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Abstract
Diffusion models have demonstrated their power-
ful generative capability in many tasks, with great
potential to serve as a paradigm for offline rein-
forcement learning. However, the quality of the
diffusion model is limited by the insufficient di-
versity of training data, which hinders the perfor-
mance of planning and the generalizability to new
tasks. This paper introduces AdaptDiffuser, an
evolutionary planning method with diffusion that
can self-evolve to improve the diffusion model
hence a better planner, not only for seen tasks but
can also adapt to unseen tasks. AdaptDiffuser en-
ables the generation of rich synthetic expert data
for goal-conditioned tasks using guidance from
reward gradients. It then selects high-quality data
via a discriminator to finetune the diffusion model,
which improves the generalization ability to un-
seen tasks. Empirical experiments on two bench-
mark environments and two carefully designed
unseen tasks in KUKA industrial robot arm and
Maze2D environments demonstrate the effective-
ness of AdaptDiffuser. For example, AdaptDif-
fuser not only outperforms the previous art Dif-
fuser (Janner et al., 2022) by 20.8% on Maze2D
and 7.5% on MuJoCo locomotion, but also adapts
better to new tasks, e.g., KUKA pick-and-place,
by 27.9% without requiring additional expert data.
More visualization results and demo videos could
be found on our project page.

1. Introduction
Offline reinforcement learning (RL) (Levine et al., 2020;
Prudencio et al., 2022) aims to learn policies from previously
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Figure 1. Overall framework and performance comparison of
AdaptDiffuser. It enables diffusion models to generate rich syn-
thetic expert data using guidance from reward gradients of either
seen or unseen goal-conditioned tasks. Then, it iteratively se-
lects high-quality data via a discriminator to finetune the diffusion
model for self-evolving, leading to improved performance on seen
tasks and better generalizability to unseen tasks.

collected offline data without interacting with the live envi-
ronment. Traditional offline RL approaches require fitting
value functions or computing policy gradients, which are
challenging due to limited offline data (Agarwal et al., 2020;
Kumar et al., 2020; Wu et al., 2019; Kidambi et al., 2020).
Recent advances in generative sequence modeling (Chen
et al., 2021a; Janner et al., 2021; 2022) provide effective
alternatives to conventional RL problems by modeling the
joint distribution of sequences of states, actions, rewards
and values. For example, Decision Transformer (Chen et al.,
2021a) casts offline RL as a form of conditional sequence
modeling, which allows more efficient and stable learning
without the need to train policies via traditional RL algo-
rithms like temporal difference learning (Sutton, 1988). By
treating RL as a sequence modeling problem, it bypasses
the need of bootstrapping for long-term credit assignment,
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avoiding one of the “deadly triad” (Sutton & Barto, 2018)
challenges in reinforcement learning.

Therefore, devising an excellent sequence modeling algo-
rithm is essential for the new generation of offline RL. The
diffusion probability model (Rombach et al., 2022; Ramesh
et al., 2022), with its demonstrated success in generative
sequence modeling for natural language processing and
computer vision, presents an ideal fit for this endeavor. It
also shows great potential as a paradigm for planning and
decision-making. For example, diffusion-based planning
methods (Janner et al., 2022; Ajay et al., 2023; Wang et al.,
2023) train trajectory diffusion models based on offline
data and apply flexible constraints on generated trajectories
through reward guidance during sampling. In consequence,
diffusion planners show notable performance superiority
compared with transformer-based planners like Decision
Transformer (Chen et al., 2021a) and Trajectory Trans-
former (Janner et al., 2021) on long horizon tasks, while
enabling goal-conditioned rather than reward-maximizing
control at the same time.

While diffusion-based planners have achieved success in
certain areas, their performance is limited by the lack of
diversity in their training data. In decision-making tasks, the
cost of collecting a diverse set of offline training data may be
high, and this insufficient diversity would impede the ability
of the diffusion model to accurately capture the dynamics
of the environment and the behavior policy. As a result,
diffusion models tend to perform inferior when expert data
is insufficient, and particularly when facing new tasks. This
raises a natural question: can we use the generated heteroge-
neous data by the reward-guided diffusion model to improve
the diffusion model itself since it has powerful generative
sequence modeling capability? As diffusion-based planners
can generate quite diverse “dream” trajectories for multi-
ple tasks which may be different from the original task the
training data are sampled from, greatly superior to Decision
Transformer (Chen et al., 2021a), enabling the diffusion
model to be self-evolutionary makes it a stronger planner,
potentially benefiting more decision-making requirements
and downstream tasks.

In this paper, we present AdaptDiffuser, a diffusion-based
planner for goal-conditioned tasks that can generalize to
novel settings and scenarios through self-evolution (see Fig-
ure 1). Unlike conventional approaches that rely heavily
on specific expert data, AdaptDiffuser uses gradient of re-
inforcement learning rewards, directly integrated into the
sampling process, as guidance to generate diverse and het-
erogeneous synthetic demonstration data for both existing
and unseen tasks. The generated demonstration data is then
filtered by a discriminator, of which the high-quality ones
are used to fine-tune the diffusion model, resulting in a better
planner with significantly improved self-bootstrapping capa-

bilities on previously seen tasks and an enhanced ability of
generalizing to new tasks. As a consequence, AdaptDiffuser
not only improves the performance of the diffusion-based
planner on existing benchmarks, but also enables it to adapt
to unseen tasks without the need for additional expert data.

It’s non-trivial to construct and evaluate AdaptDiffuser for
both seen and unseen tasks.We first conduct empirical exper-
iments on two widely-used benchmarks (MuJoCo (Todorov
et al., 2012) and Maze2d) of D4RL (Fu et al., 2020) to ver-
ify the self-bootstrapping capability of AdaptDiffuser on
seen tasks. Additionally, we creatively design new pick-
and-place tasks based on previous stacking tasks in the
KUKA (Schreiber et al., 2010) industrial robot arm environ-
ment, and introduce novel auxiliary tasks (e.g., collecting
gold coins) in Maze2D. The newly proposed tasks and set-
tings provide an effective evaluation of the generalization
capabilities of AdaptDiffuser on unseen tasks.

Our contributions are three-fold: 1) We present AdaptDif-
fuser, allowing diffusion-based planners to self-evolve for
offline RL by generating high-quality heterogeneous data
with reward-integrated diffusion model directly and filter-
ing out inappropriate examples with a discriminator. 2)
We apply our self-evolutionary AdaptDiffuser to unseen
(zero-shot) tasks without any additional expert data, demon-
strating its strong generalization ability and adaptability.
3) Extensive experiments on two widely-used offline RL
benchmarks from D4RL as well as our carefully designed
unseen tasks in KUKA and Maze2d environments validate
the effectiveness of AdaptDiffuser.

2. Related Works
Offline Reinforcement Learning. Offline RL (Levine et al.,
2020; Prudencio et al., 2022) is a popular research field
that aims to learn behaviors using only offline data such
as those collected from previous experiments or human
demonstrations, without the need to interact with the live
environment from time to time at the training stage.

However, in practice, offline RL faces a major challenge that
standard off-policy RL methods may fail due to the over-
estimation of values, caused by the distribution deviation
between the offline dataset and the policy to learn. Most con-
ventional offline RL methods use action-space constraints
or value pessimism (Buckman et al., 2021) to overcome the
challenge (Agarwal et al., 2020; Kumar et al., 2020; Siegel
et al., 2020; Wu et al., 2019; Yang et al., 2022). For exam-
ple, conservative Q-learning (CQL) (Kumar et al., 2020)
addresses these limitations by learning a conservative Q-
function, ensuring the expected value under this Q-function
is lower than its true value.

