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Abstract
Learning structured representations of the visual
world in terms of objects promises to significantly
improve the generalization abilities of current ma-
chine learning models. While recent efforts to this
end have shown promising empirical progress, a
theoretical account of when unsupervised object-
centric representation learning is possible is still
lacking. Consequently, understanding the reasons
for the success of existing object-centric methods
as well as designing new theoretically grounded
methods remains challenging. In the present work,
we analyze when object-centric representations
can provably be learned without supervision. To
this end, we first introduce two assumptions on the
generative process for scenes comprised of sev-
eral objects, which we call compositionality and
irreducibility. Under this generative process, we
prove that the ground-truth object representations
can be identified by an invertible and composi-
tional inference model, even in the presence of
dependencies between objects. We empirically
validate our results through experiments on syn-
thetic data. Finally, we provide evidence that
our theory holds predictive power for existing
object-centric models by showing a close corre-
spondence between models’ compositionality and
invertibility and their empirical identifiability.1

1 Introduction
Human intelligence exhibits an unparalleled ability to gen-
eralize from a limited amount of experience to a wide range
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of novel situations (Tenenbaum et al., 2011). To build ma-
chines with similar capabilities, a fundamental question is
what types of abstract representations of sensory inputs en-
able such generalization (Goyal & Bengio, 2022). Research
in cognitive psychology suggests that one key abstraction is
the ability to represent visual scenes in terms of individual
objects (Spelke, 2003; Spelke & Kinzler, 2007; Dehaene,
2020; Peters & Kriegeskorte, 2021). Such object-centric rep-
resentations are thought to facilitate core cognitive abilities
such as compositional generalization (Fodor & Pylyshyn,
1988; Lake et al., 2017; Battaglia et al., 2018; Greff et al.,
2020) and causal reasoning over discrete concepts (Marcus,
2001; Gopnik et al., 2004; Gerstenberg & Tenenbaum, 2017;
Gerstenberg et al., 2021).

Significant effort has thus gone into endowing machine
learning models with the capacity to learn object-centric rep-
resentations from raw visual input. While initial approaches
were mostly supervised (Ronneberger et al., 2015; He et al.,
2017; Chen et al., 2017), a recent wave of new methods
explore learning object-centric representations without di-
rect supervision (Greff et al., 2019; Burgess et al., 2019;
Lin et al., 2020; Kipf et al., 2020; Locatello et al., 2020;
Weis et al., 2021; Biza et al., 2023). These methods have
begun exhibiting impressive results, showing potential to
scale to complex visual scenes (Caron et al., 2021; Singh
et al., 2022a; Sajjadi et al., 2022; Seitzer et al., 2023) and
real-world video datasets (Kipf et al., 2022; Singh et al.,
2022b; Elsayed et al., 2022).

Yet, despite this empirical progress, we still lack a theoreti-
cal understanding of when unsupervised object-centric rep-
resentation learning is possible. This makes it challenging to
isolate the reasons underlying the success and failure of ex-
isting object-centric models and to develop principled ways
to improve them. Furthermore, it is currently not possible
to design novel object-centric methods that are theoretically
grounded and not solely based on heuristics, many of which
break down in more realistic settings (Karazija et al., 2021;
Papa et al., 2022; Yang & Yang, 2022).

In the present work, we aim to address this deficiency by in-
vestigating when object-centric representations can provably
be learned without any supervision. To this end, we first
specify a data-generating process for multi-object scenes as
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Figure 1. When can unsupervised object-centric representations provably be learned? We assume that observed scenes x comprising
K objects are rendered by an unknown generator f from multiple ground-truth latent slots z1, ..., zK (here, K = 3). We assume that this
generative model has two key properties, which we call compositionality (Defn. 1) and irreducibility (Defn. 5). Under this model, we
prove (Thm. 1): An invertible inference model with a compositional inverse yields latent slots ẑi which identify the ground-truth slots up
to permutation and slot-wise invertible functions hi (slot identifiability, Defn. 6). To measure violations of compositionality in practice,
we introduce a contrast function (Defn. 7) which is zero if and only if a function is compositional, while to measure invertibility, we rely
on the reconstruction loss in an auto-encoder framework.

a structured latent variable model in which each object is
described by a subset of latents, or a latent slot. We then
study the identifiability of object-centric representations un-
der this model, i.e., we investigate under which conditions
an inference model will be guaranteed to recover the subset
of ground-truth latents for each object.

Because identifying the ground-truth latent variables is im-
possible without further assumptions on the generative pro-
cess (Hyvärinen & Pajunen, 1999; Locatello et al., 2019),
previous identifiability results primarily rely on distribu-
tional assumptions on the latents (Hyvärinen & Morioka,
2016; 2017; Hyvärinen et al., 2019; Khemakhem et al.,
2020a;b; Klindt et al., 2021; Zimmermann et al., 2021). In
contrast, we make no such assumptions, thus allowing for ar-
bitrary statistical and causal dependencies between objects.

Structure and Main Contributions. In the present work,
we instead take the position that the object-centric nature of
the problem imposes a very specific structure on the gen-
erator function that renders scenes from latent slots (§ 2).
Specifically, we define two key properties that this function
should satisfy: compositionality (Defn. 1) and irreducibil-
ity (Defn. 5). Informally, these properties imply that every
pixel can only correspond to one object and that information
is shared across different parts of the same object but not
between parts of different objects—inspired by the princi-
ple of independent causal mechanisms (Peters et al., 2017).
Under this generative model, we then prove in § 3 our main
theoretical result: the ground-truth latent slots can be iden-
tified without supervision by an invertible inference model
with a compositional inverse (Thm. 1). To quantify compo-

sitionality, we introduce a contrast function (Defn. 7) that is
zero if and only if a function is compositional; to quantify
invertibility, we rely on reconstruction error. We validate on
synthetic data that inference models which maximize invert-
ibility and compositionality indeed identify the ground-truth
latent slots, even with dependencies between latents (§ 5.1).
Finally, we examine existing object-centric learning models
on image data and find a close correspondence between
models’ compositionality and invertibility and their success
in identifying the ground-truth latent slots (§ 5.2).

To the best of our knowledge, the present work provides
the first identifiability result for object-centric representa-
tions. We hope that this lays the groundwork for a better
understanding of success and failure in unsupervised object-
centric learning, and that future work can build on these
insights to develop more effective learning methods.

Notation. Bold lowercase z denotes vectors, bold upper-
case J denotes matrices. For n ∈ N, let [n] denote the set
{ 1, . . . , n }. Additionally, if f is a function with n compo-
nent functions, let fS denote the restriction of f to the com-
ponent functions indexed by S ⊆ [n], i.e., fS := (fs)s∈S .

2 Generative Model
While humans have a clear intuition for what constitutes
an object, formalizing this notion mathematically is not
straightforward. Indeed, there is no universally agreed-upon
definition of an object; various formalizations based upon
distinct criteria co-exist (Green, 2019; Spelke, 1990; Koffka,
1936; Greff et al., 2020). We approach the problem by
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Figure 2. Difference between a compositional and a non-compositional generator. (A) For a compositional generator f , every pixel is
affected by at most one latent slot. As a result, there always exists an ordering of the pixels such that the generator’s Jacobian Jf consists
of disjoint blocks, one for each latent slot (bottom). Note that both the pixel ordering and the specific structure of the Jacobian are not
fixed across scenes and might depend on the latent input z. (B) For a non-compositional generator, there exists no pixel ordering that
exposes such a structure in the Jacobian, since the same pixel can be affected by more than one latent slot.

defining multi-object scenes in terms of a latent variable
model (see Fig. 1 for an overview) and argue that the object-
centric nature of the problem necessitates a very specific
structure on the generator, which we leverage in § 3 to prove
our identifiability result.

As a starting point, we assume that observed data samples x
of multi-object scenes are generated from a set of latent
random vectors z through a diffeomorphism2 f : Z → X ,
mapping from a latent space Z to an observation space X ,

z ∼ pz, x = f(z). (1)

The only assumption we place on pz is that it is fully sup-
ported on Z . In particular, we do not require independence
and allow for arbitrary dependencies between components
of z, motivated by the fact that the presence or properties of
certain objects may be correlated with those of other objects.

2.1 Slots and Compositionality

We think of an object in a scene as being encoded not by a
single latent component zi but instead by a group of latents
zk which specify its properties. For a scene comprised of K
objects, we thus assume that the latent space Z factorizes
into K subspaces Zk, which we refer to as slots. Each
slot is assumed to have dimension M , representing, e.g.,
M distinct object properties. More precisely, ∀k ∈ [K] :
Zk = RM , and Z = Z1 × · · · × ZK = RKM .

Let zk be the latent vector of the kth slot. The full KM -
dimensional latent scene representation vector z is then

2a differentiable bijection with differentiable inverse

given by the concatenation of the latents from all slots,

z = (z1, . . . , zK) . (2)

We would like to ensure that each latent slot zk is respon-
sible for encoding a distinct object in a scene. To this end,
the latent scene representation z should be rendered by f
such that each slot generates exactly one object (see Fig. 1).
If f is an arbitrary function with no additional constraints,
however, this will generally not be the case.

First, f lacks any structure which ensures that an object is
not generated by more than one latent slot. To see this, let
Ik(z) ⊆ [N ] denote the subset of pixels in an image gener-
ated from scene representation z that functionally depend
on slot k,

Ik(z) :=

{
n ∈ [N ] :

∂fn
∂zk

(z) ̸= 0

}
. (3)

Note the dependence on z, which encodes that an object
may appear in different places across different scenes.

