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Abstract

In personalized federated learning (PFL), multi-
ple clients train customized models to fulfill their
personal objectives, which, however, are prone
to overfitting to local data due to the heterogene-
ity and scarcity of local data. To address this,
we propose from the information-theoretic per-
spective a personalized federated learning frame-
work based on the common representation learned
across clients, named FedCR. Specifically, we in-
troduce to the local client update a regularizer that
aims at minimizing the discrepancy between local
and global conditional mutual information (CMI),
such that clients are encouraged to learn and ex-
ploit the common representation. Upon this, each
client learns individually a customized predictor
(head), while the extractor (body) remains to be
aggregated by the server. Our CMI regularizer
leads to a theoretically sound alignment between
the local and global stochastic feature distribu-
tions in terms of their Kullback-Leibler (KL) di-
vergence. More importantly, by modeling the
global joint feature distribution as a product of
multiple local feature distributions, clients can
efficiently extract diverse information from the
global data but without need of the raw data from
other clients. We further show that noise injec-
tion via feature alignment and ensemble of local
predictors in FedCR would help enhance its gen-
eralization capability. Experiments on benchmark
datasets demonstrate a consistent performance
gain and better generalization behavior of FedCR.
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1. Introduction
Federated learning (FL) (McMahan et al., 2017) has
emerged as a new distributed learning framework in which
a group of clients, under coordination of the central server,
train collaboratively a single global machine learning model
without sharing or exchanging the private data. These pri-
vate data generated and collected at clients are usually non-
independent and identical distributed (non-iid). In such a
setting, when clients wish to fulfill their personal objectives
and tasks, direct share of the universally global model may
lead to a poor generalization performance at local clients
because of the mismatch between global and local data dis-
tributions. To address this, personalized federated learning
(PFL) (Kairouz et al., 2021) has been proposed to enable
each client to train an individual model fitted to the local
data distribution. Nevertheless, in addition to the statistical
heterogeneity, source data at local clients are usually scarce
and limited, where some labels may even have few data
points. Thus, conventional local training at clients towards
the local optimum still easily leads to a model overfitting.

Recent advance in multi-task learning and representation
learning has already demonstrated that decoupling the learn-
ing procedure into representation and prediction would
boost the performance (Yu et al., 2020; Kang et al., 2019).
Motivated by this, a feasible solution is to decouple the PFL
objectives into global representation learning and local pre-
diction. For the global representation learning, body of the
model (i.e., feature extractor) extracts the low-dimensional
common features across clients to avoid overfitting. While
in the local prediction, upon the learned common repre-
sentation, head of the model (i.e., predictor) makes a task-
oriented and personalized decision. Along this direction,
many works (Collins et al., 2021; Arivazhagan et al., 2019;
Oh et al., 2021) have attempted to simply average the body
of model parameters from heterogeneous clients to exploit
the common representation. Despite their progress, the
shared feature extraction at the model-parameter level is nat-
urally insufficient for capturing effective common features
from heterogeneous data belonging to multiple classes.

Aiming to learn the common representation directly from
the feature level, a very recent work, FedPAC (Xu et al.,
2023), proposes a class-wise feature alignment, which how-
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ever can only be used for the label distribution shift scenario
that requires the same number of classes assigned across
clients. While there is still an alternative direction of effi-
cient representation learning unexplored for PFL, i.e., from
the information-theoretic perspective. In centralized learn-
ing, for example, the information bottleneck (Shwartz-Ziv
& Tishby, 2017) imposes mutual information (MI) between
the input data and learned features as constraints on the
features, to regularize the amount of information contained
and thus remove redundancy. However, direct incorporation
of existing MI-based methods into the local client update
cannot address the distinct challenges of PFL, which may
still suffer a significant local overfitting due to data scarcity.

To cope with the data heterogeneity and scarcity challenge
in PFL settings from the information-theoretic perspective,
we propose in this paper a personalized federated learn-
ing framework, named FedCR, by effectively exploiting
the common representation learned across clients. FedCR
is based on the insight that conditional mutual informa-
tion (CMI) can help compress superfluous information of
representation while at the same time providing the predic-
tion (Fischer, 2020). Different from FedSR (Nguyen et al.,
2022) that simply minimizes the local CMI as a regularizer
for local training, we consider minimizing the discrepancy
between local CMI and global CMI instead, to learn shared
and invariant features across clients. Furthermore, our CMI
regularizer leads to an alignment between local and global
feature distributions by regularizing their Kullback-Leibler
(KL) divergence. Specifically, we model the global feature
distribution in the KL divergence as a product-of-experts
(PoE) over the marginal distributions of clients, rather than
through an additional generative network (Zhu et al., 2021)
which may be unstable and expensive. Thus, client models
can be trained easily and stably in practice with negligibly
additional computation complexity. With a deeper look, we
show that our CMI regularizer implicitly transfers the global
information into clients through noise injection, which has
been proved empirically to prevent overfitting. We also
demonstrate that the uncertainty in the proposed stochastic
features of FedCR can further improve the client’s classi-
fication calibration with the ensemble of local predictors.
Our main contributions can be summarized as follows.

• We propose an information-theoretic method for PFL to
transfer global information to local clients by introducing
the CMI regularizer, which leads to a theoretically sound
alignment between global and local feature distributions.

• We provide key insights to understanding our FedCR. The
noise injection via feature alignment and ensemble of
local predictors in FedCR enhance generalization. We
also show a theoretical connection from the shared com-
mon representation learned by FedCR to an improved
generalization bound.

• We evaluate empirically the effectiveness of our FedCR on
a wide range of benchmark datasets, showing that FedCR
outperforms various existing model architectures that aim
to handle data distribution shift and model overfitting.

2. Related Work
Personalized federated learning (PFL). There is a large
body of existing works in PFL. Recent literature has utilized
a variety of techniques to address the challenges of PFL and
train customized models, including local fine-tuning (Sim
et al., 2019), hyper-networks (Shamsian et al., 2021), meta-
learning (Fallah et al., 2020), model-parameter regulariza-
tion (Ditto) (Li et al., 2021), etc. One promising direc-
tion is to decouple the PFL model into extractor (body of
the model) and predictor (head of the model), as inspired
by multi-task learning and representation learning. LG-
FedAvg (Liang et al., 2020) learns the entire local model
at each client and only aggregates the predictors at server.
Conversely, FedPer (Arivazhagan et al., 2019) still trains
the entire local client model but aggregates the feature ex-
tractors at the server. Furthermore, FedRep (Collins et al.,
2021) learns the entire model sequentially at local training
stage and only aggregates the extractors, while during local
update, each client first learns the predictor with the aggre-
gated extractor. FedBABU (Oh et al., 2021) only updates the
extractor with the randomly initialized and never updated
predictor during local training, and aggregates only the ex-
tractors. Moreover, the very recent FedPAC (Xu et al., 2023)
attempts to align the local and global feature embeddings di-
rectly to exploit shared representation from the feature level,
which, however, can only apply to label distribution shift
scenarios. From an information-theoretic perspective, we
propose a different conditional mutual information-based
method to learn the shared and invariant representations
across clients.