Reinforcement Learning as Sequence Modeling. Re-
cently, a new paradigm for Reinforcement Learning (RL)
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has emerged, in which RL is viewed as a generic sequence
modeling problem. It utilizes transformer-style models to
model trajectories of states, actions, rewards and values,
and turns its prediction capability into a policy that leads
to high rewards. As a representative, Decision Transformer
(DT) (Chen et al., 2021a) leverages a causally masked trans-
former to predict the optimal action, which is conditional
on an autoregressive model that takes the past state, action,
and expected return (reward) into account. It allows the
model to consider the long-term consequences of its actions
when making a decision. And based on DT, Trajectory
Transformer (TT) (Janner et al., 2021) is proposed to utilize
transformer architecture to model distributions over trajec-
tories, repurposes beam search as a planning algorithm, and
shows great flexibility across long-horizon dynamics predic-
tion, imitation learning, goal-conditioned RL, and offline
RL. Bootstrapped Transformer (Wang et al., 2022) further
incorporates the idea of bootstrapping into DT and uses the
learned model to self-generate more offline data to further
improve sequence model training. However, Bootstrapped
Transformer could not integrate RL reward into the data
synthesizing process directly and can only amplify homo-
geneous data trivially for its original task, which can boost
the performance but cannot enhance the adaptability on an-
other unseen task. Besides, such approaches lack flexibility
in adapting to new reward functions and tasks in different
environments, as the generated data is not suitable for use
in new tasks or environments.

Diffuser (Janner et al., 2022) presents a powerful framework
for trajectory generation using the diffusion probabilistic
model, which allows the application of flexible constraints
on generated trajectories through reward guidance during
sampling. The consequent work, Decision Diffuser (Ajay
et al., 2023) introduces conditional diffusion with reward
or constraint guidance for decision-making tasks, further
enhancing Diffuser’s performance. Additionally, Diffusion-
QL (Wang et al., 2023), adds a regularization term to the
training loss of the conditional diffusion model, guiding
the model to learn optimal actions. Nevertheless, the per-
formance of these methods is still limited by the quality
of offline expert data, leaving room for improvement in
adapting to new tasks or settings.

Diffusion Probabilistic Model. Diffusion models are a type
of generative model that represents the process of generat-
ing data as an iterative denoising procedure (Sohl-Dickstein
et al., 2015; Ho et al., 2020). They have made break-
throughs in multiple tasks such as image generation (Song
et al., 2021), waveform generation (Chen et al., 2021b), 3D
shape generation (Zhou et al., 2021) and text generation
(Austin et al., 2021). These models, which learn the latent
structure of the dataset by modeling the way in which data
points diffuse through the latent space, are closely related to
score matching (Hyvärinen, 2005) and energy-based mod-

els (EBMs) (LeCun et al., 2006; Du & Mordatch, 2019;
Nijkamp et al., 2019; Grathwohl et al., 2020), as the de-
noising process can be seen as a form of parameterizing the
gradients of the data distribution (Song & Ermon, 2019).

Moreover, in the sampling process, diffusion models allow
flexible conditioning (Dhariwal & Nichol, 2021) and have
the ability to generate compositional behaviors (Du et al.,
2020). It shows that diffusion models own promising po-
tential to generate effective behaviors from diverse datasets
and plan under different reward functions including those
not encountered during training.

3. Preliminary
Reinforcement Learning is generally modeled as a Markov
Decision Process (MDP) with a fully observable state space,
denoted as M = (S,A, T ,R, γ), where S is the state space
and A is the action space. Besides, T is the state transition
function with the dynamics of this discrete-time system that
st+1 = T (st,at) at state st ∈ S given the action at ∈ A.
R(st,at) defines the reward function and γ ∈ (0, 1] is the
discount factor for future reward.

Considering the offline reinforcement learning as a sequence
modeling task, the objective of trajectory optimization is to
find the optimal sequence of actions a∗

0:T that maximizes
the expected return with planning horizon T , which is the
sum of per time-step rewards or costs R(st,at):

a∗
0:T = argmax

a0:T

J (s0,a0:T ) = argmax
a0:T

T∑
t=0

γtR(st,at).

(1)

The sequence data generation methods utilizing diffusion
probabilistic models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) pose the generation process as an iterative denoising
procedure, denoted by pθ(τ

i−1 | τ i) where τ represents a
sequence and i is an indicator of the diffusion timestep.

Then the distribution of sequence data is expanded with the
step-wise conditional probabilities of the denoising process,

pθ
(
τ 0

)
=

∫
p
(
τN

) N∏
i=1

pθ
(
τ i−1 | τ i

)
dτ 1:N (2)

where p
(
τN

)
is a standard normal distribution and τ 0 de-

notes original (noiseless) sequence data.

The parameters θ of the diffusion model are optimized by
minimizing the evidence lower bound (ELBO) of negative
log-likelihood of pθ

(
τ 0

)
, similar to the techniques used in

variational Bayesian methods.

θ∗ = argmin
θ

−Eτ0

[
log pθ

(
τ 0

)]
(3)

What’s more, as the denoising process is the reverse of a
forward diffusion process which corrupts input data by grad-
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ually adding noise and is typically denoted by q
(
τ i | τ i−1

)
,

the reverse process can be parameterized as Gaussian under
the condition that the forward process obeys the normal
distribution and the variance is small enough (Feller, 2015).

pθ
(
τ i−1 | τ i

)
= N

(
τ i−1 | µθ

(
τ i, i

)
,Σi

)
(4)

in which µθ and Σ are the mean and covariance of the
Gaussian distribution respectively.

For model training, with the basis on Eq. 3 and 4, (Ho et al.,
2020) proposes a simplified surrogate loss:

Ldenoise(θ) := Ei,τ0∼q,ϵ∼N [||ϵ− ϵθ(τ
i, i)||2] (5)

where i ∈ {0, 1, ..., N} is the diffusion timestep, ϵ ∼
N (0, I) is the target noise, and τ i is the trajectory τ 0 cor-
rupted by noise ϵ for i times. This is equivalent to predicting
the mean µθ of pθ

(
τ i−1 | τ i

)
as the function mapping from

ϵθ(τ
i, i) to µθ(τ

i, i) is a closed-form expression.

4. Method
In this section, we first introduce the basic planning with
the diffusion method and its limitations. Then, we pro-
pose AdaptDiffuser, a novel self-evolved sequence model-
ing method for decision-making with the basis of diffusion
probabilistic models. AdaptDiffuser is designed to enhance
the performance of diffusion models in existing decision-
making tasks, especially the goal-conditioned tasks, and
further improve their adaptability in unseen tasks without
any expert data to supervise the training process.

4.1. Planning with Task-oriented Diffusion Model

Following previous work (Janner et al., 2022), we can re-
define the planning trajectory as a special kind of sequence
data with actions as an additional dimension of states like:

τ =

[
s0 s1 ... sT
a0 a1 ... aT

]
(6)

Then we can use the diffusion probabilistic model to perform
trajectory generation. However, the aim of planning is not
to restore the original trajectory but to predict future actions
with the highest reward-to-go, the offline reinforcement
learning should be formulated as a conditional generative
problem with guided diffusion models that have achieved
great success on image synthesis (Dhariwal & Nichol, 2021).
So, we drive the conditional diffusion process:

q(τ i+1|τ i), pθ(τ
i−1|τ i,y(τ )) (7)

where the new term y(τ ) is some specific information of the
given trajectory τ , such as the reward-to-go (return) J (τ 0)
of the trajectory, the constraints that must be satisfied by
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Figure 2. Overall framework of AdaptDiffuser. To improve the
adaptability of the diffusion model to diverse tasks, rich data with
distinct objectives is generated, guided by each task’s reward func-
tion. During the diffusion denoising process, we utilize a pre-
trained denoising U-Net to progressively generate high-quality
trajectories. At each denoising time step, we take the task-specific
reward of a trajectory to adjust the gradient of state and action
sequence, thereby creating trajectories that align with specific task
objectives. Subsequently, the generated synthetic trajectory is eval-
uated by a discriminator to see if it meets the standards. If yes, it is
incorporated into a data pool to fine-tune the diffusion model. The
procedure iteratively enhances the generalizability of our model
for both seen and unseen settings.