Without further constraints on f , the pixel subsets Ik(z) and
Ij(z) can overlap for any k ̸= j such that latent slots k, j
can affect the same pixels and thus contribute to generating
the same object (see Fig. 2B, top). To avoid this, we impose
the following structure on f , which we call compositionality.
Definition 1 (Compositionality). Let f : Z → X be differ-
entiable. f is said to be compositional if

∀z ∈ Z : k ̸= j =⇒ Ik(z) ∩ Ij(z) = ∅. (4)

Compositionality implies that each pixel is a function of
at most one latent slot and thus imposes a local sparsity
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Figure 3. (Ir)reducible mechanisms. (A) A simple example of a reducible mechanism is one for which disjoint subsets of latents from
the same slot render pixel groups S1 and S2 separately such that they form independent sub-mechanisms according to Defn. 4. This
independence between sub-mechanisms is indicated by the difference in colors. (B) Not all reducible mechanisms look as simple as panel
A: here, S1 and S2 depend on every latent component in the slot, but the information in S1 ∪ S2 still decomposes across S1 and S2 as
sub-mechanisms 1 and 2 are independent. (C) In contrast, for an irreducible mechanism, the information does not decompose across any
pixel partition S, S

′
, and so it is impossible to separate it into independent sub-mechanisms.

structure on the Jacobian matrix Jf =
(
∂fi
∂zj

)
ij

of f , which
is visualized in Fig. 2, bottom. Intuitively, the Jacobian of a
compositional generator can always be brought into block
structure through an appropriate permutation of the pixels.
However, this block structure is local in that the required
permutation may differ across scene representations z.

2.2 Mechanisms and Irreducibility

While compositionality ensures that different latent slots
do not generate the same object, we need an additional
constraint on f to ensure that each slot generates only one
object, rather than something humans would regard as mul-
tiple objects. To see this, consider the example depicted
in Fig. 3A, where f maps the first half of the latent slot
to the pixels denoted S1 and the second half to S2. It is
clear that for humans, these groups of pixels would likely
be considered as distinct objects. On the other hand, it is
not immediately clear what formal criteria would give rise
to such a distinction.

Intuitively, the issue with the two “sub-objects” S1 and S2

in Fig. 3A appears to be that they are independent of each
other in some sense. To avoid such splitting of objects
within slots, we would thus like to enforce that pixels be-
longing to the same object are dependent on one another.
But what is a meaningful notion of such instance-level in-
dependence of objects? Since we are dealing with a single
scene sampled according to Eq. (1), it cannot be statisti-
cal in nature. Instead, our intuition is more aligned with
the notion of algorithmic independence of objects (Janzing
& Schölkopf, 2010), a formalization3 of the principle of
independent causal mechanisms (ICM) which posits that
physical generative processes consist of “autonomous mod-

3albeit an impractical one formulated in terms of Kolmogorov
complexity (algorithmic information), which is not computable

ules that do not inform or influence each other” (Peters et al.,
2017). The two subsets of pixels S1 and S2 in Fig. 3A are
independent of each other in precisely this sense: they arise
from autonomous processes that do not share information.

In the following, we therefore draw inspiration from prior
implementations of the ICM principle (Daniusis et al., 2010;
Janzing et al., 2012; Gresele et al., 2021, see § 4 for more
details) to formalize our intuitions about independence of
objects. First, we define the mapping which locally renders
information from the kth latent slot to the affected pixels
Ik(z) which we refer to as a mechanism.
Definition 2 (Mechanism). ∀z ∈ Z, k ∈ [K], we define the
kth mechanism of f at z as the Jacobian matrix JfIk(z).

The kth mechanism can be understood as the sub-matrix of
the Jacobian of f whose rows correspond to the pixels Ik(z)
affected by slot k. Further, we define a sub-mechanism as
the restriction to a subset of the affected pixels.
Definition 3 (Sub-Mechanism). JfS(z) is said to be a sub-
mechanism of JfIk(z), if S ⊆ Ik(z) and S is nonempty.

In light of these definitions, Fig. 3A consists of two sub-
mechanism, JfS1

(z) and JfS2
(z), which generate pixels S1

and S2. To characterize the level of dependence between
sets of pixels and their associated sub-mechanisms, we pro-
pose to use the matrix rank, which can be seen as a non-
statistical measure of information as it locally characterizes
the latent capacity used to generate the corresponding pixels.
Definition 4 (Independent/Dependent Sub-Mechanisms).
Let S1, S2 ⊆ [N ] and z ∈ Z . The sub-mechanisms JfS1

(z)
and JfS2

(z) are said to be independent if:

rank (JfS1∪S2
(z)) = rank (JfS1

(z)) + rank (JfS2
(z)) .

(5)
Conversely, they are said to be dependent if:

rank (JfS1∪S2(z)) < rank (JfS1(z)) + rank (JfS2(z)) .
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Intuitively, two sub-mechanisms JfS1
(z) and JfS2

(z) are
independent according to Defn. 4 if the information content
of pixels S1 ∪S2 decomposes across S1 and S2 in the sense
that the latent capacity required to jointly generate S1 ∪ S2

(LHS of Eq. (5)) is the same as that required to generate S1

and S2 separately (RHS of Eq. (5)). Such a decomposition
will occur when the rows of the sub-mechanism JfS1

(z) do
not lie in the row-space of the sub-mechanism JfS2(z) and
vice-versa. This will be the case in Fig. 3A where JfS1(z)
and JfS2

(z) affect different pixels since the rows of the Ja-
cobian for pixels S1 and S2 will never have non-zero entries
for the same column. As shown in Fig. 3B, however, it could
also be the case that all latents within a slot affect pixels in
both S1 and S2, yet the information content of S1 ∪ S2 still
decomposes across S1 and S2 since the rows of JfS1(z)
and JfS2

(z) could span linearly independent subspaces.

To enforce that each slot generates only one object, we
now finally place the condition on the mechanisms of f that
they cannot be partitioned into independent sub-mechanisms
(see Fig. 3C). We refer to this property as irreducibility.
Definition 5 (Irreducibility). f is said to have irreducible
mechanisms, or is irreducible, if for all z ∈ Z , k ∈ [K] and
any partition of Ik(z) into S1 and S2, the sub-mechanisms
JfS1(z) and JfS2(z) are dependent in the sense of Defn. 4.

3 Theory: Slot Identifiability
Given multi-object scenes sampled from the generative
model outlined in § 2, we now seek to understand under
what conditions an inference model ĝ : X → Z will prov-
ably identify the ground-truth object representations. Ide-
ally, we would like ĝ to recover the true inverse g := f−1,
but that is generally only possible up to certain irresolvable
ambiguities. In our multi-object setting, the objective is to
separate the object representations such that each inferred
slot captures one and only one ground-truth slot. We refer
to this notion as slot identifiability and define it as follows.
Definition 6 (Slot Identifiability). Let f : Z → X be a
diffeomorphism. An inference model ĝ : X → Z is said to
slot-identify z = g(x) via ẑ = ĝ(x) = ĝ(f(z)) if for all
k ∈ [K] there exist a unique j ∈ [K] and a diffeomorphism
hk : Zk → Zj such that ẑj = hk(zk) for all z ∈ Z .

We are now in a position to state our main theoretical result
(all complete proofs are provided in Appx. A).
Theorem 1. Let f : Z → X be a diffeomorphism that
is compositional (Defn. 1) with irreducible mechanisms
(Defn. 5). If an inference model ĝ : X → Z is (i) a diffeo-
morphism with (ii) compositional inverse f̂ = ĝ−1, then ĝ
slot-identifies z = g(x) in the sense of Defn. 6.

Proof Sketch. Irreducibility of f ensures that information
is shared across different parts of an object, and composi-
tionality of f that this information is not shared with other

objects. This creates an asymmetry in the latent capacity
required to encode the entirety of one object compared to
parts of different objects. When ĝ satisfies (i) and (ii), this
asymmetry can be leveraged to show that each inferred slot
ẑj maps to one and only ground-truth slot zk by a proof
by contradiction. Namely, suppose that ĝ maps pixels of
two distinct objects to the same slot j. If ĝ were to encode
all latent information required to generate these pixels in
slot j, there would not be sufficient total latent capacity to
recover the entire scene, leading to a violation of (i) invert-
ibility. Hence, information for at least one of the pixels
needs to be distributed across multiple slots, violating (ii)
compositionality of f̂ = ĝ−1.

Implications for Object-Centric Learning. Thm. 1 high-
lights important conceptual points for object-centric repre-
sentation learning. First, it shows that distributional assump-
tions on the latents z are not necessary for slot identifiability;
instead, it suffices to enforce structure on the generator f .
This falls in line with state-of-the-art (SOTA) object-centric
learning methods (Locatello et al., 2020; Singh et al., 2022b;
Seitzer et al., 2023; Elsayed et al., 2022), which are based on
an auto-encoding framework, thus imposing no additional
structure on pz. However, while these models directly en-
force invertibility through the reconstruction objective, it is
less clear whether and to what extent they also enforce com-
positionality. Specifically, compositionality is not explicitly
optimized in any object-centric methods. Yet, the success of
SOTA models in practice suggests that it may be implicitly
enforced to some extent through additional inductive biases
in the model. We explore this point empirically (see Fig. 6)
and leave a more theoretical exploration for future work.

Thm. 1 also emphasizes that using a restricted latent bottle-
neck plays an important role in achieving slot identifiability.
Specifically, Thm. 1 is predicated on dim(z)=dim(ẑ) and
would no longer hold in its current form if dim(z)<dim(ẑ).
The importance of restricting the latent capacity of object-
centric models was emphasized empirically by Engelcke
et al. (2020a). Yet, the most successful object-centric mod-
els in practice often use dim(z)<dim(ẑ) (Dittadi et al.,
2022; Locatello et al., 2020; Sajjadi et al., 2022). A potential
explanation for this discrepancy is that SOTA object-centric
models do encode information from multiple objects in each
latent slot, but this additional information is ignored by the
decoder during reconstruction such that image-level segmen-
tations remain accurate. We provide some evidence for this
hypothesis through experiments with existing object-centric
models in § 5.2.

