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Abstract

There is an emerging interest in generating ro-
bust counterfactual explanations that would re-
main valid if the model is updated or changed
even slightly. Towards finding robust coun-
terfactuals, existing literature often assumes
that the original model m and the new model
M are bounded in the parameter space, i.e.,
∥Params(M)−Params(m)∥<∆. However, mod-
els can often change significantly in the parameter
space with little to no change in their predictions
or accuracy on the given dataset. In this work,
we introduce a mathematical abstraction termed
naturally-occurring model change, which allows
for arbitrary changes in the parameter space such
that the change in predictions on points that lie
on the data manifold is limited. Next, we pro-
pose a measure – that we call Stability – to quan-
tify the robustness of counterfactuals to potential
model changes for differentiable models, e.g., neu-
ral networks. Our main contribution is to show
that counterfactuals with sufficiently high value
of Stability as defined by our measure will remain
valid after potential “naturally-occurring” model
changes with high probability (leveraging concen-
tration bounds for Lipschitz function of indepen-
dent Gaussians). Since our quantification depends
on the local Lipschitz constant around a data point
which is not always available, we also examine
practical relaxations of our proposed measure and
demonstrate experimentally how they can be in-
corporated to find robust counterfactuals for neu-
ral networks that are close, realistic, and remain
valid after potential model changes.
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1. Introduction
Counterfactual explanations (Wachter et al., 2017; Karimi
et al., 2020; Barocas et al., 2020) have garnered significant
interest in various high-stakes applications, such as lending,
hiring, etc. Counterfactual explanations aim to guide an
applicant on how they can change a model outcome by
providing suggestions for improvement. Given an original
data-point (e.g., an applicant who is denied a loan), the goal
is to try to find a point on the other (desired) side of the
decision boundary (a hypothetical applicant who is approved
for the loan) which also satisfies several other preferred
constraints, such as, (i) proximity to the original point; (ii)
changes in as few features as possible; and (iii) conforming
to the data manifold. Such a data-point that alters the model
decision is widely referred to as a “counterfactual.”

However, in several real-world scenarios, such as credit lend-
ing, the models making these high-stakes decisions have to
be updated due to various reasons (Upadhyay et al., 2021;
Black et al., 2021), e.g., to retrain on a few additional data
points, change the hyper-parameters or seed, or transition
to a different model class (Pawelczyk et al., 2020b). Such
model changes can often cause the counterfactuals to be-
come invalid because typically they are quite close to the
original data point, and hence, also quite close to the de-
cision boundary. For instance, suppose the counterfactual
explanation suggests an applicant to increase their income
by 10K to get approved for a loan and they actually act
upon that, but now, due to updates to the original model,
they are still denied by the updated model.

If counterfactuals become invalid due to model updates,
this can lead to confusion and distrust in the use of algo-
rithms in high-stakes applications altogether. Users would
typically act on the suggested counterfactuals over a period
of time, e.g., increase their income for credit lending, but
only to find that it is no longer enough since the model has
slightly changed (perhaps due to retraining with a new seed
or hyperparameter). This cycle of invalidation and regen-
erating new counterfactuals can not only be frustrating and
time-consuming for users but also potentially hurts an in-
stitution’s reputation. This motivates our primary question:
How do we provide theoretical guarantees on the robustness
of counterfactuals to potential model changes?
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Towards addressing this question, in this work, we intro-
duce the abstraction of “naturally-occurring” model change
for differentiable models. Our abstraction allows for arbi-
trary changes in the parameter space such that the change
in predictions on points that lie on the data manifold is lim-
ited. This abstraction motivates a measure of robustness
for counterfactuals that arrives with provable probabilistic
guarantees on their validity under naturally-occurring model
change. We also introduce the notion of “targeted” model
change and provide an impossibility result for such model
change. Next, by leveraging a computable relaxation of our
proposed measure of robustness, we then design and imple-
ment algorithms to find robust counterfactuals for neural
networks. Our experimental results validate our theoretical
understanding and illustrate the efficacy of our proposed
algorithms. We summarize our contributions here:

• Abstraction of “naturally-occurring” model change
for differentiable models: Existing literature (Upadhyay
et al., 2021; Black et al., 2021) on robust counterfac-
tuals often assumes that the original model m and the
new model M are bounded in the parameter space, i.e.,
∥Params(M)−Params(m)∥<∆. Building on Dutta et al.
(2022) for tree-based models, we note that models can
often change significantly in the parameter space with
little to no change on their predictions or accuracy on the
given dataset. To capture this, we introduce an abstraction
(see Definition 5), that we call naturally-occurring model
change, which instead allows for arbitrary changes in the
parameter space such that the change in predictions on
points that lie on the data manifold is limited.

• A measure of robustness with probabilistic guarantees
on validity: Next, we propose a novel mathematical mea-
sure – that we call Stability – to quantify the robustness
of counterfactuals to potential model changes for differen-
tiable models. Stability of a counterfactual x ∈ Rd with
respect to a model m(·) is given by:

Rk,σ2(x,m) =
1

k

∑
xi∈Nx,k

(m(xi)− γx∥x− xi∥) ,

where Nx,k is a set of k points in Rd drawn from the
Gaussian distribution N (x, σ2Id) with Id being the iden-
tity matrix, and γx is the local Lipschitz constant of the
model m(·) around x (Definition 6).

Our main contribution in this work is to provide a the-
oretical guarantee (see Theorem 1) that counterfactuals
with a sufficiently high value of Stability (as defined by
our measure) will remain valid with high probability after
“naturally-occurring” model change. Our result leverages
concentration bounds for Lipschitz functions of indepen-
dent Gaussian random variables (see Lemma 3).

Since our proposed Stability measure depends on the local
Lipschitz constant which is not always available, we also

examine practical relaxations of our measure of the form:

R̂k,σ2(x,m) =
1

k

∑
xi∈Nx,k

(m(xi)− |m(x)−m(xi)|) .

The first term essentially captures the mean value of the
model output in a region around it (higher mean is ex-
pected to be more robust and reliable). The second term
captures the local variability of the model output in around
it (lower variability is expected to be more reliable). This
intuition is in alignment with the results in Dutta et al.
(2022) for tree-based models.

• Impossibility under targeted model change: We also
make a clear distinction between our proposed naturally-
occurring and targeted model change. Under targeted
model change, we provide an impossibility result (see
Theorem 2) that given any counterfactual for a model, one
can always design a new model that is quite similar to
the original model and that renders that particular coun-
terfactual invalid. However, in this work, our focus is on
non-targeted model change such as retraining on a few
additional data points, changing some hyperparameters or
seed, etc., for which we have defined the abstraction of
“naturally-occurring” model change (see Definition 5).

• Experimental results: We explore methods for incorpo-
rating our relaxed measure into generating robust coun-
terfactuals for neural networks. We introduce T-Rex:I
(Algorithm 1), which finds robust counterfactuals that are
close to the original data point. T-Rex:I can be integrated
into any base technique for generating counterfactuals to
improve robustness. We also propose T-Rex:NN (Algo-
rithm 2), which generates robust counterfactuals that are
data-supported, making them more realistic (along the
lines of Dutta et al. (2022) for tree-based models). Our
experiments show that T-Rex:I can improve robustness for
neural netwroks without significantly increasing the cost,
and T-Rex:NN consistently generates counterfactuals that
are similar to the data manifold, as measured using the
local outlier factor (LOF).