the trajectory and so on. On this basis, we can rewrite the
optimization objective as,

θ∗ = argmin
θ

−Eτ0

[
log pθ(τ

0|y(τ 0))
]

(8)

Therefore, for tasks aiming to maximize the reward-to-
go, we take Ot to denote the optimality of the trajectory
at timestep t. And Ot obeys Bernoulli distribution with
p(Ot = 1) = exp(γtR(st,at)). When p(O1:T | τ i) meets
specific Lipschitz conditions, the conditional transition prob-
ability of the reverse diffusion process can be approximated
as (Feller, 2015):

pθ(τ
i−1 | τ i,O1:T ) ≈ N (τ i−1;µθ + αΣg,Σ) (9)

where, g = ∇τ log p(O1:T | τ )|τ=µθ

=

T∑
t=0

γt∇st,at
R(st,at)|(st,at)=µt

= ∇τJ (µθ).

Besides, for tasks aiming to satisfy single point conditional
constraint (e.g. goal conditioned tasks), the constraint can be
simplified by substituting conditional values for the sampled
values of all diffusion timesteps i ∈ {0, 1, ..., N}.

Although this paradigm has achieved competitive results
with previous planning methods which are not based on dif-
fusion models, it only performs conditional guidance during

4



AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners

the reverse diffusion process and assumes the unconditional
diffusion model is trained perfectly over the forward pro-
cess. However, as depicted in Eq. 9, the quality of generated
trajectory τ depends not only on the guided gradient g but
more on the learned means µθ and covariance Σ of the un-
conditional diffusion model. If the learned µθ deviates far
from the optimal trajectory, no matter how strong the guid-
ance g is, the final generated result will be highly biased
and of low quality. Then, learning from Eq. 5, the quality
of µθ hinges on the training data, the quality of which, how-
ever, is uneven across different tasks, especially on unseen
tasks. Previous diffusion-based planning methods have not
solved the problem which limits the performance of these
methods on both existing and unseen tasks, and thus have
poor adaptation ability.

4.2. Self-evolved Planning with Diffusion

Therefore, with the aim to improve the adaptability of these
planners, we propose AdaptDiffuser, a novel self-evolved
decision-making approach based on diffusion probabilistic
models, to enhance the quality of the trained means µθ and
covariance Σ of the forward diffusion process. AdaptD-
iffuser relies on self-evolved synthetic data generation to
enrich the training dataset which is denoted as τ 0 and syn-
thetic data fine-tuning to boost performance. After that,
AdaptDiffuser follows the paradigm depicted in Eq. 9 to
find the optimal action sequence for the given task with the
guidance of reward gradients.

As shown in Figure 2, to implement AdaptDiffuser, we
firstly generate a large number of synthetic demonstration
data for unseen tasks which do not exist in the training
dataset in order to simulate a wide range of scenarios and
behaviors that the diffusion model may encounter in the real
world. This synthetic data is iteratively generated through
the sampling process of the original diffusion probabilistic
model θ∗0 with reward guidance, taking the advantage of its
great generation ability. We will discuss the details of the
synthetic data generation in Section 4.3 and here we just
abbreviate it as a function G(µθ,Σ,∇τJ (µθ)).

Secondly, we design a rule-based discriminator D, with re-
ward and dynamics consistency guidance, to select high-
quality data from the generated data pool. Previous
sequence modeling methods which predict the rewards
R(s,a) simultaneously with generated states and actions
are unable to solve the dynamics consistency problem that
the actual next state with transition model s′ = T (s,a)
greatly deviates from the predicted next state. What’s more,
these deviated trajectories are taken as feasible solutions
under previous settings.

To resolve this problem, AdaptDiffuser only takes the state
sequence s = [s0, s1, ..., sT ] of the generated trajectory
and then performs state tracking control using a traditional

or neural network-based inverse dynamics model I to derive
real executable actions, denoted as ãt = I(st, st+1). This
step ensures the action that does not violate the robot’s
dynamic constraints. After that, AdaptDiffuser performs
ãt to obtain the revised next state s̃t+1 = T (s̃t, ãt), and
then filters out the trajectories whose revised state s̃t+1 has
a too large difference from the generated st+1 (measured
by MSE d = ||s̃t+1 − st+1||2). The remaining trajectories
s̃ are then used to predict the reward by R̃ = R(s̃, ã) with
the new actions ã and are selected according to this reward.
In this way, we can derive high-quality synthetic data to
fine-tune the diffusion probabilistic model.

We repeat this process multiple times in order to continually
improve the model’s performance and adapt it to new tasks,
ultimately improving its generalization performance. So, it
can be formulated as,

θ∗k = argmin
θ

−Eτ̂k
[log pθ(τ̂ k|y(τ̂ k))]

τ k+1 = G
(
µθ∗

k
,Σ,∇τJ (µθ∗

k
)
)

τ̂ k+1 = [τ̂ k,D(R̃(τ k+1))]

(10)

where k ∈ {0, 1, ...} is the number of iteration rounds and
the initial dataset τ̂ 0 = τ 0.

4.3. Reward-guided Synthetic Data Generation

To improve the performance and adaptability of the diffusion
probabilistic model on unseen tasks, we need to generate
synthetic trajectory data using the learned diffusion model
at the current iteration. We achieve it by defining a series of
tasks with different goals and reward functions.

Continuous Reward Function. For the tasks with continu-
ous reward function, represented by MuJoCo (Todorov et al.,
2012), we follow the settings that define a binary random
variable indicating the optimality with probability mapped
from a continuous value, to convert the reward maximiza-
tion problem to a continuous optimization problem. We can
easily take Eq. 9 to generate synthetic results.

Sparse Reward Function. The reward function of tasks
as typified by a goal-conditioned problem like Maze2D is
a unit step function J (τ ) = χsg

(τ ) whose value is equal
to 1 if and only if the generated trajectory contains the goal
state sg . The gradient of this reward function is Dirac delta
function (Zhang, 2021) which is not a classical function and
cannot be adopted as guidance. However, if it is considered
from the perspective of taking the limit, the constraint can
be simplified as replacing all corresponding sampled values
with constraints over the diffusion timesteps.

Combination. Many realistic tasks need these two sorts
of reward functions simultaneously. For example, if there
exists an auxiliary task in Maze2D environment that requires
the planner to not only find a way from the start point to
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the goal point but also collect the gold coin in the maze.
This task is more difficult and it’s infeasible to add this
constraint to the sparse reward term because there is no idea
about which timestep the generated trajectory should pass
the additional reward point (denoted as sc). As a solution,
we propose to combine these two sorts of methods and
define an auxiliary reward guiding function to satisfy the
constraints.

J (τ ) =

T∑
t=0

||st − sc||p (11)

where p represents p-norm. Then, with Eq. 11 we plug it
into Eq. 9 as the marginal probability density function and
force the last state of the generated trajectory τ 0 to be sc.
The generated trajectories that meet the desired criteria of
the discriminator are added to the set of training data for
the diffusion model learning as synthetic expert data. This
process is repeated multiple times until a sufficient amount
of synthetic data has been generated. By iteratively generat-
ing and selecting high-quality data based on the guidance
of expected return and dynamics transition constraints, we
can boost the performance and enhance the adaptability of
the diffusion probabilistic model.