Measuring Compositionality. While Thm. 1 reveals
properties an inference function should satisfy to achieve
slot identifiability, it presents these properties in an abstract
mathematical form. If we seek to leverage Thm. 1 to assess
the performance of existing object-centric models or inform
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new training objectives for object-centric learning, we re-
quire a way to quantify whether an inference model is (i) a
diffeomorphism and (ii) compositional. Regarding (i), one
clear choice is to train an auto-encoder with differentiable
encoder ĝ and decoder f̂ and minimize reconstruction loss to
enforce invertibility. Regarding (ii), on the other hand, it is
much less obvious how to quantify compositionality. To this
end, we introduce the following contrast function, which we
prove to be zero if and only if a function is compositional:

Definition 7 (Compositional Contrast). Let f : Z → X be
differentiable. The compositional contrast of f at z is

Ccomp(f , z) =

N∑
n=1

K∑
k=1

K∑
j=k+1

∥∥∥∥∂fn∂zk
(z)

∥∥∥∥∥∥∥∥∂fn∂zj
(z)

∥∥∥∥ . (6)

For a given scene representation z and generator f , the con-
trast function in Eq. (6) computes the sum over all pixels n
of all pairwise products of the (L2) norms of those pixels’
gradients with respect to any two distinct slots k ̸= j. As
such, it is a non-negative quantity that can only be zero if
every pixel is affected by at most one slot (i.e., f is composi-
tional), for otherwise there would be a pair of slots k ̸= j
for which the gradient norms are both non-zero resulting in
their product being non-zero.

We leverage this characterization of compositionality to
provide our second result, which can be viewed as an
optimization-based perspective on Thm. 1.

Theorem 2. Let f : Z → X be a diffeomorphism that
is compositional (Defn. 1) with irreducible mechanisms
(Defn. 5). If an encoder ĝ : X → Z and decoder f̂ : Z →
X are both differentiable and solve the following functional
equation

Ex∼px

[∥∥∥f̂(ĝ(x))− x
∥∥∥2
2
+ λCcomp

(
f̂ , ĝ(x)

)]
= 0, (7)

for λ > 0, then ĝ slot-identifies z in the sense of Defn. 6.

4 Related Work
Object-Centric Generative Models. Prior works have
also formulated generative models for multi-object scenes
based on latent slots (Roux et al., 2011; Heess, 2012; Gr-
eff et al., 2015; 2017; 2019; van Steenkiste et al., 2018;
von Kügelgen et al.; Engelcke et al., 2020b; 2021), though
without studying identifiability. Our assumptions on the
generative model (§ 2) bear intuitive similarity to some of
these prior works, but they also differ in several fundamen-
tal ways. First, compositionality (Defn. 1) is stated as a
desideratum for nearly all object-centric generative models.
Yet, this constraint is not actually enforced by most existing
approaches, particularly those based on spatial mixture mod-
els in which every slot may affect every pixel (Greff et al.,

2015; 2017; 2019; van Steenkiste et al., 2018; Engelcke
et al., 2020b; 2021). More closely related is a dead-leaves
model approach, in which a scene is sequentially gener-
ated by layering objects such that each pixel is affected by
at most one slot (Roux et al., 2011; von Kügelgen et al.;
Tangemann et al., 2023). In contrast, we define composition-
ality directly through assumptions on the structure of the
(Jacobian of the) generator. Second, our irreducibility cri-
terion (Defns. 4 and 5) bears conceptual similarity to prior
works, which assume that different objects do not share
information whereas parts of the same object do (Hyvärinen
& Perkiö, 2006; Greff et al., 2015; 2017; van Steenkiste
et al., 2018). Importantly, however, these works formal-
ize this intuition using statistical criteria such as statistical
independence between pixels from different objects and de-
pendence between pixels from the same object. However,
this leads to an incorrect characterization of objects: e.g.,
the presence of a coffee cup should increase the likelihood
that a table is also present, despite these being separate ob-
jects (Träuble et al., 2021; Schölkopf et al., 2021). Here,
we instead formulate independence/dependence between
objects in a non-statistical sense, inspired by algorithmic
independence of mechanisms.

Objects and Causal Mechanisms. In causal mod-
elling (Spirtes et al., 2001; Pearl, 2009), a mechanism typ-
ically refers to a function that determines the value of an
effect variable from its direct causes and possibly a noise
term, leading to a conditional distribution of effect given
causes. Thus, we could view objects as the effects of the
latent variables that cause them. While the causal variables
are generally not independent, it has been argued that the
mechanisms producing them should be (Schölkopf et al.,
2012; Peters et al., 2017). Since this is an independence be-
tween functions or conditionals rather than between random
variables, it is non-trivial to formalize it statistically (Janz-
ing & Schölkopf, 2010; Guo et al., 2022). Hence, various
implementations of the principle have been proposed (Da-
niusis et al., 2010; Janzing et al., 2010; 2012; Shajarisales
et al., 2015; Locatello et al., 2018; Besserve et al., 2018;
2021; Janzing, 2021), typically for settings in which both
cause and effect are observed. Our notion of independent
sub-mechanisms is most closely related to work by Gresele
et al. (2021), who also study representation learning and de-
fine mechanisms more broadly in terms of the Jacobian Jf :
they assume independent latents and formalize mechanism
independence as column-orthogonality of the Jacobian. In
contrast, our rank condition (Eq. (5)) is inspired by object-
centric representation learning with dependent latents.

Identifiable Representation Learning. As this is the first
identifiability study of unsupervised object-centric repre-
sentations, our problem setting differs from existing work
both in terms of the assumptions we make on the generative
process and the type of identifiability that we aim to achieve.
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First, prior work on identifiable representation learning
commonly places assumptions on the latent distribution,
such as conditional independence given an auxiliary vari-
able (Hyvärinen & Morioka, 2016; 2017; Hyvärinen et al.,
2019; Khemakhem et al., 2020a; Hälvä & Hyvärinen, 2020;
Hälvä et al., 2021) or access to views arising from pairs of
similar latents (Gresele et al., 2019; Klindt et al., 2021; Zim-
mermann et al., 2021; von Kügelgen et al., 2021), while leav-
ing the generator f completely unconstrained. In contrast,
we place no assumptions on pz and instead impose structure
on (the Jacobian of) the generator f . Recent works have also
leveraged assumptions on Jf such as orthogonality (Gre-
sele et al., 2021; Zheng et al., 2022; Reizinger et al., 2022;
Buchholz et al., 2022), unit determinant (Yang et al., 2022),
or a fixed sparsity structure (Moran et al., 2021; Lachapelle
et al., 2021; Lachapelle & Lacoste-Julien, 2022). While the
latter relates to our definition of compositionality (Defn. 1),
we crucially allow the sparsity pattern on Jf to vary with
z (in line with the basic notion that objects are not fixed in
space), and impose sparsity with respect to slots rather than
individual latents. Secondly, existing work typically aims to
identify individual latent components zi up to permutations
(or linear transformations). However, this is inappropriate
for object-centric representation learning, where we aim to
capture and isolate the subsets of latents corresponding to
each object in well-defined slots. Identifying such groups
of latents is similar to efforts in independent subspace anal-
ysis (ISA; Hyvärinen & Hoyer, 2000). However, results for
ISA are generally restricted to linear models and indepen-
dent groups, whereas we allow for nonlinear models and
dependence. Our notion of slot identifiability is most closely
related to that of block-identifiability introduced by (von
Kügelgen et al., 2021) and can be seen as an extension or
generalization thereof to a setting with multiple blocks.

5 Experiments
Thm. 2 states that inference models which minimize re-
construction loss Lrec and compositional contrast Ccomp

achieve slot identifiability (Defn. 6). This provides a con-
crete way to empirically test our main theoretical result. To
do so, we perform two main sets of experiments. First, in
§ 5.1 we generate controlled synthetic data according to the
process specified in § 2 and train an inference model on
this data which directly optimizes Lrec and Ccomp jointly.
Second, in § 5.2 we seek to better understand the relation-
ship between Lrec, Ccomp, and slot identifiability in existing
object-centric models. To this end, we analyze a set of mod-
els trained on a multi-object sprites dataset.

Quantifying Slot Identifiability. To assess whether a
model is slot identifiable in practice, we first establish a
metric to measure slot identifiability. Specifically, we want
to measure if there exists an invertible function between each

ground-truth and exactly one inferred latent slot. To this end,
we first fit nonlinear models between inferred and ground-
truth slots and measure their quality by the R2 coefficient
of determination. To properly measure this R2 score, we
must first match each ground-truth slot to its corresponding
inferred slot as permutations could exist between slots. For
our experiments in § 5.1, this permutation will be global i.e.
the same for all inferred latents, thus we use the Hungarian
Algorithm (Kuhn, 1955) to find the optimal matching based
on the R2 scores for models fit between every pair of slots.
For our experiments on image data in § 5.2, however, such a
permutation will be local due to the permutation invariance
of the generator. To resolve this, we follow a procedure
similar to that of Locatello et al. (2020) and Dittadi et al.
(2022) using online matching when fitting models between
slots. Specifically, at every training iteration, we compute
a matching loss for each sample for all possible pairings
of ground-truth and inferred slots and use the Hungarian
algorithm to find the optimal assignment for minimizing
this loss. After resolving permutations, the R2 scores for
the matched slots tell us how much information about each
ground-truth slot is contained in one inferred slot. We also
need to ensure, however, that inferred slots only contain in-
formation about one ground-truth slot and not multiple. To
this end, we correct this score by subtracting the maximum
R2 score from models fit between each inferred latent slot
and the ground-truth slots that it was not previously matched
with. Taking the mean of this score across all slots yields the
final score, which we refer to as the slot identifiability score
(SIS). Further details on the metric are given in Appx. B.4.