Mutual information (MI)-based representation learning.
Supervised representation learning has long been an impor-
tant topic in machine learning, while the mutual information
(MI)-based approaches have been widely applied within this
area. Its key idea is to quantify the information contained in
the representation by MI, which measures the dependency
between two random variables. A typical approach is the in-
formation bottleneck (Shwartz-Ziv & Tishby, 2017; Alemi
et al., 2016), which maximizes the MI between representa-
tions and labels to retain information related to prediction
while minimizing the MI between input data and repre-
sentations to discard irrelevant information. Furthermore,
conditional entropy bottleneck (Fischer, 2020) directly uses
one CMI term to compress redundant information of repre-
sentations while performing prediction, instead of the two
individual MI terms in the information bottleneck. Indeed,
some works have already attempted to address the chal-
lenges of FL from the perspective of information theory. For
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example, the pioneer work (Adilova et al., 2019) first empir-
ically explores the impact of aggregation frequency at server
on the information flow. MIFL (Uddin et al., 2020) provides
a novel MI-driven federated optimization by considering
MI between local and global models. FedSR (Nguyen et al.,
2022) learns a simple representation by minimizing the local
CMI between local representations and input data. Differ-
ent from them, our method considers learning a common
representation to help avoid model overfitting to local data.

3. Problem Statement
In PFL, we aim to learn the personalized local model wi for
each client i ∈M via the following optimization problem:

min
{w1,··· ,wm}

1

m

m∑
i=1

[fi (wi) +R (Ω, w1, · · · , wm)] , (1)

where fi (wi) is the local objective function of the i-th client
associated with data distribution p(xi, yi) and a dataset in-
cluding Ni data points {(x(n)

i , y
(n)
i )}Ni

n=1 that belong to
classes Ci, i.e., y(n)i ∈ Ci represents the corresponding label
of input data sample x

(n)
i . We further denote the global

data from the entire set of all the m clients by a set of ran-
dom variables x = (x1, ..., xm), and the global label class
set across clients by C = {C1, ..., Cm}. Moreover, R is a
regularizer imposed to prevent overfitting due to local data
heterogeneity and scarcity, where Ω represents a certain
type of shared information introduced to relate clients.

Following the framework of representation learning, we
decouple the local model into the feature extractor (body)
and predictor (head), i.e. wi = [wf

i ;w
p
i ]. We first learn a

low-dimensional representation z of the raw data xi with a
distribution p(z|xi;w

f
i ) parameterized by wf

i . Upon extrac-
tion of z, we then learn a predictor that predicts yi given z
with the predictive distribution p̂(yi|z;wp

i ) parameterized
by wp

i . Hence, for both the regression or classification tasks
where the loss function is usually chosen as the negative log
predictive, the local objective of client i can be written as:

fi(wi) = Ep(xi,yi)

[
− logEp(z|xi)[p̂(yi|z)]

]
, (2)

where we omit wf
i and wp

i for notation simplicity.Refer to
Appendix A.3.1 for detailed derivation of Eq. (2). Note that
the feature extractor in practice can be either deterministic or
stochastic mappings. Without loss of generality, we consider
a stochastic representation mapping with the form p(z|xi) =
N (z|µ(xi),Σ(xi)), whereN is the normal distribution and
wf

i outputs both the mean µ and covariance matrix Σ of z.
This can also be thought as a generalization of deterministic
representation, as it reduces to the deterministic case when
Σ(xi) → 0. By explicitly modeling the representation
distribution, we can easily use the MI or KL divergence to
constrain this known representation distribution.

Table 1. Summary of main notations.

T , t number, index of communication rounds
K, k number, index of local update steps
xi, yi random variables denoting client i’s raw data, label
wi, w client i’s model, aggregated server model
M,m set of all clients with cardinality m
Pt, p set of sampled active clients with cardinality p

Obviously, the representation z here contains only the in-
formation of local data xi, which may easily lead to model
overfitting and thus a performance degradation. A natural
solution is to add regularization terms to this local feature.
For example, FedSR (Nguyen et al., 2022) considers mini-
mizing the local CMI term Ii(z, xi|yi) and L2-norm ∥z∥22 to
constrain the representation z. By doing so, FedSR learns a
simple representation of the data for a better generalization.
This CMI regularizer in FedSR, though improving general-
ization performance, is still sub-optimal without explicitly
injecting any global information of the raw data into local
features. It thus remains an open problem in FPL: how can
local clients utilize global information at the feature level.

4. Proposed FedCR
4.1. Global and Local CMI Constraint

To tackle this challenge, our basic idea is to learn a represen-
tation of the local data at each client, under the guidance of
global information captured from the entire dataset across
clients. Specifically, we impose to the local client update a
constraint on the difference between each client’s local CMI
Ii(z;xi|yi) and the global CMI I(z;x|yi), which quanti-
fies the relevance between the local (or global) features and
input data xi (or x) given a specific label yi, respectively.
By incorporating this information-theoretic constraint, the
original optimization problem in Eq. (1) is reformulated as:

min
{w1,··· ,wm}

1

m

m∑
i=1

fi (wi) (3)

s.t. ∥Ii(z;xi|yi)− I(z;x|yi)∥ < Ic,∀i ∈M,

where the global data x is represented as a series of random
variables (x1, ..., xm), and Ic constrains the difference be-
tween the local and global CMI. Intuitively, this constraint
specifies that for a given label yi, the features learned from
local input data xi is also aligned with the common features
captured from the global input data x within the same la-
bel class c = yi. In the special case when Ic = 0, all the
clients will be enforced to learn a stochastic mapping from
input data to a latent space, in which the representations
are consistent and invariant across clients. Compared to
FedSR (Nguyen et al., 2022) that regularizes only the local
CMI Ii(z;xi|yi), we allow the extraction of local features
to incorporate more diverse information from the global
data, thus alleviating the local feature shift via learning an
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inter-client invariant representation. By further introducing
a Lagrange multiplier β ≥ 0, the constrained problem in
Eq. (3) is converted to:

min
{w1,··· ,wm}

1

m

m∑
i=1

fi (wi) + β∥Ii(z;xi|yi)− I(z;x|yi)∥,

(4)

where the second term is our proposed CMI regularizer, cor-
responding toR in Eq (1), which is practically intractable.
We thus propose an equivalent way to calculate it.
Lemma 4.1. Let y → x→ z be a Markov chain, for xi ⊆ x
and within the same label classes of client i, we have:

I(z;x|yi)− Ii(z;xi|yi)
=Ep(xi,yi)Ep(x|xi,yi) [KL[p(z|x)||p(z|xi)]] ,

(5)

where KL[p(z|x)||p(z|xi)] denotes the KL divergence be-
tween p(z|x) and p(z|xi) given the label yi, i.e. a class-wise
feature alignment. Note that p(x|xi, yi) indicates that the
global data can be determined only given the clients actively
participating in the training at a communication round, due
to the partial client participation setting in PFL.

Proof. See Appendix A.3.2 for the detailed proof.

Lemma 4.1 shows that the CMI regularizer in Eq. (3) ac-
tually constrains the KL divergence between p(z|x) and
p(z|xi), which aligns the stochastic representation of joint
and single posterior within the label classes for each client.
Since the KL divergence is always non-negative, this also
implies Ii(z;xi|yi) ≤ I(z;x|yi). Note that FedPAC (Xu
et al., 2023) also performs a strict alignment of the deter-
ministic features with an L2-norm regularizer, which can be
considered as our special case. While noise and uncertainty
incorporated in stochastic features can further improve gen-
eralization, as will be discussed later.

4.2. Estimation of Global Common Representation

One question then becomes outstanding: how can the server
get the global common representation p(z|x) for each class
without the need of raw data at clients. Since clients do not
wish to disclose their raw data, we introduce the following
product-of-experts (PoE) (Hinton, 2002), which factorizes
the joint posterior into a product of individual posteriors.
Lemma 4.2. For marginal posteriors p(z|xi)(∀i ∈ M),
the joint posterior can be approximated by (Hinton, 2002):

p(z|x) = p (z|x1, . . . , xm) ∝ τ · p(z)
m∏
i=1

p (z|xi) , (6)

where τ ≜
∏M

i=1 p(xi)

p(x1,...,xm) represents the degree of indepen-
dence between clients, and p(z) is a prior distribution, usu-
ally the spherical Gaussian.