5. Experiment
5.1. Benchmarks

Maze2D: Maze2D (Fu et al., 2020) environment is a nav-
igation task in which a 2D agent needs to traverse from a
randomly designated location to a fixed goal location where
a reward of 1 is given. No reward shaping is provided at
any other location. The objective of this task is to evaluate
the ability of offline RL algorithms to combine previously
collected sub-trajectories in order to find the shortest path
to the evaluation goal. Three maze layouts are available:
“umaze”, “medium”, and “large”. The expert data for this
task is generated by selecting random goal locations and
using a planner to generate sequences of waypoints that
are followed by using a PD controller to perform dynamic
tracking. We also provide a method to derive more diverse
layouts with ChatGPT in Appendix G.

MuJoCo: MuJoCo (Todorov et al., 2012) is a physics
engine that allows for real-time simulation of complex
mechanical systems. It has three typical tasks: Hopper,
HalfCheetah, and Walker2d. Each task has 4 types of
datasets to test the performance of an algorithm: “medium”,
“random”, “medium-replay” and “medium-expert”. The
“medium” dataset is created by training a policy with a cer-
tain algorithm and collecting 1M samples. The “random”
dataset is created by using a randomly initialized policy.
The “medium-replay” dataset includes all samples recorded
during training until the policy reaches a certain level of per-
formance. There is also a “medium-expert” dataset which
is a mix of expert demonstrations and sub-optimal data.

Table 1. Offline Reinforcement Learning Performance in
Maze2d Environment. We show the results of AdaptDiffuser
and previous planning methods to validate the bootstrapping effect
of our method on a goal-conditioned task.

Environment MPPI CQL IQL Diffuser AdaptDiffuser

U-Maze 33.2 5.7 47.4 113.9 135.1 ±5.8

Medium 10.2 5.0 34.9 121.5 129.9 ±4.6

Large 5.1 12.5 58.6 123.0 167.9 ±5.0

Average 16.2 7.7 47.0 119.5 144.3

(b) AdaptDiffuser
Hard Case 1 (Maze2D-Medium)

(c) Diffuser (Failed) (d) AdaptDiffuser

Hard Case 2 (Maze2D-Large)

(a) Diffuser

Figure 3. Hard Cases of Maze2D with Long Planning Path.
Paths are generated in the Maze2D environment with a specified
start and goal condition.

KUKA Robot: The KUKA Robot (Schreiber et al., 2010)
benchmark is a standardized evaluation tool that is self-
designed to measure the capabilities of a robot arm equipped
with a suction cup at the end. It consists of two tasks:
conditional stacking (Janner et al., 2022) and pick-and-place.
More details can be seen in Sec. 5.3.2. By successfully
completing these tasks, the KUKA Robot benchmark can
accurately assess the performance of the robot arm and assist
developers in improving its design.

5.2. Performance Enhancement on Existing Tasks

5.2.1. EXPERIMENTS ON MAZE2D ENVIRONMENT

Overall Performance. Navigation in Maze2D environment
takes planners hundreds of steps to reach the goal location.
Even the best model-free algorithms have to make great
efforts to adequately perform credit assignments and reli-
ably reach the target. We plan with AdaptDiffuser using
the strategy of sparse reward function to condition on the
start and goal location. We compare our method with the
best model-free algorithms (IQL Kostrikov et al. 2022 and
CQL Kumar et al. 2020), conventional trajectory optimizer
MPPI (Williams et al., 2015) and previous diffusion-based
approach Diffuser (Janner et al., 2022) in Table 1. This com-
parison is fair because model-free methods can also identify
the location of the goal point which is the only state with a
non-zero reward.

As shown in Table 1, scores achieved by AdaptDiffuser are
over 125 in all maze sizes and are 20 points higher than
those of Diffuser in average, indicating our method’s strong
effectiveness in goal-conditioned tasks.
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Table 2. Offline Reinforcement Learning Performance in MuJoCo Environment. We report normalized average returns of D4RL
tasks (Fu et al., 2020) in the table. And the mean and the standard error are calculated over 3 random seeds.

Dataset Environment BC CQL IQL DT TT MOPO MOReL MBOP Diffuser AdaptDiffuser

Med-Expert HalfCheetah 55.2 91.6 86.7 86.8 95.0 63.3 53.3 105.9 88.9 89.6 ±0.8

Med-Expert Hopper 52.5 105.4 91.5 107.6 110.0 23.7 108.7 55.1 103.3 111.6 ±2.0

Med-Expert Walker2d 107.5 108.8 109.6 108.1 101.9 44.6 95.6 70.2 106.9 108.2 ±0.8

Medium HalfCheetah 42.6 44.0 47.4 42.6 46.9 42.3 42.1 44.6 42.8 44.2 ±0.6

Medium Hopper 52.9 58.5 66.3 67.6 61.1 28.0 95.4 48.8 74.3 96.6 ±2.7

Medium Walker2d 75.3 72.5 78.3 74.0 79.0 17.8 77.8 41.0 79.6 84.4 ±2.6

Med-Replay HalfCheetah 36.6 45.5 44.2 36.6 41.9 53.1 40.2 42.3 37.7 38.3 ±0.9

Med-Replay Hopper 18.1 95.0 94.7 82.7 91.5 67.5 93.6 12.4 93.6 92.2 ±1.5

Med-Replay Walker2d 26.0 77.2 73.9 66.6 82.6 39.0 49.8 9.7 70.6 84.7 ±3.1

Average 51.9 77.6 77.0 74.7 78.9 42.1 72.9 47.8 77.5 83.4

Visualization of Hard Cases. In order to more intuitively
reflect the improvement of our method compared with pre-
vious Diffuser (Janner et al., 2022), we select one difficult
planning example of Maze2D-Medium and one of Maze2D-
Large respectively for visualization, as shown in Figure 3.
Among the Maze2D planning paths with sparse rewards, the
example with the longest path to be planned is the hardest
one. Therefore, in Maze2D-Medium (Fig. 3 (a) (b)), we
designate the start point as (1, 1) with goal point (6, 6),
while in Maze2D-Large (Fig. 3 (c) (d)), we specify the start
point as (1, 7) with goal point (9, 7) in the figure.

It can be observed from Fig. 3 that in Hard Case 1, Adapt-
Diffuser generates a shorter and smoother path than that
generated by Diffuser. So, AdaptDiffuser achieves a larger
reward. And in Hard Case 2, previous Diffuser method even
fails to plan while our AdaptDiffuser derives a feasible path.

5.2.2. EXPERIMENTS ON MUJOCO ENVIRONMENT

MuJoCo tasks are employed to test the performance en-
hancement of our AdaptDiffuser learned from heteroge-
neous data of varying quality using the publicly available
D4RL datasets (Fu et al., 2020). We evaluate our approach
with a number of existing algorithms that cover a vari-
ety of data-driven methodologies, including model-free
RL algorithms like CQL (Kumar et al., 2020) and IQL
(Kostrikov et al., 2022); return-conditioning approaches
like Decision Transformer (DT) (Chen et al., 2021a); and
model-based RL algorithms like Trajectory Transformer
(TT) (Janner et al., 2021), MOPO (Yu et al., 2020), MOReL
(Kidambi et al., 2020), and MBOP (Argenson & Dulac-
Arnold, 2021). The results are shown in Table 2. Besides, it
is also worth noting that in the MuJoCo environment, the
state sequence s̃ derived by taking the generated actions a is
very close to the generated state sequence s, so we directly
use R̃(s,a) = R(s,a) in this dataset.

