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Abstract

Is the lottery ticket phenomenon an idiosyncrasy
of gradient-based training or does it generalize
to evolutionary optimization? In this paper we
establish the existence of highly sparse trainable
initializations for evolution strategies (ES) and
characterize qualitative differences compared to
gradient descent (GD)-based sparse training. We
introduce a novel signal-to-noise iterative prun-
ing procedure, which incorporates loss curvature
information into the network pruning step. This
can enable the discovery of even sparser train-
able network initializations when using black-box
evolution as compared to GD-based optimization.
Furthermore, we find that these initializations en-
code an inductive bias, which transfers across
different ES, related tasks and even to GD-based
training. Finally, we compare the local optima re-
sulting from the different optimization paradigms
and sparsity levels. In contrast to GD, ES explore
diverse and flat local optima and do not preserve
linear mode connectivity across sparsity levels
and independent runs. The results highlight quali-
tative differences between evolution and gradient-
based learning dynamics, which can be uncovered
by the study of iterative pruning procedures.

1. Introduction

Evolution strategies have recently shown to provide a com-
petitive alternative to gradient-based training of neural net-
works (e.g./Such et al., 2017;Salimans et al., 2017). Instead
of assuming explicit access to gradient evaluations, ES re-
fine the sufficient statistics of a search distribution using
information gathered from the black-box evaluation of sam-
pled candidate solutions. In doing so, modern ES face
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several scaling challenges: The memory requirements for
evaluating populations of large networks quickly become
infeasible for common hardware settings. Furthermore, the
estimation of the search covariance is often statistically
inefficient. But is it really necessary to evolve full dense net-
works or can these challenges in principle be circumvented
by evolving sparse networks? The lottery ticket hypothesis
(Frankle & Carbinl 2019, LTH) recently empirically estab-
lished the existence of sparse network initializations that
can be trained to similar performance levels as their dense
counterparts. In this study, we set out to answer whether the
existence of such winning initializations is fundamentally
tied to gradient-based training or whether sparse trainabil-
ity can also be achieved in the context of ES. Furthermore,
the LTH has demonstrated yet another application of study-
ing sparse trainability: The empirical analysis of learning
dynamics and loss surfaces (Frankle et al.l [2020agb). We,
therefore, shed light on the differences between gradient
descent-based and evolutionary optimization. Evci et al.
(2020) previously showed that sparse lottery tickets suf-
fer from reduced gradient flow. GD-based lottery tickets
overcome this limitation by biasing the network to retrain
to its original dense solution. But does this 'regurgitating
ticket interpretation’ (Maene et al., 202 1)) also apply to the
setting of gradient-free optimization? We summarize our
contributions as follows:

1. We apply iterative magnitude pruning (Han et al.; 2015|
IMP; figure[T]left) to the ES setting and establish the ex-
istence of highly sparse evolvable initializations. They
consistently exist across different ES, architectures
(multi-layer perceptrons/MLP, & convolutional neu-
ral networks/CNN) and tasks (9 control & 3 vision
tasks). The LTH phenomenon does, therefore, not de-
pend on gradient-based training or the implied masked
gradient flow (Section [3] Figure[I|right, top).

2. We introduce a novel iterative pruning procedure based
on the signal-to-noise ratio (SNR) of the ES search dis-
tribution, which accounts for the loss geometry infor-
mation encoded by the search covariance. This pruning
scheme leads to initializations, which are trainable at
higher degrees of sparsity (Figure[I]right, top).
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Figure 1. Left. Differences between the iterative magnitude pruning procedures applied to GD and ES training. While GD-based training
relies on explicit gradient computation via backpropagation, ES adapts a search distribution based on the principles of biological evolution.
In the ES setting, IMP prunes the initial search distribution based on the ratio of the evolved mean magnitude (IMP) and standard deviation
(SNR) at each pruning iteration. Right, Top. Task-normalized aggregated ticket effect in ES. IMP-derived lottery ticket initializations
outperform random pruning for ES-based optimization. SNR pruning provides an additional sparse trainability improvement. Right,
Bottom. The ES ticket procedure yields sparse initializations with performance on par with GD. At high sparsity levels ES tickets
outperform GD. The task-specific results are normalized across conditions (random, magnitude, SNR) to lie within [0, 1] range. We
average the normalized scores across 12 tasks, 2 different network classes, 3 ES and over 5 independent runs & plot standard error bars.