Related Works: Counterfactual explanations have seen
growing interest in recent years (Verma et al., 2020; Karimi
et al., 2020; Wachter et al., 2017). Regarding the robustness
of these counterfactual to model changes, Pawelczyk et al.
(2020a); Kanamori et al. (2020); Poyiadzi et al. (2020) argue
that counterfactuals situated on the data manifold are more
likely to be more robust than the closest counterfactuals.
Later, Dutta et al. (2022) demonstrate that generating coun-
terfactuals on the data manifold may not be sufficient for
robustness. While the importance of robustness in local ex-
planation methods has been emphasized (Hancox-Li, 2020),
the problem of specifically generating robust counterfactuals
has been less explored, with the notable exceptions of some
recent works (Upadhyay et al., 2021; Rawal et al., 2020;
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Black et al., 2021; Dutta et al., 2022; Jiang et al., 2022). In
Upadhyay et al. (2021), the authors propose an algorithm
called ROAR that uses min-max optimization to find the
closest counterfactuals that are also robust. In Rawal et al.
(2020), the focus is on analytical trade-offs between validity
and cost. Jiang et al. (2022) introduces a method for identi-
fying close and robust counterfactuals based on a framework
that utilizes interval neural networks. Black et al. (2021)
propose that local Lipschitzness can be leveraged to gen-
erate consistent counterfactuals and propose an algorithm
called Stable Neighbor Search to generate consistent coun-
terfactuals for neural networks. Our research builds on this
perspective introduced in Black et al. (2021) and further per-
forms Gaussian sampling around the counterfactual, leading
to a novel estimator for which we are also able to provide
probabilistic guarantees going beyond the bounded model
change assumption. Furthermore, examining all three per-
formance metrics, namely, cost, validity (robustness), and
likeness to the data-manifold has received less attention with
the notable exception of Dutta et al. (2022) but they focus
only on tree-based models (non-differentiable). We also
refer to Mishra et al. (2021) for a survey.

We note that Laugel et al. (2019); Alvarez-Melis & Jaakkola
(2018) propose an alternate perspective of robustness in ex-
planations (called L-stability in Alvarez-Melis & Jaakkola
(2018)) which is built on similar individuals receiving sim-
ilar explanations. Pawelczyk et al. (2022); Maragno et al.
(2023); Dominguez-Olmedo et al. (2022) focus on finding
counterfactuals that are robust to small input perturbations
(noisy counterfactuals). In contrast, our focus is on counter-
factuals remaining valid after some changes to the model,
and providing theoretical guarantees thereof.

2. Preliminaries
Let X ⊆ Rd denote the input space and let S={xi ∈ X}ni=1

be a dataset consisting of n independent and identically
distributed data points generated from a density q over X .
We also let m(·) : Rd → [0, 1] denote the original machine
learning model that takes a d-dimensional input value and
produces an output probability lying between 0 and 1. The
final decision is denoted by 1(m(x) ≥ 0.5) where 1(·)
denotes the indicator function.
Definition 1 (γ−Lipschitz). A function m(·) is said to be
γ−Lipschitz if |m(x)−m(x′)|≤γ∥x−x′∥ for all x, x′∈Rd.

Here ∥ · ∥ denotes the Euclidean norm, i.e., for u ∈ Rd, we
have ∥u∥ =

√
u2
1 + u2

2 + . . .+ u2
d. In Remark 2, we also

discuss relaxations to local Lipschitz constants from global
Lipschitz constants. We denote the updated or changed
model as M(·) : Rd → [0, 1] where M is a random entity.
We mostly use capital letters to denote random entities, e.g.,
M , X , etc., and small letters to denote non-random entities,
e.g., m, x, γ, n, etc.

2.1. Background on Counterfactuals

Definition 2 (Closest Counterfactual Cp(x,m)). Given x ∈
Rd such that m(x) < 0.5, its closest counterfactual (in
terms of lp-norm) with respect to the model m(·) is defined
as a point x′ ∈ Rd that minimizes the lp norm ∥x − x′∥p
such that m(x′) ≥ 0.5.

Cp(x,m) = arg min
x′∈Rd

∥x− x′∥p such that m(x′) ≥ 0.5.

When one is interested in finding counterfactuals by chang-
ing as few features as possible, the l1 norm is used (enforc-
ing a sparsity constraint). These counterfactuals are also
called sparse counterfactuals (Pawelczyk et al., 2020a).

Closest counterfactuals often fall too far from the data man-
ifold, resulting in unrealistic and anomalous instances, as
noted in Poyiadzi et al. (2020); Pawelczyk et al. (2020a);
Kanamori et al. (2020); Verma et al. (2020); Karimi et al.
(2020); Albini et al. (2022). This highlights the need for
generating counterfactuals that lie on the data manifold.

Definition 3 (Closest Data-Manifold Counterfactual
Cp,X (x,m)). Given x ∈ Rd such that m(x) < 0.5, its
closest data-manifold counterfactual Cp,X (x,m) with re-
spect to the model m(·) and data manifold X is defined as
a point x′ ∈ X that minimizes the lp norm ∥x− x′∥p such
that m(x′) ≥ 0.5.

Cp,X (x,m) = arg min
x′∈X

∥x− x′∥p such that m(x′) ≥ 0.5.

In order to assess the similarity or anomalous nature of a
point concerning the given dataset S ⊆ X , various metrics
can be employed, e.g., K-nearest neighbors, Mahalanobis
distance, Kernel density, LOF. These metrics play a crucial
role in understanding the quality of counterfactual explana-
tions generated by a model. One widely used metric in the
literature on counterfactual explanations (Pawelczyk et al.,
2020a; Kanamori et al., 2020; Dutta et al., 2022) is the Local
Outlier Factor (LOF).

Definition 4 (Local Outlier Factor (Breunig et al., 2000)).
For x ∈ S, let Lk(x) be its k-Nearest Neighbors (k-NN) in
S. The k-reachability distance rdk of x with respect to x′

is defined by rdk(x, x
′) = max{δ(x, x′), dk(x

′)}, where
dk(x

′) is the distance δ between x′ and its the k-th nearest
instance on S. The k-local reachability density of x is
defined by lrdk(x) = |Lk(x)|(

∑
x′∈Lk(x)

rdk(x, x
′))−1.

Then, the k-LOF of x on S is defined as follows:

LOFk,S(x) =
1

|Lk(x)|
∑

x′∈Lk(x)

lrdk(x
′)

lrdk(x)
.

Here, δ(x, x′) is the distance between two d-dimensional
feature vectors. The LOF Predicts −1 for anomalous points
and +1 for inlier points.
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Figure 1. Models can often change drastically in the parameter
space causing little to no change in the actual decisions on the
points on the data manifold.

Goals: In this work, our main goal is to provide proba-
bilistic guarantees on the robustness of counterfactuals to
potential model changes for differential models such as neu-
ral networks. Towards achieving this goal, our objective
involves: (i) introducing an abstraction that rigorously de-
fines the class of model changes that we are interested in;
and (ii) establishing a measure, denoted as RΦ(x,m), for a
counterfactual x and a given model m(·), that quantifies its
robustness to potential model changes. Here, Φ represents
the hyperparameters of the robustness measure. Ideally,
we desire that the measure RΦ(x,m) should be high if the
counterfactual x is less likely to be invalidated by potential
model changes. We seek to provide: (i) theoretical guaran-
tees on the validity of counterfactuals with sufficiently high
value of RΦ(x,m); and also (ii) incorporate our measure
RΦ(x,m) into an algorithmic framework for generating ro-
bust counterfactuals which also meet other requirements,
such as, low cost or likeness to the data manifold.

3. Main Theoretical Contributions
In this section, we first introduce our proposed abstraction
of naturally-occurring model change and then propose a
novel measure – that we call Stability – to quantify the
robustness of counterfactuals to potential model changes.
We derive a theoretical guarantee that counterfactuals that
have a sufficiently high value of Stability will remain valid
after potential naturally-occurring model change with high
probability. But since our quantification would depend on
the local Lipschitz constant around a data point, which is
not always known, we also examine a practical relaxation
of our proposed measure and demonstrate its applicability.

3.1. Naturally-Occurring Model Change

A popular assumption in existing literature (Upadhyay et al.,
2021; Black et al., 2021) to quantify potential model changes
is to assume that the model changes are bounded in the
parameter space, i.e.,

∥Params(M)− Params(m)∥ < ∆ for a constant ∆.

