
Performative Recommendation: Diversifying Content via Strategic Incentives

Itay Eilat 1 Nir Rosenfeld 1

Abstract
The primary goal in recommendation is to sug-
gest relevant content to users, but optimizing for
accuracy often results in recommendations that
lack diversity. To remedy this, conventional ap-
proaches such as re-ranking improve diversity by
presenting more diverse items. Here we argue that
to promote inherent and prolonged diversity, the
system must encourage its creation. Towards this,
we harness the performative nature of recommen-
dation, and show how learning can incentivize
strategic content creators to create diverse content.
Our approach relies on a novel form of regular-
ization that anticipates strategic changes to con-
tent, and penalizes for content homogeneity. We
provide analytic and empirical results that demon-
strate when and how diversity can be incentivized,
and experimentally demonstrate the utility of our
approach on synthetic and semi-synthetic data.

1. Introduction
Recommendation has become a key driving force in de-
termining what content we are exposed to, and ultimately,
which we consume (MacKenzie et al., 2013; Ursu, 2018).
But despite the commercial success of modern recommenda-
tion systems, a known shortcoming is that recommendations
tend to be insufficiently diverse, with content homogeneity
becoming more pronounced over time; this has been a long-
standing issue in the field for over two decades (Carbonell
& Goldstein, 1998; Bradley & Smyth, 2001). Diversity is
important in recommendation not only for improving recom-
mendation quality (Vargas & Castells, 2014; Kaminskas &
Bridge, 2016) and user satisfaction (Herlocker et al., 2004;
Ziegler et al., 2005; McNee et al., 2006; Hu & Pu, 2011; Wu
et al., 2018; Dean et al., 2020), but also because a lack of
diversity can lead to inequity across content creators, which
often hurts the ‘long-tail’ of non-mainstream suppliers (Yin
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et al., 2012; Burke, 2017; Singh & Joachims, 2018; Ab-
dollahpouri et al., 2019b; Mladenov et al., 2020; Wang &
Joachims, 2021). From the perspective of the recommen-
dation platform, an inability to diversify content translates
into an inability to utilize the full potential that lies in the
natural variation of user preferences for promoting system
goals (Anderson, 2006; Yin et al., 2012). This has lead
to widespread interest in developing methods for making
recommendations more diverse (Kunaver & Požrl, 2017).

The common approach for diversifying recommendations is
to apply some post-processing procedure that re-ranks the
output of a conventionally-trained ranking model—which
is optimized for predicting user-item relevance—to be more
diverse, for example by traversing the ranked list and re-
moving items which are similar to higher-ranked items (Car-
bonell & Goldstein, 1998; Ziegler et al., 2005; Sha et al.,
2016). This simple heuristic approach has been shown to be
quite effective—at least when considering a given ranked
list, and at one point in time. But recommendation is inher-
ently a dynamic process: here we argue that post-hoc meth-
ods may not suffice for promoting diversity in the long run.

To see why, consider that re-ranking (and similar ap-
proaches) are designed to diversify the presentation of
content—not content itself. Presenting diverse content may
help in the specific instance it targets, but does not change
the pool of available items, nor does it account for any
downstream affects of recommendation. Recent work has
shown that one drawback of using prediction as the basis for
recommendation is that it causes homogenization (Chaney
et al., 2018); here we argue that rearranging predicted items
to form the appearance of diversity does not remedy this.

As an alternative, we propose to encourage the creation of
diverse content, so that the set of available items becomes
inherently more diverse. In this way, we aim to target the
cause—rather than the symptom. Our main observation is
that content is shaped by content creators, who seek to max-
imize exposure to their items (Ben-Porat et al., 2020; Hron
et al., 2022), and hence likely to modify content in ways
which promote their item’s predicted relevance (or ‘score’).
Since the goal of learning is to infer such scores, this gives
the learning system leverage in shaping the incentives of
content creators. Here we propose to utilize this power to
incentivize for the creation of more diverse content.
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Towards this, we draw connections to the related literature
on strategic learning (Brückner et al., 2012; Hardt et al.,
2016), and model content creators as gaining utility from
the score given to their items by the learned predictive model.
Content creators can then improve their utility by strategi-
cally modifying their items to obtain a higher score. Thus,
a learned predictive model determines not only what items
are recommended to which users—but also creates incen-
tives for content creators, which can promote change (Ben-
Porat & Tennenholtz, 2018; Jagadeesan et al., 2022). This
provides the system with the potential power to steer the
collection of renewing items—over time, and with proper
incentivization—towards diversity (Hardt et al., 2022).

To study when and how the system can effectively exercise
its power, we cast recommendation as an instance of perfor-
mative prediction (Perdomo et al., 2020), which subsumes
and extends strategic learning to a temporal setting where re-
peated learning causes the underlying data to shift over time.
Focusing on retraining dynamics, we study when and how
learning can be used to incentivize the creation and preser-
vation of diversity. In retraining, our only means for driving
incentivizes derives from how we retrain, i.e., from our crite-
rion for choosing the predictive model at each round. Since
retraining aims for models that are predictively accurate,
our goal will be to provide recommendations that are accu-
rate and diverse. But diversity and accuracy can be at odds;
hence, we seek to understand how they relate, and to propose
ways in which their tradeoff can be optimally exploited.

We begin with a basic analysis demonstrating the mecha-
nisms through which incentives and diversity relate within
our setup. We then propose a learning objective that allows
to balance ranking accuracy (and in particular NDCG) with
diversity through a novel form of regularization, which we
use to maximize diversity under accuracy constraints. Our
proposed diversity regularizer has two main benefits. First, it
is differentiable, and hence can be optimized using gradient
methods. Second, it can be applied to strategically-modified
inputs; this equips our objective with the ability to anticipate
the strategic responses of content creators, and hence, to
encourage predictive rules that incentivize diversity. Our
proposed strategic response operator is also differentiable;
thus, and using recent advances in differentiable learning-
to-rank, our entire strategic learning objective becomes dif-
ferentiable, and can be efficiently optimized end-to-end.

Using our proposed learning framework, we empirically
demonstrate how properly accounting for strategic incen-
tives can improve diversity—and how neglecting to do so
can lead to homogenization. We begin with a series of syn-
thetic experiments, each designed to study a different aspect
of our setup, such as the role of time, the natural variation in
user preferences, and the cost of applying strategic updates.
We then evaluate our approach in a semi-synthetic environ-

ment using real data (Yelp restaurants) and simulated re-
sponses. Our results demonstrate the ability of strategically-
aware retraining to bolster diversity, and illustrate the im-
portance of incentivizing the creation of diversity. All code
is made publicly available at: https://github.com/
itayeilat/Performative-Recommendation.

1.1. Related work

Diversity in recommendation. The literature on diver-
sity in recommendation is extensive; here we present a
relevant subset. Early approaches propose to diversify via
re-ranking (Carbonell & Goldstein, 1998; Bradley & Smyth,
2001; Ziegler et al., 2005), an approach that remains to
be in widespread use today (Abdollahpouri et al., 2019a).
More recent methods include diversifying via functional
optimization (Zhang & Hurley, 2008) or integration within
matrix factorization (Su et al., 2013; Hurley, 2013; Cheng
et al., 2017). Diversity has also been studied in sequential
(Kim et al., 2019), conversational (Fu et al., 2021), and
adversarial bandit (Brown & Agarwal) settings. The idea
of using regularization to promote secondary objectives in
recommendation has been applied for controlling popular-
ity bias (Abdollahpouri et al., 2017), enhancing neutrality
(Kamishima et al., 2014), and promoting equal opportu-
nity (Zhu et al., 2021). For diversity, Wasilewski & Hurley
(2016) apply regularization, but assume that the system has
direct control over (latent) item features; this is crucially dis-
tinct from our setting in which the system can only indirectly
encourage content creators to apply changes.

