C?

P =def ∀z(C (z , x)→ C (z , y))

or perhaps “x and y are connected parts of z” as primitive,
CP(x , y , z), then:
P(x , y) =def ∃z CP(x , z , y) and
C (x , y) =def ∃z CP(x , y , z)

43/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Mereology with spatial notions

Another primitive: Connected, which is reflexive and
symmetric

More and more expressive theories, e.g.:

T: C (x , x) and C (x , y)→ C (y , x)
MT: T and P(x , y)→ E (x , y) where E is enclosure
(E (x , y) =def ∀z(C (z , x)→ C (z , y)))

Two primitives, P and C , or part in terms of C?

P =def ∀z(C (z , x)→ C (z , y))

or perhaps “x and y are connected parts of z” as primitive,
CP(x , y , z), then:
P(x , y) =def ∃z CP(x , z , y) and
C (x , y) =def ∃z CP(x , y , z)

43/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Some of the mereo- and topological theories

Ground Topology
 T

Minimal (mereo) Topology
 MT

Reductive Mereotopology
 RMT

Ground Mereology
 M

EM

General Extensional Mereology
 GEM

General Extensional Mereotopology
 GEMT

KGEMT

Note: one can add explicit variations with Atom/Atomless and
Boundary/Boundaryless

Figure: Diagram of mereo- and mereotopological theories; from weaker to
stronger, going uphill (after descriptions in Varzi (2007))

44/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Extension to the taxonomy of part-whole relations

Part-whole relation

part-of
P

s-part-of
StP spatial-part-of

SpP
involved-in
II

contained-in
CI

equal-contained-in
ECI

proper-contained-in
PCI

tangential-proper-
contained-in
TPCI

nontangential-proper-
contained-in
NTPCI

proper-part-of
PP

proper-spatial-part-of
PSpP

located-in
LI

equal-located-in
ELI

proper-located-in
PLI

tangential-proper-
located-in
TPLI

nontangential-proper-
located-in
NTPLI

proper-involved-in
PII

proper-s-part-of
PStP

Subsumption in the
original taxonomy
Subsumption for
proper part-of
Subsumption
dividing non-proper,
equal, from proper
part-of

mpart-of
mP … …

45/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Extension to the taxonomy of part-whole relations

∀x , y (ECI (x , y) ≡ CI (x , y) ∧ P(y , x) (14)

∀x , y (PCI (x , y) ≡ PPO(x , y) ∧ R(x)∧R(y) ∧ ∃z ,w(has 3D(z , x) ∧
has 3D(w , y) ∧ ED(z) ∧ ED(w))) (15)

∀x , y (NTPCI (x , y) ≡ PCI (x , y) ∧ ∀z(C(z , x)→O(z , y))) (16)

∀x , y (TPCI (x , y) ≡ PCI (x , y) ∧ ¬NTPCI (x , y)) (17)

∀x , y (ELI (x , y) ≡ LI (x , y) ∧ P(y , x) (18)

∀x , y (PLI (x , y) ≡ PPO(x , y) ∧ R(x) ∧ R(y) ∧ ∃z ,w(has 2D(z , x) ∧
has 2D(w , y) ∧ ED(z) ∧ ED(w))) (19)

∀x , y (NTPLI (x , y) ≡ PLI (x , y) ∧ ∀z(C(z , x)→O(z , y))) (20)

∀x , y (TPLI (x , y) ≡ PLI (x , y) ∧ ¬NTPLI (x , y)) (21)

46/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Implementability

KGEMT requires second order logic

No definitions of relations in OWL

Recollect object property characteristics in the different OWL
species

What is lost regarding representation and, consequently,
reasoning within OWL?

Is there a way to avoid this?

Yes, but computationally costly and not ‘easy’ yet: e.g., OWL
+ Common Logic within DOL (recall Ch4)

47/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Implementability

KGEMT requires second order logic

No definitions of relations in OWL

Recollect object property characteristics in the different OWL
species

What is lost regarding representation and, consequently,
reasoning within OWL?