Data Manifold Data Manifold

𝑚(𝑥)

M(𝑥)0.5

0

1

x

Figure 2. Illustrates our proposed abstraction of naturally-
occurring model change: The distribution of the changed model
outputs M(x) (stochastic) is centered around the original model
output m(x). The points specifically lying on the data-manifold
acting as anchors without much change as they exhibit lower vari-
ance in model outputs compared to points outside the manifold.
This visualization also connects with the Rashomon effect, en-
capsulating the diverse yet similarly accurate models that can be
learned from a given dataset.

Here, Params(M) denote the parameters of the model M ,
e.g., weights of a neural network. However, we note that
models can often change drastically in the parameter space
causing little to no change on the actual decisions on the
points on the data manifold (see Fig. 1 for an example). In
this work, we relax the bounded-model-change assumption,
and instead introduce the notion of a naturally-occurring
model change as defined in Definition 5. Our abstraction
allows for arbitrary model changes such that the change in
predictions on points that lie on the data manifold is limited
(see Fig. 2 for an illustration).

Definition 5 (Naturally-Occurring Model Change). A
naturally-occurring model change is defined as follows:

1. E [M(X)|X = x] = E [M(x)] = m(x) where the ex-
pectation is over the randomness of M given a fixed
value of X = x ∈ Rd.

2. Whenever m(x) is γm-Lipschitz, any updated model
M(x) is also γ−Lipschitz for some constant γ. Note
that, this constant γ does not depend on M since we may
define γ to be an upper bound on the Lipschitz constants
for all possible M as well as m.

3. Var [M(X)|X = x] = Var [M(x)] = νx which de-
pends on the fixed value of X = x ∈ Rd. Furthermore,
whenever x lies on the data manifold X , we have νx ≤ ν
for a small constant ν.

Closely connected to naturally-occurring model change is
the idea of Rashomon effect (Breiman, 2001; Pawelczyk
et al., 2020a; Marx et al., 2020; Hsu & Calmon, 2022) which
suggests that models can be very different from each other
but have almost similar performance on the data manifold,
e.g., 1

n

∑n
i=1 |M(xi)−m(xi)| is small when the points xi

lie on the data manifold. Under naturally-occurring model
change, this holds in expectation as follows:

Lemma 1 (Connection to Roshomon Effect). For points
x1, . . . , xn ∈ X (lying on the data-manifold) under
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naturally-occurring model change, the following holds:

E

[
1

n

n∑
i=1

|M(xi)−m(xi)|

]
≤

√
ν. (1)

Thus, Definition 5 might be better suited over boundedness
in the parameter space. Proof of Lemma 1 is in Appendix B.
Remark 1 (Targeted Model Change). In contrast with
naturally-occurring model change, we also introduce the
notion of targeted model change (adversarial, worst-case)
which essentially refers to a model change that is more delib-
erately targeted to make a particular counterfactual invalid.
For example, one could have a new model M(x) = m(x)
almost everywhere except at or around the targeted point x′,
i.e., M(x′) = 1−m(x′). See Section 3.3 for more details.

3.2. A Measure of Robustness With Probabilistic
Guarantees on Validity

3.2.1. PROPOSED MEASURE: STABILITY

Definition 6 (Stability). The stability of a counterfactual
x ∈ Rd is defined as follows:

Rk,σ2(x,m) =
1

k

∑
xi∈Nx,k

(m(xi)− γ∥x− xi∥) , (2)

where Nx,k is a set of k points drawn from the Gaussian
distribution N (x, σ2Id) with Id being the identity matrix,
and γ is an upper bound on the Lipschitz constant for all
models M(·) under naturally-occurring change.

Remark 2 (Relaxations to local Lipschitz). While we prove
our theoretical result (Theorem 1) with the global Lipschitz
constant γ, we can relax this to local Lipschitz constants
γx, around a given point x. This is because we sample
from a Gaussian centered around the point x and hence
mainly capture the variability around x. So most points
will be very close to x but a few points can still lie far
away. Potential extensions of our guarantees could apply to
truncated Gaussian and uniform sampling methods, given
their sub-Gaussian properties. This is because Lipschitz
concentration inherently extends to sub-Gaussian random
variables (Baraniuk et al., 2008).

3.2.2. PROBABILISTIC GUARANTEE

Theorem 1 (Probabilistic Guarantee). Let X1, X2, . . . , Xk

be k iid random variables with distribution N (x, σ2Id) and
Z = 1

k

∑k
i=1(m(Xi) − M(Xi)). Suppose |E [Z|M ] −

E [Z] | < ϵ′. Then, for any ϵ > 2ϵ′, a counterfactual x ∈ X
under naturally-occurring model change satisfies:

Pr(M(x) ≥ Rk,σ2(x,m)−ϵ)≥ 1− exp

(
−kϵ2

8(γm+γ)2σ2

)
.

The probability is over the randomness of both M and X ′
is.

Intuition Behind Our Result: This stability metric (Defini-
tion 6) is a way to measure the robustness of counterfactuals
that are subject to natural model changes (see Definition 5).
The first term in the metric, represented by 1

k

∑k
i=1 m(Xi),

captures the average model outputs for a group of points
centered around the counterfactual x. The second term, rep-
resented by γ∥x−Xi∥, is an upper bound on the potential
difference in outputs of any new model on the points x and
Xi (Recall the Lipschitz property of M around the point
x). Using our measure, the guarantee in Theorem 1 can be
rewritten as:

Pr

(
1

k

k∑
i=1

m(Xi)−M(x)≤γ

k

k∑
i=1

∥x−Xi∥+ϵ

)
≥ 1− exp

(
−kϵ2

8(γ + γm)2σ2

)
. (3)

This form of the inequality allows for the following inter-
pretation of Theorem 1: The distance between the output of
the new model on an input x, i.e., M(x), and the average
prediction of the neighborhood of the given input by the old
model, i.e., 1

k

∑
m(Xi) is upper bounded by ϵ-corrected,

γ multiplied average distance of the datapoints within the
neighborhood of the input x, i.e., 1

k

∑
∥x−Xi∥.

Proof Sketch: The complete proof of Theorem 1 is provided
in Appendix C.1. Here, we include a proof sketch. Notice
that, using the Lipschitz property of M(·) around x, we
have M(x) ≥ M(Xi)− γ∥x−Xi∥ for all Xi. Thus,

M(x) ≥ 1

k

k∑
i=1

(M(Xi)− γ∥x−Xi∥) (4)

(a)

≥ 1

k

k∑
i=1

(m(Xi)− γ∥x−Xi∥)− ϵ, (5)

where (a) holds from Lemma 2 with probability at least
1− exp

(
−kϵ2

8(γ+γm)2σ2

)
.

Lemma 2 (Deviation Bound). Let X1, X2, . . . , Xk ∼
N (x, σ2Id) and Z= 1

k

∑k
i=1(m(Xi)−M(Xi)). Suppose

|E [Z|M ]− E [Z] | < ϵ′. Then, under naturally-occurring
model change, we have E [Z] =0. Moreover, for any ϵ>2ϵ′,

Pr(Z ≥ ϵ) ≤ exp

(
−kϵ2

8(γ + γm)2σ2

)
. (6)

Proof Sketch: The proof of Lemma 2 leverages concentra-
tion bounds for Lipschitz functions of independent Gaussian
random variables (see Lemma 3). The complete proof of
Lemma 2 is provided in Appendix C.

Lemma 3 (Gaussian Concentration Inequality). Let W =
(W1,W2, . . . ,Wn) consist of n i.i.d. random variables be-
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longing to N (0, σ2), and Z = f(W ) be a γ-Lipschitz func-
tion, i.e., |f(W )− f(W ′)| ≤ γ∥W −W ′∥. Then, we have,

Pr(Z − E [Z] ≥ ϵ) ≤ exp

(
−ϵ2

2γ2σ2

)
for all ϵ > 0. (7)

For the proof of Lemma 3 refer to Boucheron et al.
(2013) in p.125. Our robustness guarantee (Theorem 1)
essentially states that Pr(M(x) ≤ Rk,σ2(x,m) − ϵ) ≤
exp

( −kϵ2

8(γ+γm)2σ2

)
under naturally-occurring model change.