Strategic learning. There has been much recent inter-
est in studying learning in the presence of strategic be-
havior. Hardt et al. (2016) propose strategic classification
as a framework for studying classification tasks in which
users (who are the targets of prediction) can modify their
features—at a cost—to obtain favorable predictions. This
is based on earlier formulations by Brückner & Scheffer
(2009); Brückner et al. (2012), with recent works extending
the framework to settings in which users act on noisy (Ja-
gadeesan et al., 2021) or missing information (Ghalme et al.,
2021; Bechavod et al., 2022), have broader interests (Lev-
anon & Rosenfeld, 2022), or are connected by a graph (Eilat
et al., 2022). Since we model content creators as responding
to a scoring rule, our work pertains to the subliterature on
strategic regression, in which user utility derives from a con-
tinuous function (Rosenfeld et al., 2020; Tang et al., 2021;
Harris et al., 2021; Bechavod et al., 2022), and strategic be-
havior is often assumed to also affect outcomes (Shavit et al.,
2020; Harris et al., 2022). Within this field, our framework is
unique in that it considers content creators—rather than end-
users—as the focal strategic entities. The main distinction is
that this requires learning to account for the joint behavior
of all strategic agents (rather than each individually), which
even for linear score functions results in complex behav-
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ioral patters (c.f. standard settings in which linearity implies
uniform movement (Liu et al., 2022)). Regularization has
been used to control incentives in Rosenfeld et al. (2020);
Levanon & Rosenfeld (2021), but in distinct settings and
towards different goals (i.e., unrelated to recommendation
or diversity), and for user responses that fully decompose.

Performativity and incentives. The current literature on
performative learning focuses primarily on macro-level anal-
ysis, such as providing sufficient global conditions for re-
training to converge (Perdomo et al., 2020; Miller et al.,
2021; Brown et al., 2022) or proposing general optimization
algorithms (Mendler-Dünner et al., 2020; Izzo et al., 2021;
Drusvyatskiy & Xiao, 2022; Maheshwari et al., 2022). In
contrast, performativity in our setting emerges from micro-
level modeling of strategic agents in a dynamic recommen-
dation environment, and our goal is to address the specific
challenges inherent in our focal learning task. Within rec-
ommendation, content creators (or ‘supplier’) incentives
have also been studied from a game-theoretic perspective
(Ben-Porat & Tennenholtz, 2018; Ben-Porat et al., 2019;
2020; Jagadeesan et al., 2022; Hron et al., 2022). Here,
focus tends to be on notions of equilibrium, and the system
is typically assumed to have direct control over outcomes
(e.g., determining allocations or monetary rewards). Our
work focuses primarily on learning, and studies indirect
incentivization through a learned predictive rule.

2. Problem Setup
Our setup considers a recommendation platform consisting
of m users and n items. Items are described by feature
vectors xj ∈ Rd, j ∈ [n], and each item xj is owned by a
(strategic) content creator j. The goal of the system is to
learn latent vector representations ui ∈ Rd for each user
i ∈ [m] that are useful for recommending relevant items. As
in Hron et al. (2022), we assume all features are constrained
to have unit ℓ2 norm, ∥u∥ = ∥x∥ = 1 (i.e., lie on the
unit sphere). This ensures equal treatment across items (by
the system) and users (by content creators), and prevents
features from growing indefinitely due to strategic updates.

The system makes recommendations by ranking items for
each user i using a personalized score function fi(x) as:

ri = rank(fi(x1), . . . , fi(xn)) ∀i ∈ [m] (1)

where fi(x) = f(x;ui) rely on learned user representation
vectors ui. For a list of items X we denote in shorthand ri =
rank(f(X;ui)). As in most works on strategic learning
(e.g., Hron et al., 2022; Jagadeesan et al., 2022; Carroll et al.,
2022), we consider linear score functions f(x;ui) = u⊤

i x.
Overall, the goal of the system is to learn good f1, . . . , fn
from data, where u1, . . . , un are the learned parameters.

Learning objective. We measure ranking quality using the
standard measure of NDCG evaluated on the top k items,

defined as follows. Consider a list of items with relevance
scores y = (y1, . . . , yn). Let r = (r1, . . . , rn) be a ranking,
and denote by r(ℓ) the index of the ℓth-ranked item in r.
Then the top-k discounted cumulative gain (DCG) is:

DCG@k(y, r) =
∑k

ℓ=1

2yr(ℓ) − 1

log(1 + ℓ)
(2)

where 2yj − 1 measures the ‘gain’ in relevance from having
item j = r(ℓ) in the top k, and log(1 + ℓ) ‘discounts’ its
rank. NDCG is then obtained by normalizing relative to
the optimal ranking r∗ = argmaxr DCG@k(y, r). The
primary goal of the system is therefore to learn user repre-
sentations {ui}ni=1 that optimize average top-k NDCG:

max
u1,...,um

1

m

∑m

i=1
NDCG@k(yi, ri) (3)

where ri is the ranking of items for user i according to
f(x;ui). For learning, we will assume that the system has
access to relevance labels yij for some user-item pairs (i, j),
and the goal is to generalize well to other pairs.

Item diversity. In addition to ranking accuracy, we will
also be interested in measuring and promoting diversity
across recommended items. Here we consider intra-list di-
versity (Ziegler et al., 2005; Vargas & Castells, 2011; Antika-
cioglu et al., 2019) and focus primarily on cosine similarity
as a metric, cos(x, x′) = x⊤x′

∥x∥∥x′∥ , which is appropriate for
comparing unit-norm features (Ekstrand et al., 2014; Hron
et al., 2022).1 See Appendix E.4 for an extension of our
approach to entropy-based similarity.

For a list of items X = (x1, . . . , xK) and corresponding
ranking r, diversity for the top-k items is defined as:

div@k(X, r) =
1

k(k − 1)

∑k

j,ℓ=1
1− cos(xr(j), xr(ℓ))

(4)
which takes values in [0, 1] (Smyth & McClave, 2001).

Recommendation graph. In our setting, each user i is
associated with a list of Ki potentially-relevant items, de-
noted Xi ⊆ [n], and the system’s goal is to choose a
subset of k ≤ Ki items to recommend as a ranked list.2

Since the same items can appear in multiple lists, it will
be useful to consider users and items through a bipartite
graph G = (U,X,E), where (i, j) ∈ E if item j is in
user i’s list of candidate items. We will also denote
Uj = {i ∈ [m] | (i, j) ∈ E} and mj = |Uj |. As we will
see, the graph plays a key role in determining the system’s
potential for encouraging diversity.

1Since features are normalized, we have cos(x, x′) = x⊤x′.
2This is also known as second-stage recommendation; see e.g.

Ma et al. (2020); Hron et al. (2021); Wang & Joachims (2022).
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Figure 1. (A) Tradeoff between accuracy and diversity: Consider three items with high (•), medium (•), and low (•) relevance. Learned
user embedding ui obtains high NDCG@2 (projected points) but low div@2 (blue sector) (A1). Conversely, u′

i (note flipped orientation)
obtains high diversity, but at the cost of reduced accuracy (A2). (B) Creating diversity with strategic incentives: Consider two items and
three users connected by the graph G. Initially, both items are similar (light circles), and diversity is low. However, u1 and u2 incentivize
x1 and x2, respectfully, to move away from each other, results in a more diverse set for u0; in this case, without compromising accuracy.

2.1. Strategic content creators

Our key modeling assumption is that items are owned by
strategic content creators (or ‘suppliers’) whose aim is to
maximize exposure to their items (Hron et al., 2022). Con-
tent owners act to increase their item’s score s(xj), which
is an average over the scores of potentially relevant users:

s(xj) = avg{f(xj ;ui) | i ∈ Uj} (5)

To preserve equity across content creators, we use spheri-
cal averaging over user representations ui to maintain unit
norm3, which pertains to the following form:

s(xj) = ṽ⊤j xj , where ṽj =
vj

∥vj∥
, vj =

1

mj

∑
i∈Uj

ui

This can be taken to mean that the system reveals normal-
ized scores, so that utility for item j derives from ṽj which
describes an ‘average’ user representing all i ∈ Uj .