Is there a way to avoid this?

Yes, but computationally costly and not ‘easy’ yet: e.g., OWL
+ Common Logic within DOL (recall Ch4)

47/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Implementability

KGEMT requires second order logic

No definitions of relations in OWL

Recollect object property characteristics in the different OWL
species

What is lost regarding representation and, consequently,
reasoning within OWL?

Is there a way to avoid this?

Yes, but computationally costly and not ‘easy’ yet: e.g., OWL
+ Common Logic within DOL (recall Ch4)

47/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Outline

1 Parts
Meronymy
Mereology
Implementation

2 Taxonomy of types of part-whole relations
The taxonomy
Using the taxonomy of part-whole relations
RBox Compatibility

3 Extending the foundations for broader use

4 Ontology Design Patterns

48/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Rationale

It is hard to reuse only the “useful pieces” of a comprehensive
(foundational) ontology, and the cost of reuse may be higher
than developing a new ontology from scratch

Need for small (or cleverly modularised) ontologies with
explicit documentation of design rationales, and best
engineering practices

Hence, in analogy to software design patterns: ontology
design patterns

ODPs summarise the good practices to be applied within
design solutions

ODPs keep track of the design rationales that have motivated
their adoption

49/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

ODP definition

An ODP is an information object

A design pattern schema is the description of an ODP,
including the roles, tasks, and parameters needed in order to
solve an ontology design issue

An ODP is a modeling solution to solve a recurrent ontology
design problem. It is an Information Object that expresses a
Design Pattern Schema (or skin) that can only be satisfied by
DesignSolutions. Design solutions provide the setting for
Ontology Elements that play some ElementRole(s) from the
schema. (Presutti et al, 2008)

OPs have their own metadata

50/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Another OP/ODP hierarchy

51/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Types of Patterns

Structural OPs, Correspondence OPs, Content OPs (CPs),
Reasoning OPs, Presentation OPs, Lexico-Syntactic OPs, ...

CPs can be distinguished in terms of the domain they
represent

Correspondence OPs (for reengineering and mappings—next
lecture)

Reasoning OPs are typical reasoning procedures

Presentation OPs relate to ontology usability from a user
perspective; e.g., Naming OPs and Annotation OPs

Lexico-Syntactic OP are linguistic structures or schemas that
permit to generalize and extract some conclusions about the
meaning they express (more in next lecture)

52/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Structural OPs

Logical OPs:

Are compositions of logical constructs that solve a problem of
expressivity in OWL-DL (and, in cases, also in OWL 2 DL)
Only expressed in terms of a logical vocabulary, because their
signature (the set of predicate names, e.g. the set of classes
and properties in an OWL ontology) is empty
Independent from a specific domain of interest
Logical macros compose OWL DL constructs; e.g. the
universal+existential OWL macro
Transformation patterns translate a logical expression from a
logical language into another; e.g. n-aries

53/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Example: n-ary relation “Logical OP” idea

Reify the n-ary R into a class R ′

Create n binaries between the classes and R ′

Declare 1:1 cardinality constraints

Declare identifier across the n new binaries (often omitted)

54/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Example: n-ary relation “Logical OP”

55/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Architectural OPs

Architectural OPs are defined in terms of composition of
Logical OPs that are used in order to affect the overall shape
of the ontology; i.e., an Architectural OP identifies a
composition of Logical OPs that are to be exclusively used in
the design of an ontology

Examples of Architectural OPs are: Taxonomy, Modular
Architecture, and Lightweight Ontology

E.g., Modular Architecture Architectural OP consists of an
ontology network, where the involved ontologies play the role
of modules, which are connected by the owl:import operation
with one root ontology that imports all the modules

56/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Architectural OPs

Architectural OPs are defined in terms of composition of
Logical OPs that are used in order to affect the overall shape
of the ontology; i.e., an Architectural OP identifies a
composition of Logical OPs that are to be exclusively used in
the design of an ontology