3. ES tickets outperform sparse random initializations
when transferred to related tasks (Section[d). They can
be transferred between different evolutionary strategies
and to GD-based training. Hence, ES tickets do not
overfit to their training paradigm or task setting. In-
stead, they capture moderately task-general inductive
biases, which can be amortized in different settings.

4. GD-based lottery tickets are not well suited for training
moderately sized neural networks at very high sparsity
levels (Section [3] Figure[I] bottom). For ES-derived
lottery tickets, on the other hand, we find that they
remain trainable at very high sparsity. For vision-based
tasks the performance degradation of GD accelerates
and correlates with a strong increase in the sharpness
of obtained local optima. ES optima, on the other hand,
remain flat for higher sparsity (Section3).

5. While GD-based trained ticket initializations preserve
linear mode connectivity at low levels of sparsity, ES
tickets do not. Instead, they converge to a diverse set of
flat local optima across sparsity levels (Section[3). This
questions the 'regurgitation ticket interpretation’ and
the implicit loss landscape bias of ES-based tickets: ES
tickets exist despite the fact that they do not repeatedly
converge to the same loss basin. This highlights the
potential of ES-based ensemble methods in order to
compensate for the expensive pruning procedure.

2. Background & SNR Pruning Procedure

Iterative Magnitude Pruning in Deep Learning. Lottery
ticket initializations are traditionally found using an expen-
sive iterative pruning procedure (Figure [I] left; e.g. [Han
et al., 2015} |Langel [2020): Given a dense network initial-
ization 6y, one trains the parameters using GD. The final
weights 0 are then used to construct a binary mask m based
on a simple heuristic: Prune the fraction p € (0, 1) of small-
est magnitude weights. The cutoff threshold is constructed
globally and thereby implies a different pruning ratio per
layer. Afterwards, one resets the remaining weights to their
original initialization and iterates the procedure using the
remaining non-zero weights, m © 6. The ticket effect for a
given level of sparsity (1 — p)* can be measured by the per-
formance difference between a sparsity-matched randomly
pruned network and the corresponding IMP initialization,
my, © 6y. Previously, it has been shown that a positive
ticket effect can be observed throughout different GD-based
training paradigms including computer vision (Frankle &
Carbin,, 2019; |[Frankle et al., 2020b), reinforcement learning
(Yu et al.| [2019; |Vischer et al.| 2021), natural language pro-
cessing (Chen et al., [2020), graph neural networks (Chen
et al.;2021) and generative models (Kalibhat et al., 2021)).
In contrast to previous work, we investigate whether the
lottery ticket phenomenon is an idiosyncratic phenomenon
for gradient-based optimization.
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Evolution Strategies. ES constitute a set of random search
algorithms based on the principles of biological evolution.
They adapt a parametrized distribution in order to iteratively
search for well performing solutions. After sampling a pop-
ulation of candidates, their fitness is estimated using Monte
Carlo (MC) evaluations. The resulting scores are used to up-
date the search distribution. We focus on two representative
ES classes, which have been used in neuroevolution.

Finite Difference-based ES: A subset of ES use random per-
turbations to MC estimate a finite difference gradient:

1
VoEcono,nF (0 + oe) = ;EeNN(O,I) [F'(0 + oe€)e]

This estimate is then used along standard GD-based opti-
mizers to refine the search distribution mean 6 (Salimans
et al.,|2017). They differ in their use of fitness shaping, anti-
correlated noise, elite selection and the covariance structure.
Estimation-of-Distribution ES: A second class of ES does
not rely on noise perturbations or low-dimensional approx-
imations to the fitness gradient. Instead, algorithms such
as CMA-ES (Hansen & Ostermeier, 2001) rely on elite-
weighted mean updates and iterative covariance matrix es-
timation. They aim to shift the search distribution into the
direction maximizing the likelihood of fitness improvement.

