
Few-bit Backward: Quantized Gradients of Activation Functions for Memory
Footprint Reduction

Georgii Novikov 1 2 Daniel Bershatsky 1 Julia Gusak 1 * Alex Shonenkov Denis Dimitrov 2 Ivan Oseledets 1 2

Abstract
Memory footprint is one of the main limiting fac-
tors for large neural network training. In back-
propagation, one needs to store the input to each
operation in the computational graph. Every mod-
ern neural network model has quite a few point-
wise nonlinearities in its architecture, and such
operations induce additional memory costs that,
as we show, can be significantly reduced by quan-
tization of the gradients. We propose a systematic
approach to compute optimal quantization of the
retained gradients of the pointwise nonlinear func-
tions with only a few bits per each element. We
show that such approximation can be achieved
by computing an optimal piecewise-constant ap-
proximation of the derivative of the activation
function, which can be done by dynamic program-
ming. The drop-in replacements are implemented
for all popular nonlinearities and can be used in
any existing pipeline. We confirm the memory
reduction and the same convergence on several
open benchmarks.

1. Introduction
Modern neural network models are getting larger and larger.
One of the main bottlenecks in the training loop is the re-
quired device memory storage (Ojika et al., 2020; Gao et al.,
2020). In this paper, we propose a universal approach that
helps reduce the model memory footprint during backprop-
agation. Note that this approach is complementary to other
memory-reducing techniques such as checkpointing (Chen
et al., 2016) or offloading (Beaumont et al., 2021). Our
method can be applied to any neural network without any
additional preprocessing.

*Now at Inria, University of Bordeaux, France. 1Center for
Artificial Intelligence Technology, Skolkovo Institute of Science
and Technology, Moscow, Russia 2AIRI, Moscow, Russia. Corre-
spondence to: Georgii Novikov <georgii.novikov@skoltech.ru>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Memory consumed by the model during training (except
intermediate tensors) can be split into two groups: 1) the
model weights (including additional memory for the op-
timizer state); 2) activations saved for the backward pass,
over which the computation is not carried out directly at the
moment but will be required in the future to compute the
gradients.

Every operation in the computational graph generates a
memory footprint. It is typically overlooked that the ap-
plication of the pointwise nonlinearity (such as GELU or
sigmoid) results in storing the input for the backward pass.
We show that instead of keeping the full input tensor, it
is possible to store a low-bit representation, which allows
accurate gradient approximation.

In this work, we propose to approximate the derivative of
the activation function in a piecewise-constant form. Such
an approximation problem has to be solved once for each
activation function, and we propose a simple technique to
do that. The proposed approximation divides all values into
several bins and saves only their corresponding bin indices
instead of storing all values. This is a lossy compression,
but the additional noise introduced by it is negligible, as
we show on several benchmarks in Section 4. The main
contributions of our paper are:

• We propose new approximate backward computation
schemes that significantly reduce the memory con-
sumption of neural network training.

• We benchmark our approach on several tasks. We
show that it provides up to 40% memory reduction on
various tasks while maintaining accuracy on par with
the model trained via the standard approach.

2. Quantized Gradients of Activations
Gradients of activations using automatic differentiation.
Modern deep learning frameworks use the reverse mode
automatic differentiation to calculate the gradients of the
loss over the model parameters. Forward computation can
be associated with a directed acyclic graph, depicted in Fig-
ure 2. Each operation f computes the output Xl+1 given the
input Xl and has to save some information Sl that would be

1

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Swish
derivative
3-bits Swish

−10 −5 0 5 10

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75 SELU
derivative
3-bits SELU

−10 −5 0 5 10

0.00

0.05

0.10

0.15

0.20

0.25 Sigmoid
derivative
3-bits Sigmoid

Figure 1. Examples of 3-bit approximations for derivatives of popular nonlinearities: GELU, SELU, and Sigmoid.

Tensors
saved

for backward

Backward passForward pass

Save

Quantize
and

 Save

Quantized tensors
saved

for backward

Figure 2. Computation graph of both forward and backward pass.
The Orange and purple parts of the graph correspond to standard
and proposed ways of saving tensors for backward, respectively.
Vector xbit stands for the tensor saved using 2-bit quantization,
while x denotes its uncompressed version.

used on the backward pass in order to calculate the deriva-
tive ∂L/∂Xl from ∂L/∂Xl+1 and Sl. Thus, in a typical
training loop, the intermediates Sl of all operations in the
graph are stored in the memory during the whole forward
pass until they are no longer needed after the completion of
the corresponding backward operation during the backward
pass. This generates extra memory, which can be quite sig-
nificant and may exceed the total number of parameters in
the model.

Pointwise activations. In this paper, we focus on a point-
wise activation function, which is ubiquitous in modern
neural network architectures. Given an input tensor Xl we
apply a function f to each of the elements of this tensor:

f(Xl) = [f(Xj1,...,jk
l)]j1,...,jk , f : R → R.

This operation is very cheap compared to other operations
in the deep neural network model and does not attract much
attention when analyzing computational complexity. How-

ever, standard implementation in such a framework as Py-
Torch induces not a very small memory footprint and the
whole input Xl is saved for the backward pass.