For instance, if we find a counterfactual x such that
Rk,σ2(x,m)−ϵ is greater or equal to 0.5, then M(x) would
also be greater than 0.5 with high probability. The term
exp

( −kϵ2

8(γ+γm)2σ2

)
decays with k.

3.2.3. PRACTICAL RELAXATION OF STABILITY AND ITS
PROPERTIES

While our proposed measure Stability (Definition 6) has
probabilistic guarantees, we note that it relies on the Lips-
chitz constant γ (or the local Lipschitz constant γx around
the point x), which is often unknown. Therefore, we next
propose a practical relaxation of the measure as follows:

Definition 7 (Stability (Relaxed)). The stability (relaxed)
of a counterfactual x ∈ Rd is defined as follows:

R̂k,σ2(x,m) =
1

k

∑
xi∈Nx,k

(m(xi)− |m(x)−m(xi)|),

where Nx,k is a set of k points drawn from the Gaussian
distribution N (x, σ2Id) with Id being the identity matrix.

To arrive at this relaxation, we utilize the Lipschitz prop-
erty to approximate the aspect that involves the Lipschitz
constant, specifically, by approximating γx||x − xi|| with
|m(x)−m(xi)|. Another possibility is to consider an esti-
mate of γx given by:

γ̂x = max
xi∈Nx,k

|m(x)−m(xi)|
∥x− xi∥

. (8)

We observed that the experimental results with both these
stability estimates are in the same ballpark.

To gain a deeper understanding of the relaxed stability mea-
sure, we now consider some desirable properties of counter-
factuals that make them more robust and then demonstrate
that our proposed relaxation of Stability (Definition 7) satis-
fies those desirable properties. These properties are inspired
from Dutta et al. (2022) which proposed these properties for
tree-based ensembles. The first property is based on the fact
that the output of a model m(x) ∈ [0, 1] is expected to be
higher if the model has more confidence in that prediction.

Property 1. For any x ∈ Rd, a higher value of m(x) makes
it less likely to be invalidated due to model changes.

Having a high m(x) alone does not guarantee robustness, as
local variability around x can make predictions less reliable.
E.g., points with high m(x) near the decision boundary are
also vulnerable to invalidation with model changes.

Property 2. An x∈Rd is less likely to be invalidated if
several points close to x (denoted by x′) have a high value
of m(x′).

Counterfactuals may also be more likely to be invalidated if
it lies in a highly variable region of the model output func-
tion. This is because the confidence of the model predictions
in that region may be less reliable.

Property 3. An x ∈ Rd is less likely to be invalidated if
model outputs around x have low variability.

Our stability measure aligns with these desired properties.
Given a point x ∈ Rd, it generates a set of k points centered
around x. The first term 1

k

∑
x′∈Nx,k

m (x′) is expected to
be high if the model output value m(x) is high for x as well
as several points close to x. But the mean value of m(x′)
around a point x may not always capture the variability in
that region, hence, the second term of our stability measure,
i.e., 1

k

∑
x′∈Nx,k

|m(x)−m(x′)|. This term captures the
variability of the model output values in a region around x.

It is worth noting that the variability term is only useful
in conjunction with the mean term. This is because even
points on the opposite side of the decision boundary can
have varying levels of variability, regardless of whether
m(x′) is less or greater than 0.5.

In Fig. 3, we provide an example on the synthetic moon
dataset to observe the effect of our stability measure on
naturally-changed models. Note that these changed models
were realized from actual experiments by retraining with
different weight initializations.

3.3. Impossibility Under Targeted Model Change

In this work, we make a key distinction between naturally-
occurring and targeted model changes. While we are able
to provide probabilistic guarantees for naturally-occurring
model change, we also demonstrate an impossibility re-
sult for targeted model change. What this result essentially
demonstrates is that for a given model, one can design an-
other similar model such that any particular targeted coun-
terfactual can be invalidated.

Theorem 2 (Impossibility Under Targeted Change). Given
a model and a counterfactual, one can design another simi-
lar model such that the particular targeted counterfactual
can be invalidated.

The proof relies on the possibility that one could have a
new model M(x) = m(x) almost everywhere except at or
around the targeted point x′, i.e., M(x′) = 1−m(x′).
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(a) m (b) M = m1 (c) M = m2 (d) M = m3 (e) M = m4

Stability

(f) R̂k,σ2(x,m)

Figure 3. Effect of stability measure on naturally-occurring model changes: (a) corresponds to the original data distribution and the
trained model. (b)-(e) demonstrate some examples of changed models obtained on retraining with different weight initializations. One
may notice that the model decision boundary is changing a lot in the sparse regions of the data-manifold (few data-points), possibly
violating the bounded-parameter change assumption but the predictions on the dense regions of the data-manifold do not change much (in
alignment with Rashomon effect). This motivates our proposed abstraction of naturally-occurring model change which allows for arbitrary
changes in the parameter space with little change in the actual predictions on the dense regions of the data manifold. (f) demonstrates our
proposed measure of stability R̂k,σ2(x,m) (high mean model output, low variability, almost like a Gaussian filter) for which we derive
probabilistic guarantees on validity. In essence, we show that under the abstraction of naturally-occurring model change, the stability
measure captures the reliable intersecting region of changed models with high probability. In the original model, we observe that certain
non-robust regions (i.e., those caused by overfitting to certain data points in the original model) have higher local Lipschitz values and
variability. Counterfactuals assigned to these regions (even if m(x) is high) would be invalidated in the changed models. The stability
measure, which samples around a region, penalizes these higher local Lipschitz values.

4. Generating Robust Counterfactuals using
Our Proposed Measure: Stability

In this section, we examine two techniques of incorporating
our proposed measure, Stability (relaxed; see Definition 7),
for generating robust counterfactuals for neural networks.

To begin, along the lines of Dutta et al. (2022), we first
define a counterfactual robustness test.

Definition 8 (Counterfactual Robustness Test). A counter-
factual x ∈ Rd satisfies the robustness test if:

R̂k,σ2(x,m) ≥ τ. (9)

Now, we would like to find a reasonable point x′ that re-
ceives a positive prediction from the model (essentially
m(x′) ≥ 0.5), while also satisfying the robustness test,
R̂k,σ2(x′,m) ≥ τ . The threshold value of τ can be adjusted
based on the desired effective validity (recall Theorem 1).
Hence, a larger threshold would likely ensure that the new
model, M , remains valid with high probability. In trying to
find a reasonable point x′, one may strive to generate robust
counterfactuals that are as close as possible to the original
point. One might also want the generated counterfactuals
to be as realistic as possible, i.e., lie on the data manifold.
Toward that end, we propose two algorithms.

We propose Algorithm 1, T-Rex:I, which incorporates our
measure to find robust counterfactuals that are close to the
original data point. T-Rex:I works with any preferred base
method for generating counterfactuals. It evaluates the sta-
bility of the generated counterfactual and, if necessary, it-
eratively updates the generated counterfactual through a
gradient ascent process until a robust counterfactual that
meets the desired criteria is obtained.

Remark 3 (Gradient of Stability). In Algorithm 1, we com-
pute the gradient of R(x,m) with respect to x (not model
parameters m). Such gradients w.r.t. x instead of m are
also computed commonly in adversarial machine learning
and also in feature-attributions for explainability. We use
TensorFlow tf.GradientTape for automatic differenti-
ation, which allows for the computation of gradients with
respect to certain inputs.

To ensure that the counterfactuals are as realistic as possible,
we also define the T-Rex:NN Counterfactual, which con-
siders counterfactuals that lie within a dataset to avoid any
unrealistic or anomalous results (see Algorithm 2).

Definition 9 (Robust Nearest Neighbor Counterfactual).
Given x ∈ Rd such that m(x) < 0.5, its robust near-
est neighbor counterfactual C(τ)

p,S(x,m) with respect to the
model m(·) and dataset S is defined as another point
x′ ∈ S that minimizes the lp norm ∥x− x′∥p such that
m (x′) ≥ 0.5 and R̂k,σ2(x′,m) ≥ τ .