Examples of Architectural OPs are: Taxonomy, Modular
Architecture, and Lightweight Ontology

E.g., Modular Architecture Architectural OP consists of an
ontology network, where the involved ontologies play the role
of modules, which are connected by the owl:import operation
with one root ontology that imports all the modules

56/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Architectural OPs

Architectural OPs are defined in terms of composition of
Logical OPs that are used in order to affect the overall shape
of the ontology; i.e., an Architectural OP identifies a
composition of Logical OPs that are to be exclusively used in
the design of an ontology

Examples of Architectural OPs are: Taxonomy, Modular
Architecture, and Lightweight Ontology

E.g., Modular Architecture Architectural OP consists of an
ontology network, where the involved ontologies play the role
of modules, which are connected by the owl:import operation
with one root ontology that imports all the modules

56/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Correspondence and reengineering OPs

Person

Employee *1Person Employee

*1Physical object Social Objectinherence

E. vs.

B. vs.**Runner Marathonruns
Perdurant

RunningRunner

Endurant

inherence

Marathon*1

participation

1*
involvement

A. vs.
Person married to

Marriage Personparticipation

Book Person
borrowed by

Bookloan
Book

participation
Person

vs.

**Person SkillC. vs.
hasSkill: String

Person
hasSkill

D. vs.hasColour: RGBvalue
Apple

Quality

ColourApple

Endurant

Physical
Region

1..

has quality

1..**
quale

Region

2***

* *
1..*

1
1..*

0..1

1..

has quality
1..**

quale

57/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Lexico-Syntactic OPs

Linguistic structures or schemas that consist of certain types
of words following a specific order, akin to a template or a
pattern; verbalisation

E.g., “subClassOf” ends up as:
Each <subclass> is a <superclass>

Other Lexical OPs provided for OWL’s equivalence between
classes, object property, subpropertyOf relation, datatype
property, existential restriction, universal restriction,
disjointness, union of classes

Mainly for English language only, thus far

58/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Lexico-Syntactic OPs

Linguistic structures or schemas that consist of certain types
of words following a specific order, akin to a template or a
pattern; verbalisation

E.g., “subClassOf” ends up as:
Each <subclass> is a <superclass>

Other Lexical OPs provided for OWL’s equivalence between
classes, object property, subpropertyOf relation, datatype
property, existential restriction, universal restriction,
disjointness, union of classes

Mainly for English language only, thus far

58/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Lexico-Syntactic OPs

Linguistic structures or schemas that consist of certain types
of words following a specific order, akin to a template or a
pattern; verbalisation

E.g., “subClassOf” ends up as:
Each <subclass> is a <superclass>

Other Lexical OPs provided for OWL’s equivalence between
classes, object property, subpropertyOf relation, datatype
property, existential restriction, universal restriction,
disjointness, union of classes

Mainly for English language only, thus far

58/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Lexico-Syntactic OPs

Linguistic structures or schemas that consist of certain types
of words following a specific order, akin to a template or a
pattern; verbalisation

E.g., “subClassOf” ends up as:
Each <subclass> is a <superclass>

Other Lexical OPs provided for OWL’s equivalence between
classes, object property, subpropertyOf relation, datatype
property, existential restriction, universal restriction,
disjointness, union of classes

Mainly for English language only, thus far

58/59

Parts Types of part-whole relations Extending the foundations Ontology Design Patterns

Summary

1 Parts
Meronymy
Mereology
Implementation

2 Taxonomy of types of part-whole relations
The taxonomy
Using the taxonomy of part-whole relations
RBox Compatibility

3 Extending the foundations for broader use

4 Ontology Design Patterns

59/59

	lecture 7
	Parts
	Meronymy
	Mereology
	Implementation

	Taxonomy of types of part-whole relations
	The taxonomy
	Using the taxonomy of part-whole relations
	RBox Compatibility

	Extending the foundations for broader use
	Ontology Design Patterns