Observed from the table, our method AdaptDiffuser is ei-
ther competitive or outperforms most of the offline RL base-

(a) Diffuser 
(Collision)

(b) AdaptDiffuser (c) Diffuser 
(Collision)

(d) AdaptDiffuser
(No Collision)

Original Setting With Gold Coin on (4, 2)

Figure 4. Maze2d Navigation with Gold Coin Picking Task.
Subfigures (a) (b) show the optimal path when there are no gold
coins in the Maze. (The generated routes walk at the bottom of the
Maze.) And subfigures (c) (d) add additional reward in (4,2)
position of the Maze. The planners generate new paths that pass
through the gold coin as shown in subfigures (c) (d). (The newly
generated routes walk in the middle of the maze.)

lines across all three different locomotion settings. And
more importantly, compared with Diffuser (Janner et al.,
2022), our method achieves higher reward in almost all the
datasets and improves the performance greatly, especially in
“Hopper-Medium” and “Walker2d-Medium” environments.
We analyze that this is because the quality of the original
data in the “Medium dataset” is poor, so AdaptDiffuser has
an evident effect on improving the quality of the training
dataset, thus significantly enhancing the performance of the
planner based on the diffusion probabilistic model. The
results of the “Medium-Expert” dataset verify this analysis
because the quality of original data in the “Medium-Expert”
dataset (especially the Halfcheetah environment) has been
good enough, making the generation of new data only has a
little gain on the model performance.

5.3. Adaptation Ability on Unseen Tasks

5.3.1. MAZE2D WITH GOLD COIN PICKING TASK

On top of existing Maze2D settings, we carefully design a
new task that requires the agent to navigate as well as pick
all gold coins in the maze. We show an example with an
additional reward in (4, 2) in Figure 4.
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Table 3. Adaptation Performance on Pick-and-Place Task

Environment Diffuser AdaptDiffuser

Pick and Place setup 1 28.16 ±2.0 36.03 ±2.1

Pick and Place setup 2 35.25 ±1.4 39.00 ±1.3

Average 31.71 37.52

(a) Start

(d) Place Block 3

(b) Place Block 1

(e) Place Block 4

(c) Place Block 2

(f) Finish

Figure 5. Visualization of KUKA Pick-and-Place Task. We re-
quire the KUKA Arm to move the blocks from their random initial-
ized positions on the right side of the table to the left and arrange
them in the order of yellow, blue, green, and red (from near to far).

We can see that when there is no additional reward, both
Diffuser (Janner et al., 2022) and our method AdaptDiffuser
choose the shorter path at the bottom of the figure to reach
the goal point. But, when additional reward is added in the
(4, 2) position of the maze, both planners change to the path
walking in the middle of the figure under the guidance of re-
wards. However, at this time, the path generated by Diffuser
causes the agent to collide with the wall, while AdaptDif-
fuser generates a smoother collision-free path, reflecting the
superiority of our method.

5.3.2. KUKA PICK AND PLACE TASK

Task Specification. There are two tasks in the KUKA
robot arm environment. One is the conditional stacking
task, as defined in (Janner et al., 2022), where the robot
must correctly stack blocks in a predetermined order on a
designated location, using blocks that have been randomly
placed. And the other is the pick-and-place task designed
by us, which aims to place the randomly initialized blocks
in their own target locations in a predetermined order. The
reward functions of both tasks are defined as one upon
successful placements and zero otherwise.

To test the adaptation capability of AdaptDiffuser and other
baselines, we only provide expert trajectory data for the con-
ditional stacking task, which is generated by PDDLStream
(Garrett et al., 2020), but we require the planner to gen-
eralize to pick-and-put task without any expert data. The

Table 4. Ablation on Iterative Phases. The mean and the standard
error are calculated over 3 random seeds.

Dataset Environment 1st Phase 2nd Phase

Medium-Expert HalfCheetah 89.3 ±0.6 89.6 ±0.8

Medium-Expert Hopper 110.7 ±3.2 111.6 ±2.0

Medium-Expert Walker2d 107.7 ±0.9 108.2 ±0.8

Medium HalfCheetah 43.8 ±0.5 44.2 ±0.6

Medium Hopper 95.4 ±3.4 96.6 ±2.7

Medium Walker2d 83.2 ±3.5 84.4 ±2.6

Average 88.4 89.1

performance of the pick-and-place task is supposed to be a
good measure of the planner’s adaptability.

Adaptation Performance. In KUKA pick-and-place task,
we define the guidance of the conditional diffusion model
as the gradient of the reward function about the distance
between the current location and the target location. Then,
the adaptation performance is displayed in Table 3.

There are two setups in KUKA benchmark. In setup 1, the
four blocks are initialized randomly on the floor, while in
setup 2, the four blocks are stacked at a random location
at the beginning. As shown in Table 3, AdaptDiffuser out-
performs Diffuser greatly on both setups while achieving
higher performance at setup 2 because all of the blocks start
from the same horizontal position. We visualize a success-
ful case of the KUKA pick-and-place task in Figure 5, and
more visualization results can be seen in Appendix B.

5.4. Ablation Study

5.4.1. ABLATION ON ITERATIVE PHASES

In order to verify the lifting effect of iterative data generation
of our method AdaptDiffuser to improve the performance
of the planner, we conduct an ablation experiment on the
number of iterative phases of AdaptDiffuser in the MuJoCo
environment of D4RL.

As shown in Table 4, with “Medium” dataset, due to the
low quality of the original dataset, although the data gener-
ated in the first phase has greatly supplemented the training
dataset and greatly improved the performance (referring to
Sec 5.2.2), the performance achieved after the second phase
is still significantly improved compared with that of the first
phase. However, for “Medium-Expert” dataset, because the
expert data of the dataset has covered most of the environ-
ment, and the newly generated data is only more suitable
for the planner to learn. So, after a certain improvement in
the first phase, the subsequent growth is not obvious. The
above experiments verify the effectiveness of AdaptDiffuser
for the multi-phase iterative paradigm, and also show that
the boosting effect is no longer obvious after the algorithm
performance reaches a certain level.
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Table 5. Ablation study on different amounts of expert data.

Amount of Data 20% D 50% D 100%D
Diffuser 105.0 107.9 123.0

AdaptDiffuser 112.5 123.8 167.9

Table 6. Model Size of AdaptDiffuser.

Environment Total Parameters (Model Size)

MuJoCo 3.96 M
Maze2D 3.68 M

KUKA Robot 64.9 M

5.4.2. ABLATION ON INSUFFICIENT DATA & TRAINING

To demonstrate the superiority of our method over previous
diffusion-based work Diffuser (Janner et al., 2022) when
the expert data is limited and the training is insufficient, we
conducted experiments on the Maze2d-Large dataset using
different percentages of expert data (e.g. 20%, 50%) with
only 25% training steps to train our model. The results
are shown in Table 5. The setting 100%D denotes the full
training setting. We can see our AdaptDiffuser, which uses
only 50% data and 25% training steps, beats the fully trained
Diffuser. AdaptDiffuser can achieve good performance with
a small amount of expert data and training steps.

5.4.3. MODEL SIZE AND RUNNING TIME

We show the model size of AdaptDiffuser measured by the
number of parameters in Table 6 here. And we also analyze
the testing time and training time performance in Appendix
D. From the analysis, we can see that the inference time of
AdaptDiffuser is almost equal to that of Diffuser (Janner
et al., 2022).

6. Conclusion
We present AdaptDiffuser, a method for improving the per-
formance of diffusion-based planners in offline reinforce-
ment learning through self-evolution. By generating di-
verse, high-quality and heterogeneous expert data using a
reward-guided diffusion model and filtering out infeasible
data using a rule-based discriminator, AdaptDiffuser is able
to enhance the performance of diffusion models in exist-
ing decision-making tasks, especially the goal-conditioned
tasks, and further improve the adaptability in unseen tasks
without any expert data. Our experiments on two widely-
used offline RL benchmarks and our carefully designed
unseen tasks in KUKA and Maze2D environments validate
the effectiveness of AdaptDiffuser.