The closest data-supported counterfactual serves as a re-
liable reference, as it inherently has a high Local Outlier
Factor (LOF). The T-Rex:I algorithm may find counterfactu-
als with lower costs, but they may compromise on the LOF
and result in unrealistic samples.

To address this, we propose Algorithm 2, T-Rex:NN, for
finding data-supported counterfactuals. The algorithm first
finds k nearest neighbors counterfactuals of x in dataset
S, checks through each of them to see if they satisfy the
robustness test, R̂k,σ2(x′,m) ≥ τ , and terminates once
such a counterfactual is found.
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Algorithm 1 T-Rex:I: Theoretically Robust EXplanations:
Iterative Version

Input: Model m(·), Datapoint x with m(x) < 0.5,
Algorithm parameters (k, σ2, η, τ, max steps).
Generate initial counterfactual x′ using any technique.
Initialize robust counterfactual xc = x′ and steps = 0.
while R̂k,σ2(xc,m) < τ and steps < max steps do

Compute R̂k,σ2(xc,m)

Compute gradient ∆xc
R̂k,σ2(xc,m)

Update xc via gradient ascent:
xc = xc + η∆xcR̂k,σ2(xc,m)

Increment steps
end while
Output xc and exit

5. Experiments
In this section, we present experimental results to demon-
strate the effectiveness of our proposed measure in capturing
robustness and then generating robust counterfactuals that
remain valid after potential model changes. We illustrate
how our proposed Algorithm 1 & 2 utilizes our stability
measure to effectively generate robust counterfactuals.

Datasets: We conduct experiments on several benchmark
datasets, namely, HELOC (FICO, 2018), German Credit,
Cardiotocography (CTG), Adult (Dua & Graff, 2017), and
Taiwanese Credit (Yeh & hui Lien, 2009). These have two
classes, with one class representing the most favorable out-
come, and the other representing the least desirable outcome
for which we aim to generate counterfactuals. For simplicity,
we normalize the features to lie between [0, 1].

Performance Metrics: Our metrics of interest are:

• Cost: Average l1 or l2 distance between counterfactuals
x′ and original points x.

• Validity (%): Percentage of counterfactuals that remain
valid under the new model M .

• LOF: Predicts −1 for anomalous points, and +1 for in-
liers. A high average LOF essentially suggests the points
lie on the data manifold and hence more realistic, i.e.,
higher is better (see Definition 4). We use an existing
implementation from Scikit-Learn to compute the LOF.

Methodology. We begin by training a baseline neural net-
work model and aim to find counterfactuals for data points
with true negative predictions. To test the robustness of
these counterfactual examples, we then train 50 new models
(M ) and evaluate the validity of the counterfactuals under
different model change scenarios, which include: (i) Weight
Initialization (WI): Retraining new models using the same
hyperparameters but with different weight initialization by
using different random seeds for each new model; and (ii)

Algorithm 2 T-Rex:NN: Theoretically Robust EXplana-
tions: Nearest Neighbor Version

Input: Model m(·), Datapoint x with m(x)<0.5,
Dataset S, Algorithm parameters (K,σ2, k, τ ).
Find K nearest neighbor counterfactuals x′

i ∈ S to x with
respect to model m(·), i.e., NNx = (x′

1, x
′
2, . . . , x

′
K).

for x′
i ∈ NNx do

Perform counterfactual robustness test on x′
i:

Check if R̂k,σ2(x′
i,m) ≥ τ

if counterfactual robustness test is satisfied: then
Output x′

i and exit
end if

end for
Output: No robust counterfactual found and exit

Leave Out (LO): Retraining new models by randomly re-
moving a small portion (1%) of the training data each time
(with replacement) as well as different weight initialization.

Hyperparameter selection: Our theoretical findings indi-
cate that higher k improves robustness, but comes at the cost
of increased computational cost. We determine k = 1000
was sufficient. The value of σ2 was determined by ana-
lyzing the variance of the features. In the dataset with the
features between [0, 1], we found that a value of σ2 = 0.01
produced good results. The threshold τ is a critical aspect
of our method and can be adjusted based on the desired
effective validity. A higher τ value improves validity at the
expense of l1 or l2 cost. See Appendix D for more details.

Baseline: We compare our approaches with established
baselines. First, we find the min Cost (l1 and l2) counter-
factual (Wachter et al., 2017) and use it as our base method
for generating counterfactuals. We then compare T-Rex:I to
the Stable Neighbor Search (SNS) (Black et al., 2021) and
Robust Algorithmic Recourse (ROAR) (Upadhyay et al.,
2021). We evaluate the performance of our Robust Near-
est Neighbor (Algorithm 2:T-Rex:NN) against the Nearest
Neighbor (NN) counterfactuals (closest data-support robust
counterfactual in Definition 9). We choose a value of τ to
get high validity and compare cost and LOF with baselines.

Results: Results for HELOC, German Credit, and CTG
datasets are summarized in Table 1. Observe that the min
Cost counterfactual is not robust to variations in the training
data or weight initialization as expected. ROAR generates
counterfactuals with high validity, albeit at the expense of
a higher cost. Our proposed method, T-Rex:I, significantly
improves the validity of the counterfactuals compared to the
minimum cost. The T-Rex:I algorithm achieves comparable
validity results to the SNS method for both types of model
changes, and often accomplishes this with lower costs and
higher LOF. This can be observed across all three datasets
for both l1 and l2 cost metrics. The T-Rex:NN algorithm

8



Robust Counterfactual Explanations for Neural Networks With Probabilistic Guarantees

Table 1. Experimental results.
l1 based l2 based

Method COST LOF WI VAL. LO VAL. COST LOF WI VAL. LO VAL.

H
E

L
O

C

min Cost 0.40 0.49 38.8% 35.2% 0.11 0.75 13.5% 13.5%
min Cost+T-Rex:I (Ours) 1.02 0.38 98.2% 98.1% 0.29 0.68 98.5% 98.2%
min Cost+SNS 1.20 0.30 98.0% 97.8% 0.31 0.64 97.9% 97.0%
ROAR 1.69 0.41 92.6% 91.2% 1.91 0.43 86.3 % 84.8%

NN 1.91 0.80 51.1% 50.3% 0.56 0.80 51.1% 50.3%
T-Rex:NN (Ours) 2.50 0.92 84.0% 84.0% 0.77 0.92 84.0% 84.0%

G
E

R
M

A
N min Cost 1.42 0.77 58.8% 56.7% 0.48 0.81 26.6% 26.6%

min Cost+T-Rex:I (Ours) 4.81 0.72 98.0% 96.5% 1.20 0.75 99.2% 98.7%
min Cost+SNS 5.71 0.67 97.5% 98.1% 1.44 0.68 99.9% 98.9%
ROAR 7.63 0.54 96.3% 92.3% 6.81 0.58 87.8% 85.2%

NN 7.05 1.00 95.3% 95.4% 2.50 1.00 95.3% 95.3%
T-Rex:NN (Ours) 10.13 1.00 100% 100% 3.04 1.00 100% 100%

C
T

G

min Cost 0.21 0.94 74.6% 70.2% 0.08 1.00 19.7% 14.1%
min Cost+T-Rex:I (Ours) 1.11 0.83 100% 98.8% 0.42 0.94 100% 99.7%
min Cost+SNS 3.34 -1.00 100% 98.2% 1.07 -1.00 100% 99.3%
ROAR 3.68 0.64 98.7% 96.4% 1.35 0.59 98.9% 97.2%

NN 0.39 1.00 70.5% 67.5% 0.15 1.00 70.5% 67.5%
T-Rex:NN (Ours) 2.22 -0.33 100% 100% 1.00 -0.33 100% 100%

also significantly improves the validity of the counterfac-
tuals compared to the traditional Nearest Neighbor (NN)
method and maintains a high LOF. It comes at a price of
increased cost, but the counterfactuals are guaranteed to
be realistic since they are data supported. Refer to Ap-
pendix D for additional results for Adult and Taiwanese
credit datasets.