Following the general formalism of strategic classification
(Hardt et al., 2016), we assume content creators can modify
their item’s features, at a cost, and in response to the learned
predictive model. Given a known cost function c(x, x′), con-
tent creators modify items via the best response mapping:

xf
j = ∆f (xj) ≜ argmax

x′:∥x′∥=1

s(x′)− αc(xj , x
′) (6)

where the norm constraint ensures that modified items
remain on the unit sphere, and throughout we consider
quadratic costs, c(x, x′) = ∥x− x′∥22. The scaling param-
eter α ≥ 0 will allow us to vary the intensity of strategic
updates: when α is small, modifications are less restrictive
and so xf

j can move further away from xj , and vice versa.

We consider item modification to be ‘real’, in the sense that
changing x can cause y to also change. Following Shavit &

3To see why normalizing v is important, consider an item j
with two users: if u1, u2 are close, then vj will have a similar norm,
but if u1, u2 are spread out, ∥vj∥ can be significantly smaller.

Moses (2019); Rosenfeld et al. (2020), we assume labels are
determined by an unknown stochastic ground-truth function
f∗ which determines personalized relevance for any counter-
factual item x as y = f∗(x;u∗

i ), where {u∗
i }mi=1 are ground-

truth user preferences (which are unknown to the learner).

Strategic behavior and diversity. Eq. (6) reveals how the
system can drive incentives: since each content creator j
acts to make their item more aligned with ṽj , the system
can set the ui (which together compose all ṽj) to induce
ṽj-s that vary in their orientation; this incentivizes different
content creators to move towards different directions—thus
creating diversity, whose potential growth rate is mediated
by α. Note that even linear f can incentive different items
to move in different directions, since (i) due to norm con-
straints, items will not necessarily move in the direction
of the gradient of f ; and more importantly, (ii) since dif-
ferent items appeal to different users, each ṽj defines a
utility function s(xj) = f(xj ; ṽj) that is distinct for item j.
Nonetheless, the ṽj are not disjoint; the connectivity struc-
ture in G forms dependencies across the ui, which introduce
correlations in how items can jointly move (see Fig. 1 (B)).

2.2. Interaction dynamics

We will be interested in studying how learning affects rank-
ing accuracy and diversity over time. As noted, we focus on
retraining dynamics, where at each round t the system re-
trains its predictive model f t on current data (xt, yt), which
in our case, is based on strategic responses to the previous
model, xt

j = ∆ft−1(xt−1
j ). We think of item modification

as a process which takes time: In the initial portion of round
t, users remain to observe xt

j , on which f t was trained; but
exposure to f t incentivizes change, and so after some time
has passed, content creators publish the modified xt+1

j , for
which users provide fresh labels yt+1

ij . Once data has been
collected for all modified inputs, the system retrains.
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3. Learning and Optimization
The conventional approach for learning to recommend relies
on training predictive models to correctly rank items by their
relevance. Then, to promote diversity, a post-hoc procedure
is typically used to re-rank r, which in our setting can affect
diversity by determining which items appear in the top k.

The main drawback of re-ranking is that its heuristic nature
means that diversifying the list might reduce its relevance,
and can cause NDCG to deteriorate substantially. As an
alternative, here we pursue a more disciplined approach, in
which we directly optimize the joint objective:

max
u1,...,um

1

m

m∑
i=1

NDCG@k(yi, ri) + λ div@k(Xi, ri) (7)

where ri = rank(f(Xi;ui)) is the ranking of items in Xi

for user i, and λ trades off between accuracy and diversity.
With div as regularization, we can tune λ to obtain a desired
balance, or maximize diversity under accuracy constraints.
In our experiments we tune λ to achieve a predetermined
level of NDCG (e.g., 0.9); in this case, regularization serves
as a criterion for choosing the most diverse model out
of all sufficiently-accurate models.We next describe our
approach for optimizing Eq. (7), which sets the ground for
our strategically-aware objective.

3.1. Optimization

We propose to optimize Eq. (7) by constructing a differen-
tiable proxy objective, to which we can then apply gradient
methods. The key challenge is that Eq. (7) relies on a
ranking operator (i.e., for computing NDCG and top-k),
which is non-differentiable. Our approach adopts and ex-
tends Pobrotyn & Bialobrzeski (2021), and makes use of
the differentiable sorting operator introduced in Grover et al.
(2019). First, consider NDCG. For the numerator, note that
the ranking operator r(·) can be implemented using a cor-
responding permutation matrix P , i.e., yr(ℓ) = (Py)ℓ. To
differentiate through r, we replace P with a ‘smooth’ row-
wise softmax permutation matrix, P̂ . We denote by r̂ the
corresponding soft ranking, computed as r̂ = (P̂ ⊙Q)⊤1,
where Qij = i ∀j, ⊙ is the Hadamard product, and 1 is
a vector of 1-s. The denominator for NDCG@k requires
accessing indexes in y using explicit entries in r; applying
r̂ instead gives a weighted combination of y-s, with most
mass concentrated at the correct r(ℓ) when r̂ is a good
approximation. The summation term is implemented us-
ing a soft top-k operator, which we obtain by applying an
element-wise scalar sigmoid to r as:

1{r ≤ k} ≈ στ (k − r̂) (8)

For the diversity term, note that cos is naturally differen-
tiable. To make the entire div@k differentiable, we use the

soft top-k operator on item pairs via:

1

k(k − 1)

n∑
j,j′

στ (k − r̂j)στ (k − r̂j′)
(
1− x⊤

j xj′
)

(9)

3.2. Strategically-aware learning

Although Eq. (7) accounts for diversity in learning, it does so
reactively, in a way that is tailored to the previous time step.
Since the learned f incentivizes content creators to modify
items, we propose to promote diversity proactively by antic-
ipating their strategic responses. To do this, we replace Xi

with the anticipated Xf
i = ∆f (Xi) = {∆f (x)}x∈Xi

to get
our strategically-aware objective:

max
u1,...,um

1

m

m∑
i=1

NDCG@k(yi, ri) + λ div@k(X
f
i , r

f
i )

(10)
where rfi = rank(f(Xf

i ;ui)) is the anticipated ranking.
Eq. (10) optimizes for pre-modification NDCG, but
promotes post-modification diversity; this is the mechanism
through which learning can incentivize the creation of
diversity.4

The challenge in optimizing Eq. (10) is twofold: (i) ∆f is an
argmax operator, which can be non-differentiable, and (ii)
∆f depends on f both internally (by determining utility) and
externally (in the top-k operator of div@k). Fortunately, for
our modeling choices, ∆f can be solved in a differentiable
closed form. Using KKT conditions, we can derive:

∆f (xj) =
ṽj + 2αxj

|ṽj + 2αxj |
(11)

Proof in Appendix A.1. Plugging Eq. (11) into Eq. (10)
gives us our final differentiable strategic learning objective.

4. Diversity via Strategic Incentives
The reliance of the utility of content creators on the learned
f provides the system with potential power for shaping
incentives. Here we analyze when this potential can ma-
terialize in a simplified setting that focuses exclusively on
maximizing diversity, for a single time step with no cost re-
strictions (i.e., set α = 0). This removes any constraints on
ui that may arise from accuracy considerations, and serves
as a convenient substitute for lengthy strategic dynamics.

Our main object of interest in the analysis is the recommen-
dation graph G, viewed as input to the learning algorithm.
As we show, whether diversification through incentivization
is possible (or not) depends on properties of the graph. We

4While in principle it may be possible to also consider future
NDCG, note this necessitates reasoning about how deploying f
affects future y, which is a challenging causal inference task.
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first consider the graph of a single item list X and all related
users (i.e., users ui for which some xj ∈ Xi is also in X),
and then proceed to general graphs over multiple lists.