Proof. See Appendix A.3.3 for the detailed proof.

With PoE, we can get a simple analytical solution when
p(z|xi),∀i ∈M is diagonal Gaussian. Specifically, a prod-
uct of Gaussian experts is itself with the mean

µ =
(
µ0Σ

−1
0 +

∑
i∈M

µiΣ
−1
i

)(
Σ−1

0 +
∑
i∈M

Σ−1
i

)−1

and covariance Σ =
(
Σ−1

0 +
∑

i∈M Σ−1
i

)−1
, where

p(z|xi) ∼ N (µi,Σi) and p(z) ∼ N (µ0,Σ0).

In fact, there are also other alternatives to model this joint
posterior, including data-free generative model (Zhu et al.,
2021), or mixture-of-experts (MoE), i.e., sum of Gaussian
experts. However, the former one needs to retrain a gen-
erative model at server, which can be very unstable and
expensive in practice. While for the latter, MoE is usu-
ally inefficient in high-dimensional spaces (Hinton, 2002),
since the posterior distribution produced by MoE cannot
be sharper than the individual experts (i.e., the marginal
posteriors). In contrast, PoE (i.e., the joint posterior) can
generate much sharper distributions than the single experts,
which helps the global posterior contain not only common
but complementary information across clients.

4.3. Implementation of FedCR

We then design and elaborate our FedCR with a summary
shown in Algorithm 1 and an overview illustrated in Fig. 1.

Local training. For each client i that actively participates
in the training at communication round t, it first receives the
global representation p(zc|x) = N (z|µc

t ,Σ
c
t) for each class

c ∈ C, and the global aggregated average feature extractor
wf , which will be then combined with the local predictor
wp

i as the initialized local model in Line 5. We then train
its local model wi,0 = [wf , wp

i ] including the extractor and
predictor, by minimizing the local objective function:

Li =fi (wi) + β∥Ii(z;xi|yi)− I(z;x|yi)∥
=Ep(xi,yi)

[
− logEp(z|xi)[p̂(yi|z)]

]
+ βEp(xi,yi)Ep(x|xi,yi) [KL[p(z|x)||p(z|xi)]]

≈ 1

Ni

Ni∑
n=1

[
− logE

p(z|x(n)
i )

[p̂(y
(n)
i |z)]

]
+ β

1

Ni

Ni∑
n=1

[
KL[p(zc=y

(n)
i |x)||p(z|x(n)

i )]
]
,

(7)

where we can use the re-parameterization trick (Kingma &
Welling, 2013) to perform backpropagation in the stochastic
network wf

i . Specifically, for the diagonal Gaussian distribu-
tion p(z|x(n)

i ) = N (z|µ(x(n)
i ),Σ(x

(n)
i )), we can execute

z = ϵ · Σ(x(n)
i ) + µ(x

(n)
i ) in practice, where ϵ ∼ N (0, 1).
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Figure 1. Overview of FedCR: during local training, the feature of
sample x

(n)
i is aligned with the global common representation of

the same category c = y
(n)
i , where we assume that the samples

at the three clients have the same label for ease of illustration.
While the latest feature of each sample is retained, which is later
multiplied through local PoE at the end of local update.

Further note that when setting β = 0 and Σ(x
(n)
i ) = 0, this

stochastic network wf
i becomes deterministic. In this case,

our method will degenerate to FedPer (Arivazhagan et al.,
2019).

To reduce communication overhead, we do not need to
directly upload the feature distribution of each sample point,
but perform the following class-wise local PoE in advance:

p (zc | xi) =

Ni∏
n=1

p
(
z | x(n)

i

)1(y(n)
i =c

)
,∀c ∈ Ci, (8)

where τ = 1 due to random sampling and the prior p(z) is
considered at server. To reduce the computation complexity,
on the other hand, we directly use the latest p(z|x(n)

i ) gener-
ated when updating the network wf

i , instead of an additional
forward propagation of all input data to obtain the stochastic
features after local training as used in FedPAC (Xu et al.,
2023). This approach can be thought of as a queue where,
upon sampling and forward propagation, the features re-
tained from the previous update step are discarded, while
only the features generated by the current update step are
retained for that data sample. As a result, p(z|x(n)

i ;wf
i,k)

may come from a different local iteration k ∈ [K] when
using SGD. Such a manner has important advantages of
avoiding privacy leakage to a large extent, since the server
can hardly infer meaningful information of raw data based
on the local PoE p(zc|xi) and updated local model wf

i,K .

Global aggregation. At the server, we first aggregate the
feature extractors to get wf . Then, before aggregating the
global representation, we need to consider that due to the
data heterogeneity/scarcity at clients and partial client par-

ticipation property in PFL, it is very likely that the entire
data at all the clients that currently participate in this com-
munication round may not contain a certain class. In this
case, we only need to use the global features of the previous
communication round for that class (Line 16). Next, we
aggregate the global feature representation for each class
belonging to these active clients, by:

p(zc|x) =
p∏

i=1

τp(z)p(zc|xi),∀c ∈ C, (9)

where hyper-parameter τ = 1 if the clients participate in
the training uniformly and randomly, and we set p(z) ∼
N (0, 1). The aggregated feature extractor and global repre-
sentation are then broadcast to clients, helping their local
training via the common and invariant global representation.

4.4. Extension to Model Non-Aggregation Scenarios

Up to now, our FedCR has practically realized the global
common representation shared across clients. It in essence
can be applied to another more challenging PFL scenario,
where each client designs their own unique model to meet
distinct specifications. In this case, the server cannot di-
rectly average model parameters due to model heterogeneity.
Moreover, clients may even be unable to share their models
due to intellectual property, privacy or communication con-
cerns. For such a more realistic and complex setting, FedCR
is still effective by only exchanging the feature representa-
tion. In this case, the size of model of each client can be
arbitrary, while we only require that the normal distributions
output by feature extractors have the same dimension. Note
that this model non-aggregation paradigm has an additional
advantage of less vulnerable to privacy leakage. Empirical
evaluations in Appendix A.2.1 show that local clients benefit
from the global common representation, even without shar-
ing the model. Moreover FedCR can generally outperform
the “Local-Training” scheme in which clients separately
train their own models without sharing anything.

4.5. Limitations

We then discuss possible limitations of our FedCR in terms
of computation, communication, and privacy. First, we
acknowledge that FedCR requires additional computation
and transmission of local feature distributions. However, as
stated in Section 4.3, we directly utilize the feature distri-
bution generated when updating model parameters. Thus,
there is almost no additional computational overhead. Mean-
while, a Gaussian distribution with a diagonal covariance
matrix (i.e., we only transfer the diagonal elements of co-
variance) is much smaller than the model size. Finally, for
privacy concerns, the server is hard to infer meaningful raw
data information, since the low-dimensional features trans-
mitted are the product of sample features generated by dif-
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Figure 2. Visualizing embeddings of about 200 local test images (MNIST) at the randomly picked client in two dimensional space. The
horizontal and vertical axes are the mean of the two-dimensional Gaussian feature, and the images are colored based on their true class
labels (non-iid 1: each client has only 5 classes; non-iid 2: the randomly picked client has 9 classes and the data on each class is not
uniformly distributed). For non-iid 1 scenario, there is still a clear class-wise feature boundary even without the proposed CMI regularizer
(β = 0), while it is slightly less concentrated than the counterpart that leverages CMI. However, for the more complex non-iid 2 scenario,
without CMI regularization, the feature distribution represented in orange overlaps with other classes and becomes indistinguishable.