Ablation: To evaluate the efficacy of our proposed stabil-
ity measure, we conduct an ablation study on the German
credit dataset. We first evaluate a robustness measure that
solely relies on the model’s prediction of the counterfactual,
denoted as r(x′,m) = m(x′). We then examine a measure
that only incorporates the mean, the average predictions
for k points sampled from the distribution N(x′, σ2Id), de-
noted as rk,σ2(x′,m) = 1

k

∑
x′
i∈Nx′,k

m(x′
i). We compare

these with our proposed robustness measure R̂k,σ2(x′,m),
which also takes into account the variability around the
counterfactual. The results of the ablation study, for various
τ thresholds, are summarized in Table 7 in Appendix D.

6. Discussion
We introduce an abstraction called naturally-occurring
model change and propose a measure, Stability, to quantify
the robustness of counterfactuals with probabilistic guaran-
tees. We show that counterfactuals with high Stability will
remain valid after potential model changes with high proba-
bility. We investigate various techniques for incorporating
stability in generating robust counterfactuals and introduce
the T-Rex:I and T-Rex:NN algorithms.

Limitations and Broader Impact: The naturally-occurring
model changes rest on assumptions that may not apply to
all models or datasets. Our relaxed stability, although practi-
cally implementable, lacks the same theoretical guarantees
as the initial stability measure. Estimating the Lipschitz
constant around a counterfactual can be computationally
demanding, particularly when leveraging gradient descent
to optimize stability. Though generating robust counterfac-
tuals is a key step towards trustworthy AI, it can fall short of
other important factors such as fairness (Sharma et al., 2019;
Gupta et al., 2019; Ley et al., 2022; Raman et al., 2023;
Ehyaei et al., 2023). Future research could explore links
between robustness and fairness, improving the estimation
of stability, or integrating Stability into training-time-based
approaches for generating robust counterfactuals.

Disclaimer This paper was prepared for informational pur-
poses in part by the Artificial Intelligence Research group
of JPMorgan Chase & Co. and its affiliates (“JP Morgan”),
and is not a product of the Research Department of JP
Morgan. JP Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness,
accuracy, or reliability of the information contained herein.
This document is not intended as investment research or in-
vestment advice, or a recommendation, offer or solicitation
for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for
evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or
to any person, if such solicitation under such jurisdiction or
to such person would be unlawful.
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A. Relevant Inequalities
Lemma 4 (Cauchy-Schwarz Inequality). If u,v ∈ V , where V is a vector space, then

|⟨u,v⟩| ≤ ∥u∥∥v∥.

This inequality is an equality if and only if one of u,v is a scalar multiple of the other.
Lemma 5 (Jensens Inequality). Let X be an integrable random variable. Let g : R → R be a convex function such that
Y = g(X) is also integrable. Then, the following inequality, called Jensen’s inequality, holds:

E[g(X)] ≥ g(E[X]).

B. Proof of Lemma 1
Lemma 1 (Connection to Roshomon Effect). For points x1, . . . , xn ∈ X (lying on the data-manifold) under naturally-
occurring model change, the following holds:

E

[
1

n

n∑
i=1

|M(xi)−m(xi)|

]
≤

√
ν. (1)

Proof.

E

[
1

n

n∑
i=1

|m(xi)−M(xi)|

]
(a)

≤ E

√√√√ n∑
i=1

1

n2

√√√√ n∑
i=1

|m(xi)−M(xi)|2

 (10)

=
1√
n
E

√√√√ n∑
i=1

|m(xi)−M(xi)|2

 (11)

(b)

≤ 1√
n

√√√√E

[
n∑

i=1

|m(xi)−M(xi)|2
]

(12)

=
1√
n

√√√√ n∑
i=0

νxi (13)

(c)

≤ 1√
n

√√√√ n∑
i=0

ν =
√
ν. (14)

Here (a) holds from Cauchy-Schwarz Inequality (Lemma 4) applied on the dot product of the two vectors [1/n, 1/n, . . . , 1/n]
and [|m(x1)−M(x1)|, |m(x2)−M(x2)|, . . . , |m(xn)−M(xn)|]. Next, (b) holds from Jensen’s Inequality (Lemma 5)
applied on concave function f(u) =

√
u. Finally, (c) holds because the points x1, x2, . . . , xn lie on the data-manifold and

hence the variance νxi
≤ ν from Definition 5.

C. Proof of Probabilistic Guarantee
To prove Theorem 1, we begin with Lemma 2.

Assume the changed model M comes from a discrete class of random variables. A possible realization of a model is denoted
by m̃i, with i = 1, 2, . . . , n. The set of all possible models is denoted by M = {m̃1, m̃2, . . . , m̃n}. Let M = m̃i with
probability pi such that

∑n
i=1 pi = 1.

Lemma 2 (Deviation Bound). Let X1, X2, . . . , Xk ∼ N (x, σ2Id) and Z= 1
k

∑k
i=1(m(Xi)−M(Xi)). Suppose |E [Z|M ]−

E [Z] | < ϵ′. Then, under naturally-occurring model change, we have E [Z] =0. Moreover, for any ϵ>2ϵ′,

Pr(Z ≥ ϵ) ≤ exp

(
−kϵ2

8(γ + γm)2σ2

)
. (6)

12
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Proof. To prove Lemma 2, notice that,

E [Z] =
1

k

k∑
i=1

EXi

[
EM |Xi

[m(Xi)−M(Xi)]
]

(a)
=

1

k

k∑
i=1

EXi
[m(Xi)−m(Xi)] = 0, (15)

where (a) holds from the naturally occurring model change assumption (see Definition 1). The remaining part of the proof
leverages concentration bounds for Lipschitz functions of independent Gaussian random variables outlined in Lemma 3.

Lemma 3 (Gaussian Concentration Inequality). Let W = (W1,W2, . . . ,Wn) consist of n i.i.d. random variables belonging
to N (0, σ2), and Z = f(W ) be a γ-Lipschitz function, i.e., |f(W )− f(W ′)| ≤ γ∥W −W ′∥. Then, we have,

Pr(Z − E [Z] ≥ ϵ) ≤ exp

(
−ϵ2

2γ2σ2

)
for all ϵ > 0. (7)

Now, let Xij denote the j-th element of Xi ∈ Rd and xj denote the j-th element of x ∈ Rd. We define a k × d
matrix W = [Wij ]i=1,2,...,k, and j=1,2,...,d with Wij = Xij − xj . Notice that, Wij ∼ N (0, σ2) for i = 1, 2, . . . , k and
j = 1, 2, . . . , d and, we can write Z = f(W ) with Lipschitz constant (γm + γ)/

√
k.

|f(W )− f(W ′)|

=

∣∣∣∣∣1k
k∑

i=1

(m(Xi)−M(Xi)−m(X ′
i) +M(X ′

i))

∣∣∣∣∣
(a)

≤ 1

k

k∑
i=1

(|m(Xi)−m(X ′
i)|+ |M(Xi)−M(X ′

i)|)

(b)

≤ 1

k

k∑
i=1

(γm + γ)∥Xi −X ′
i∥2

(c)

≤ (γm + γ)
√
k

k

√√√√ k∑
i=1

∥Xi −X ′
i∥22

=
(γm + γ)√

k

√√√√ k∑
i=1

d∑
j=1

|Wij −W ′
ij |2

=
(γm + γ)√

k
∥W −W ′∥2. (16)

Here, (a) holds from the triangle inequality. (b) follows directly from the definition of γ-Lipschitz (Definition 1). (c) can be
obtained by using the Cauchy-Schwarz Inequality (Lemma 4).

Now, we substitute these expressions in the Gaussian concentration bound (Lemma 3).