We begin with a negative result for single lists.

Proposition 1. Let X = {x1, x2}. If both items have
fully overlapping users (i.e., U1 = U2), then for any f ,
div(Xf , rf ) = 0. Hence, diversity cannot be incentivized.

Proof in Appendix B.1. Prop. 1 shows how similar users
induce similar incentives, resulting in ∆f (x1) = ∆f (x2).
Extending the result to larger item sets and multiple users is
straightforward, and implies the following: if the same list
of potentially-relevant items is associated exclusively with
the same group of users, then strategic behavior is bound to
nullify diversity entirely—regardless of any system efforts.
Conversely, Prop. 1 hints that to diversify items, it is neces-
sary to start out with some initial variation in the assignment
of users to items. But how much user variation is needed?
Our next result shows that for a single item list, when no
other considerations are present, minimal differentiation in
users is sufficient for obtaining maximal item diversity.

Proposition 2. Let X = {x1, x2}. If U1, U2 differ only in a
single user, i.e., if U1 = U ∪ {u1} and U2 = U ∪ {u2} for
some U, u1, u2 with |U | > 1, then there exists an f which
obtains maximal diversity, i.e., div(Xf , rf ) = 1.

The proof is constructive, and appears in Appendix B.2.
Prop. 2 shows that, under lenient conditions, incentivization
can drive diversity to its greatest possible extend. Generally,
and under more realistic considerations (e.g., accuracy and
cost constraints), we expect that greater differentiation is
likely necessary, even for lower gains in diversity.

We now move to considering graphs for multiple item lists.
This introduces dependencies: if some item xj appears in
two distinct but partially-overlapping user lists Xi, Xi′ , then
this restricts the possible values that the embeddings ui, ui′

can take. As such, Prop. 2 cannot simply be applied to
each list in G independently, since f cannot be tailored to
maximize diversity for Xi without affecting Xi′ , for which
f may not be optimal. Our final result shows that, despite
such dependencies, significant diversity is still attainable.

Proposition 3. Let K = 2, then for any ϵ > 0 and any N ,
there exists a graph G over N distinct lists and a correspond-
ing f s.t. the average diversity is at least (1− ϵ)(1− 3/N).

Proof in Appendix B.3, and relies on a construction that
simultaneously (i) decouples users across lists, and (ii) per-
mits maximal diversity within lists. Prop. 3 shows that the
potential for incentivizing for diversity grows towards the
near-optimal value of 1− ϵ quickly, in terms of the number
of lists N—and to the degree that the graph permits.

5. Synthetic Experiments
Our previous section showed that, under favorable con-
ditions, it is theoretically possible to generate significant
diversity through incentivization. In this section we em-
pirically demonstrate, in a series of increasingly-complex
synthetic tasks, how our strategically-aware learning ap-
proach (Eq. (10)) can encourage diversification in practice.
Each task is designed to explore a different factor in our
setup, and to shed light on how accuracy and diversity trade
off as λ is varied. Appendix C includes additional results.

Experimental setup. We set n = 200,m = 50, k =
Ki = 10 for all i, and fix d = 2 so that features x, u can
be easily visualized as angles. Item features x are sampled
from N ((1/

√
2, 1/

√
2), σ2

xI). We use f∗(x;u∗
i ) = 2(u

∗
i )

⊤x,
where ground truth user preferences u∗ are sampled from
N ((1/

√
2, 1/

√
2), σ2

u∗I). All features are normalized post-
sampling. We use σx = 1 and σu∗ = 0.1, but in some
settings vary them to control dispersion. All results are
averaged over 100 random repetitions (when applicable).

5.1. The role of variation in user item lists

Our first experiment investigates the importance of variation
across user item lists, which complements Sec. 4. We
begin with a graph composed of five mutually-exclusive
fully-connected subgraphs, exhibiting full overlap; then,
we ‘shuffle’ N edges across subgraphs, for increasing
N ∈ N—which decreases user overlap (at N ≈ 1000 edges
are approx. uniform). Figure 2 (left) shows NDCG (bottom)
and diversity (top) for a range of λ. For N = 0 (full overlap),
diversity is zero for all λ, in line with Prop. 1. As N grows,
diversity increases, but at the cost of reduced NDCG, which
is more pronounced for larger λ. Note how only minimal
overlap (e.g., N = 100 for λ = 1) suffices for generating
considerable diversity, which rises sharply once N > 0.
This suggests our approach can utilize the capacity for di-
versity implied by Prop. 2, even under accuracy constraints.

5.2. The role of variation in true user preferences

When learning aims primarily for accuracy, training encour-
ages each ui to be oriented towards its u∗

i . For diversity, this
acts as a constraint which restricts the capacity of f to diver-
sify. Here we study the role of variation in u∗

i as a mediator
in this process. Figure 2 (center) shows NDCG (bottom)
and diversity (top), both in absolute values and relative to
pre-update diversity, for varying σu∗ and for a range of λ.
Here we sample edges uniformly, and consider a single time
step with α = 0. Without regularization (λ = 0), strate-
gic updates cause diversity to drop to zero, even when user
preferences are reasonably dispersed (σu∗ = 1). However,
even mild regularization (λ = 0.05) suffices for obtaining
significant diversity through incentivization, which becomes
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Figure 2. Synthetic experiments. (Left) As user overlap decreases (larger N ), our approach is quickly able to incentivize diversity; this
is pronounced for larger λ. (Center) For any dispersion level of true user preferences (u∗), even mild regularization (λ > 0) suffices for
our approach to improve diversity; without it (λ = 0), diversity may plummet. (Right) For low cost scales (α < 1), changes are large, and
learning is unable to diversify. But once α ≥ 1, this changes sharply, with Larger α requiring more time for diversity to smoothly form.

more pronounced as λ grows; for all λ > 0.1, diversity is
high, and in effect remains fixed. This suggests our model
can effectively utilize natural variation in user preferences.
Increased diversity comes at the cost of NDCG, but this
diminishes quickly for larger dispersion.

5.3. The role of time vs. modification costs

We now turn to examining the temporal formation of diver-
sity through retraining dynamics, as mediated by modifi-
cation costs α. When α is large, content creators can only
apply small changes to x at each round (and vice versa for
small α). On the one hand, small steps suggest that diversity
may require time to form; but on the other, note that small
steps also allow the system to intervene with high fidelity
and direct incentives throughout, and hence to gradually
‘steer’ behavior towards diversification. Figure 2 (right)

0 2 4 6 8 10
round (t)

90°

180°

270°

x1...
x10

item diversification over time ( =1, =1000)

Figure 3. Dispersal of items xi ∈ R2 over time.

shows diversity (top) and NDCG (bottom) for increasing α
and over multiple retraining rounds. We set λ to be large so
that learning is geared primarily towards diversity. When α
is small (here, < 1), diversity quickly drops to zero—as in
Prop. 1. In contrast, α = 1 exhibits a sharp transition, in
which diversity quickly rises. Fig. 3 visualizes for a set of
items in R2 how they quickly become dispersed. Larger α
entail similarly high diversity: here the process is slower—
since update steps are smaller, but also more stable—since
the system has finer control over each step; c.f. α = 1,
where NDCG fluctuates.

6. Experiments on Real Data
We now turn to evaluating our approach on real data. Here
we study how NDCG and diversity evolve over time un-
der different learning methods and experimental conditions.
See Appendix D for additional details, and Appendix E for
extended results (E.1,E.2), a sensitivity analysis to misspec-
ification of α (E.3), and additional similarity metrics (E.4).