5.1 Synthetic Data

Experimental Setup. To generate synthetic data accord-
ing to § 2, we first sample a KM -dimensional latent vector
from a normal distribution pz = N (0,Σ), where we con-
sider scenarios with both statistically independent latents
(Σ = I) and dependent latents (Σ ∼ WishartKM (I,KM)).
We then partition the latent vector into K slots, each with
dimension M , and apply the same multi-layer perceptron
(MLP) to each of the K slots separately. The MLP has
2 layers, uses LeakyReLU non-linearities, and is chosen
to lead to invertibility almost surely by following the set-
tings used in previous work (Hyvärinen & Morioka, 2016;
2017; Zimmermann et al., 2021). Observations x are ob-
tained by concatenating the slot-wise MLP outputs such
that the generator is compositional according to Defn. 1
as well as invertible.4 We train models with a number of
slots K ∈ {2, 3, 5} and λ ∈ {10−7, 10−5, 10−2, 0, 1, 10}
(see Thm. 2) each across 10 random seeds (180 models in
total). In all cases, we use slot-dimension M = 3 and slot-
output dimension of 20 such that dim(x) = K · 20. Further
details on this setup may be found in Appx. B.1.

4Regarding enforcing irreducibility, see Appx. B.1.
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Figure 4. (A) Experimental validation of Thm. 2. We trained models on synthetic data generated according to § 2 with 2, 3, 5 independent
latent slots (see § 5.1). The color coding indicates the level of identifiability achieved by the model, measured by the Slot Identifiability
Score (SIS), where higher values correspond to more identifiable models. As predicted by our theory, if a model sufficiently minimizes
both reconstruction error and compositional contrast, then it identifies the ground-truth latent slots. (B) Application of Thm. 2 to existing
object-centric models. We train 3 existing object-centric architectures—MONet, Slot Attention (SA), and an additive auto-encoder
(AE)—on image data and visualize their SIS as a function of both reconstruction error and compositional contrast. We see across models
that, in general, SIS increases as reconstruction error and compositional contrast are minimized.

Results. In Fig. 4A, we visualize the SIS as a function
of the reconstruction error and compositional contrast for
independent latents for all K ∈ {2, 3, 5}. We normalize
Lrec and Ccomp to ensure that their scores are comparable
across different K, which we discuss in further detail in
Appx. B.3. As predicted by Thm. 2, we can see that all
models that minimize both objectives jointly yield high SIS,
whereas models that fail to minimize, e.g., the compositional
contrast achieve subpar identifiability. Results for dependent
latents yield a similar trend which can be seen in Fig. 5.

5.2 Existing Object-Centric Models

Experimental Setup. We now aim to understand the pre-
dictions made by our theory in the context of existing object-
centric models trained on image data. To this end, we con-
sider image data generated by the Spriteworld renderer (Wat-
ters et al., 2019). Specifically, we generate images with 2 to
4 objects, each described by 4 continuous (size, color, x/y
position) and 1 discrete (shape) independent latent factors.
Samples of this dataset are shown in Fig. 8. We investigate
three object-centric approaches on this data: Slot Attention
(Locatello et al., 2020), MONet (Burgess et al., 2019), and
an additive auto-encoder. We train all models with 4 latent
slots, each with dimension 16, leading to an inferred latent
dimension larger than the ground-truth. This discrepancy
between inferred and ground-truth latent dimensionality is
ubiquitous in existing object-centric models. However, it
violates our theoretical assumptions which require equal
dimensions. See Appx. B.2 for further experimental details.

Results. SIS as a function of reconstruction error and com-
positional contrast is shown in Fig. 4B. Similar to Fig. 4A,

SIS tends to increase as Lrec and Ccomp are minimized,
highlighting that our theory holds predictive power for slot
identifiability in existing object-centric models. Notably,
this is in spite of our theoretical assumptions not being ex-
actly met due to the inferred latent dimension exceeding
the ground-truth. This mismatch in dimension does seem to
have an effect on SIS, however, which can be seen in Fig. 7.
Here, we can see that the subtracted R2 score in the SIS
computation is non-zero across models suggesting that these
models are using their additional latent capacity to encode
information from multiple objects, despite the decoder pre-
sumably not using this information during reconstruction.

6 Discussion
Limitations of Experiments. We emphasize that the main
goal of this work is to create a theoretical foundation for
object-centric learning. Hence, we focus our experiments
on validating Thm. 2 (§ 5.1) and exploring our theoretical
predictions in existing object-centric models (§ 5.2). While
our experiments in § 5.2 provide evidence that existing
models which minimize Lrec and Ccomp achieve higher SIS,
scaling up these experiments to more models and datasets
would lead to a more comprehensive understanding of the
exact extent to which the performance of existing models
can be understood from our theory. We leave such a larger
empirical study for future work.

Limitations of Theory. While we believe that our theoret-
ical assumptions capture the essence of important concepts
in object-centric learning, they will be violated to various
degrees in practical scenarios. For example, the assumption
of compositionality (Defn. 1) on the generator f is broken
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by translucency/reflection, as a single pixel can then be af-
fected by multiple latent slots. Additionally, occlusions are
not yet fully covered by our theory, as pixels at the border of
occluding objects would be affected by multiple latent slots.
Additionally, it is common to assume in practice that the
generator f is invariant to permutations of the latent slots
it acts on. This permutation invariance leads to a lack of
invertibility of f , however, as permuted latents will give rise
to the same observation. We anticipate that our theoretical
results can be adapted to incorporate such a permutation
invariant generator but leave this for future work.

Relationship to Existing Definitions of Objects. Under
our framework, groups of pixels corresponding to an object
have the property that the latent capacity needed to encode
partitions of these pixels separately exceeds the latent ca-
pacity needed to encode the pixels as a whole (Defn. 5). In-
tuitively, this implies that there is latent information shared
across different parts of an object. By considering the loca-
tion of objects as one such latent information, our definition
relates to the Gestalt law of common fate (Koffka, 1936;
Tangemann et al., 2023) and the concept of a Spelke Ob-
ject (Spelke, 1990; Chen et al., 2022) which posit that pixels
belonging to the same object move together. Furthermore,
by considering color or texture as shared latent information,
our definition relates to the Gestalt law of similarity (Koffka,
1936) that posits that items sharing visual features tend to
be grouped together as a single object.

Extensions of Theory. While our theoretical results pro-
vide relatively general conditions under which object-centric
representations can be identified, there are several potential
ways our results could be extended. First, we hypothesize
that the reverse implication of our main result may hold
as well, i.e., given the generative model in § 3, composi-
tionality and invertibility are not only sufficient but also
necessary conditions for slot identifiability. A formal proof
of this conjecture would further highlight the importance
of these properties. Additionally, it would be interesting
to aim to extend our theoretical approach to identifying
not just objects but also abstractions such as part-whole
hierarchies (Hinton, 2021) or individual object attributes.
In this case, our notion of compositionality would need to
be adjusted to account for abstractions that interact during
generation. Lastly, it would be interesting to extend our
results to leverage weakly-supervised information, such as
motion, which has been shown empirically to be helpful for
object-centric learning (Tangemann et al., 2023; Kipf et al.,
2022; Elsayed et al., 2022; Chen et al., 2022).

Optimizing Ccomp in Object-Centric Models. While
creating a new method for object-centric learning is not
the focus of this work, one question based on Thm. 2 is
whether Ccomp can be optimized directly in object-centric
models on image data to improve slot identifiability. In this

setting, explicitly optimizing Ccomp, as was done in § 5.1,
is challenging as the contrast in its current form is based
on Jacobians. Thus, naively optimizing it through gradient
descent corresponds to second-order optimization, which
creates computational challenges for larger models and data
dimensionalities. As previously noted, it could also be the
case that there exist implicit ways to enforce that Ccomp is
minimized, which could be occurring to some extent through
inductive biases in existing object-centric models. We leave
finding computationally efficient ways to minimize Ccomp,
whether explicit or implicit, for future work.

Concluding Remarks. Representing scenes in terms of
objects is a key aspect of visual intelligence and an im-
portant component of generalization in humans. While
empirical object-centric learning methods are increasingly
successful, we have thus far been lacking a precise theoreti-
cal understanding of what properties of the data and model
are sufficient to provably learn object-centric representa-
tions. To the best of our knowledge, this work is the first
to provide such a theoretical understanding. Along with
invertibility, two intuitive assumptions on the generator—
compositionality and irreducibility–are sufficient to identify
the ground-truth object representations. By extending iden-
tifiability theory towards object-centric learning, we hope to
facilitate a deeper understanding of existing object-centric
models as well as provide a solid foundation for the next
generation of models to build upon.
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A Proofs
In this section, we present the proofs for the results presented in the main text. First, we recall our notation:

Notation. N will denote the dimensionality of observations x, K the number of latent slots, and M the dimensionality
of each latent slot zk. For n ∈ N, [n] will denote the set of natural numbers from 1 to n, i.e., [n] := {1, . . . , n}. If f is a
function with n component functions, then fS will denote the restriction of f to the component functions indexed by S ⊆ [n],
i.e. fS := (fs)s∈S where fS is ordered according to the natural ordering of the elements of S. Additionally, when restricting
f to the component functions indexed by Ik(z), defined according to Eq. (3), we will drop the dependence on z for notional
convenience i.e. fIk(z) := fIk(z)(z). For functions f , f̂ , we will use Ik(z), Îk(ẑ), respectively, to distinguish between the
indices defined for each function according to Eq. (3). Lastly, we will slightly abuse notation and use 0 to denote both the
zero vector and a matrix whose entries are all 0.