Algorithm 1 FedCR for personalized federated learning.
1: server: µc

0 = 0, Σc
0 = 1; clients: learning rate η

2: for each round t = 1, 2, 3, .. do
3: sample clients Pt ⊆M
4: // local training:
5: for each client i ∈ Pt in parallel do
6: receive µc

t ,Σ
c
t , w

f and initialize wi,0 = [wf , wp
i ]

7: for each local step k = 1, 2, . . . ,K do
8: update the whole network wi by SGD as (7):
9: wi,k = wi,k−1 − η∇wi,k−1

Li

10: end for
11: update the local class-wise feature µc

i ,Σ
c
i as (8)

12: set wp
i = wp

i,K ; send wf
i,K , µc

i ,Σ
c
i to server

13: end for
14: // global aggregation at server:
15: wf = 1

|Pt|
∑

i∈Pt
wf,K

i

16: if c ∈ C and c /∈ Ci(∀i ∈ Pt) then
17: µc

t = µc
t−1; Σc

t = Σc
t−1

18: end if
19: update the global class-wise feature µc

t ,Σ
c
t as (9)

20: send wf , µc
t ,Σ

c
t to clients

21: end for

ferent local models. We can also apply privacy-preserving
techniques to feature distribution, such as homomorphic
encryption (Rivest et al., 1978). In fact, there is a trade-off
between security, efficiency, and practicality in PFL. Our
method mainly focuses on improving efficiency and prac-
ticality, which is also the main motivation for clients to
participate in PFL instead of single-machine training, where
they would share more information for better collaboration.

5. Discussion and Analysis
5.1. Noise Injection and Uncertainty for Generalization

FedCR is stochastic at the feature representation level by
modeling the mean and covariance of local features, which

can also be viewed as injecting noise into the features. Am-
ple evidences (e.g., data augmentation (Zhang et al., 2021)
and dropout (Srivastava et al., 2014)) have suggested that
noise injection can prevent overfitting and enhance gener-
alization. This local feature distribution is then aligned
with the global feature distribution by KL divergence. In
this sense, FedCR transfers global information into clients
through the injection of noise. Such a noise injection by dis-
tribution alignment in FedCR increases diversity in the intra-
class representation while maintaining sharp inter-class rep-
resentation boundaries, as shown in Fig. 2. Under two
non-iid settings on MNIST dataset with 100 clients and 10%
participation rate (referring to Section 6 for details), we set
the feature distribution to a 2-dimensional Gaussian (which
may degrades performance), and randomly select a client
after 20 communication rounds. At this selected client, we
continue to train locally for 10 epochs, and then output
the feature distribution on the test set of this client. Fig. 2
shows that with feature alignment, the feature boundaries
between classes are more distinguishable, which leads the
local predictors to being more robust when inferring data.

Moreover, FedCR can improve the ability of local classi-
fication calibration and generalization by quantifying the
uncertainty (Alemi et al., 2018). Proper uncertainty is of
crucial importance to avoid an overconfident, offensive
or incorrect prediction. There is also a rich literature in
improving the quantification of uncertainty of neural net-
works, such as temperature scaling (Guo et al., 2017). By
explicitly modeling the representation distribution z, we
then use Monte Carlo samples of z to predict labels (i.e.,
p(yi|xi) = 1

S

∑S
s=1 p̂ (yi|zs) for zs ∼ p(z|xi), where S

is the number of Monte Carlo samples), which implicitly
models the distribution of predictive labels. This stochas-
ticity in feature representation induces an decent ensemble
of local predictors, while the ensemble technique has been
shown to yield well-calibrated uncertainty estimates (Lak-
shminarayanan et al., 2017).
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Table 2. Averaged test accuracy (%) of local models at 100 clients with 10% participation rate (averaged over 3 random seeds).

Method EMNIST-L FMNIST CIFAR10 CIFAR100

non-iid 1 non-iid 2 non-iid 1 non-iid 2 non-iid 1 non-iid 2 non-iid 1 non-iid 2
FedAvg (McMahan et al., 2017) 95.89 94.57 88.15 88.63 76.83 76.34 32.08 32.19
FedAvg-FT (Sim et al., 2019) 96.32 95.78 92.76 91.70 83.65 83.20 54.42 41.46

FedPer (Arivazhagan et al., 2019) 96.13 94.67 88.91 86.35 73.73 69.36 39.5 25.48
LG-FedAvg (Liang et al., 2020) 88.44 85.59 86.86 85.44 61.37 61.53 44.48 28.23

FedRep (Collins et al., 2021) 96.19 94.66 89.78 88.90 78.10 71.98 44.62 24.70
FedBABU (Oh et al., 2021) 96.22 94.88 89.21 89.18 73.60 69.37 44.00 26.15

Ditto (Li et al., 2021) 96.60 96.30 92.03 91.75 83.25 82.81 58.40 41.85
FedSR-FT (Nguyen et al., 2022) 86.22 84.71 85.55 85.45 61.47 60.96 40.82 24.56

FedPAC (Xu et al., 2023) 96.97 96.43 93.45 92.15 85.03 84.07 58.65 43.25
FedCR 97.47 96.98 93.78 93.00 84.74 84.26 62.96 44.06

5.2. Common Representation to Improve Generalization

Furthermore, we can also give an improved averaged gener-
alization bound among clients from the viewpoint of domain
adaptation (Ben-David et al., 2006; Zhu et al., 2021).

Theorem 5.1. Let H (h ∈ H : Z → Y) be a hypothesis
space of V C-dimension d and X → Z be a feature rep-
resentation function shared across clients. Given a global
meta-distribution D from which the active clients with a
local distribution Di are drawn, let ϵ̂Di(hi) denote the em-
pirical risk of hypothesis hi on Di. Similarly, let ϵD(hi)
denote the expected risk of hypothesis hi on D. Let D̃i, D̃′

i

be the induced distribution of Di by samples of size n for
FedPer and FedCR, and D̃ be the induced distribution of D.
Then with probability at least 1− δ, we have

1

m

∑
i∈M

ϵD(hi) ≤
1

m

∑
i∈M

ϵ̂Di
(hi) +

1

m

∑
i∈M

dH∆H

(
D̃′

i, D̃
)

+

√
4

n

(
d log

2en

d
+ log

4m

δ

)
+

1

m

∑
i∈M

λi (10)

where e is the base of the natural logarithm, λi =
minh (ϵ̂Di

(hi) + ϵD(hi)) denotes the combined risk of the
ideal hypothesis, and dH∆H(D̃′

i, D̃) denotes the distance of
distribution with dH∆H(D̃′

i, D̃) < dH∆H(D̃i, D̃).

Proof. See Appendix A.3.4 for the detailed proof.

Remark 5.2. By aligning the representation distribution, dis-
crepancy between the global distribution and the local distri-
bution of individual clients in latent space is much smaller
than that of FedPer (Arivazhagan et al., 2019), which fa-
cilitates clients to learn shared and invariant representation.
Such a feature alignment enables local predictors to general-
ize better to inferring data outside the local distribution, even
with an extremely limited amount of local data at clients.