Sparsity & Pruning in Gradient-Free Optimization. The
NEAT algorithm (Stanley & Miikkulainen,[2002)) co-evolves
network architectures and their weights. The connectivity
is changed throughout the procedure, which often times
naturally leads to the emergence of sparse architectures.
Mocanu et al.|(2018) used an dynamic sparse training algo-
rithm inspired by evolutionary principle to train networks
with dynamic topology. Finally, Mocanu et al.|(2016]) pre-
viously investigated the performance of sparse Boltzmann
Machines, which do not rely on gradient computation via
backpropagation. Here, we investigate the sparse trainability
of otherwise static neural networks and the LTH in ES.

Searching for Lottery Tickets in Evolution Strategies.
We introduce an ES-generalized iterative pruning procedure
and focus on search strategies that adapt the sufficient statis-
tics of a multivariate diagonal Gaussian distribution. At each
pruning iteration the mean initialization is pruned based on
its final estimate (Figure[I] middle). Furthermore, we con-
sider a signal-to-noise ratio pruning heuristic, which prunes
weights based on the ratio of the mean magnitude and the
standard deviation of the search distribution, |f|/o. SNR
pruning implicitly incorporates information about the loss
geometry/curvature into the sparsification. The procedure is
summarized in Algorithmm ‘We note that (Blundell et al.,
2015) previously considered a SNR criterion in the context
of zero-shot pruning of Bayesian neural networks.

Importantly, pruning for ES reduces the memory require-
ments due to the smaller dimensionality of the stored mean
and covariance estimates. While most ES initialize the

Algorithm 1 SNR-Based Iterative Pruning for ES
Input: Pruning ratio p € (0, 1), iterations T’ € Z, ES
algorithm, G generations, N population size.
Initialize the ES search distribution 6y, oy € R,
Initialize a dense pruning mask mo = Ip € RP.
fort=0to7T — 1do
# Construct the sparse ES statistics:
90715 =my© 90 and g0, = My ® og.
# Evolve non-pruned weights only:
forg=0toG—1do
Sample: x; ~ N(8y,¢,04+Ip),Vi=1,...,N.
Evaluate candidate fitness: f;,Vi=1,..., N.
Update ES: 09+17t7 Og+1,t < ES(vat, Og.t,X, f)
end for
Compute sparsity level s; = (1 —p)'*.
Compute SNR threshold p(s;) by sorting |0 ¢|/o G-
Construct the next mask m¢1 = 1jg4,
end for

\/O'G,t>;0t'

search mean at zero, we instead sample the initialization
according to standard network initializations allowing for
an initialization effect. This ensures comparability between
GD and ES-based iterative pruning. Throughout the main
text, we mainly focus on 4 ES including PGPE (Sehnke
et al.l 2010), SNES (Schaul et al., [2011), Sep-CMA-ES
(Ros & Hansenl 2008) and DES (Lange et al., 2022). They
all make use of a diagonal covariance, which enables the
computation of weight-specific SNRs used to compute prun-
ing thresholds. All ES and GD training algorithms were
tuned using the same amount of compute/T]

Measuring Ticket Effect Contributions. The ticket effect
can be decomposed into three ingredients: The pruning-
derived mask, the implied initialization of the remaining
non-pruned weights, and the layerwise pruning ratio. |Vis-
cher et al.| (2021)) proposed to estimate each contribution
using a set of permutation experiments. By permuting the
non-masked weights at each pruning iteration, one may
estimate the contribution of the extracted weight initializa-
tion. If the performance of the sparsified networks remains
unharmed, the weight effect is small. If additionally per-
muting the binary mask greatly damages the trainability, the
mask effect is large. Finally, comparing a randomly pruned
network with the doubly permuted baseline allows us to es-
timate the impact of the layerwise pruning ratio implied by
the iterative pruning. In this work, we additionally consider
the gap between IMP and SNR pruned network initializa-
tions. The difference can be attributed to the information
resulting from curvature estimation of the ES covariance.