We begin by proving several lemmata which will be leveraged for our main theoretical result. We start with the intuitive
result that sub-mechanisms from different latent slots are independent in the sense of Defn. 4.

Lemma 1 (Sub-Mechanisms of Distinct Mechanisms are Independent). Let f be a diffeomorphism that is compositional
(Defn. 1), and let S1, S2 ⊆ [N ] be nonempty. ∀z ∈ Z, k ∈ [K], if S1 ⊆ Ik(z), S2 ∩ Ik(z) = ∅, then sub-mechanisms
JfS1(z), JfS2(z) are independent in the sense of Defn. 4.
Proof. From the definition of Ik(z) in Eq. (3) it follows that:

∀n ∈ [N ] :
∂fn
∂zk

(z) ̸= 0 =⇒ n ∈ Ik(z).

Since S1 ⊆ Ik(z), we know that ∀n ∈ S1 : ∂fn
∂zk

(z) ̸= 0. Further, since S2∩Ik(z) = ∅ it means that ∀n ∈ S2 : ∂fn
∂zk

(z) = 0.
Put differently, this means that rows of JfS1

(z) are non-zero for those rows where JfS2
(z) vanishes and vice versa. Therefore,

one cannot represent any column of JfS1(z) as a linear combination of those of JfS2(z). Hence,

rank (JfS1
(z)) + rank (JfS2

(z)) = rank ([JfS1
(z);JfS2

(z)]) ,

where [ · ; · ] denotes vertical concatenation. Note that the RHS is equal to JfS1∪S2
(z) up to permutations of rows (which

do not change the rank). Thus, Eq. (5) holds for S1, S2 showing that JfS1
(z), JfS2

(z) are independent in the sense of
Defn. 4.

We next show that the rank of each sub-mechanism is less than or equal to the latent slot-dimension dimension, M .

Lemma 2. Let f : Z → X be a diffeomorphism that is compositional (Defn. 1). ∀z ∈ Z, k ∈ [K], if S ⊆ Ik(z) is
non-empty:

rank (JfS(z)) ≤ M. (8)
Proof. Since S ⊆ Ik(z), then by compositionality of f

∀z ∈ Z, s ∈ S, j ∈ [K] \ {k} :
∂fs
∂zj

(z) = 0. (9)

Thus, JfS(z) has at most M non-zero columns (those corresponding to the non-zero partials w.r.t. zk) which implies
rank(JfS(z)) ≤ M .

We now show that the rank of each mechanism is equal to the latent slot-dimension M .

Lemma 3. Let f : Z → X be a diffeomorphism that is compositional (Defn. 1). Then ∀z ∈ Z, k ∈ [K]:

rank(JfIk(z)) = M.

Proof. First note f is a diffeomorphism and is thus invertible. Therefore, Jf must be invertible and thus have full column-
rank, i.e., ∀z ∈ Z : rank(Jf(z)) = MK.

Next, ∀z ∈ Z, k ∈ [K], let ICk := [N ] \ Ik denote the complement of Ik in [N ] such that ICk ∩ Ik = ∅. Thus, by Lemma 1,
the corresponding sub-mechanisms are independent:

∀z ∈ Z, k ∈ [K] : rank(Jf(z)) = rank(JfIk(z)) + rank(JfIC
k
(z)) = MK. (10)
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By compositionality of f ,

∀z ∈ Z, j ∈ [K] \ { k } :
∂fIk
∂zj

(z) = 0. (11)

Thus, JfIk(z) has at most M non-zero columns implying that rank(JfIk(z)) ≤ M . Furthermore, by definition,

∀z ∈ Z :
∂fIC

k

∂zk
(z) = 0, (12)

which means that JfIC
k
(z) has at most (K − 1)M non-zero columns implying rank(JfIC

k
(z)) ≤ (K − 1)M . Inserting this

result in Eq. (10) yields

∀z ∈ Z, k ∈ [K] : M ≤ MK − rank(JfIC
k
(z)) = rank(JfIk(z)) ≤ M, (13)

which can only be true if rank(JfIk(z)) = M .

Next, we show that for ground-truth generator f and inferred generator f̂ , the sub-mechanisms at a given point with respect
to the same pixel subset S will be have the same rank.
Lemma 4. Let f , f̂ : Z → X be diffeomorphisms with inverses g, ĝ : X → Z , respectively. Then ∀z ∈ Z, S ⊆ [N ] s.t.
S ̸= ∅, rank(JfS(z)) = rank(Jf̂S(ẑ)), where ẑ := ĝ(f(z)).
Proof. First, we introduce the function

h := ĝ ◦ f : Z → Z s.t. ẑ := ĝ(f(z)) = h(z),

We can express f as f = f̂ ◦ ĝ ◦ f = f̂ ◦ h. Thus, if S ⊆ [N ], S ̸= ∅, fS = f̂S ◦ h. Therefore,

∀z ∈ Z, rank(JfS(z)) = rank(Jf̂S(ẑ)Jh(z)). (14)

Because h is a diffeomorphism, Jh(z) is invertible. Thus rank(AJh(z)) = rank(A) for any matrix A s.t. AJh(z) is
defined (Horn & Johnson, 2012, Section 0.4.6). Therefore, by Eq. (14):

∀z ∈ Z, rank(JfS(z)) = rank(Jf̂S(ẑ)). (15)

We now prove several propositions which will be used to build our main result (Thm. 1). Firstly, we show that each inferred
latent slot depends on at least one ground-truth slot.
Proposition 1. Let Z be a latent space, X an observation space, and f : Z → X a diffeomorphism that is compositional
(Defn. 1). Let ĝ : X → Z be a diffeomorphism and ẑ := ĝ(f(z)),∀z ∈ Z . Then, ∀z ∈ Z, i ∈ [K],∃j ∈ [K] :

∂ẑj

∂zi
(z) ̸= 0.

Proof. We first define the function

h := ĝ ◦ f : Z → Z s.t. ẑ := ĝ(f(z)) = h(z).

As ĝ and f are both diffeomorphisms, h is also a diffeomorphism.

Note that ∀z ∈ Z,Jh(z) is a square matrix. Furthermore, because h is a diffeomorphism, it follows that ∀z ∈ Z , Jh(z) is
full rank. This implies Jh(z) must have all non-zero columns, which implies

∀z ∈ Z, i ∈ [K],∃j ∈ [K] :
∂ẑj
∂zi

(z) ̸= 0.

Next, we show that each inferred latent slot generates the same pixels as at most one ground-truth slot.
Proposition 2. Let Z be a latent space and X an observation space defined as in § 2. Let f : Z → X be a diffeomorphism
that is compositional (Defn. 1) with irreducible mechanisms (Defn. 5). Let ĝ : X → Z be a diffeomorphism with inverse
f̂ : Z → X that is compositional (Defn. 1). Then ∀z ∈ Z, j ∈ [K], there exists exactly one i ∈ [K] : Îj(ẑ) ∩ Ii(z) ̸= ∅,
where ẑ := ĝ(f(z))

Proof. Our goal is to show that f̂ maps each inferred latent slot ẑj to pixels generated by exactly one ground-truth latent slot
zi.
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Step 1 We will first show that f̂ maps each inferred latent slot ẑj to pixels generated by at least one ground-truth latent slot
zi. More precisely, we aim to show:

∀z ∈ Z, j ∈ [K],∃i ∈ [K] : Îj(ẑ) ∩ Ii(z) ̸= ∅. (16)

Suppose for a contradiction to Eq. (16) that:

∃z∗ ∈ Z, j ∈ [K],∄i ∈ [K] : Îj(ẑ
∗) ∩ Ii(z

∗) ̸= ∅. (17)

We will show that this assumption leads to a contradiction and, hence, is false. Let, z∗ denote the value for which Eq. (17)
holds. Eq. (17) coupled with the definition of Ii(z∗) in Eq. (3) imply that there exists pixels which depend on ẑ∗ under f̂ but
not on z∗ under f . More precisely,

∃i ∈ Îj(ẑ
∗) : Jf̂i(ẑ

∗) ̸= 0, ∄i ∈ Îj(ẑ
∗) : Jfi(z

∗) ̸= 0 (18)

This then implies that:

rank(Jf̂Îj (ẑ
∗)) ̸= 0, rank(JfÎj (z

∗)) = 0 (19)

which contradicts the equality of Jacobian ranks between f and f̂ stated in Lemma 4. Thus, our assumed contradiction in
Eq. (17) cannot hold and we conclude that Eq. (16) must hold true.

Step 2 We will now show that f̂ maps each inferred latent slot ẑj to pixels generated by at most one ground-truth latent
slot zi. More precisely, for C := {P ⊆ [K] : |P | > 1 } we aim to show:

∀z ∈ Z, j ∈ [K],∄P ∈ C : i ∈ P =⇒ Îj(ẑ) ∩ Ii(z) ̸= ∅. (20)

Suppose for a contradiction to Eq. (20) that:

∃z∗ ∈ Z, j ∈ [K], P ∈ C : i ∈ P =⇒ Îj(ẑ
∗) ∩ Ii(z

∗) ̸= ∅. (21)

We will let z∗ denote the value for which Eq. (21) holds and without loss of generality let j = 1.

Step 2.1 First, ∀i ∈ P we define the sets:

Oi,1 := { j ∈ Ii(z
∗) | j ∈ Î1(ẑ

∗) }, Oi,2 := { j ∈ Ii(z
∗) | j /∈ Î1(ẑ

∗) }, (22)

Intuitively, the set Oi,1 represents the pixels which are a function of both ground-truth latent slot z∗i and inferred slot ẑ∗1,
while Oi,2 represents the pixels which are a function of z∗i but not ẑ∗1. Our aim is now to show that for all ∀i ∈ P , the sets
Oi,1, Oi,2 form a partition of Ii(z∗).