6. Experiment
6.1. Experimental Setup

Datasets and models. We evaluate our FedCR on four
benchmark datasets, EMNIST-L, Fashion-MNIST (FM-
NIST), CIFAR10 and CIFAR100 with the non-iid train/test
splits. Specifically, we use two non-iid settings. Non-iid 1:
each client is randomly assigned five classes for EMNIST-L,
FMNIST, and CIFAR10 (while fifteen classes per client for
CIFAR100) with the same amount of data in each class;
non-iid 2: each client has an uncertain number of classes,
and the data within each class varies widely by setting client
sample labels according to the Dirichlet distribution. In
the non-iid 2 setting, each client has about four classes that
consume 80% of data, and misses one or two classes with
Dirichlet parameter 0.5 for EMNIST-L, FMNIST and CI-
FAR10 (and Dirichlet parameter 0.3 for CIFAR100). All
data is split into 70% training set and 30% test set. The
test set and the training set have the same data distribution.
Moreover, in all experiments, we use the same MLP on
EMNIST-L and CNN on FMNIST, CIFAR10, CIFAR100
for all methods. For FedSR and FedCR, we additionally add
a Gaussian layer and set the feature distribution dimension
as a hyper-parameter in the same way as in DVIB (Alemi
et al., 2016). When stochastic features become determinis-
tic, our model will be the same as other methods. Please
refer to Appendix A.1.2 for details.

Comparison methods. We compare validation (test) per-
formance of FedCR1 to other methods, including FedAvg
and its locally fine-tuning version (FedAvg- FT), FedSR
based on local fine-tuning (FedSR- FT)2, FedPer, FedRep,
LG-FedAvg, FedBABU, Ditto, and FedPAC (which also
uses features of the previous round for the globally missing
classes). In fact, since we just modify the feature extractor
to output stochastic feactures and perform feature distri-

1Implementable codes for evaluation of our FedCR is available
at: https://github.com/haozzh/FedCR.

2FedSR is proposed to train the global model, based on which
we perform additional local fine-tuning for personalized learning.
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Figure 3. Averaged test accuracy of clients vs. number of communication rounds on different methods and sensitivity analysis of β, with
non-iid 1 setting. (a), (b), (c): test accuracy on EMNIST-L, FMNIST, CIFAR100; (d): test accuracy on EMNIST-L and CIFAR10.

bution alignment at clients, our FedCR can be seamlessly
incorporated into most methods, such as FedFomo (Zhang
et al., 2020) which calculates the aggregation weights based
on the model and loss differences.

Implementation. We evaluate the performance of local
models after 250 communication rounds for FMNIST and
after 500 rounds for EMNIST-L, CIFAR10 and CIFAR100,
at 100 clients with 10% participation rate. Note that we
also evaluate local models on the test set of active clients
after local updates at each round, followed by the global
aggregation, as shown in Fig. 3. At the last round, the
final average model accuracy is computed on test set, after
locally updating the head of the fully trained global model
for ten epochs at each client, which is the same strategy
as used by FedRep. The client learning rate η and hyper-
parameters of all approaches are individually tuned over a
grid. Please refer to Appendix A.1.3 for additional setup
details. We simply set τ in Eq. (9) to 1 due to random client
participation in our experiments. For more complex client
participation scenarios, we need to further tune value of τ .
We also average the final accuracy reported over 3 random
seeds by rerunning the experiments with different seeds.

6.2. Experimental Results
Performance evaluation. Experimental results of all meth-
ods under two different non-iid settings are shown in Ta-
ble 2 and Figs. 3(a)-3(c). In most cases, our FedCR presents
a superior performance than other algorithms on the four
datasets with different data distributions. We attribute this
to the CMI regularizer, which encourages all clients to learn
their local models in alignment with the common and invari-
ant global feature representation. For the more complex task
(i.e., non-iid 1 and non-iid 2 on CIFAR100), most meth-
ods are ineffective, but FedCR still performs well. This is
because even if there is only a small amount of local data
within a certain classes, the client can still learn the diverse
feature of data for these classes through the CMI regularizer.

Reasons for slow convergence at initial stage. Note that
FedCR converges slightly slower at the initial stage as shown
in Fig. 3(c).This might be due to the fact that the feature dis-

Table 3. Averaged test accuracy (%) vs. Gaussian dimensions.

Dimensions EMNIST-L FMNIST CIFAR10 CIFAR100
512 97.39 93.78 84.50 62.96
256 97.47 93.57 84.74 61.78
128 97.34 93.50 84.55 57.57
64 96.83 93.34 84.43 54.35
32 96.77 93.45 84.41 53.58
16 97.22 93.27 84.07 49.98
8 97.02 93.51 84.54 41.37
4 95.82 92.07 82.13 31.28
2 90.46 82.51 67.86 21.65

tribution uploaded by the client is generated from different
local models during updating model parameters by SGD.
At the beginning of training, the model changes rapidly,
resulting in instability of the product of feature distributions.
FedPAC obtains feature embeddings through an additional
single pass on all data based on the final model after the lo-
cal training, thus presenting a quicker start. But as stated in
Section 4.3, by directly utilizing the features generated dur-
ing the process of local update in FedCR, the computational
overhead is reduced, while the server can also hardly infer
meaningful information of raw data based only on the final
model and the product of features generated from different
local models at each client. Moreover, though converging
slightly slower initially, FedCR can eventually converge to
a higher accuracy. Thus, there is a trade-off between privacy
/resource consumption and training efficiency.

Choice of appropriate β. β is a critical hyper-parameter
in FedCR. To test its sensitivity, we plot the validation per-
formance for different choices of β on EMNIST-L and CI-
FAR10 datasets with non-iid 1 setting, as shown in Fig. 3(d).
It can be see that there are many appropriate choices of β.
Thus, FedCR is easy to tune in this setting, and similar re-
sults hold for other settings. For β = 0, our CMI regularizer
cannot promote clients to learn global features, presenting
a poorer performance. But when we enlarge β, the weight
of prediction loss in the entire loss function in Eq. (7) de-
creases gradually, which may also lead to a decline in the
model performance after β exceeds a certain value.

Effects of feature dimensions. The dimension of Gaus-
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sian features is an interesting hyper-parameter for stochas-
tic neural networks. The Gaussian feature with less di-
mensions can greatly reduce the communication overhead.
The feature extractor compresses high-dimensional raw
data into low-dimensional and low-information feature dis-
tribution. Ideally, in stochastic neural networks, for 10-
category tasks (EMNIST-L, FMNIST, CIFAR10), only 4-
bits (log2(10) ≈ 4 bits) mutual information between x and
z is required to predict labels. Similarly, for 100-category
tasks (CIFAR100), 7-bits ((log2(100) ≈ 7 bits) mutual in-
formation between x and z is required. So one may wonder
how many dimensional features can accurately describe this
mutual information in PFL? To anwer it, we demonstrate
the average test accuracy over all clients with non-iid 1 set-
ting for different Gaussian feature dimensions, as shown
in Table 3. It can be found that roughly until Gaussian
features are lower than 64 dimensions on CIFAR100 (4
dimensions on EMNIST-L, FMNIST, and CIFAR10), the
feature representation can no longer represent 100 (10) dif-
ferent categories, which corresponds to a setting in which
the mutual information between x and z is less than 7 bits for
CIFAR100 (4 bits for EMNIST-L, FMNIST, and CIFAR10).