'We compare against PPO (Schulman et al.,[2017) for control
tasks and simple cross-entropy minimization with Adam for image
classification. We refer the interested reader to the supplementary
information (SI) for task-specific hyperparameters.
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Figure 2. Existence of sparse evolvable intializations and benefits of SNR-based pruning. For the majority of considered settings we
observe a lottery ticket effect (/MP vs. random pruning). Furthermore, the proposed SNR-based iterative pruning consistently discovers
initializations that outperform IMP tickets across all sparsity level. This highlights the positive effect of accounting for loss curvature at
the time of pruning. The size of the ticket effect depends on the task-network-ES setting, which indicates a difference in task-specific
degree of overparametrization. Top. Sep-CMA-ES-based (Ros & Hansenl 2008) tickets. Middle. SNES-based (Schaul et al., |2011)
tickets. Bottom. PGPE-based (Sehnke et al., 2010) tickets. Results are averaged over 5 independent runs & we plot standard error bars.

3. Winning Lottery Ticket Initializations Exist
for Evolutionary Optimization

Previous work (Evci et al.,[2020; Maene et al., [2021) sug-
gests that GD ticket initializations overcome the sparsity-
induced decrease in gradient flow by biasing initializations
to retrain to the same loss basin. Given that ES are prone to
higher stochasticity during the learning process, it is likely
to converge to more diverse loss basins, raising the ques-
tion whether the LTH phenomenon is unique to GD training
using backpropagation.

In order to investigate this question, we start by exhaustively
evaluating the existence of winning lottery tickets in ES. We
focus on 12 tasks, different network architectures and 3 ES:
First, we evolve MLP agents (1 to 3 layers) on 9 Reinforce-
ment Learning tasks focusing on the continuous control
setting. We evolve the agents to maximize episodic returns
using Sep-CMA-ES, SNES and PGPE. The environments
are implemented by the Brax (Freeman et al.,[2021) package
and the agent evaluation is done using the average return on
a set of test episodes. Next, we evolve CNN architectures
on both the standard MNIST, Fashion-MNIST (F-MNIST)
and Kuzushiji-MNIST (K-MNIST) digit classification tasks
and to minimize the cross-entropy loss. In this case we eval-
uate the performance via the test accuracy of the final mean

search statistic 6 ;. For each task-network-ES combination
we run the ES-adapted pruning procedure and prune at each
iteration 20 percent of the remaining non-pruned weights
(p = 0.2). To ensure trainability at higher levels of sparsity,
we generously calibrated the amount of ES generations and
refer the reader to the SIIC|for a detailed overview of the
considered hyperparameters.

Winning lottery tickets consistently exist for various ES.
We find that the magnitude-based lottery ticket configura-
tion outperforms the random-reinitialization baseline across
the majority of tasks, network architectures and ES combi-
nations (Figures[I]and 2] red versus yellow curves). While
the qualitative effect is robust across most settings, the quan-
titative magnitude differs significantly across task complex-
ities and the degree of network overparametrization: For
the simpler classification and pendulum task the observed
ticket effect is large compared to the more complex con-
trol tasks such as HalfCheetah and the Hopper task. This
indicates a relationship between task complexity and the
overparametrization required to achieve high performance.

SNR-based IMP results in sparser trainable tickets. Next,
we compare ES lottery tickets resulting from magnitude-
and SNR-based pruning (Figures[T]and 2} black versus red
curves). We find that SNR-derived tickets are consistently
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Figure 3. Performance comparison between GD and ES-based lottery ticket initializations. For the majority of considered task settings,
ES-based training performs on par with GD for medium levels of sparsity. At high sparsity degrees, on the other hand, ES-SNR
initializations tend to outperform the sparsity-matched GD initializations. Top. Sep-CMA-ES-based (Ros & Hansen, 2008)) tickets.
Middle. SNES-based (Schaul et al., 2011) tickets. Bottom. PGPE-based (Sehnke et al., |2010) tickets. Results are averaged over 5

independent runs & we plot standard error bars.

trainable at higher degrees of sparsity. The search standard
deviation of a specific weight indirectly incorporates infor-
mation about the local loss landscape geometry. Intuitively,
weights with high associated standard deviation imply a
strong robustness to perturbations and in turn a flat direc-
tion in the loss surface. Hence, we may expect weights
with relatively small SNR to have a negligible performance
contribution.