Data. Our experimental setup is based on the restaurants
portion of the Yelp dataset5, which includes user-submitted
restaurant reviews. We focus on users having at least 100
reviewed restaurants. For each user i, we construct the list
of potential items Xi to include the 40 most popular restau-
rants of those reviewed by i, which amounts to 236 users
and 1,520 restaurants in total. We elicit d = 43 restaurant
features (e.g., cuisine type, noise level) to be used by the
system for learning. We also elicit ‘ground truth’ user fea-
tures u∗

i used for optimizing f∗(x′, u∗
i ), which is trained to

5https://www.yelp.com/dataset/download
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Figure 4. Experiments on Yelp data. (Left+center) Diversity and NDCG over rounds for different methods and target NDCG values,
for loose (α = 0.1; left) vs. restricted (α = 2.0; center) strategic updates. Our strategic approach consistently achieves significant and
sustained improvement in diversity, with minimal loss in accuracy. Right Diversity after T = 10 rounds for increasing costs scales α.

predict the likelihood that i will review x, interpreted here as
relevance y. The labeling function f∗ is used only for deter-
mining updated relevancies y′ for modified items x′; neither
f∗ nor the u∗

i are known to the learner. We ensure f∗ is dis-
tinct from learnable functions f by several means: (i) f∗ is a
fully-connected deep network, whereas f are linear; (ii) f∗

is trained using true user features u∗
i , which are unobserved

for f ; (iii) f∗ is trained on considerably more data, and of
which the data used for training f is a non-representative
subset; and (iv) f is trained on labels that are modified to
emphasize highly-rated items. Full details in Appendix D.2.

Setup and learning. We consider top-10 recommendation
(i.e., k = 10), and evaluate performance over T = 10
rounds of retraining and corresponding strategic updates.
For training, we assume that at each round the system has
access to 30 items per user, randomly selected (out of the
40) per round; of these, a random 20 are used for training,
and the remaining 10 are added for validation (tuning λ
and early stopping). Test performance is evaluated on all 40
items. Since the test set includes additional items (compared
to training), f must learn to generalize well to new content
at each step. Since adding items also changes the graph, and
since the graph determines strategic responses—f must also
learn to generalize to new forms of strategic updates.

Methods and evaluation. In line with our dynamic setup
(Sec. 2.2), all methods considered aim primarily at opti-
mizing ‘current’ NDCG (i.e., at time t maximize NDCG on
x(t)), but differ in how (and if) they promote diversity. These
include: (i) a non-strategic approach which regularizes
for current diversity on non-strategic inputs x(t) (Eq. (7)),
(ii) our strategic approach, which regularizes for future
diversity on the anticipated x(t+1) = xft (Eq. (10)), (iii) an
accuracy-only baseline, which does not promote diversity
(by setting λ = 0), (iv) re-ranking using the popular MMR

diversification procedure (Carbonell & Goldstein, 1998),
and (v) a hybrid@t approach, which runs strategic for
t = 5 rounds, and then ‘turns off’ regularization.

Since non-strategic and strategic are designed to bal-
ance NDCG and diversity, for a meaningful comparison, in
each experimental condition we fix a predetermined target
value for NDCG, tune each method at each round to achieve
this target (using λ, on the validation set, and up to tolerance
0.01), and compare the resulting diversity. We use the no-
tation λβ to mean that λ was tuned for the target β. To com-
pare with baseline, in one condition we set λ to the largest
value that maintains the same NDCG as the baseline (for
which λ = 0), denoted λbase.Note that due to performativity,
data at time t depends on the learned model at time t−1. Be-
cause our dynamics are stateful, results are path-dependent,
and so comparisons must be made across full trajectories—
and cannot be made independently at each time point.

6.1. Diversity over time

Our first experiment studies how diversity evolves over time
for different NDCG targets. Fig. 4 (left) shows diversity
(top) and NDCG (bottom) per round for α = 0.1, which
permits significant (yet restricted) strategic updates. Re-
sults show that for baseline, which does not actively pro-
mote diversity, average diversity decreases over time by
roughly 40%. Adding MMR, which re-ranks for diversity,
improves only marginally. In the λbase condition, diversity
for non-strategic improves only slightly compared to
baseline, mostly at the onset. In contrast, our strategic
approach is able to consistently maintain (and even slightly
increase) diversity over time, albeit at small occasional drops
in test NDCG, as compared to non-strategic (≤ 0.02).6

6One possible reason for baseline to achieve NDCG≈1 is
that when diversity is extremely low, items are so similar (and
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In the λ0.9 condition, non-strategic is able to preserve
roughly 80% of diversity by sacrificing ∼ 13% of the opti-
mal NDCG. Meanwhile, and for the same loss in NDCG,
strategic is able to quickly double the initial diversity—
and sustain it, likely through means similar to those ob-
served in Sec. 5.3. Note that sustaining diversity requires
to actively promote it throughout; once regularization is
switched off (hybrid), diversity immediately drops.

Fig. 4 (center) shows results for a similar setting, but using a
larger α = 2. In comparison, here diversity for all methods
improves—but for baseline and MMR, this is only transient.
Results are also smoother, and accumulate—for both im-
provement and deterioration—which is likely due to the
fact that strategic movements are now more restricted. The
biggest distinction here is that for λ0.9, non-strategic
eventually obtains the same level of diversity as strategic,
this likely due to α being large: small updates mean that x
and xf are correlated, and so regularizing for div(X, r) also
improves div(Xf , rf ) to some extent. Here the advantage
of strategic is that it improves much faster.

6.2. The role of modification costs.

To further examine the role of α, we compare performance
across a range of cost scales and for multiple target NDCG
values. Fig. 4 (right) shows diversity at T = 10. As can be
seen, all methods benefit from increasing α. However, diver-
sity for baseline remains below that of a random baseline
which recommends k random items. For strategic,
sacrificing fairly little NDCG (λ0.95 and below) suffices
for gaining significant diversity across all α. Results also
show how α mediates the gap between non-strategic
and strategic, which increases as α grows.7

hence similarly relevant) that choosing the top-k becomes trivial.
7To avoid clutter we plot non-strategic only for λ0.9, which

is comparable to Fig. 4 (left) and (center), but note that other target

6.3. Tradeoffs over time.

Fig. 5 shows Pareto curves for strategic, obtained by
considering multiple λ and over several rounds. Results
show that the entire tradeoff curve between NDCG and
diversity improves over time. Paths for each target NDCG
depict specific trajectories, and show how diversity can be
created without sacrificing accuracy. This holds even when
no compromise in accuracy is allowed: even though both
baseline and λbase maximize accuracy, our strategic
approach is able to steer content creators towards more
diverse content. This is achieved by utilizing the flexibility
to choose ui which improve both accuracy and diversity.

7. Discussion
Through the lens of performativity, our paper studies how
a learning system can incentivize content creators to col-
lectively form a more diverse inventory of items for rec-
ommendation. In this, we challenge the conventional view
that diversity is merely a matter of which items to present
(and which not), and argue that to fundamentally rectify
the predisposition of modern recommendation systems to
homogenize content, learning must (i) recognize that con-
tent changes over time, in part due to the strategic behavior
of content creators, and (ii) capitalize on its power shape
incentives and steer towards diversity. Our work joins others
in taking a step towards studying recommendation systems
as complex ecosystems in which users, creators, and the
system itself act and react to promote their own goals and
aspirations. From a learning perspective, this requires us to
rethink the role that predictions play in the recommendation
process, and consider its implications on user welfare.
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A. Optimization
A.1. Closed form expression for best response ∆f

Proof. To compute an item’s best-response update ∆f (x), we must solve the following constrained problem:

max
x′

vTx′ − αc(x′, x) s.t ||x||2 = 1

where c(x, x′) = ∥x′ − x∥22. We solve for x′ using Lagrangian analysis. First, we square the constraint (which does not
change the condition itself). Define the Lagrangian as follows:

L(x′, λ) = vTx′ − α∥x′ − x∥22 + λ[||x′||22 − 1]

Next, to find the minimum of L, derive with respect to x′, and compare to 0:

v − 2α(x′ − x) + 2λx′ = 0

v + 2αx = 2αx′ − 2λx′

v + 2αx

2α− 2λ
= x′

Plugging x′ into the original constraint gives:

|v + 2αx|
|2α− 2λ|

= 1

|v + 2αx| = 2α− 2λ

|v + 2αx| − 2α = −2λ

Finally, plugging λ into the expression for x′
i obtains:

v + 2αx

|v + 2αx|
= x′

B. Proofs
B.1. Proposition 1

Proof. As both items have the same set of users, the normalized average of user embeddings is the same for both items, i.e.,
ṽ1 = ṽ2 = ṽ. Since α = 0, the best response (Eq. (11)) is given by ∆f (xj) = ṽ for both j = 1, 2. Hence, both items are
modified in the same way, and so diversity is by definition zero.