7. Conclusion
In this paper, we have proposed for PFL a FedCR method,
which enforced all local clients to learn common and invari-
ant feature representation by minimizing the discrepancy
between local and global CMI. This CMI regularizer leaded
to the theoretically sound alignment of global and local fea-
tures. More importantly, for the global feature distribution,
we used the PoE estimation to avoid leakage of local raw
data. We provided theoretical generalization analysis, and
also empirically showed the effectiveness of our FedCR. As
our future works, we will focus on further improving the
communication efficiency and addressing the fairness issues
of FedCR. One possible research direction is to incorporate
gradient quantization to alleviate the additional communi-
cation overhead incurred by FedCR. Besides, we did not
consider the fairness issue in FedCR, which might be vio-
lated in some extreme cases where clients with insufficient
data or a large distribution difference may be overlooked
due to the CMI regularizer. Thus, we also intend to refine
our FedCR from the perspective of fairness in the future.
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A. Appendix
A.1. Detailed Experiment Setup

A.1.1. DATASETS

We use the benchmark visual datasets EMNIST-L, FashionMNIST (FMNIST), CIFAR10, and CIFAR100, which consist of
10, 10, 10, and 100 different labels, respectively. Note that for EMNIST-L, we choose the first 10 letters of the letter section,
which is similar to FedDyn (Acar et al., 2021). All data is split into 70% training set and 30% test set, and the train set and
test set have the same distribution. The train and test splits for EMNIST-L, FMNIST, CIFAR-10 and CIFAR-100 are shown
in Table 4.

Table 4. Train and test splits
Dataset No. All data No. Train per client (100 clients) No. Test per client Batch size Rounds

EMNIST-L 56000 (48000+8000) 392 168 48 500
FMNIST 70000 (60000+10000) 490 210 48 250
CIFAR10 60000 (50000+10000) 420 180 48 500

CIFAR100 60000 (50000+10000) 420 180 48 500

To generate non-iid splits for the four datasets, we use two ways to divide training samples by classes and assign them to
clients. For non-iid 1 case, we directly assign fixed classes to each client, and the amount of data in each class is the same.
Specifically, for EMNIST-L, FMNIST, and CIFAR10, each client contains 5 classes, and for CIFAR100 each client contains
15 classes.

For non-iid 2 case, we use the similar approach as in FedDyn (Acar et al., 2021), where we apply Dirichlet distribution over
the labels of dataset to create heterogeneous dataset. Specifically, we use Dirichlet distribution to produce a vector with
a size equal to the number of classes for each client. These vectors correspond to the class priority for each client. Then,
labels are sampled based on these vectors of each client, and the images are sampled based on the label without replacement.
We repeat this process until all data are assigned to clients. Here the factor of Dirichlet distribution corresponds to the degree
of data non-iid-ness. For Dirichlet parameter of 0.5 on EMNIST-L, FMNIST, and CIFAR10, each client has about 80%
samples which belong to mostly four different classes. For CIFAR100, we set Dirichlet parameter to 0.3.

A.1.2. MODELS

For EMNIST-L, we use a simple MLP with cross entropy loss, as shown in Table 7.

For FMNIST, CIFAR-10 and CIFAR-100, we use the CNN model consisting of two convolutional layers with 64 5 × 5
filters, two 2 × 2 max pooling layers, two fully connected layers with 1024 neurons, and finally a softmax layer. A full
description of the model is in Table 5. Our CNN model is similar to those used in FedAvg (McMahan et al., 2017) (without
batch normalization layers) and FedDyn.

For the stochastic neural network in FedCR and FedSR, we additionally add a fully connected layer to generate 2V vectors
as shown in Table 6 and 8. The first V vectors encodes µ of z, the remaining V outputs σ, i.e. diagonal elements of the
covariance matrix Σ (after a softplus transform). In this way, we produce a decoupled V -dimensional Gaussian distribution,
from which we sample a V -dimensional latent feature. Finally, we maps the V dimensional latent feature to the logits by
fully connected layer. Note that when the feature becomes deterministic (σ → 0), the two fully connected layers can be
equivalent to one layer. That is, the model in this case is the same as other methods.

A.1.3. HYPER-PARAMETERS

All approachs are implemented in PyTorch 1.4.0 and CUDA 9.2, with GEFORCE GTX 1080 Ti throughout our experiments.
We tune hyper-parameter over a grid to compare the performance of different methods. For local update in all methods, we
tune the local learning rate over {0.5, 0.1, 0.05, 0.01, 0.005, 0.001} and set up 10 epochs of local updates. For our proposed
method FedCR, we average over 18 posterior samples, which seems to be sufficient to gain benefit from ensemble. Moreover,
we tune the parameter β over {0.01, 0.005, 0.001, 0.0005, 0.0001} and set it to 0.0005 for EMNIST-L, FMNIST, CIFAR10
and CIFAR100 (non-iid 1), and 0.001 for CIFAR100 (non-iid 2). For Ditto (Li et al., 2021), we tune the parameter λ
over {1, 0.1, 0.01, 0.001} and set it to 0.1 for EMNIST-L, 0.001 for FMNIST, and CIFAR100 (non-iid 1), and 0.01 for
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Table 5. CNN Architecture for other methods
Layer Type Size

Convolution + ReLu 5×5×64
Max Pooling 2×2

Convolution + ReLu 5×5×64
Max Pooling 2×2

Fully Connected + ReLU 1600×1024
Fully Connected + ReLU 1024×1024

Fully Connected 1024×10 & 1024×100

Table 6. CNN architecture for FedCR and FedSR
Layer Type Size

Convolution + ReLu 5×5×64
Max Pooling 2×2

Convolution + ReLu 5×5×64
Max Pooling 2×2

Fully Connected + ReLU 1600×1024
Fully Connected + ReLU 1024×1024

Fully Connected 1024× 2V (to generate N (µ, σ))
Fully Connected V × 10 & V ×100

Table 7. MLP Architecture for other methods
Layer Type Size

Fully Connected + ReLU 784×1024
Fully Connected + ReLU 1024×1024

Fully Connected 1024×10

Table 8. MLP architecture for FedCR and FedSR
Layer Type Size

Fully Connected + ReLU 784×1024
Fully Connected + ReLU 1024×1024

Fully Connected 1024× 2V (to generate N (µ, σ))
Fully Connected V ×10

CIFAR100 (non-iid 2). For FedSR-FT, we tune the parameter αL2R over {0.1, 0.01, 0.001} and the parameter αCMI

over {0.1, 0.01, 0.001, 0.0001} and set them to 0.01, 0.001 for EMNIST-L, FMNIST and CIFAR10, and 0.001, 0.001 for
CIFAR100. For FedPAC, we tune the parameter λ over {10, 5, 1, 0.5, 0.1} and set it to 1. Note that for non-iid 2 case, since
the data distribution of each client is very different, the use of classifier combination in FedPAC will sometimes degrade the
experimental performance. Therefore, we do not consider using predictor collaboration for this case.

A.2. Additional Experimental Results

A.2.1. EXPERIMENTAL RESULTS ON MODEL NON-AGGREGATION SCENARIOS

For the more challenging model non-aggregation scenarios, FedCR is ready to benefit local models by sharing only feature
distribution yet not model parameters, which can further alleviate privacy and communication concerns. In order to explore
this potential, we perform experiments on CIFAR100 (non-iid 1) with 100 clients and 10% participation rate over different
number of classes at each client. We compare our method (non-aggregate-model) with Local-Training in which each client
separately trains its own model without sharing anything, FedAvg (sharing the whole model), and FedPer (sharing the
feature extractor). Moreover, in this experiment, we set the Gaussian dimensions to 256. This means tfat We only need to
transmit 51, 200 (512× 100) parameters, which is much smaller than the model’s size of 2, 794, 852 parameters.