Highly sparse trainability can be achieved by ES. In
Figures [T]and [3] (green versus red curves) we compare the
performance of GD-based IMP and ES-based SNR pruning.
We find that sparse ES initializations are capable of outper-
forming GD-based training methods on several tasks. More
importantly, we observe that ES-based methods are robustly
better at training highly sparse networks. For the control
tasks, ES can also outperform GD for moderate levels of
sparsity (e.g. Hopper and Grasp tasks). For the vision-based
tasks, on the other hand, GD-IMP starts to degrade in per-
formance faster as the sparsity increases. In Section 5| we
investigate these dynamics and relationship between the
sharpness of GD-based local optima and sparsity.

In summary, winning lottery tickets can be identified for
different gradient-free ES, tasks and architectures. The size
of the observed ticket effect and hence sparse trainability
can be improved by considering not only the mean magni-

Task/ES Pruning-Train | Transfer-Eval
Sep-CMA-ES Ant Mass 10 Ant Mass 15
SNES F-MNIST MNIST

Ant Sep-CMA-ES DES
F-MNIST SNES PGPE

Ant Sep-CMA-ES | PPO
F-MNIST SNES SGD

Table 1. Lottery Ticket ES/Task Transfer Settings

tude, but also the covariance as a reflection of loss curvature.
The general phenomenon of sparse trainability of neural
networks, therefore, is not unique to gradient descent and
generalizes to algorithms with inherently higher stochastic-
ity. The effect size and underlying contributions are task
and network sensitive but largely robust to the optimization
scheme. Finally, ES consistently train to higher performance
at high sparsity levels.

4. ES-Based Lottery Tickets Transfer across
Tasks, ES and to GD-Based Training

The iterative pruning-based generation of winning tickets is
a costly procedure requiring the sequential evolution of net-
work initializations at different sparsity levels. Thereby, it
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Figure 4. ES ticket initializations transfer between related tasks and between different ES. Left. Conceptual visualization of ticket
initialization transfer between tasks/ES. We first run SNR-pruning on a task/ES setting to obtain a set of initializations at different
sparsity levels. Afterwards, we evaluate their trainability in a different setting. Top. Task transfer between two torso masses (Ant task;
Sep-CMA-ES) and image classification tasks (MNIST variants; SNES). Bottom. ES Transfer between Sep-CMA-ES and DES (Ant task)
as well as SNES and PGPE (F-MNIST task). For both cases we can observe a positive transfer of the previously discovered pruning
masks. Results are averaged over 5 independent runs & we plot standard error bars.

remains impractical for most real world application. But is it
possible to amortize the costly ticket generation for one task
by successfully applying it to a different one? Previous work
showed that the GD-IMP-derived input layer mask captures
task-specific information (Vischer et al.,2021)), discarding
task irrelevant dimensions. We wondered whether ES tick-
ets extract similar useful transferable inductive biases or
whether they overfit to their generating setting (i.e., task, ES
algorithm or training paradigm). If they remain transferable,
we can hope for a task-general application of sparse ticket
initializations in the context of ES. To answer this question,
we test the transferability of sparse initializations generated
with ES-based SNR pruning to new unseen but related tasks.
We take inspiration by the work of [Morcos et al. (2019)
and re-train sparse initializations generated for one task-ES
configuration on a different setting with a shared network
architecture.

We start by examining the transfer of SNR-based initializa-
tions between different but related task variants and consider
several settings (Figure[d] top). Importantly, the source and
transfer task share the same input/output dimensionality and
are related (Table(l] top; different torso mass for Ant control
and digit/cloth image classification transfer).

Winning ES tickets can be transferred to related tasks.
The transfer of a ticket initialization derived on a related
task improves the performance of a network trained on a

new ‘sibling’ task. The effect measured by the performance
difference of the transferred initializations (blue) and the
random pruning baseline (yellow) is significant across both
of the considered tasks. The transferred ticket does not out-
perform the task-native SNR-lottery ticket (at high sparsity),
indicating that tickets tend to capture both task-general and
task-specific information. This positive transfer effect can
be observed both for control (MLP) and vision (CNN) tasks.

Next, we investigated whether it is possible to evolve sparse
initializations generated by one evolution strategy with a
different optimization strategy. We consider the transfer
within the class of finite difference-based ES, to a covariance
matrix adaptation-style ES and to GD-based training.