B.2. Proposition 2

We begin with a useful lemma.

Lemma 4. For any n > 1 there exists a set of n unit-norm user embeddings U = {u1, . . . , un} for which:∑
ui∈U

ui =
−→
0

where
−→
0 is the zero vector.

Proof. We prove for d = 2; for d > 2, we set the first two coordinates accordingly, and the other d− 2 coordinates are set
to zero. For n = 2, we define U2 = {u1, u2} as follows:

u1 = (−1, 0), u2 = (1, 0)

Note that indeed
∑

ui∈U2
ui = u1 + u2 = (0, 0).
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For n = 3, we define U3 = {u1, u2, u3} as follows:

u1 = (
1

2
,

√
3

2
), u2 = (

1

2
,−

√
3

2
), u3 = (−1, 0)

Here as well
∑

ui∈U3
ui = u1 + u2 + u3 = (0, 0).

Observation: ∀n > 1 ∃a, b ≥ 0 for which n = 2a+ 3b.

Thus, for any n > 1, we define U to include a copies of U2 and b copies of U3. Using this construction, we get∑
ui∈U ui = (0, 0), as required.

We now return to proving the proposition. The general idea is to define two embeddings that are maximally distinct, and
ensure all others do not interfere with their orientation.

Proof. First we prove that for |U | > 1 diversity is one. According to Lemma 4, there exists a set of user embedding vectors
U of size |U1

⋂
U2| that holds: ∑

u∈U

u =
−→
0

We define an f that assigns to each user in |U1

⋂
U2| a vector in U (one to one map). Since the sum of the vectors in U is 0 it

holds that ṽ1 = u1 and ṽ2 = u2. Since α = 0, there are no modification costs, and the strategic response of items according
to Eq. (11) is ∆f (x1) = u1 and ∆f (x2) = u2. In order to create maximal diversity between ∆f (x1) and ∆f (x2), we can
use any choice of vectors u1 and u2 that satisfy u1 = −u2.

B.3. Proposition 3

We prove for d = 2; for d > 2, we set the first two coordinates accordingly, and the other d− 2 coordinates are set to zero.
This allows us to work with angles between user embeddings u. We use ‘x’ and ‘y’ to refer to the corresponding Cartesian
components of angles.

Consider the following graph and user vector embeddings. For each i < N , define user i’s list of candidate items Xi to
include the items xi, xi+1. For user N , the items in XN are xN , x1.

Let 0 < δ. Define the following embedding: For every odd i < N , set ui = 90−iδ; For every even i < N , set ui = 270−iδ.
For i = N we define uN = 270 + δ. Note that this gives x1 = (1, 0) since the two users that influence x1 are u1 and uN ,
whose average gives a vector with coordinates:

x :
1

2
(cos(270 + δ) + cos(90− δ)) =

1

2
(cos(−90 + δ) + cos(90− δ)) =

1

2
(cos(−(90− δ) + cos(90− δ)) =

1

2
(cos((90− δ) + cos(90− δ)) =

cos(90− δ)

y :
1

2
(sin(270 + δ) + sin(90− δ)) =

1

2
(sin(−90 + δ) + sin(90− δ)) =

1

2
(−sin(90− δ) + sin(90− δ)) =

= 0

This item’s y value is 0; hence, do due unit norm constraints, we have x1 = (1, 0).
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We now calculate the response of xi when i is even for all 1 < i < N . The users associated with xi are:

ui−1 = 90− (i− 1)δ, ui = 270− iδ

We average the two vectors by averaging each coordinate x, y:

x :
1

2
(cos(270− iδ) + cos(90− (i− 1)δ)) =

cos(
360− (2i− 1)δ

2
)cos(

180− δ

2
) =

cos(180− 2i− 1

2
δ)cos(90− δ

2
) =

− cos(
2i− 1

2
δ)sin(

δ

2
)

y :
1

2
(sin(270− iδ) + sin(90− (i− 1)δ) =

sin(
360− (2i− 1)δ

2
)cos(

180− δ

2
) =

sin(180− 2i− 1

2
δ)cos(90− δ

2
) =

sin(
2i− 1

2
δ)sin(

δ

2
)

Normalizing gives:√
(−cos(

2i− 1

2
δ)sin(

δ

2
))2 + (sin(

2i− 1

2
δ)sin(

δ

2
))2 = sin(

δ

2
)

√
cos(

2i− 1

2
δ)2 + sin(

2i− 1

2
δ)2 = sin(

δ

2
)

Note this must be positive since it describes a vector length; since 0 < δ < 180, this length is sin( δ2 ) (and not −sin( δ2 )).
The normalized vector is:

(−cos(
2i− 1

2
δ), sin(

2i− 1

2
δ)) = (cos(180− 2i− 1

2
δ), sin(180− 2i− 1

2
δ))

Since α = 0, according to Eq. (11),this gives ∆(xi).

Next, we calculate the response of xi when i is odd for all 1 < i < N . The users associated with xi are:

ui−1 = 270− (i− 1)δ

ui = 90− iδ

We average the two vectors by averaging each coordinate x, y:

x :
1

2
(cos(270− (i− 1)δ) + cos(90− iδ) =

cos(
360 + (1− 2i)δ

2
)cos(

180 + δ

2
) =

cos(180− 2i− 1

2
δ)cos(90 +

δ

2
) =

cos(
2i− 1

2
δ)sin(

δ

2
)

y :
1

2
(sin(270− (i− 1)δ) + sin(90− iδ) =

sin(
360− (2i− 1)δ

2
)cos(

180 + δ

2
) =

sin(180− 2i− 1

2
δ)sin(−δ

2
) =

− sin(
2i− 1

2
δ)sin(

δ

2
)
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Normalizing gives:√
(cos(

2i− 1

2
δ)sin(

δ

2
))2 + (−sin(

2i− 1

2
δ)sin(

δ

2
))2 = sin(

δ

2
)

√
cos(

2i− 1

2
δ)2 + sin(

2i− 1

2
δ)2 = sin(

δ

2
)

The normalized vector is:

(cos(
2i− 1

2
δ),−sin(

2i− 1

2
δ)) = (cos(−2i− 1

2
δ), sin(−2i− 1

2
δ))

Since α = 0, according to Eq. (11),this gives ∆(xi).