Discussion of Limitation. Our method achieves better
performance by generating high-quality synthetic data but
increases the amount of computation required in training

with almost no increase in inference time. Besides, although
AdaptDiffuser has proven its effectiveness in several scenar-
ios (e.g. MuJoCo, Maze2d, KUKA), it still faces challenges
in high-dimensional observation space tasks. More detailed
discussions are given in Appendix F.

Future Works. Further improving the sampling speed and
exploring tasks with high-dimensional input are potential
areas for future works. And with the help of ChatGPT
(Ouyang et al., 2022), we can use prompts to directly gener-
ate diverse maze settings to assist synthetic data generation
which is also a promising direction. We provide some ex-
amples in Appendix G.
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A. Classifier-Guided Diffusion Model for Planning
In this section, we introduce theoretical analysis of conditional diffusion model in detail. We start with an unconditional
diffusion probabilistic model with a standard reverse process as pθ(τ i|τ i+1). Then, with a specific label y (for example,
goal point in Maze2D or specific reward function in MuJoCo) which is to be conditioned on given a noised trajectory τ i, the
reverse diffusion process can be redefined as pθ,ϕ(τ i|τ i+1, y). Apart from the parameters θ of original diffusion model, a
new parameter ϕ is introduced here which describes the probability transfer model from noisy trajectory τ i to the specific
label y which is denoted as pϕ(y | τ i).
Lemma A.1. The marginal probability of a conditional Markov’s noising process q conditioned on y is equal to the marginal
probability of the unconditional noising process.

q
(
τ i+1 | τ i

)
= q

(
τ i+1 | τ i, y

)
(12)

Proof.

q
(
τ i+1 | τ i

)
=

∫
y

q
(
τ i+1, y | τ i

)
dy

=

∫
y

q
(
τ i+1 | τ i, y

)
pϕ

(
y | τ i

)
dy

= q
(
τ i+1 | τ i, y

) ∫
y

pϕ
(
y | τ i

)
dy

= q
(
τ i+1 | τ i, y

)
The third line holds because q

(
τ i+1 | τ i, y

)
fits another y-independent transition probability according to its definition.

Lemma A.2. The probability distribution of specific label y conditioned on τ i does not depend on τ i+1.

pθ,ϕ
(
y | τ i, τ i+1

)
= pϕ

(
y | τ i

)
(13)

Proof.

pθ,ϕ
(
y | τ i, τ i+1

)
= q

(
τ i+1 | τ i, y

) pϕ
(
y | τ i

)
q (τ i+1 | τ i)

= q
(
τ i+1 | τ i

) pϕ
(
y | τ i

)
q (τ i+1 | τ i)

= pϕ
(
y | τ i

)
Theorem A.3. The conditional sampling probability pθ,ϕ(τ i | τ i+1, y) is proportional to unconditional transition probability
pθ(τ

i | τ i+1) multiplied by classified probability pϕ(y | τ i).

pθ,ϕ(τ
i | τ i+1, y) = Zpθ(τ

i | τ i+1)pϕ(y | τ i) (14)

Proof.

pθ,ϕ(τ
i | τ i+1, y) =

pθ,ϕ
(
τ i, τ i+1, y

)
pθ,ϕ (τ i+1, y)

=
pθ,ϕ

(
τ i, τ i+1, y

)
pϕ (y | τ i+1) pθ (τ i+1)

=
pθ

(
τ i | τ i+1

)
pθ,ϕ

(
y | τ i, τ i+1

)
pθ

(
τ i+1

)
pϕ (y | τ i+1) pθ (τ i+1)

=
pθ

(
τ i | τ i+1

)
pθ,ϕ

(
y | τ i, τ i+1

)
pϕ (y | τ i+1)

=
pθ

(
τ i | τ i+1

)
pϕ

(
y | τ i

)
pϕ (y | τ i+1)

(15)
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The term pϕ
(
y | τ i+1

)
can be seen as a constant since it’s not conditioned on τ i at the diffusion timestep i.

Although exact sampling from this distribution (Equation 14) is difficult, (Sohl-Dickstein et al., 2015) demonstrates that it
can be approximated as a modified Gaussian distribution. We show the derivation here.

On one hand, as Equation 4 shows, we can formulate the denoising process with a Gaussian distribution:

pθ(τ
i | τ i+1) = N (µ,Σ) (16)

log pθ(τ
i | τ i+1) = −1

2
(τ i − µ)TΣ−1(τ i − µ) + C (17)

And on the other hand, the number of diffusion steps are usually large, so the difference between τ i and τ i+1 is small
enough. We can apply Taylor expansion around τ i = µ to log pϕ(y | τ i) as,

log pϕ
(
y | τ i

)
= log pϕ

(
y | τ i

)
|τ i=µ +

(
τ i − µ

)
∇τ i log pϕ

(
y | τ i

)∣∣
τ i=µ

(18)

Therefore, synthesize Equation 17 and 18, we derive,

log pθ,ϕ(τ
i|τ i+1, y) = log pθ(τ

i|τ i+1) + log pϕ(y|τ i) + C1

= −1

2

(
τ i − µ

)T
Σ−1

(
τ i − µ

)
+

(
τ i − µ

)
∇ log pϕ

(
y | τ i

)
+ C2

= −1

2

(
τ i − µ− Σ∇ log pϕ

(
y | τ i

))T
Σ−1

(
τ i − µ− Σ∇ log pϕ

(
y | τ i

))
+ C3

(19)

which means,
pθ,ϕ(τ

i|τ i+1, y) ≈ N (τ i;µ+Σ∇τ log pϕ
(
y | τ i

)
,Σ) (20)

And it’s equal to Equation 9. Proven.
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B. Visualization Results of KUKA Pick-and-Place Task
In this section, we show more visualization results about KUKA pick-and-place task. We require the KUKA Robot Arm to
pick green, yellow, blue and red blocks with random initialized positions on the right side of the table one by one and move
them to the left side in the order of yellow, blue, green and red (from near to far).

B.1. Pick and Place 1st Green Block

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The Process of Pick and Place Block 1 (Green Block)

B.2. Pick and Place 2nd Yellow Block

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 7. The Process of Pick and Place Block 2 (Yellow Block)
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B.3. Pick and Place 3rd Blue Block

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. The Process of Pick and Place Block 3 (Blue Block)

B.4. Pick and Place 4th Red Block

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. The Process of Pick and Place Block 4 (Red Block)
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C. Implementation Details and Hyperparameters
C.1. Details of Baseline Performances

Maze2D Tasks. We perform two different tasks on the Maze2D environment to validate the performance enhancement and
adaptation ability of AdaptDiffuser on seen and unseen tasks.

• Overall Performance of Navigation Task: We report the performance of CQL and IQL on the standard Maze2D
environments from Table 2 in D4RL whitepaper (Fu et al., 2020) and follow the hyperparameter settings described
in (Janner et al., 2022). The performance of Diffuser also refers to Table 1 in (Janner et al., 2022). To reproduce the
experimental results, we use the official implementation from the authors of IQL1 and Diffuser2.

• Navigation with Gold Coin Picking Task: We modified the official code of Diffuser and tuned over the hyperparameter
α ∈ {−50,−100,−200} (the scalar of the guidance) in Equation 8 to adjust the planner to be competent for newly
designed gold coin picking task, which is also the basis of our method AdaptDiffuser.

KUKA Pick and Place Tasks. Similar to the unseen tasks in Maze2D environment, we also ran the official implementation
of IQL and Diffuser.

MuJoCo Locomotion Tasks. We report the scores of BC, CQL and IQL from Table 1 in (Kostrikov et al., 2022). We take
down scores of DT from Table 2 in (Chen et al., 2021a), TT from Table 1 in (Janner et al., 2021), MOPO from Table 1 in
(Yu et al., 2020), MOReL from Table 2 in (Kidambi et al., 2020), MBOP from Table 1 in (Argenson & Dulac-Arnold, 2021)
and Diffuser from Table 2 in (Janner et al., 2022). All baselines are trained using the same offline dataset collected by a
specific expert policy.