Pr(Z − E [Z|M = m̃] ≥ ϵ̃|M = m̃) ≤ exp

(
−kϵ̃2

2(γ + γm)2σ2

)
. (17)

Since |E [Z|M ]− E [Z] | < ϵ′ and E [Z] = 0, we have −ϵ′ < E [Z|M = m̃] < ϵ′ ∀m̃ ∈ M. Now observe that,

13
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Pr(Z ≥ ϵ′ + ϵ̃|M = m̃)
(a)
≤Pr(Z ≥ E [Z|M = m̃] + ϵ̃|M = m̃) (18)

≤ exp

(
−kϵ̃2

2(γ + γm)2σ2

)
. (19)

Here, (a) holds since E [Z|M = m̃] < ϵ′. The event on the left is a subset of that on the right. Therefore, the probability of
the event {Z ≥ ϵ′ + ϵ̃} occurring cannot be more than the probability of the event {Z ≥ E [Z|M = m̃] + ϵ̃} occurring.

Pr(Z ≥ ϵ′ + ϵ̃)
(b)
=

n∑
i=1

Pr(Z ≥ ϵ̃+ ϵ|M = m̃i) Pr(M = m̃i) (20)

(c)
≤ exp

(
−kϵ̃2

2(γm + γ)2σ2

) n∑
i=1

Pr(M = m̃i) (21)

= exp

(
−kϵ̃2

2(γm + γ)2σ2

)
(22)

(d)
≤ exp

(
−k(ϵ̃+ ϵ′)2

8(γm + γ)2σ2

)
(23)

Here, (b) holds from the law of total probability. Next, (c) follows from bound in (18). Finally, (d) holds from the inequality
4ϵ̃2 > (ϵ̃+ ϵ′)2 which holds for ϵ̃ > ϵ′ > 0. Setting ϵ = ϵ̃+ ϵ′ completes the proof of Lemma 2

C.1. Proof of Theorem 1

Theorem 1 (Probabilistic Guarantee). Let X1, X2, . . . , Xk be k iid random variables with distribution N (x, σ2Id) and
Z = 1

k

∑k
i=1(m(Xi)−M(Xi)). Suppose |E [Z|M ]− E [Z] | < ϵ′. Then, for any ϵ > 2ϵ′, a counterfactual x ∈ X under

naturally-occurring model change satisfies:

Pr(M(x) ≥ Rk,σ2(x,m)−ϵ)≥ 1− exp

(
−kϵ2

8(γm+γ)2σ2

)
.

The probability is over the randomness of both M and X ′
is.

Proof. The Lipschitz property of M(·) around x is given by,

|M(x)−M(x′)| ≤ γ∥x− x′∥ for all x, x′ ∈ Rd

Therefore,
M(x) ≥ M(Xi)− γ∥x−Xi∥ (24)

M(x)
(a)

≥ 1

k

k∑
i=1

(M(Xi)− γ∥x−Xi∥) (25)

where (a) holds from taking the average of the inequality (24) over all i from 1 to k.
From Lemma 2, for X1, X2, . . . , Xk ∼ N (x, σ2Id),

1

k

k∑
i=1

M(Xi) ≥
1

k

k∑
i=1

m(Xi)− ϵ (26)

with probability at least 1− exp
(
− kϵ2

8(γ+γm)2σ2

)
.

Hence, plugging (26) into (25), we have:

Pr
(
M(x) ≥ 1

k

k∑
i=1

(m(Xi)− γ∥x−Xi∥)− ϵ
)
≥ 1− exp

(
−kϵ2

8(γ + γm)2σ2

)
.

14
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Recall from Definition 6, stability Rk,σ2(x,m) = 1
k

∑k
i=1 (m(Xi)− γ∥x−Xi∥). Hence, we have:

Pr(M(x) ≥ Rk,σ2(x,m)− ϵ) ≥ 1− exp

(
−kϵ2

8(γ + γm)2σ2

)
.

D. Appendix to Experiments in Section 5
D.1. Datasets

HELOC. The FICO HELOC (FICO, 2018) dataset contains anonymized information about home equity line of credit
applications made by homeowners in the US, with a binary response indicating whether or not the applicant has ever
been more than 90 days delinquent for a payment. It can be used to train a machine learning model to predict whether
the homeowner qualifies for a line of credit or not. The dataset consists of 10459 rows and 40 features, which we have
normalized to be between zero and one.

German Credit. The German Credit Dataset (Dua & Graff, 2017) comprises 1000 entries, each representing an individual
who has taken credit from a bank. These entries are characterized by 20 categorical features, which are used to classify each
person as a good or bad credit risk. To prepare the dataset for analysis, we one-hot encoded the data and normalized it such
that all features fall between 0 and 1. Additionally, we partitioned the dataset into a training set and a test set, with a 70:30
ratio respectively.

CTG. The CTG dataset (Dua & Graff, 2017) consists of 2126 fetal cardiotocograms, which have been evaluated and
categorized by experienced obstetricians into three categories: healthy, suspect, and pathological. We process this dataset
based on Black et al. (2021). The problem was transformed into a binary classification task, where healthy fetuses are
distinguished from the other two categories. We divided the dataset into a training set of 1,700 instances and a validation set
of 425 instances. Each instance is described by 21 features, which we normalized to have values between zero and one.

Adult. The Adult dataset (Dua & Graff, 2017) is a publicly available dataset in the UCI repository based on 1994 U.S.
census data. This dataset is a classification task to successfully predict whether an individual earns more or less than 50, 000
per year based on features such as occupation, marital status, and education, etc. The dataset consists of approximately
48,842 instances, split into a training set of 32,561 instances and a test set of 16,281 instances.

Taiwanese Credit. The Taiwanese dataset (Yeh & hui Lien, 2009) consists of 30,000 instances with 24 features that include
individuals’ financial data, with a binary response indicating their creditworthiness. We use one-hot encoding on the data
and normalize it to be between zero and one. This dataset is processed based on Black et al. (2021). We partition the data
into a training set of 22,500 and a test set of 7,500.

D.2. Model Architecture

We first trained a base neural network model for which we aim to find counterfactuals for instances with false negative
predictions. The architecture of our base model consisted of two hidden layers, each containing 128 hidden units. We
employed the rectified linear unit (ReLU) activation function and Adam optimizer. The model was trained for 50 epochs
using a batch size of 32. We employed this model architecture and training setup on all datasets since it yielded a satisfactory
level of accuracy on all of them. To evaluate the robustness of these counterfactual examples, we then trained 50 new
models and assessed the validity of the counterfactuals under various model change scenarios. All 50 models had the same
architecture and training setup as the base model except for some slight changes which include: Weight Initialization (WI):
Retraining new models with the same hyperparameters but different weight initialization by using different random seeds
for each model. Leave Out (LO): Retraining new models by randomly removing a small portion (1%) of the training data
each time and using different weight initialization.

D.3. Implementation Details

The stability measure has the number of samples k and the variance σ2 as hyperparameters. Our theoretical findings suggest
that a higher value of k improves the robustness of the counterfactuals but at the expense of increased cost and computational
complexity. In our experiments, we found that a value of k = 1000 was sufficient. The value of σ2 was determined by
analyzing the variance of the features in the dataset, and we found that a value of σ2 = 0.01 produced good results for the

15



Robust Counterfactual Explanations for Neural Networks With Probabilistic Guarantees

Figure 4. Histograms on the HELOC dataset to visualize the proposed stability measure.

features that lie between [0, 1]. These hyperparameters were kept constant across all our experiments and datasets. The
baseline technique for generating counterfactuals used in T-rex was the min Cost counterfactual (Wachter et al., 2017).
For other algorithm parameters, a step size of 0.01 was fixed for all datasets and experiments. The maximum number of
iterations (max steps) varied depending on the dataset, with 50 for HELOC, 200 for German Credit, and 100 for CTG,
Adult, and Taiwanese. An appropriate value of τ balances the trade-off between validity and cost. We choose a value of
τ to guarantee high validity and compare cost and LOF with the baselines. Another method of choosing τ is to use the
histogram of R(·) on the training dataset (e.g., see Fig. 4 for HELOC dataset). To implement ROAR and SNS, we adhered to
techniques and algorithm parameters discussed in the original works (Upadhyay et al., 2021; Black et al., 2021). In NN and
T-Rex:NN implementation, a crucial consideration is determining the appropriate number of neighbors K, to search for a
robust counterfactual. For larger datasets such as HELOC, Adult, and Taiwanese datasets K = 1000, while for the German
credit and CTG datasets K = 100. Note that if K is too small, a counterfactual robustness test might not be satisfied, and
hence T-Rex:NN returns no robust counterfactuals.