By Eq. (22), ∀i ∈ P , Oi,1 ∪Oi,2 = Ii(z
∗), and Oi,1 ∩Oi,2 = ∅. We thus only need to show that Oi,1, Oi,2 ̸= ∅.

We first note that by our assumed contradiction in Eq. (21), there are pixels which are a function of both ground-truth slot z∗i
and inferred slot ẑ∗1 i.e.:

∀i ∈ P,∃j ∈ Ii(z
∗) : j ∈ Î1(ẑ

∗) =⇒ j ∈ Oi,1 =⇒ Oi,1 ̸= ∅. (23)

We will now show that ∀i ∈ P, Oi,2 ̸= ∅. Suppose for a contradiction that

∃i ∈ P : Oi,2 = ∅, (24)

This implies that Ii(z∗) = Oi,1 as Ii(z∗) = Oi,1 ∪ Oi,2 = Oi,1 ∪ ∅. Further, Eq. (22) implies that Oi,1 ⊆ Î1(ẑ
∗) thus

Oi,1 = Ii(z
∗) ⊆ Î1(ẑ

∗).

Next, consider another ground-truth slot z∗k where k ̸= i ∈ P . As previously established, Ok,1 ̸= ∅. Moreover, by Eq. (22),
Ok,1 ⊆ Î1(ẑ

∗). Thus, A := Ii(z
∗) ∪Ok,1 ⊆ Î1(ẑ

∗). Now, note that because f̂ is compositional, Lemma 2 implies that the
rank of the sub-mechanism defined by A ≤ M . When coupled with the equality of Jacobian ranks between f and f̂ stated in
Lemma 4, we get:

rank(JfA(z
∗)) = rank(Jf̂A(ẑ

∗)) ≤ M. (25)

17



Provably Learning Object-Centric Representations

Moreover, according to Eq. (22), Ok,1 ⊆ Ik(z
∗). By compositionality of f , it thus follows that Ok,1 ∩ Ii(z

∗) = ∅ since
i ̸= k. Therefore, by Lemma 1, we know the sub-mechanisms defined by Ii(z

∗) and Ok,1 are independent such that

rank(JfA(z
∗)) = rank(JfIi(z

∗)) + rank(JfOk,1
(z∗)). (26)

Leveraging Lemma 3 yields rank(JfIi(z
∗)) = M . Inserting this in the previous equation yields

rank(JfA(z
∗)) = M + rank(JfOk,1

(z∗)), (27)

which according to Eq. (25) must be ≤ M i.e.

M ≥ rank(JfA(z
∗)) = M + rank(JfOk,1

(z∗)). (28)

Now, note that by the definition of Ik(z∗) in Eq. (3), ∀i ∈ Ik(z
∗), Jfi(z∗) ̸= 0. Because Ok,1 ̸= ∅ and Ok,1 ⊆ Ik(z

∗), it
follows that JfOk,1

(z∗) ̸= 0. This implies rank(JfOk,1
(z∗)) > 0. However, this contradicts Eq. (28) and, hence, also the

initial assumption in Eq. (24). Therefore, we conclude that ∀i ∈ P, Oi,2 ̸= ∅.

Taken together, we have shown that ∀i ∈ P , the sets Oi,1, Oi,2 are nonempty and form a partition of Ii(z∗).

Step 2.2 Next, we first note that Lemma 3 implies that the rank of the mechanism JfIi(z
∗) is equal to M . Moreover, by

assumption, JfIi(z
∗) is irreducible. Because Oi,1 and Oi,2 form a partition of Ii(z∗), irreducibility then implies:

∀i ∈ P : rank(JfOi,1
(z∗)) + rank(JfOi,2

(z∗)) > M. (29)

Due to the equality of Jacobian ranks between f and f̂ stated in Lemma 4, Eq. (29) implies

∀i ∈ P : rank(Jf̂Oi,1(ẑ
∗)) + rank(Jf̂Oi,2(ẑ

∗)) > M. (30)

By the definition of Oi,1, Oi,2 in Eq. (22), ∀i ∈ P : Oi,1 ⊆ Î1(ẑ
∗), Oi,2 ∩ Î1(ẑ

∗) = ∅. It thus follows from Lemma 1 that
the sub-mechanisms defined by Oi,1 and Oi,2 are independent under f̂ in the sense of Defn. 4. Because Oi,1 and Oi,2 form
a partition of Ii(z∗), this independence, when coupled with Eq. (30), implies:

∀i ∈ P : rank(Jf̂Ii(ẑ
∗)) = rank(Jf̂Oi,1

(ẑ∗)) + rank(Jf̂Oi,2
(ẑ∗)) > M. (31)

We know from Lemma 3 that the mechanism defined by Ii(z
∗) has rank M under f . The equality of Jacobian ranks between

f and f̂ stated in Lemma 4 then implies:

rank(Jf̂Ii(ẑ
∗)) = rank(JfIi(z

∗)) = M, (32)

which contradicts Eq. (31), and, hence the initial assumption of this proof by contradiction in Eq. (21) cannot be correct and
Eq. (20) must hold true.

We have now shown that ∀z ∈ Z, j ∈ [K], there exists at least one and at most one i ∈ [K] : Îj(ẑ) ∩ Ii(z) ̸= ∅ implying
there exists exactly one, thus completing the proof.

We now provide a corollary to Prop. 2 stating that the result also holds when the roles of Îj(ẑ), Ii(z) are reversed.

Corollary 1. ∀z ∈ Z, i ∈ [K], there exists exactly one j ∈ [K] : Îj(ẑ) ∩ Ii(z) ̸= ∅.

Proof. We will first prove that there exists at least one j ∈ [K] : Îj(ẑ) ∩ Ii(z) ̸= ∅. Assume, for a contradiction that:

∃z∗ ∈ Z, i ∈ [K],∄j ∈ [K] : Îj(ẑ
∗) ∩ Ii(z

∗) ̸= ∅. (33)

This contradiction can be shown not to hold by exactly repeating the procedure in Step 1 of Prop. 2.

We thus only need to prove that there exists at most one j ∈ [K] : Îj(ẑ) ∩ Ii(z) ̸= ∅. Let C := {P ⊆ [K] : |P | > 1 }.
Suppose for a contradiction that:

∃z∗ ∈ Z, i ∈ [K], P ∈ C : j ∈ P =⇒ Îj(ẑ
∗) ∩ Ii(z

∗) ̸= ∅. (34)
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Let A := [K] \ P . We know by Prop. 2 that ∀j ∈ A, there exists exactly one i ∈ [K] : Îj(ẑ
∗) ∩ Ii(z

∗) ̸= ∅. This implies
that at least |[K]| − |A| = |P | ground-truth latent slots generate pixels which do not overlap with the pixels generated by
any inferred latent slots in A. In other words, there exists a set B ⊂ [K] with cardinality ≥ |P | > 1 s.t.

∀i ∈ B, ∀j ∈ A : Îj(ẑ
∗) ∩ Ii(z

∗) = ∅ (35)

Now consider the set P . We know by Eq. (34), that for all j ∈ P : Îj(ẑ
∗) ∩ Ii(z

∗) ̸= ∅. By Prop. 2, we know that for all
j ∈ P , Îj(ẑ∗) can intersect only with Ii(z

∗). Given that |B| > 1, this then implies

∃i ∈ B : ∀j ∈ P : Îj(ẑ
∗) ∩ Ii(z

∗) = ∅ (36)

Now, by construction, [K] = A ∪ P . Thus, Eq. (35) and Eq. (36) together imply:

∃i ∈ B ⊂ [K] : ∀j ∈ [K] : Îj(ẑ
∗) ∩ Ii(z

∗) = ∅ (37)

We have already shown in the first part of this corollary, however, that Eq. (37) cannot be true by repeating the procedure in
Step 1 of Prop. 2. Thus, our assumed contradiction in Eq. (34) cannot be true.

We have now shown that ∀z ∈ Z, i ∈ [K], there exists at least one and at most one j ∈ [K] : Îj(ẑ) ∩ Ii(z) ̸= ∅ implying
there exists exactly one, thus completing the proof.

We now build upon Prop. 2 and Cor. 1, to show that all inferred latent slots depend on at most one ground-truth slot.
Proposition 3. Let Z be a latent space and X an observation space. Let f : Z → X be a diffeomorphism that is
compositional (Defn. 1) with irreducible mechanisms (Defn. 5). Let ĝ : X → Z be a diffeomorphism with inverse
f̂ : Z → X that is compositional (Defn. 1). Let ẑ := ĝ(f(z)),∀z ∈ Z . Then, ∀z ∈ Z, i ∈ [K], there exists at most one
j ∈ [K] :

∂ẑj

∂zi
(z) ̸= 0.

Proof. Our goal is to show that at most one ẑj is a function of a given zi. More precisely, let C := {P ⊆ [K] : |P | > 1 }.
We aim to show that:

∀z ∈ Z, i ∈ [K],∄P ∈ C : j ∈ P =⇒ ∂ẑj
∂zi

(z) ̸= 0. (38)

Suppose for a contradiction to Eq. (38) that:

∃z∗ ∈ Z, i ∈ [K], P ∈ C : j ∈ P =⇒ ∂ẑj
∂zi

(z∗) ̸= 0. (39)

Let z∗ denote the value for which Eq. (39) holds and without loss of generality let i = 1.

We first introduce the function

h := ĝ ◦ f : Z → Z s.t. ẑ := ĝ(f(z)) = h(z).

Note that f = f̂ ◦ ĝ ◦ f = f̂ ◦ h. Thus, ∀S ⊆ [N ], fS = f̂S ◦ h. Therefore,

∀z ∈ Z, j ∈ [K] :
∂fÎj
∂z1

(z) =
∂ f̂Îj
∂ẑ

(ẑ)
∂ẑ

∂z1
(z) (40)

Due to the compositionality of f̂ ,
∂ f̂Îj
∂ẑk

(ẑ) = 0,∀k ̸= j ∈ [K]. This implies that these columns can be ignored when taking
the product in Eq. (40), s.t.