Table 9. Experimental Results for Model Non-aggregation Scenarios on CIFAR100 (non-iid 1)
Num Class Local-Training FedAvg FedPer FedCR (non-aggregate-model)

10 52.44 35.51 54.98 55.87
15 40.99 34.08 39.5 44.45
20 28.33 31.89 37.03 37.16

The experimental results are shown in the Table 9. Our method still significantly benefits local model’s performance, even
when not sharing models but only features. For complex scenarios with more classes (20 classes), Local-Training cannot
effectively complete the classification, but FedCR (non-aggregate-model) still greatly improves the model performance.

A.2.2. CONVERGENCE CURVES AND SENSITIVITY ANALYSIS OF β FOR OTHER SETTINGS

We plot the averaged validation accuracy of models and sensitivity analysis for other settings, as shown in Fig. 4.
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Figure 4. Averaged test accuracy of clients vs. number of communication rounds on different methods and sensitivity analysis of β.

A.2.3. VARIANCE MEASUREMENTS OF TESTT ACCURACY WITH DIFFERENT SEEDS

We re-run experiments over different seeds to get the variance measurements of test accuracy to eliminate the impact of
random seeds, as shown in Table 10.

Table 10. Average accuracy with the variance measurements (%) of local models at 100 clients with 10% participation rate .

Method EMNIST-L FMNIST CIFAR10 CIFAR100

non-iid 1 non-iid 2 non-iid 1 non-iid 2 non-iid 1 non-iid 2 non-iid 1 non-iid 2
FedAvg 95.89±0.29 94.57±0.37 88.15±0.16 88.63±0.74 76.83±0.45 76.26±0.53 32.08±0.34 32.19±0.54

FedAvg-FT 96.32±0.51 95.78±0.43 92.76±0.63 91.70±0.36 83.65±0.37 83.20±0.81 54.42±0.19 41.46±0.61
FedPer 96.13±0.38 94.67±0.84 88.91±0.62 86.35±0.16 73.73±0.52 69.36±0.37 39.5±0.73 25.48±0.35

LG-FedAvg 88.44±0.63 85.59±0.61 86.86±0.84 85.44±0.37 61.37±0.47 61.53±0.23 44.48±0.73 28.23±0.15
FedRep 96.19±0.53 94.66±0.64 89.78±0.43 88.90±0.26 78.10±0.72 71.98±0.53 44.62±0.47 24.70±0.49

FedBABU 96.22±0.41 94.88±0.73 89.21±0.32 89.18±0.95 73.60±0.64 69.37±0.43 44.00±0.14 26.15±0.31
Ditto 96.60±0.50 96.30±0.19 92.03±0.62 91.75±0.46 83.25±0.15 82.81±0.36 58.40±0.81 41.85±0.72

FedSR-FT 86.22±0.30 84.71±0.34 85.55±0.52 85.45±0.73 61.47±0.46 60.96±0.65 40.82±0.34 24.56±0.26
FedPAC 96.97±0.47 96.43±0.75 93.45±0.24 92.15±0.32 85.03±0.29 84.07±0.64 58.65±0.63 43.25±0.47
FedCR 97.47±0.18 96.98±0.35 93.78±0.55 93.00±0.23 84.74±0.63 84.26±0.26 62.96±0.93 44.06±0.64

A.3. Proof

A.3.1. PROOF OF EQUATION (2)

According to the Markov chain: yi → xi → z → ŷi, the predictive distribution of the predicted label ŷi given input data xi

of our model is:

p(ŷi|xi) =

∫
p(ŷi, z|xi)dz =

∫
p(ŷi, z, xi)

p(z, xi)

p(z, xi)

p(xi)
dz =

∫
p(z|xi)p(ŷi|z, xi)dz = Ep(z|xi)[p̂(yi|z)]. (11)

The last inequality is based on the Markov chain p(ŷi|z, xi) = p(ŷi|z), where in addition we further denote p(ŷi|xi)
as p̂(yi|xi). Hence, for both the regression or classification tasks where the loss function is usually chosen as the
negative log predictive, i.e, ℓ(wi;xi, yi) = − logEp(z|xi)[p̂(yi|z)], the local objective function of client i is fi(wi) =

Ep(xi,yi)

[
− logEp(z|xi)[p̂(yi|z)]

]
.
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A.3.2. PROOF OF LEMMA 4.1

Lemma A.1. For xi ⊆ x and within the same label classes of client i, we have:

I(z;x|yi)− Ii(z;xi|yi) = Ep(xi,yi)Ep(x|xi,yi) [KL[p(z|x)||p(z|xi)]] , (12)

where KL[p(z|x)||p(z|xi)] denotes the KL divergence between p(z|x) and p(z|xi) given the label yi, i.e. a class-wise
feature alignment. Note that p(x|xi, yi) indicates that the global data can be determined only given the clients actively
participating in the training at a communication round, due to the partial client participation setting in PFL.

Proof. By setting x = xi ∪ ¬xi and then p(x) = p(x1, ..., xm) = p(xi,¬xi), we have

Ii(z;xi|yi)− I(z;x|yi)

=

∫∫∫
p(xi, z, yi) log

p(z|xi, yi)

p(z|yi)
dzdxidyi −

∫∫∫
p(x, z, yi) log

p(z|x, yi)
p(z|yi)

dzdxdyi

=

∫∫∫∫
p(xi, z,¬xi, yi) log

p(z|xi, yi)

p(z|yi)
dzdxid¬xidyi −

∫∫∫∫
p(¬xi, z, xi, yi) log

p(z|x, yi)
p(z|yi)

dzd¬xidxidyi

=

∫∫∫∫
p(xi, z,¬xi, yi) log

p(z|xi, yi)

p(z|x, yi)
dzdxid¬xidyi

(A1)
=

∫∫∫∫
p(xi, yi, z,¬xi) log

p(z|xi)

p(z|x)
dzdxid¬xidyi

=

∫∫∫∫
p(xi, yi)p(¬xi|xi, yi)p(z|¬xi, xi) log

p(z|xi)

p(z|x)
dzdxid¬xidyi

(A2)
=

∫∫∫∫
p(xi, yi)p(x|xi, yi)p(z|x) log

p(z|xi)

p(z|x)
dzdxid¬xidyi

=− Ep(xi,yi)Ep(x|xi,yi)[KL[p(z|x)|p(z|xi)]],

(13)

where (A1) is due to the property of Markov chain yi → xi → z, and (A2) is from that p(x|xi, yi) =
p(x,xi,yi)
p(xi,yi)

= p(x,yi)
p(xi,yi)

=
p(¬xi,xi,yi)

p(xi,yi)
= p(¬xi|xi, yi).

A.3.3. PROOF OF LEMMA 4.2

Lemma A.2. For marginal posteriors p(z|xi)(∀i ∈M), the joint posterior can be approximated as (Hinton, 2002):

p(z|x) = p (z|x1, . . . , xm) ∝ τp(z)

m∏
i=1

p (z|xi) , (14)

where τ ≜
∏M

i=1 p(xi)

p(x1,...,xm) represents the degree of independence between clients, and p(z) is a prior distribution, usually the
spherical Gaussian.
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Proof. Throughout this proof, we utilize the similar techniques as in (Hinton, 2002; Wu & Goodman, 2018).

p (z|x1, . . . , xm) =
p (x1, . . . , xm|z) p(z)

p (x1, . . . , xm)

(A1)
=

p(z)

p (x1, . . . , xm)

m∏
i=1

p (xi|z)

=
p(z)

p (x1, . . . , xm)

m∏
i=1

p (z|xi) p (xi)

p(z)

=

∏m
i=1 p (z|xi)∏m−1
i=1 p(z)

·
∏m

i=1 p (xi)

p (x1, . . . , xm)

∝ τ

∏m
i=1 p (z|xi)∏m−1
i=1 p(z)

,

(15)

where (A1) is from the conditional independence assumptions, i.e., x1, ..., xm are conditionally independent given the
common latent feature z (Wu & Goodman, 2018). In the last equality, we define τ ≜

∏M
i=1 p(xi)

p(x1,...,xm) , which represents the
degree of independence between clients’ data distribution.