D.4. Additional Experimental Results

Table 2. Experimental results for HELOC dataset with standard deviations

HELOC l1 based l2 based

COST LOF WI VAL. LO VAL. COST LOF WI VAL. LO VAL.

min Cost 0.40±0.48 0.49±0.93 38.8±2.5% 35.2±2.5% 0.11±0.08 0.75±0.61 13.5±3.4% 13.5±3.5%
+T-Rex:I 1.02±0.41 0.38±0.95 98.2±1.2% 98.1±1.2% 0.29±0.07 0.68±0.64 98.5±1.9% 98.2±2.0%
+SNS 1.20±0.46 0.30±0.46 98.0±1.2% 97.8±1.1% 0.31±0.08 0.64±0.78 97.9±0.8% 97.0±0.8%
ROAR 1.69±1.59 0.41±0.73 92.6±3.9% 91.2±4.3% 1.91±2.22 0.43±0.83 86.3±0.2% 84.8±0.3%

NN 1.91±2.27 0.80±2.27 51.1±12.6% 50.3±12.4% 0.56±0.59 0.80±2.27 51.1±12.6% 50.3±12.4%
T-Rex:NN 2.50±1.83 0.92±0.56 84.0±0.8% 84.0±0.8% 0.77±0.61 0.92±0.56 84.0±0.8% 84.0±0.8%

Table 3. Experimental results for German Credit dataset with standard deviations.

GERMAN l1 based l2 based

COST LOF WI VAL. LO VAL. COST LOF WI VAL. LO VAL.

min Cost 1.42±4.16 0.77±0.65 58.8±7.9% 56.7±7.3% 0.48±1.38 0.81±0.71 26.6±15% 26.6±14%
+T-Rex:I 4.81±3.93 0.72±0.73 98.0±4.6% 96.5±3.8% 1.20±1.37 0.75±0.71 99.2±0.9% 98.7±0.9%
+SNS 5.71±4.10 0.67±0.39 97.5±0.3% 98.1±0.2% 1.44±1.38 0.68±0.73 99.9±0.0% 98.9±0.1%
ROAR 7.63±4.00 0.54±0.67 96.3±0.2% 92.3±0.3% 6.81±1.00 0.58±0.98 87.8±1.4% 85.2±1.6%

NN 7.05±3.96 1.00±0.00 95.3±0.9% 95.4±1.0% 2.50±1.20 1.00±0.00 95.3±0.9 95.3±1.0%
T-Rex:NN 10.13±4.10 1.00±0.00 100±0.0% 100±0.0% 3.04±1.45 1.00±0.00 100±0.0% 100±0.0%
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Table 4. Experimental results for CTG dataset with standard deviations.

CTG l1 based l2 based

COST LOF WI VAL. LO VAL. COST LOF WI VAL. LO VAL.

min Cost 0.21±0.18 0.94±0.91 74.6±0.1% 70.2±0.2% 0.08±0.04 1.00±0.00 19.7±30% 14.1±31%
+T-Rex:I 1.11±0.11 0.83±0.91 100±0.0% 98.8±0.1% 0.42±0.04 0.94±0.63 100±0.0% 99.7±0.1%
+SNS 3.34±0.18 −1.00±0.0 100±0.0% 98.2±0.1% 1.07±0.04 −1.00±0.0 100±0.0% 99.3±0.1%
ROAR 3.68±3.48 0.64±0.78 98.7±0.5% 96.4±0.3% 1.35±2.01 0.59±0.90 98.8±0.0% 97.2±0.0%

NN 0.39±0.23 1.00±0.00 70.5±0.2% 67.5±0.1% 0.15±0.07 1.00±0.00 70.5±0.2% 67.5±0.1%
T-Rex:NN 2.22±0.12 −0.33±0.67 100±0.0% 100±0.0% 1.00±0.80 −0.33±0.67 100±0.0% 100±0.0%

Table 5. Experimental results for Taiwanese Credit dataset with standard deviations.

TAIWANESE l1 based l2 based

COST LOF WI VAL. LO VAL. COST LOF WI VAL. LO VAL.

min Cost 3.95±3.42 −0.37±0.92 38.4±6.0% 38.4±5.9% 2.84±1.16 −0.68±0.72 21.1±2.1% 20.0±2.2%
+T-Rex:I 6.34±3.26 0.48±0.67 96.9±0.7% 96.2±0.7% 3.06±1.11 0.40±0.31 96.8±2.1% 96.4±1.9%
+SNS 6.51±3.37 0.39±0.39 97.2±1.3% 96.9±1.4% 3.10±1.16 0.43±0.62 96.7±3.1% 96.1±2.7%

NN 5.80±3.82 0.84±0.76 53.5±9.9% 51.6±8.9% 2.18±1.27 0.84±0.76 53.5±9.9% 51.6±8.9%
T-Rex:NN 6.89±4.51 0.86±0.61 98.8±0.9% 98.4±0.8% 3.54±1.48 0.86±0.61 98.8±0.9% 98.4±0.8%

Table 6. Experimental results for Adult dataset with standard deviations.

ADULT l1 based l2 based

COST LOF WI VAL. LO VAL. COST LOF WI VAL. LO VAL.

min Cost 0.12±0.54 0.09±0.99 80.8±5.0% 78.2±4.7% 0.18±0.65 0.09±0.99 50.0±8.0% 49.2±8.2%
+T-Rex:I 0.51±0.53 0.08±0.99 98.4±1.6% 98.1±1.3% 0.24±0.64 0.09±0.99 98.2±0.0% 98.2±0.0%
+SNS 0.92±0.58 −0.2±0.21 98.6±0.0% 97.9±0.1% 0.37±0.62 −0.22±0.97 97.9±0.0% 97.8±0.0%

NN 2.16±1.43 0.91±0.03 81.0±2.8% 81.0±2.7% 1.21±0.65 0.91±0.03 81.0±2.8% 81.0±2.7%
T-Rex:NN 3.25±1.6 0.85±0.02 99.2±0.0% 99.0±0.0% 1.59±0.57 0.85±0.02 99.2±0.0% 99.0±0.0%

Table 7. Ablation study on German Credit Dataset.
l1 based l2 based

τ Measure COST LOF WI VAL.(%) COST LOF WI VAL.(%)

0.5
r(x,m) 1.12 0.78 57.0 0.54 0.81 32.6

rk,σ2(x,m) 2.06 0.81 57.4 0.57 0.80 37.3
Rk,σ2(x,m) 2.33 0.80 66.9 0.65 0.80 52.0

0.6
r(x,m) 1.48 0.77 61.7 0.56 0.80 38.9

rk,σ2(x,m) 2.11 0.77 62.5 0.58 0.79 43.0
Rk,σ2(x,m) 2.40 0.76 72.9 0.68 0.81 61.7

0.7
r(x,m) 1.73 0.71 61.3 0.63 0.87 42.8

rk,σ2(x,m) 2.61 0.75 63.7 0.67 0.87 51.8
Rk,σ2(x,m) 2.90 0.76 72.6 0.76 0.88 67.0

0.8
r(x,m) 1.69 0.76 74.4 0.68 0.85 61.0

rk,σ2(x,m) 2.50 0.79 79.0 0.74 0.85 73.3
Rk,σ2(x,m) 2.77 0.77 86.0 0.82 0.84 84.2

0.9
r(x,m) 2.24 0.73 79.5 0.76 0.81 71.0

rk,σ2(x,m) 3.01 0.74 84.8 0.83 0.79 82.7
Rk,σ2(x,m) 3.30 0.74 89.6 0.91 0.78 89.0
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