Winning ES tickets can be transferred between ES.
Ticket initializations also transfer well between different
ES optimization algorithms (Figure ] bottom). Oftentimes
the transferred initializations train to the same performance
level of the ES-specific ticket initialization, indicating that
a within-task transfer is easier as compared to the previous
across-task setting. This observation again holds for both
task settings (control and vision) as well as different ES
combinations.

Winning ES tickets can be transferred to GD Training.
Finally, we repeat the procedure from the previous subpara-
graphs, but this time transfer sparse ES-derived initializa-
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plot standard error bars.

tions to downstream training with GD. Again, we find a
positive effect for transferring an initialization that was ob-
tained by ES (Figure [5). As discussed in Section [3] ES
tickets can perform worse than GD-based training for mod-
erate levels of sparsity. In line with this observation, we find
that the size of the transfer effect correlates with the relative
performance differences between the two paradigms. We
do not find a strong positive effect for sparsity levels where
the GD ticket baseline outperforms the ES ticket (e.g. for
the ant task). More interestingly, for very sparse networks
the ES-transferred initialization can even outperform the
GD-ticket indicating that highly sparse ES pruning masks
are well transferable to GD training.

S. Linear Mode Connectivity & SNR Pruning

ES and GD optima are not linearly connected. Based
on the previous results, we wondered how the trained mod-
els obtained by ES and GD differed. Therefore, we com-
pared the linear connectivity (Frankle et al.| 2020a) of the
local optima across sparsity levels. We compute the test
accuracy (A) error barrier between two trained networks
max,eo,1] A(ad + (1 — «)0’) for a range of a, compar-
ing network combinations at different IMP iterations. In
line with previous work (Frankle et al., [2019), GD-based
local optima remain strongly connected for moderate levels
of sparsity (Figure [6] top). ES-based (ARS, Mania et al.,
2018) solutions, on the other hand, already experience a
performance barrier between early IMP iterations, but re-
main better connected at higher sparsity levels. The optima
found by GD and ES are generally not linearly connectable,
indicating that GD and ES find fundamentally different so-
lutions. Furthermore, it questions a generalization of the
regurgitating ticket interpretation to ES (Evci et al., [2020;
Maene et al.,[2021): ES ticket initializations exist despite
the fact that they do not repeatedly train to the same loss

basin. In SI Figure [I1] we find that the lack of ES-GD
connectivity can partially be explained by different weight
magnitudes for the two training paradigms. In general, GD-
based solutions have higher magnitude weights and tend to
prune the input layer less.

ES tends to converge to flatter optima. A natural follow-
up question is: How do the curvatures of local optima ob-
tained by the different training paradigms differ? We use
one-dimensional random projections (L1 et al., 2018)) of the
test loss £(0; &) = L(6 + &n) with n ~ N (0, 1) to examine
the sensitivity of the discovered local optimum for different
strengths & € [—1, 1]. We quantify the approximate curva-
ture by fitting a quadratic polynomial to the projected loss as
a function of the perturbation strength. In Figure [6] (bottom)
we observe that the approximate sharpness of the GD optima
increases rapidly with the sparsity level. For ES-based op-
tima, on the other hand, the curvature increases at a smaller
rate across IMP iterations. We provide visualizations of the
2D projected loss surface in SI Figure

SNR pruning dynamically accounts for fitness curvature.
Finally, we investigate conditions under which SNR-based
pruning improves over IMP. In Figure [/| we plot the cor-
relation of weight magnitudes and SNRs across pruning
stages. The correlation decreases for both SNR and IMP-
based pruning runs as sparsity increases. The SNR-IMP
performance gap is closely related to the relative correlation
dynamics: If the correlation decreases faster for IMP than
SNR (left; Fetch task), one also observes a positive impact
of SNR pruning on the performance. Otherwise, we do
not (right; F-MNIST task). This indicates that SNR-based
pruning can account for non-isotropic changes in the fitness
landscape curvature caused by sparsification. Dimensions
with high sharpness (small o) will have a larger SNR, which
makes them less prone to pruning. Future work will have to
uncover the mechanistic underpinnings of this phenomenon.
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Figure 6. Connectivity barriers & local minima sharpness in GD and ES (ARS,Mania et al| 2018) on MNIST. Top. While for low sparsity
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ARS optima cannot be connected without strong performance drops, indicating that they find different optima. Bottom. Low-dimensional
loss projections and curvature estimates at different iterations. The sharpness of GD-based optima increases rapidly
with the sparsity level. ES-based optima remain more flat throughout the IMP procedure. Results are averaged over 5 independent runs.
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6. Discussion