Moreover, if we approximate p (z|xi) with q (z|xi) ≡ q̃
(
z|xi;w

f
i

)
p(z), then Eq. (15) can be rewritten as:

p (z|x1, . . . , xm) ∝ τ

∏m
i=1 p (z|xi)∏m−1
i=1 p(z)

= τ

∏m
i=1

[
q̃
(
z|xi;w

f
i

)
p(z)

]
∏m−1

i=1 p(z)
= τp(z)

m∏
i=1

q̃
(
z|xi;w

f
i

)
. (16)

Replacing the symbols, we have:

p(z|x) = p (z|x1, . . . , xm) ∝ τp(z)

m∏
i=1

p (z|xi) , (17)

In fact, here we are trying to abvoid the quotient term, and this trick in Eq. (16) is also used by the (Hinton, 2002; Wu &
Goodman, 2018). Since p(z) is an irrelevant prior , we can also directly absorb it as the previous hyperparameter τ .

A.3.4. PROOF OF THEOREM 5.1

Theorem A.3. LetH be a hypothesis space of V C-dimension d and X → Z be a feature representation function shared
across clients. Given a global meta-distribution D from which the active clients with a local distribution Di are drawn,
let ϵ̂Di

(hi) denote the empirical risk of hypothesis hi on Di. Similarly, let ϵD(hi) denote the expected risk of hypothesis
hi on D. Let D̃i, D̃′

i be the induced distribution of Di by samples of size n for FedPer and FedCR, and D̃ be the induced
distribution of D. Then with probability at least 1− δ,

1

m

∑
i∈M

ϵD(hi) ≤
1

m

∑
i∈M

ϵ̂Di(hi) +
1

m

∑
i∈M

dH∆H

(
D̃′

i, D̃
)
+

√
4

n

(
d log

2en

d
+ log

4m

δ

)
+

1

m

∑
i∈M

λi (18)

where e is the base of the natural logarithm, λi = minh (ϵ̂Di
(hi) + ϵD(hi)) denotes the combined risk of the ideal

hypothesis, and dH∆H(D̃′
i, D̃) denotes the distance of distribution with dH∆H(D̃′

i, D̃) < dH∆H(D̃i, D̃).

Proof. Throughout this proof, we utilize the same techniques as in (Zhu et al., 2021; Ben-David et al., 2006). By treating
local data Di as the source and the global data as the target, we can get, ∀δ > 0, with probability 1− δ

m :

ϵD(hi) ≤ ϵ̂Di
(hi) + dH∆H

(
D̃′

i, D̃
)
+ λi +

√
4

n

(
d log

2en

d
+ log

4m

δ

)
. (19)
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Then we have:

Pr

[
1

m

∑
i∈M

ϵD(hi) >
1

m

∑
i∈M

(
ϵ̂Di

(hi) +
(
dH∆H

(
D̃′

i, D̃
)
+ λi

)
+

√
4

n

(
d log

2en

d
+ log

4m

δ

))]

≤Pr

[ ∨
i∈M

ϵD(hi) > ϵ̂Di
(hi) + dH∆H

(
D̃′

i, D̃
)
+ λi +

√
4

n

(
d log

2en

d
+ log

4m

δ

)]

≤
∑
i∈M

δ

m
= δ.

(20)

For dH∆H(D̃′
i, D̃) < dH∆H(D̃i, D̃), intuitively, after feature distribution alignment, the discrepancy between the local

distribution and the global distribution in latent space is smaller than the discrepancy between the unaligned individual and
global distributions (Zhu et al., 2021).

Theorem 5.1 demonstrates that by explicitly aligning feature distribution, the local hypothesis can infer data outside the
local distribution and generalize better, even with an extremely limited amount of local data at clients.

A.4. Detailed Version of Algorithm 1

Here, we provide a detailed version of the practical execution process of our FedCR algorithm, as outlined in Algorithm 2.
This detailed version will allow us to demonstrate how our algorithm performs step by step in practice. In Line 11, for the
KL divergence of two Gaussian distributions, it is calculated as follows:

KL(p(x)∥q(x)) = 1

2

[(
µp − µq

)⊤
Σ−1

q

(
µp − µq

)
− log det

(
Σ−1

q Σp

)
+Tr

(
Σ−1

q Σp

)
− n

]
, (21)

where p(x) ∼ N (µp,Σp), q(x) ∼ N (µq,Σq), and n is the dimension.
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Algorithm 2 FedCR for personalized federated learning (detailed version).
1: server: µc

0 = 0, Σc
0 = 1; clients: learning rate η

2: for each round t = 1, 2, 3, .. do
3: sample clients Pt ⊆M
4: // local training:
5: for each client i ∈ Pt in parallel do
6: receive µc

t ,Σ
c
t , w

f and initialize wi,0 = [wf , wp
i ]

7: for each local step k = 1, 2, . . . ,K do
8: update the whole network wi by SGD as (7):

9: µ
y
(n)
i

i ,Σ
y
(n)
i

i = f
(
x
(n)
i ;wf

i,k−1

)
,

10: zi ← µ
y
(n)
i

i + ϵ · Σy
(n)
i

i where ϵ ∼ N (0, 1),

11: Li = l
(
f
(
zi;w

p
i,k−1

)
, y

(n)
i

)
+ β ·KL(N (µ

c=y
(n)
i

t ,Σ
c=y

(n)
i

t )∥N (µ
y
(n)
i

i ,Σ
y
(n)
i

i )),
12: wi,k = wi,k−1 − ηL∇wLi

13: save the most recent features µy
(n)
i

i ,Σ
y
(n)
i

i for sample (x
(n)
i , y

(n)
i )

14: end for
15: for each class c in Ci do
16: // product of Gaussian distributions based on Line 209 and Eq. (8)

17: µc
i =

(∑Ni

n=1 1(y
(n)
i = c)µ

y
(n)
i

i (Σ
y
(n)
i

i )−1

)(∑Ni

n=1 1(y
(n)
i = c)(Σ

y
(n)
i

i )−1

)−1

18: Σc
i =

(∑Ni

n=1 1(y
(n)
i = c)(Σ

y
(n)
i

i )−1

)−1

19: end for
20: set wp

i = wp
i,K ; send wf

i,K , µc
i ,Σ

c
i to server

21: end for
22: // global aggregation at server:
23: wf = 1

|Pt|
∑

i∈Pt
wf,K

i

24: if c ∈ C and c /∈ Ci(∀i ∈ Pt) then
25: µc

t = µc
t−1; Σc

t = Σc
t−1

26: end if
27: for each class c in C do
28: // update the global class-wise feature µc

t ,Σ
c
t as Eq. (9) and p(z) ∼ N (0, 1)

29: µc
t =

(
0 +

∑
i∈Pt

µc
i (Σ

c
i )

−1
) (

1 +
∑

i∈Pt
(Σc

i )
−1
)−1

30: Σc
t =

(
1 +

∑
i∈Pt

(Σc
i )

−1
)−1

31: end for
32: send wf , µc

t ,Σ
c
t to clients

33: end for
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