∂ f̂Îj
∂ẑ

(ẑ)
∂ẑ

∂z1
(z) =

∂ f̂Îj
∂ẑj

(ẑ)
∂ẑj
∂z1

(z). (41)

Now by Cor. 1, there exists exactly one j ∈ P ⊆ [K] s.t. Îj(ẑ∗) ∩ I1(z
∗) ̸= ∅. By the definition of Ii(z) in Eq. (3), this

implies that there exists exactly one j ∈ P s.t.
∂fÎj
∂z1

(z∗) ̸= 0. |P | > 1, thus there exists a j ∈ P s.t.

∂fÎj
∂z1

(z∗) =
∂ f̂Îj
∂ẑj

(ẑ∗)
∂ẑj
∂z1

(z∗) = 0 (42)
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where we leveraged Eq. (40), Eq. (41) to get the first equality above. Now, we know by Lemma 3, that Jf̂Îj (ẑ
∗) is full

column-rank. By compositionality of f̂ , we also know that rank(Jf̂Îj (ẑ
∗)) = rank(

∂ f̂Îj
∂ẑj

(ẑ∗)) as these are the only non-zero

columns in Jf̂Îj (ẑ
∗). Thus,

∂ f̂Îj
∂ẑj

(ẑ∗) is also full column-rank. Now, Eq. (42) implies that all columns of ∂ẑj

∂z1
(z∗) must be in

null(
∂ f̂Îj
∂ẑj

(ẑ∗)). Because,
∂ f̂Îj
∂ẑj

(ẑ∗) is full-column rank, null(
∂ f̂Îj
∂ẑj

(ẑ∗)) = 0. However, by Eq. (39) at least one column of
∂ẑj

∂z1
(z∗) is non-zero. Thus, we obtain a contradiction and conclude that Eq. (38) must hold.

Building on top of the previous propositions, we now prove our main identifiability result:

Theorem 1. Let f : Z → X be a diffeomorphism that is compositional (Defn. 1) with irreducible mechanisms (Defn. 5).
If an inference model ĝ : X → Z is (i) a diffeomorphism with (ii) compositional inverse f̂ = ĝ−1, then ĝ slot-identifies
z = g(x) in the sense of Defn. 6.

Proof. According to Prop. 1 every inferred latent slot ẑj depends on at least one ground-truth latent slot zi. At the same
time, Prop. 3 states that every inferred latent slot depends on at most one ground-truth slot. Hence, every inferred latent slot
depends on exactly one ground-truth slot.

This implies that the Jacobian Jh(z) of h = ĝ ◦ f : Z → Z must be block diagonal up to permutation everywhere:

∀z ∈ Z : Jh(z) = P(z)B(z) (43)

where P(z) is a permutation matrix and B(z) a block-diagonal matrix.

Next, note that
det(Jh(z)) = det(P(z)) det(B(z)) = det(B(z)) ̸= 0 (44)

since h is diffeomorphic. Hence, B(z) is invertible with continuous inverse. We conclude that

P(z) = Jh(z)B−1(z) (45)

is continuous. At the same time, P(z) can only attain a finite set of values since it is a permutation. Hence, P(z) must be
constant in z, that is, the same global permutation is used everywhere.5

Thus, for any j ∈ K, there exists a unique i ∈ K such that the function hj = ĝj ◦ f : Z → Zj is, in fact, constant in all
slots except Zi, i.e., it can be written as a mapping hj : Zi → Zj .

Finally, all such hj are diffeomorphic, since h is a diffeomorphism.

This concludes the proof that assumptions (i) and (ii) imply ĝ slot-identifies z.

We now show that the compositional contrast Ccomp introduced in Eq. (6) indicates whether a map is compositional:

Lemma 5. Let f : Z → X be a differentiable function. f is compositional in the sense of Defn. 1 if and only if for all z ∈ Z:

Ccomp(f , z) = 0 .

Proof. (⇒) We begin by analyzing Ccomp(f , z):

N∑
n=1

K∑
k=1

K∑
j=k+1

∥∥∥∥∂fn∂zk
(z)

∥∥∥∥
2

∥∥∥∥∂fn∂zj
(z)

∥∥∥∥
2

(46)

Since all summands are non-negative, the sum can only equal zero if every summand is zero ∀z ∈ Z . Since j ̸= k in the
summand, this means:

∀z ∈ Z,∀n ∈ [N ], k ̸= j ∈ [K] :

∥∥∥∥∂fn∂zk
(z)

∥∥∥∥
2

∥∥∥∥∂fn∂zj
(z)

∥∥∥∥
2

= 0 (47)

5Suppose for a contradiction that P(z) attains distinct values at some zA ̸= zB in Z . Since Z is convex, the line connecting zA and
zB is also in Z and P must change value somewhere along this line, leading to a discontinuity and thus a contradiction.
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This relation can only be satisfied if one (or both) of the partial derivatives in the summand have a norm of zero, i.e. if they
are zero. More precisely,

∀z ∈ Z,∀n ∈ [N ], k ̸= j ∈ [K] :
∂fn
∂zk

(z) = 0 ∨ ∂fn
∂zj

(z) = 0. (48)

According to Defn. 1 a map f is compositional if

∀z ∈ Z : k ̸= j =⇒ Ik(z) ∩ Ij(z) = ∅. (49)

By the definition of Ii(z) in Eq. (3), we can restate Eq. (49) as:

∀z ∈ Z, k ̸= j,∄n ∈ [N ] :
∂fn
∂zk

(z) ̸= 0 ∧ ∂fn
∂zj

(z) ̸= 0 (50)

which implies:

∀z ∈ Z, n ∈ [N ], k ̸= j :
∂fn
∂zk

(z) = 0 ∨ ∂fn
∂zj

(z) = 0 (51)

which is equivalent to Eq. (48). Hence, ∀z ∈ Z : Ccomp(f , z) = 0 implies that f is compositional.

(⇐) We now prove the reverse direction i.e. that if f is compositional, then ∀z ∈ Z : Ccomp(f , z) = 0. Note that the form
of compositionality given in Eq. (50) implies that ∀z ∈ Z , at least one term in the summand of Ccomp(f , z) in Eq. (51) will
be zero. Thus, each summand is equal to zero. This then implies that ∀z ∈ Z : Ccomp(f , z) = 0, completing the proof.

Finally, by leveraging Lemma 5, we can obtain Thm. 1 in a less abstract form.

Theorem 2. Let f : Z → X be a diffeomorphism that is compositional (Defn. 1) with irreducible mechanisms (Defn. 5). If
an encoder ĝ : X → Z and decoder f̂ : Z → X are both differentiable and solve the following functional equation

Ex∼px

[∥∥∥f̂(ĝ(x))− x
∥∥∥2
2
+ λCcomp

(
f̂ , ĝ(x)

)]
= 0, (7)

for λ > 0, then ĝ slot-identifies z in the sense of Defn. 6.
Proof. As both summands of the functional are non-negative, solving the functional equation means solving for each of the
summands to be equal to zero. Thus, we can analyze both of them separately. Solving the first sub-functional equation, i.e.,

Ex∼px

[∥∥∥f̂(ĝ(x))− x
∥∥∥2
2

]
= 0,

implies that f̂ is an inverse of ĝ for every x ∼ px. Because pz is assumed to have full support over Z , and px is defined by
applying a diffeomorphism f : Z → X on pz, this implies that px has full support over X . This means that f̂ is an inverse of
ĝ over the entire space X i.e. f̂ = ĝ−1. Since per assumption ĝ and f̂ are differentiable it follows that ĝ is a diffeomorphism.

Moreover, per Lemma 5, solving the second sub-functional equation for λ > 0, i.e.,

Ex∼px

[
λCcomp(f̂ , ĝ(x))

]
= 0,

means that f̂ is compositional as px has full support over X and ĝ is a diffeomorphism between X and Z . From Thm. 1 it
now follows that ĝ slot-identifies z, concluding the proof.

B Experimental Details

B.1 Synthetic Data § 5.1

Enforcing Irreducibility We choose slot-output dimension, which we will denote dim(xs), to be greater than slot-
dimension M as this is required for irreducibility (Defn. 5). To see this, assume the number of rows in each mechanism
(Defn. 2), equal in our case to dim(xs), were equal to M . Because mechanisms have rank = M (Lemma 3) and we have
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M rows, this implies that no row is in the span of any others. Hence, the mechanism would be reducible. Beyond enforcing
that the slot-output dimension, equal to 20 in this case, is greater than M = 3, we do not do anything further to ensure that
our ground-truth generator is irreducible. This is because it is extremely unlikely that the generator, as we have constructed
it, could be reducible. Specifically, if the generator were reducible, then as dim(xs) becomes larger than M , each new row
in the Jacobian would need to lie in the span of some subset of the previous rows. As dim(xs) continues to increase relative
to M , however, this becomes increasingly unlikely since the rows in the weight matrices of our MLP generator are randomly
sampled i.e. entries are sampled uniformly from [−10, 10].

Inference Model Training and Evaluation For our inference model, we use a 3 layer MLP with 80 hidden units in
each layer and LeakyReLU activation functions. We train on 75,000 samples and use 6,000 and 5,000 for validation and
test sets, respectively. We train for 100 epochs with the Adam optimizer (Kingma & Ba, 2015) on batches of 64 with an
initial learning rate of 10−3, which we decay by factor of 10 after 50 epochs. We use the validation set to find the optimal
permutation for the Hungarian matching and then evaluate the SIS on the test set after applying this permutation to the slots.
We compute the SIS for models every 4 epochs during training, all of which are plotted in Fig. 4. We trained all models
using PyTorch (Paszke et al., 2019).