We now calculate the diversity for each user i < N − 1. User i = 1 has items x1 and x2 in his list. Thus, diversity is:

1− xT
1 x2

2
=

1

2
(1− (1 · (−cos(

4− 1

2
δ) + 0 · sin(4− 1

2
δ))) =

1 + cos( 3δ2 )

2

For even i, we first calculate the cosine similarity:

xT
i xi+1 =

− cos(
2i− 1

2
δ)cos(−2(i+ 1)− 1

2
δ) + sin(

2i− 1

2
δ)sin(−2(i+ 1)− 1

2
δ) =

− cos(
2i− 1

2
δ)cos(−2i+ 1

2
δ) + sin(

2i− 1

2
δ)sin(−2i+ 1

2
δ) =

− [cos(
2i− 1

2
δ)cos(−2i+ 1

2
δ)− sin(

2i− 1

2
δ)sin(−2i+ 1

2
δ)] =

− cos(
2i− 1

2
δ − 2i+ 1

2
δ) =

− cos(δ)

Diversity is given by:

1− xT
i xi−1

2
=

1 + cos(δ)

2

For odd i, cosine similarity is:

xT
i xi+1 =

− cos(−2i− 1

2
δ)cos(

2(i+ 1)− 1

2
δ) + sin(−2i− 1

2
δ)sin(

2(i+ 1)− 1

2
δ) =

− cos(−2i− 1

2
δ)cos(

2i+ 1

2
δ) + sin(−2i− 1

2
δ)sin(

2i+ 1

2
δ) =

− [cos(−2i− 1

2
δ)cos(

2i+ 1

2
δ)− sin(−2i− 1

2
δ)sin(

2i+ 1

2
δ)] =

− cos(−2i− 1

2
δ +

2i+ 1

2
δ) =

− cos(δ)

Diversity is given by:

1− xT
i xi−1

2
=

1 + cos(δ)

2

We have remaining diversity for users N − 1 and N . Denote their corresponding diversities by dN−1 and dN . The overall
average diversity (Eq. (4)) is:

div =
1

N

(
dN−1 + dN +

1 + cos( 3δ2 )

2
+

(N − 3)(1 + cos(δ))

2

)
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Figure 6. Empirical generalization of Proposition 1 for α ̸= 0.

Since dN−1 and dN are non-negative, we get:

div ≥ 1

N

(
1 + cos( 3δ2 )

2
+

(N − 3)(1 + cos(δ))

2

)

Note 1+cos( 3δ
2 )

2 is also non-negative since cos( 3δ2 ) cannot be less than −1. Hence, we get:

div ≥ (N − 3)(1 + cos(δ))

2N
=

N − 3

N

1 + cos(δ)

2

Finally, set δ = cos−1(1− 2ϵ); this gives ϵ = 1−cos(δ)
2 , and since 1− ϵ = 1+cos(δ)

2 , we get as required:

div ≥
(
1− 3

N

)
(1− ϵ)

C. Additional Experimental Results: Synthetic Data
C.1. Empirical analysis: Proposition 1 beyond α = 0

Proposition 1 states that full user overlap leads to zero diversity, but relies on the assumption that α = 0, i.e., that there are
no modification costs, and so items can move arbitrarily on the unit sphere. Our motivation for considering α = 0 (and a
single time step) was that it is a useful proxy for larger α over multiple updates (that do not include retraining). Here we
demonstrate empirically that this is indeed the case, i.e., that for α > 0, diversity does go to zero over time.

We consider two items, positioned so that they are as far apart as possible: x1 = (1, 0) and the other at x2 = (−1, 0). We
set ṽ, which represents the spherical average of the overlapping users, to a random direction. We then measure how diversity
changes over the time. As shown in Figure 6 diversity drops to zero for all α considered.

C.2. Accuracy and diversity over time

As an intermediate step between the experiments in Sec. 5.2 and Sec. 5.3, here we consider how accuracy and diversity
trade off over time and for a range of λ, but while keeping α = 0. Results are shown in Figure C.2. For λ = 0 (i.e., learning
does not regularize for diversity), resulting NDCG is high and fixed, but diversity is nearly zero. This can be explained
by the small value of σu∗ , which implies that after strategic modification, items will be highly similar—which eliminates
diversity (as in experiment 5.2), and makes the ranking task easy (since all items are similarly relevant). In the other extreme,
when λ = 1000 (and so diversity is heavily regularized for), we observe that in the first round, diversity increases sharply,
whereas NDCG decreases. In the subsequent rounds, diversity remains high and NDCG remains low.

For intermediary λ, results show how the learning allows to balance NDCG and diversity, where diversity is obtained for
little loss in NDCG. For larger λ, more NDCG is sacrificed and diversity increases. An interesting phenomena is that lower
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Figure 7. (Left) diversity vs number of rounds. (Right) NDCG vs number of rounds.
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Figure 8. (Left) diversity vs number of rounds for λ = 0.025. (Right) diversity vs number of rounds for λ = 1.

values of λ exhibit periodic behavior. For example, for λ = 0.025, diversity alternates between very high (even round) and
very low (odd rounds). Given how NDCG and diversity relate, we see two possible explanations for this:

(1) When diversity is high, the relevance of items may differ significantly. As a result, even a mild change in the item’s
ranking can cause NDCG to drop. To avoid this loss of NDCG, one solution is for the model to learn user embeddings
ui that are close to u∗. This, however, causes diversity to be low in the next round.

(2) When diversity is low, item features are very similar, and hence have highly similar relevance values. This implies
that most rankings will have similar NDCG. Consequently, learning can encourage diversity without sacrificing
current NDCG.

C.3. The role of the number of recommended items k

Here we consider how the size of the recommendation list k impacts the ability of the model to create diversity. We keep all
other aspects of the experiment fixed, and vary k. Figure 8 shows results for two values of λ: a low (but positive) value of
λ = 0.025 (left), and a high value of λ = 1. Overall, results show that higher k enables larger diversity; conversely, when k
is small, results show that it is harder for the model to encourage diversity. One possible reason is that due to linearity, the
top of the list is likely to includes items that are similar. The main distinction between the low and high λ is how diversity
appears over time. As in the previous experiment in Sec. C.2 (in which k = 10), we see that λ = 0.025 exhibits alternating
diversity for all k. For λ = 1, lower k still exhibits some fluctuations, but these become small as k grows.

D. Experimental details
D.1. Data

Our experiments use the Yelp dataset, which is publicly available at https://www.yelp.com/dataset/
download.8

8Note Yelp periodically updates their repository; to ensure consistency, we include in our code preprocessed data, used in our
experiments, that was parsed from raw data published by Yelp on July 2021.
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Items. Yelp includes data about many business types; of these, our experiment focuses on restaurants. To obtain restaurant
entries, we manually identify and select all categories that pertain to restaurants (e.g, ‘pizzaria’ or ‘burger bar’). This results
in 22,197 distinct entries.

Features. For features, we use a subset of the available features that were prevalent, and which were found to be informative
for training f∗. We use category information to form additional features by grouping similar categories having similar
contextual meaning; for example, the categories ‘pizza’, ‘pasta’, ‘calzone’, etc. are assigned the binary feature ‘Italian
cuisine’. Overall we use 43 features, which include:

’stars’, ’alcohol’, ’restaurants good for groups’, ’restaurants reservations’, ’restaurants attire’, ’bike parking’, ’restaurants
price range’, ’has tv’, ’noise level’, ’restaurants take out’, ’caters’, ’outdoor seating’, ’good for meal-dessert’, ’good for
meal-late night’, ’good for meal-lunch’, ’good for meal-dinner’, ’good for meal-brunch’, ’good for meal-breakfast’, ’dogs
allowed’, ’restaurants delivery’, ’japanese’, ’chinese’, ’india’, ’middle east’, ’mexican food’, ’sweets’, ’coffee’, ’italian’,
’burgers’, ’hot dogs’, ’sandwiches’, ’steak’, ’pizza’, ’seafood’, ’fast food’, ’vegan’, ’ice cream’, ’restaurants table service’,
’business accepts credit cards’, ’wheel chair accessible’, ’drive thru’, ’happy hour’, ’corkage’.

Users. As noted, we focus on active users who have contributed at least 100 reviews. One reason is that we have found
that including low-activity users in this dataset results in a sparse and disconnected graph, with many isolated items (and
corresponding users); this trivializes the task of diversification since most items can be incentivized independently. For each
user, we consider the 40 most popular items (of those rated by that user), since by similar reasoning these provide larger
overlap, and hence more intricate dependencies across items. In particular, we use the following procedure to construct
potential item lists:

Denote by R the set of all restaurants, and by U set of active users.