Summary. We establish the existence of sparse trainable ini-
tializations in evolutionary optimization. Sparse trainability,
therefore, does not require a specific masked gradient flow.
The exact size of the ticket effect depend on ES, architecture
and task. The resulting sparse initializations are transferable
across training paradigms and to related tasks. Tickets in
ES do not necessarily retrain to the same loss basin but still
remain trainable across sparsity levels.

Ethical Considerations. [Hooker et al| (2020) show that
compression can amplify bias and decrease fairness in the
GD-based training setting. As we scale ES, future work will
have to assess whether these problems transfer to ES model
compression and how to mitigate them.

Limitations. This work is limited by its empirical na-
ture and scalability of ES. Furthermore, our study focus
on medium network sizes. This is partially due to ES suf-
fering from a lack of hyperparameter understanding and
the adoption of tools tailored towards GD-based optimiza-
tion (optimizers, etc.). Finally, our analysis is based on the
computationally costly iterative pruning procedure, which
requires multiple sequential training runs.

Future Work. Dynamic sparse training with ES provides a
direction for future work and may enable protocols which si-
multaneously grow and prune networks. Furthermore, a full
understanding of sparse trainability requires a theoretical
treatment of the effect of sparsity on the fitness landscape.
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A. Additional Results
A.1. Lottery Ticket Baseline Comparison for GD-Based IMP
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Figure 8. GD (Adam) baseline comparison (Vischer et all 2021). The task and the architecture dictate the importance of mask, preserved
weights and layerwise pruning ratio. The results are averaged over 5 independent runs and we plot one standard deviation intervals.

A.2. Impact of Network Initialization
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Figure 9. Top. Network initialization comparison. We validate whether the chosen network initialization has a significant influence on
sparse evolvability. Across the four tasks and 3 ES we do not observe any significant differences between the considered initialization
schemes. Bottom. Pruning heuristic comparison. We follow and compare 4 different pruning heuristics: Final
magnitude (|6 |), movement (|0 — 6g|), magnitude increase (|6f| — |fo|) and smallest initial value (6). Across the four tasks and 3 ES
we can observe that all of the heuristics which depend on 6 provide sensible choices. The results are averaged over 5 independent runs
and we plot one standard deviation intervals.
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A.3. 2D Loss Projections

Following Li et al.[|(2018) we provide 2D visualizations of the loss surface using random projections and for different IMP
iterations. We sample two random vectors 71,2 ~ N (0, I'). Afterwards, we perform a filter-/neuron-wise normalization
of the random vectors based on the corresponding norms of the trained dense network at IMP iteration 0. The same
normalized random vectors are then applied to the optima found after training at different IMP iterations 6: L(6f; o, ) =
L85 + am + Sn2). We evaluate the loss on the test set using «, 5 € [—1, 1] for a discretized range (51 steps). Afterwards,
we apply spline smoothing to obtain the heat visualizations.
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Figure 10. 2D loss projection for MNIST task (Li et al.l |2018). GD optima become sharper as sparsity increases, while ES optima remain
flat. The results are averaged over 5 independent runs.