B.2 Existing Object-Centric Models § 5.2

Data Generation We generate image data using the Spriteworld renderer (Watters et al., 2019). Images consist of 2 to 4
objects, each described by 4 continuous (size, color, x/y position) and 1 discrete (shape) independent latent factors. We
sample all factors uniformly where size is sampled from [.1, .15] and x/y position both from [.1, .8]. We represent color
using HSV and sample hue from [0, 1] while fixing saturation and value to 3 and 1, respectively. The dataset consists of
100,000 images, 90,000 of which are used for training and 10,000 for evaluation.

Inference Model Training and Evaluation We use the same Slot Attention model proposed by Locatello et al. (2020),
with the changes being that we use 16 convolutional filters in the decoder opposed to 32 and do not use a learning rate
warm-up. For MONet, we follow the setup used by Dittadi et al. (2022) on Multi-dSprites (Kabra et al., 2019). For our
additive autoencoder, we use the convolutional encoder/decoder architecture proposed by Burgess et al. (2018). The model
decodes each slot separately to get slot-wise reconstructions and mask, applies the normalized mask to each slot-wise
reconstruction, and then adds the results together to get the final reconstructed image. For all models, we use 4 slots with
a slot-dimension of 16. We train all models for 500, 000 iterations (356 epochs) on batches of 64 with between 5 to 12
random seeds for each model. We train using the Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of
10−4, which we decay throughout training for all models using the same decay scheduler as Locatello et al. (2020). We
trained all models using PyTorch (Paszke et al., 2019).

B.3 Compositional Contrast Normalized Variants

When computing Ccomp in § 5.1 and § 5.2, we use a few different normalized variants of the contrast to overcome potential
issues with the definition given in Defn. 7. Firstly, as the number of latent slots K increases, the contrast in Defn. 7 will
scale by a factor K2 −K. Thus, when comparing models across different numbers of slots in § 5.1, we divide the contrast
by this factor to ensure that comparisons remain meaningful across different values of K. Another issue with the contrast
in Defn. 7, is that it is not scale invariant. Specifically, naively minimizing the norm of the gradients for each pixel across
slots will also minimize the contrast, despite all slots having similar gradient norms for a given pixel. This scale invariance
did not cause issues when optimizing Ccomp directly in § 5.1. However, when evaluating the Ccomp of object-centric models
in § 5.2, we account for this invariance. Specifically, we divide the gradient norms for each pixel with respect to each slot by
the mean gradient norm for this pixel across slots. This gradient normalization creates an additional problem, however:
Pixels with a relatively small gradient norm, such as black background pixels, will be weighted equally to pixels with a
larger gradient norm such as pixels corresponding to an object. To account for this, we weight each pixel’s contribution to
the contrast by the pixel’s mean gradient across slots.

B.4 Slot Identifiability Score

We are interested in a metric measuring how much information about the ground-truth latent slots is contained in the inferred
latent slots without mixing information about different ground-truth slots into the same inferred slot. Let S1, S2 ∈ [0, 1]
denote scores that quantify how much information about each ground-truth slot can be extracted from the most and second-
most predictive inferred slot, respectively. The aforementioned metric can be computed by just subtracting the two scores,
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i.e.

S = S1 − S2. (52)

Following previous work, we use the R2 coefficient of determination as a score for continuous factors of variation (which
we restrict to be strictly non-negative) and the accuracy for categorical factors (Dittadi et al., 2022). We compute one S
value for each type and take the weighted mean which we then average across all slots to get the final slot identifiability
score (SIS).

Computing SIS on Synthetic Data § 5.1 To compute the scores S1 and S2 defined in our experiments in § 5.1, we must
fit two inference models between ground-truth and inferred slots: one between the best-matching slots and one between the
second-best-matching slots. In § 5.1, we fit these models by first fitting a kernel ridge regression model between every pair
of inferred and ground-truth slots and computing the R2 scores for the predictions given by each model. We then use the
Hungarian algorithm (Kuhn, 1955) to match each ground-truth slot to its most predictive inferred slot based on these R2

scores, which gives us S1. To get S2, we take the highest R2 score for each inferred slot with respect to the ground-truth
slots that it was not already matched with. For our experiments in Fig. 5 with dependent latent slots, S2 will inevitably be
non-zero even if a model is perfectly identifiable. Thus, for these experiments, we only consider S1 and refer to this metric
as the Slot MCC (Mean Correlation Coefficient).

Computing SIS on Image Data § 5.2 When training models to compute S1 and S2 in our experiments on image data
in § 5.2, one issue that arises is that the permutation between inferred latent slots and ground-truth slots is not necessarily a
global permutation but can also be a local permutation. This is due to the ground-truth generator function being permutation
invariant. To resolve this, we take a similar approach to work by Dittadi et al. (2022) and perform an online matching
during training of inferred latent slots to ground-truth slots using the training loss. Specifically, we compute the loss for
every pairing of the ground-truth and inferred slots and use the Hungarian algorithm to pick the permutation that yields
the lowest aggregate loss. As every slot can contain both continuous and categorical variables, we compute the mean
squared error for continuous factors and cross-entropy for categorical variables and sum them up to obtain the training
loss. In our experiments, we notice that the cross-entropy tends to yield unstable matching results. Therefore, we use the
minimum probability margin 6 to compute the categorical loss to solve the matching problem. Before fitting the readout
models, we standardized both the ground-truth and inferred latents. We parameterized the readout models as 5-layer MLPs
with LeakyReLU nonlinearity and a hidden dimensionality of 256, and trained them for up to 100 epochs using the Lion
optimizer with a learning rate of 10−4. To prevent the network from locking in too early on a suboptimal solution, we add a
small amount of noise (10% of the maximum matching loss value) to the losses before determining the optimal matching.
Finally, we suggest performing cross-validation and early stopping to prevent overfitting.

For training the model to compute S2, we proceed as for S1 but ensure that the model is not using the same permutation
used for computing S1, i.e., it is trained on the second-best matching between ground-truth and inferred slots. Lastly, when
computing S2, we aim to avoid scenarios in which the model finds a spurious permutation yielding a non-zero S2 despite
the model being identifiable. To account for this, we compute S2 on the ground-truth latent slots, denoted Sgt

2 , using the
same procedure for computing S2, and use this score to adjust our previous scores. Specifically, by adjusting the value range
accordingly, we obtain a score of

S =
S1 − Sgt

2

1− Sgt
2

− S2 − Sgt
2

1− Sgt
2

, (53)

To ensure that the subtracting term is not increasing the final score, we restrict it to be positive, yielding the final score:

S =
S1 − Sgt

2

1− Sgt
2

−max

(
S2 − Sgt

2

1− Sgt
2

, 0

)
. (54)

We may additionally be interested in considering the two terms on the RHS of Eq. (54) separately. Thus, we define them
below as:

Ŝ1 =
S1 − Sgt

2

1− Sgt
2

, Ŝ2 =
S2 − Sgt

2

1− Sgt
2

, S = Ŝ1 −max(Ŝ2, 0). (55)

6i.e., maxi pi − py , where p denotes the predicted probability for different values of the categorical distribution and y the ground-truth
value
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C Additional Figures and Experiments
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Figure 5. Experimental validation of Thm. 2 for statistically dependent slots. We trained models on synthetic data generated according
to § 2 with 2, 3, 5 dependent latent slots (see § 5.1). The color coding indicates the level of identifiability achieved by the model, measured
by the Slot Mean Correlation Coefficient (MCC), where higher values correspond to more identifiable models. As predicted by our theory,
if a model sufficiently minimizes both reconstruction error and compositional contrast, then it identifies the ground-truth latent slots.
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Figure 6. Compositional Contrast (Ccomp) throughout training. Here, we plot the compositional contrast (Ccomp) over the course of
training for MONet, Slot Attention (SA) as well as an additive auto-encoder (AE), on image data. We can see that all models appear to be
minimizing Ccomp to some extent despite it not being explicitly optimized for in any of these models.
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Figure 7. Analysis of Information Leakage Between Slots from Models Trained in § 5.2. (A) Uncorrected Slot Identifiability Score
(Ŝ1) vs. Correction (Ŝ2). We train 3 existing object-centric architectures—MONet, Slot Attention (SA), and an additive auto-encoder
(AE)—on image data and investigate whether inferred latent slots encode information from multiple objects when using an inferred
latent dimension greater than the ground-truth. To test this, we look at the R2 score for a model fit between each inferred slot and the
second most predictive ground-truth slot for this slot. We refer to this score as the slot identifiability score correction, defined as Ŝ2 in
Appx. B.4. We plot this score against the uncorrected slot identifiability score i.e. the most predictive ground-truth slot, defined as Ŝ1 in
Appx. B.4. We can see that for all models, Ŝ2 is non-zero, even as Ŝ1 increases, suggesting that models are leveraging their additional
latent capacity to encode information about multiple objects in the same latent slot. (B) and (C) Influence of Reconstruction Error and
Compositional Contrast on Ŝ1 and Ŝ2. Here, we further visualize the slot identifiability score correction (Ŝ1) and the uncorrected score
(Ŝ2) as a function of the reconstruction error and the compositional contrast in panels B and C, respectively. We can see in B that, similar
to the SIS in Fig. 4, Ŝ1 tends to increase as reconstruction loss and compositional contrast decrease. We can additionally see in C that,
while Ŝ2 decreases to some extent with Ccomp, there is generally less of a correlation between Ŝ2 and these metrics. This suggests that
the latent capacity must also be restricted to minimize Ŝ2.

Figure 8. Samples from our multi-sprites dataset used in § 5.2. Objects are described by five latent factors: shape, color, size, and x/y
position. Occlusions are present in the dataset, as shown in the samples above (see the second and third images from the left).
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