• for all users u ∈ U , initialize Xu = ∅

• for all restaurants r ∈ R, initialize Ur to include all users u that have reviewed restaurant r

• while exists u ∈ U for which |Xu| < 40:

• let r be the restaurant with the most users in U , i.e., Ur ∩ U is largest
• for each user u ∈ Ur:

• add r to Xu

• remove r from R

• if |Xu| = 40, then for each r′ in xu, remove u from Ur′

D.2. Generating counterfactual ground-truth labels (pre-processing)

Since our experiments include modified items xf
j that do not exist in the data, for learning and evaluation we require means

to generate corresponding counterfactual relevance scores yfj . To achieve this, prior to the experiment we train a ground
truth labeling function, f∗(x), which we query for updated labels throughout the experiment. As noted, we ensure f∗ is
distinct from (and more powerful than) the predictive models f we learn in the actual experiment.

Data for training f∗. We train f∗ on all data generated by users having at least 50 restaurant reviews; these amount to
1,377 users and 113,852 reviews. Since the original data does not include informative user features, we generate ground-truth
user features u∗

i by aggregating for each user i the features of all restaurants reviewed by i. This is similar in spirit to
approaches for content-based recommendation. Formally, we define u∗

i = 1
| revi |

∑
x∈revi

x, where revi is the set of all
restaurants that the user i reviewed.

For labels, we consider probabilistic labels yij ∈ [0, 1] that describe the likelihood that user i will visit restaurant j, which
we interpret as relevance. For each user i, we set yij = 1 for every restaurant j that i reviewed. To obtain negative labels,
for each (i, j) pair, we first obtain the geographical location of restaurants j, and then retrieve the closest restaurant j′ (in
geographical terms) to j that i did not review; we then set yij′ = 0. This is intended to mimic a setting in which i could
have went to either j or j′ (since they are physically nearby), but chose to go to j.
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Architecture. We set f∗ to be an MLP with ReLU activations. We use five layers, which we have found to be sufficient
for expressing the non-linear relations between user and item features found in the data. The first layer has 86 inputs (43
restaurant features and 43 user features) and 86× 2 = 172 outputs, and for each consecutive layer the output dimension
reduces by half.

Training and evaluation. We split the data into train, validation, and test sets, using a 70-20-10 split. We optimize using
Adam with a learning rate of 0.01, which gives a reasonable balance between performance and runtime, and used the
validation set for early stopping. The final f∗ achieves 72% accuracy on the held-out test set.

D.3. Hyper-parameters and tuning (main experiment)

For optimizing predictive models f in each experimental condition, we use Adam and train for a maximum of 200 epochs
with learning rate 0.1. For smoothing (see Sec. 3.1), we use temperatures τ = 0.1 for NDCG, τ = 1 for the permutation
matrix approximation, and τ = 5 for the soft-k function; all were chosen to be the largest feasible values that permit smooth
training. All experiments were run on a cluster of AMD EPYC 7713 machines (1.6 Ghz, 256M, 128 cores).

E. Additional experimental results: real data
E.1. Diversity over time – additional results

Figure 9 includes extended results pertaining to our main experiment in Sec. 6.1 for additional cost scales α.
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Figure 9. Diversity and NDCG over rounds for different methods and target NDCG values, and for costs α ∈ {0.1, 0.5, 1, 2}.

E.2. Tradeoffs over time – additional results

Figure 10 includes extended results for our experiment on tradeoffs over time in Sec. 6.2 for additional cost scales α.
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Figure 10. Pareto curves for strategic per round (varying λ; solid lines), and vs. baseline. Dashed lines show per-λ trajectories.

E.3. Sensitivity to a misspecification of the response model

Our experiments in Sec. 6 consider a setting in which the system has knowledge of the response model ∆, and in particular, of
the true cost scale α. In this section we explore the sensitivity of our approach to learning under misspecified α. In particular,
in each experimental instance, we train our model on some α, but test it on a different α′. Note that the misspecified α is
used throughout all training rounds, and so the effects of misspecification accumulate.
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Figure 11 (left) shows diversity over rounds on a fixed test α = 1, for smaller training α ∈ [0.6, 1) (blue lines), larger
training α ∈ (1, 1.4] (red lines), and the correct training α = 1 (black line). Results show our approach is fairly robust to
misspecification, with performance for all train α almost matching the correct one. Figure 11 (right) shows similar results for
test α = 0.5. Here robustness is preserved in full for smaller α ∈ [0.1, 0.5), but shows some deterioration in performance
for the larger α ∈ (1, 1.4].
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Figure 11. Diversity for misspecified cost scale α, for fixed test α and varying train α.

Complementarily, Figure 12 shows diversity for fixed train α and varying test α. Here, performance is again robust for
α = 1 (left). However, for the smaller train α = 0.5 (right), in which items are subject to more dramatic modifications,
mispecification has a significant effect on performance. For smaller test α (blue lines), sever overestimation of α in training
(e.g., 0.5 vs. test α = 0.1) has a severe negative effect on diversity over time. Interestingly, underestimation of α in training
(red lines) results in improved diversity, suggesting that perhaps taking excessive cautionary steps is helpful in this case.
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Figure 12. Diversity for misspecified cost scale α, for fixed train α and varying test α.

E.4. Entropy-based diversity regularization

As we state in Sec. 2, our paper focuses predominantly on cosine similarity, which we believe is appropriate for the
recommendation environment we consider, and is a popular choice in the literature. Nonetheless, our approach is not
restricted to this choice, and in this section we describe how it can be extended to operate on other similarity measures, and
in particular, on entroty-based similarity. We then provide some empirical results for this settings.

To begin, note that conventional entropy regularization (e.g., Qin & Zhu (2013)) assumes a Gaussian distribution over feature
vectors, and so is not immediately applicable to our setting of unit-norm features. To account for this, we propose a similar
measure, but based on the Beta distribution, which is appropriate for inputs in [0,1], and which can apply per feature. The
benefits of this measure are that: (i) its parameters can be efficiently estimated using moment matching (Owen, 2008); (ii)
both parameter estimates and the differential entropy function are differentiable, and hence permit gradients to pass through;
and (iii) entropy can be made to take strategically-modified inputs, and hence allow for strategically-aware optimization.

The Beta distribution is defined by two shape parameters, a > 0 and b > 0. Let Z ∼ Beta(a, b), and for a given sample of
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such Z-s, denote its average by Z̄ its standard deviation by S. Then the parameters a and b can be efficiently estimated as:

â = Z̄(Z̄
(1− Z̄)

S2
− 1), b̂ = (1− Z̄)(Z̄

(1− Z̄)

S2
− 1)

Our approach is to consider each feature in each item list as deriving from some Beta distribution. Hence, for a given
list X and feature i, we first estimate â, b̂ using {xi}x∈X . Note that both estimands are differentiable. Then, we compute
entropy for this list and feature as ei(X) = entropy(â, b̂), which admits a differentiable closed form (we used the pytorch
implementation9 that allows to pass gradients). Finally, we define div(X) = 1

d

∑d
i=1 ei(X). We can then replace X with

Xf , and plug into our objective in Eq. (10), which remains differentiable.

Using this approach, we extend our main experiments to also include entropy-based regularization. Figure 13 shows diversity
and NDCG for all methods, when diversity is measured using entropy. Here again we see that strategically-aware methods
outperform non-strategic methods across multiple cost scales α, although to a lesser extent than when measuring cosine
similarity. Interestingly, optimizing for the incorrect correct measure (here, cosine; blue and orange) performs as well as
when the correct measure (i.e., entropy; red and green) is optimized.
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Figure 13. Experiments using entropy-based similarity as a diversity measure.

Finally, we rerun our original experiment using cosine similarity as a measure of diversity, but considering also methods that
optimize entropy-based similarity (red and green). Here we see that misspecified diversity regularization is useful, but to a
lesser extent than the correct form of regulariztaion. Nonetheless, the importance of awareness to strategic behavior remains
to be more important (in terms of performance) than applying the correct regularizer.
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Figure 14. Experiments using cosine similarity as a diversity measure, but including also methods that optimize entropy-based diversity.

9https://pytorch.org/docs/stable/distributions.html
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