Table 7. Metric Values for Reward Discriminator in MuJoCo Environment. The rewards are calculated utilizing D4RL (Fu et al.,
2020) locomotion suite.

Dataset Environment 1st Phase 2nd Phase

Med-Expert HalfCheetah 10840 10867
Med-Expert Hopper 3639 3681
Med-Expert Walker2d 4900 4950

Medium HalfCheetah 5005 5150
Medium Hopper 3211 3225
Medium Walker2d 3700 3843

Med-Replay HalfCheetah 4600 4800
Med-Replay Hopper 3100 3136
Med-Replay Walker2d 3900 3920

C.2. Metric Values for Reward Discriminator

Maze2D Environment. For the three different-size Maze2D settings, unlike MuJoCo, different trajectories are different in
lengths which achieve different rewards. So, we not only consider the absolute value of the rewards R but also introduce
trajectory length L and reward-length ratio into the criteria of discrimination. We prefer trajectories with longer lengths or
those having higher reward-length ratios. Additionally, we denote the maximum episode steps of the environment as Maxe

(Maze2D-UMaze: 300, Maze2D-Medium: 600, Maze2D-Large: 800). And then, we have following metrics to filter out
high-quality data.

• Maze2D-UMaze: The trajectory is required to satisfy L > 200 or L > 50 and R+ 1.0 ∗ (Maxe − L) > 210 which
is equal to measure the R/L.

• Maze2D-Medium: The trajectory is required to satisfy L > 450 or L > 200 and R+ 1.0 ∗ (Maxe − L) > 400.

• Maze2D-Large: The trajectory is required to satisfy L > 650 or L > 270 and R+ 1.0 ∗ (Maxe − L) > 400.

1
https://github.com/ikostrikov/implicit_q_learning

2
https://github.com/jannerm/diffuser
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KUKA Robot Arm. For the KUKA Robot Arm environment, we define a sparse reward function that achieves one if and
only if the placement is successful and zero otherwise. Therefore, we take the condition R >= 2.0 which means at least
half of the four placements are successful.

MuJoCo Environment. For MuJoCo locomotion environment, as we describe in Sec. 5.2.2, we directly use the reward
derived after generated state sequence and action sequence to filter out high-quality synthetic data. The specific values for
MuJoCo are shown in Table 7.

C.3. Amount of Synthetic Data for Each Iteration

The amount of synthetic data for each iteration is another important hyperparameter for AdaptDiffuser. Different tasks have
different settings. We give detailed hyperparameters here.

Table 8. Amount of Synthetic Data for Each Iteration. The number of synthetic data for KUKA Arm pick-and place task consists of
1000 generated trajectories and 10000 cross-domain trajectories from the unconditional stacking task.

Dataset Task # of Expert Data # of Synthetic Data

MuJoCo Locomotion 106, 2× 106 50000

Maze2D Navigation 106, 2× 106, 4× 106 106

Maze2D Gold Coin Picking 0 106

KUKA Robot Unconditional Stacking 10000 -
KUKA Robot Pick-and-Place 0 11000

C.4. Other Details

1. A temporal U-Net (Ronneberger et al., 2015) with 6 repeated residual blocks is employed to model the noise ϵθ of the
diffusion process. Each block is comprised of two temporal convolutions, each followed by group norm (Wu & He,
2018), and a final Mish non-linearity (Misra, 2020). Timestep embeddings are generated by a single fully-connected
layer and added to the activation output after the first temporal convolution of each block.

2. The diffusion model is trained using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 2× 10−4 and
batch size of 32.

3. The training steps of the diffusion model are 1M for MuJoCo locomotion task, 2M for tasks on Maze2D and 0.7M
for KUKA Robot Arm tasks.

4. The planning horizon T is set as 32 in all locomotion tasks, 128 for KUKA pick-and-place, 128 in Maze2D-UMaze,
192 in Maze2D-Medium, and 384 in Maze2D-Large.

5. We use K = 100 diffusion steps for all locomotion tasks, 1000 for KUKA robot arm tasks, 64 for Maze2D-UMaze,
128 for Maze2D-Medium, and 256 for Maze2D-Large.

6. We choose 2-norm as the auxiliary guided function in the combination setting of Section 4.3 and the guidance scale
α ∈ {1, 5, 10, 50, 100} of which the exact choice depends on the specific task.
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D. Testing-time and Training-time Analysis
D.1. Testing-time Characteristic of AdaptDiffuser

AdaptDiffuser only generates synthetic data during training and performs denoising once during inference to obtain the
optimal trajectory. We show the inference time of generating an action taken by Diffuser (Janner et al., 2022) and our
method in Table 9 and Table 10. All these data are tested with one NVIDIA RTX 3090 GPU.

Table 9. Testing Time in D4RL MuJoCo Environment. The unit in the table is second (s).

Dataset Environment Diffuser AdaptDiffuser

Med-Expert HalfCheetah 1.38 s 1.41 s
Med-Expert Hopper 1.57 s 1.59 s
Med-Expert Walker2d 1.60 s 1.56 s

Medium HalfCheetah 1.40 s 1.40 s
Medium Hopper 1.60 s 1.56 s
Medium Walker2d 1.57 s 1.57 s

Med-Replay HalfCheetah 1.43 s 1.37 s
Med-Replay Hopper 1.59 s 1.55 s
Med-Replay Walker2d 1.55 s 1.58 s

Table 10. Testing Time in D4RL Maze2D and KUKA Environments. The test time of KUKA is derived by dividing the trajectory
generation time by horizon size. The unit in the table is second (s).

Environment Diffuser AdaptDiffuser

Maze2D U-Maze 0.70 s 0.69 s
Maze2D Medium 1.42 s 1.44 s

Maze2D Large 2.80 s 2.76 s

KUKA Pick and Place 0.21 s 0.21 s

From the tables, we can see that the inference time of AdaptDiffuser is almost equal to that of Diffuser (Janner et al., 2022).
And because the denoising steps of different datasets are different, the testing times are different between environments.
For MuJoCo, the inference time of an action is approximately 1.5s, while for Maze2D the inference time is about 1.6s
(on average of three environments), and for KUKA about 0.21s. The inference time is feasible for real-time robot control.
Additionally, in Section 5.4.2 of our paper, we have also demonstrated how limited number of high quality expert data would
affect our method’s performance.

What’s more, as suggested in Diffuser (Janner et al., 2022), we can improve the testing time by warm-starting the state
diffusion, which means we start with the state sequence generated from the previous environment step and then reduce the
number of denoising steps.

Table 11. Synthetic Data Generation Time and Training Time in MuJoCo Environment. The synthetic data generation time listed
here is about the time to generate one high-quality trajectory. The total training time of AdaptDiffuser is the sum of the following three
parts. The quality standard of selected trajectories are the same as those stated in Appendix C.2. The unit in the table is hour (h).

Dataset Environment Synthetic Data Gen. Time AdaptDiffuser Fine-Tuning Diffuser Training

Med-Expert HalfCheetah 4.4 h 6.8 h 44.2 h
Med-Expert Hopper 5.7 h 6.4 h 37.0 h
Med-Expert Walker2d 3.0 h 6.6 h 43.0 h

Medium HalfCheetah 2.4 h 7.0 h 45.3 h
Medium Hopper 4.8 h 6.2 h 36.2 h
Medium Walker2d 4.7 h 6.4 h 43.0 h

Med-Replay HalfCheetah 15.7 h 7.4 h 45.3 h
Med-Replay Hopper 11.9 h 6.5 h 36.1 h
Med-Replay Walker2d 4.3 h 6.4 h 42.8 h

18



AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners

D.2. Training-time Characteristic of AdaptDiffuser

The training time of AdaptDiffuser can be seen as the sum of synthetic data generation time and diffusion model training
time. The synthetic data generation time depends on the quality standard of the trajectory to be selected.