A.4. Layerwise Pruning Ratios and Weight Summary Statistics

o -
3} =}

Sparsity

g
=}

Sparsity
o =
[&)] o

e
=}

Sparsity
o =
[&)] o

o
=}

MNIST: CNN - Layerwise Sparsity & Weight Distribution

Conv_0/kernel

0 10 20 30
Conv_1/kernel
0 10 20 30
Dense_0/kernel
0 10 20 30
IMP Iteration

Mean |W| Mean |W|

Mean |W|

Conv_0/kernel

2
1
0 10 20 30
Conv_1/kernel
2
1
0 10 20 30
Dense_0/kernel
2
1
0 10 20 30
IMP lteration

Conv_0/kernel

N

0 10 20 30
Conv_1/kernel
JAN
J
/|
’———'—’// /
0 10 20 30
Dense_0/kernel

N

— ES
SGD
0 10 20 30
IMP lteration

Figure 11. Layerwise pruning ratios and weight summary statistics for MNIST task. The results are averaged over 5 independent runs.
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B. Software & Compute Requirements

Simulations were conducted on a high-performance cluster using 5 or more independent runs (random seeds). Depending on
the setting, a single iterative pruning run (20 individual training runs at different sparsity levels) lasts between 60 minutes
and 10 hours of training time:

* Brax tasks & MLP policy: 1 NVIDIA V100S GPU, ca. 10 hours.

¢ Pendulum task & MLP network: 1 NVIDIA RTX 2080Ti GPU, ca. 1 hour.

o MNIST/F-MNIST/K-MNIST task & CNN network: 1 NVIDIA RTX 2080Ti GPU, ca. 2 hours.
The code is publicly available under https://github.com/RobertTLange/es-lottery. The experiments were
organized using the MLE-Infrastructure (Lange, 2021, MIT license) training management system. All training loops
and ES are implemented in JAX (Bradbury et al.,|2018). All visualizations were done using Matplotlib (Hunter, 2007) and

Seaborn (Waskom, 2021, BSD-3-Clause License). Finally, the numerical analysis was supported by NumPy (Harris et al.|
2020, BSD-3-Clause License). Furthermore, we used the following libraries:

» Evosax: |[Lange|(2022a), Gymnax: [Lange| (2022b), Evojax: [Tang et al.|(2022), Brax: [Freeman et al.| (2021)

Note that we focus our experiments and analysis on Evolution Strategies and do not study Genetic Algorithms (e.g.
Rechenberg|, |1978}; |Clune et al., 2008; [Kumar et al.| [2022; [Lange et al., [2023). They do not maintain an explicit search
distribution and instead use an archive of parent solutions to apply selection and mutation rate adaptation. Future work may
investigate pruning the network architecture based on the best parent member after running the Genetic Algorithm.

C. Hyperparameter Settings
C.1. Control - Shared MLP Task Hyperparameters

Parameter | Value Parameter | Value Parameter | Value Parameter | Value
Population | 256 # Generations | 3k - 4k Env Steps | 40-1200 Mio Obs Norm | True
# Train Eval | 8 # Test Eval | 164 # Train Eval | 8 # Test Eval | 164
Network Type | MLP # Hidden Units | 32-80 Network Type | MLP # Hidden Units | 32-80
Output Layer | Tanh #Seeds | 5 Output Layer | Tanh #Seeds | 5
Objective | Return Evaluation | Return Objective | PPO Evaluation | Return
ES Optimizer | Adam || # Hidden Layers | 1-3 Optimizer | Adam # Hidden Layers | 1-3
Table 2. ES Settings for Control MLP tasks. Table 3. PPO Settings for Control MLP tasks.

For PPO Brax tasks we used the default settings provided in the repository (Freeman et al., 2021).

For ES Brax tasks we used the settings provided by (Lange et al.,2022).

C.2. Vision - Shared CNN Task Hyperparameters

Parameter | Value Parameter | Value Parameter | Value Parameter | Value
Population | 128 # Generations | 4000 # Epochs | 20 Optimizer | Adam
Batch Size | 1024 Filter sizes | [5, 5] Batch Size | 128 Learning rate | 3e-04

Network Type | CNN # Conv Layers | 2 Network Type | CNN # Conv Layers | 2
Output Layer | Dense #Seeds | 5 Output Layer | Dense #Seeds | 5
Objective | CE Evaluation | Acc Objective | CE Evaluation | Acc
ES Optimizer | Adam Conv Filters | [8, 16] Filter sizes | [5, 5] Conv Filters | [8, 16]
Table 4. ES Settings for MNIST CNN. Table 5. SGD Settings for MNIST CNN.

13


https://github.com/RobertTLange/es-lottery