What’s more, to accelerate the training, we use the warming-up technique which takes the pre-trained Diffuser model as the
basis of AdaptDiffuser, and then performs fine-tuning on new generated data with fewer training steps (1/4 in actual use).
Then we show these three parts’ times in Table 11. All these times are tested with one NVIDIA RTX 3090 GPU.

It can be found from the table that the model training time dominates the total pre-training time while the extra time spent,
such as synthetic data generation, is a relatively small part. The total time required to pre-train AdaptDiffuser is on average
54 hours (sum of the three parts) comparable to Diffuser’s 41 hours.

Besides, the data generation process can be executed parallel. For example, in our D4RL MuJoCo environment, we generate
10 trajectories for each dataset at each phase. Under parallel settings, the total time to collect all ten synthetic trajectories is
the same as the time to collect one trajectory. If using more GPUs, the synthetic data generation time can be further reduced.

E. Comparison with Decision Diffuser
Decision Diffuser (DD) (Ajay et al., 2023) is a concurrent work with ours and improves the performance of Diffuser (Janner
et al., 2022) by introducing planning with classifier-free guidance and acting with inverse-dynamics.

Generally speaking, our method is a general algorithm that enables diffusion-based planners to have self-evolving ability
that can perform well on existing and unseen (zero-shot) tasks, mainly by generating high-quality synthetic data with reward
and dynamics consistency guidance for diverse tasks simultaneously. Therefore, regardless of which diffusion-based planner
to be used, there can exist AdaptDiffuser, AdaptDecisionDiffuser, etc. It means that the method we introduce to make the
planner self-evolving does not conflict with the improvements proposed by Decision Diffuser. The improvements of these
two works can complement each other to further enhance the performance of diffusion model-based planners.

We also compare the performance of Decision Transformer (DT) (Chen et al., 2021a), Trajectory Transformer (TT) (Janner
et al., 2021), Diffuser (Janner et al., 2022), Decision Diffuser (Ajay et al., 2023) and our method here. Results about
Decision Diffuser are quoted from (Ajay et al., 2023).

Table 12. Performance Comparison with Decision Diffuser in MuJoCo Environment. We report normalized average returns of D4RL
tasks (Fu et al., 2020) in the table. And the mean and the standard error are calculated over 3 random seeds.

Dataset Environment DT TT Diffuser Decision Diffuser AdaptDiffuser

Med-Expert HalfCheetah 86.8 95.0 88.9 90.6 89.6 ±0.8

Med-Expert Hopper 107.6 110.0 103.3 111.8 111.6 ±2.0

Med-Expert Walker2d 108.1 101.9 106.9 108.8 108.2 ±0.8

Medium HalfCheetah 42.6 46.9 42.8 49.1 44.2 ±0.6

Medium Hopper 67.6 61.1 74.3 79.3 96.6 ±2.7

Medium Walker2d 74.0 79.0 79.6 82.5 84.4 ±2.6

Med-Replay HalfCheetah 36.6 41.9 37.7 39.3 38.3 ±0.9

Med-Replay Hopper 82.7 91.5 93.6 100.0 92.2 ±1.5

Med-Replay Walker2d 66.6 82.6 70.6 75.0 84.7 ±3.1

Average 74.7 78.9 77.5 81.8 83.4

From the table, we can see that in most datasets, the performance of AdaptDiffuser is comparable to or better than that of
Decision Diffuser. And the normalized average return of AdaptDiffuser is 83.4 higher than all of the other methods (i.e.
74.7 of DT, 78.9 of TT, 77.5 of Diffuser and 81.8 of Decision Diffuser).
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F. Discussions
F.1. Adapt AdaptDiffuser to Maze2D Gold Coin Picking Task with Coin Locating Far from the Optimal Path

AdaptDiffuser works when the gold coin is located nowhere near the optimal path. Figure 4 of our paper has shown one
case. The sub-figure (b) of Figure 4 show the optimal path when there are no gold coins in the maze. (The generated route
walks at the bottom of the figure.) And then if we add a gold coin in the (4,2) position of the maze, AdaptDiffuser will
generate a new path that passes through the gold coin as shown in the sub-figure (d) of Figure 4. (The generated route walks
in the middle of the figure.)

In our point of view, our method works mainly because we change the start point and goal point multiple times during
training. Diffusion model can generate trajectories that have not been seen in the expert dataset. And as long as the paths
generated during training can cover the entire trajectory space as much as possible, AdaptDiffuser can generate the path
through any location of the gold coin during planning. However, it is true that the success rate of generating trajectories for
some extremely hard cases that the gold coin is far from the planned path and the agent has to take a turn back to obtain the
gold coin, is lower than that of common cases.

F.2. Adapt AdaptDiffuser to High-dimensional Observation Space Tasks

AdaptDiffuser is feasible for high-dimensional observation space tasks. One possible and widely-used solution, we suggest,
is to add an embedding module (e.g. MLP) after input to convert the data from high-dimensional space to latent space,
and then employ AdaptDiffuser in latent space to solve the problem. Stable Diffusion (Rombach et al., 2022) has shown
the effectiveness of this method, which deploys an Auto-Encoder to encode image into a latent representation and uses a
decoder to reconstruct the image from the latent after denoising. MineDoJo (Fan et al., 2022) also takes this technique and
achieves outstanding performance in image-based RL domain.
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G. Generate Diverse Maze Layouts with ChatGPT
Inspired by the remarkable generation capabilities demonstrated by recent advancements in large language models (LLMs),
exemplified by ChatGPT, we propose a novel approach that harnesses the potential of LLM to accelerate the process of
synthetic data generation. In this section, we focus specifically on utilizing LLM to assist in generating diverse Maze layouts.
This objective is driven by the need to create a multitude of distinct maze layouts to facilitate varied path generations,
ultimately enhancing the performance and adaptability of AdaptDiffuser. Traditionally, the manual design of feasible and
terrain complex maze environments is a time-consuming endeavor that requires to try and adjust multiple times. In light of
this challenge, leveraging ChatGPT for maze environment generation emerges as an appealing alternative, streamlining the
process and offering enticing advantages. We show the generated examples in Fig. 10. Besides, we can ask the ChatGPT to
summarize the rules of generating feasible mazes, shown in Fig. 11.

(b) Generated Mazes with ChatGPT(a) Existing Maze
Figure 10. Generated Maze examples by ChatGPT. From simple terrain to complex terrain (with multiple dead ends and loops).

Figure 11. Rules for generating maze layouts summarized by ChatGPT.

We also give our prompts here. We find that providing ChatGPT with a few existing feasible maze examples (few-shot) can
effectively improve the quality of the generated mazes, so we design the prompts in this way. From prompt 1 to prompt 2,
we also find that the terrains of generated mazes are exactly from simple to complex.

Prompt1: “I will give you a legal string expression of a MAZE. In the MAZE, the ‘#’ represents the obstacles and the ‘O’
represents the empty space. Could you generate one more maze with different terrain obeying to the rules: The MAZE should
be 9*12, and the surrounding of the MAZE should be obstacles, that is ‘#’, and all empty places should be 4-connected. The
example maze is

LARGE MAZE =“############\\”+
“#OOOO#OOOOO#\\”+
“#O##O#O#O#O#\\”+
“#OOOOOO#OOO#\\”+
“#O####O###O#\\”+
“#OO#O#OOOOO#\\”+
“##O#O#O#O###\\”+
“#OO#OOO#OOO#\\”+
“############” ”

Prompt2: “Please generate more complex Maze that has more complex terrains (i.e. more dead ends, loops, and obstacles)”.
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