The backward pass for such a function consists of element-
wise multiplication of the propagated gradient tensor by the
derivative of the nonlinearity function at the points of the
input tensor: if Xl+1 = f(Xl), then the gradient of the loss
L with respect to Xl is computed as

∂L

∂Xl
=

∂L

∂Xl+1
f ′(Xl), (1)

where the tensor f ′(Xl) contains the derivative of function
f w.r.t. Xl. From Equation (1), it follows that for the
backward pass, we have to store only f ′(Xl), and Xl is not
needed.

ReLU activation function. To illustrate our idea, consider
one of the most popular nonlinearities, f(x) = ReLU(x) =
max(0, x). Its derivative f ′ takes only two values, 0 and 1
and it only requires 1 bit to store. If single precision is used,
then the compression is 32, which is quite noticeable.

GELU activation function. In modern transformer archi-
tectures (Vaswani et al., 2017) the GELU (Hendrycks &
Gimpel, 2016) nonlinearity is typically used. The derivative
no longer takes two values. Instead, we propose to approxi-
mate f ′ by a piecewise-constant function. For example, if
we allow 8 different values, we will need only 3 bits per
element (Figure 1).

Quantized gradients of activations. In stochastic optimiza-
tion, if the gradient for a given batch is computed approx-
imately, the optimization may still converge. The GELU
derivative (see Figure 1) is quite “similar” to a piecewise-
constant function: for large values of |x|, it is almost exactly
equal to 0 or 1, and for small values of x, a rather interesting
transition from 0 to 1 occurs. Instead of calculating the
derivative exactly on the backward pass, we approximate it

2

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

s2 s3 s4 s5

y1
y2

y3

y4
y5

f ′(x)

q(x|s, y)

Figure 3. GELU derivative and its approximation q(x|s,y) with
five piecewise-constant intervals.

using a certain piecewise-constant approximation:

q(x|s,y) =
k∑

i=1

yi1[x ∈ [si; si+1]], (2)

where s = (s1, · · · , sk+1) is a sorted vector of intervals
on which approximation is constant, y = (y1, · · · , yk) is a
vector of the corresponding values of approximation, and
1 denotes an indicator function, which equals 1 whenever
its argument is true and 0 otherwise. That means, that
q(x|s,y) equals yi when x ∈ [si; si+1], see Figure 3 for
illustration. As noted above, if the approximation has k
constant intervals, instead of storing the full input tensor
X , it will be possible to save only log k bits of information
(per element of the input tensor), which, accordingly, will
reduce the memory consumption by 32/ log k times for
single precision.

If the quantization scheme Equation (2) is given, a drop-in
replacement for activation function f is very straightforward.
On the forward pass, instead of the full tensor X, one has to
save only the indices of intervals to which the elements of
vbX belong, and on the backward pass, we need to multiply
the gradient with respect to the output not with the actual
derivative of f , but with values from vby corresponding to
stored indices. Pseudocode is presented in Listing 1.

Memory of Few-bit Approximation. As it was men-
tioned above, by replacing all pointwise nonlinearity lay-
ers in the neural network with a Few-bit approximation
consisting of k piecewise-constant intervals, the memory
consumption of such layers during forward-backward pass
will be reduced by 32/k times for single-precision learning
mode. However, how many times in total the neural network
memory consumption is reduced depends on the particular
architecture of the neural network and the optimizer used
in the process. During training, the memory is spent on the
weights (parameters) of the network, on optimizer statistics,

1 # Globally stored piecewise-constant
approximation parameters

2 s, y = [...], [...]
3

4 def forward(X):
5 X_pos = sortedsearch(s, X)
6 save_for_backward(X_pos)
7 return f(X)
8

9 def backward(dLdY):
10 X_pos = get_saved_for_backward()
11 return dLdY * y[X_pos]

Listing 1. Pseudo code for quantized backward layer. Arrays s
and y are parameters of quantization Equation (2),
sortedsearch is a binary search method.

and on all stored activations, some of which are activations
of pointwise nonlinearity layers. For example, when training
ResNet18 with the Adam optimizer on 256× 256 images,
the model weights take 44.6Mb, 3 ·44.6 = 133.8Mb is used
by the optimizer to store gradients and moments, BS ·40Mb
is needed to store all activations during forward-pass,
BS ·11.5Mb of which are pointwise nonlinearity layers and
BS · 28.5Mb is for all other layers, where BS is the batch
size. Therefore, the maximum possible batch size with stan-
dard nonlinearities is ⌊(GPU_MEM − 4 · 44.6)/40⌋, while
the maximum batch size with Few-bit nonlinearities of size
k is ⌊(GPU_MEM − 4 · 44.6)/(28.5 + 11.5 · log k/32)⌋,
where GPU_MEM is the available GPU memory. In our
example with ResNet18 for standard nonlinearity layers, the
maximum batch size for a video card with 32Gb memory
is 813, while using 4-bit Few-bit approximation is 1086
(+33%). Memory consumption for different Few-bit mods
and different neural network architectures is presented in Ap-
pendix B.

Speed of Few-bit Approximation. The memory gain of
a Few-bit layer does not slow down the speed. The stan-
dard nonlinearity layer calculates the activation function
in the forward pass and the activation function gradient in
the reverse pass. The activation function gradient usually
includes complex functions such as exponent, erf, and oth-
ers. The Few-bit version of the layer also calculates the
activation function on the forward pass, but the gradient cal-
culation during the backward pass is replaced by one binary
search and one lookup in the value table (see Listing 1).
Our efficient implementation of this procedure using CUDA
kernels runs several percent faster than the standard nonlin-
earity layer. However, this result may depend on specific
framework implementation and the used GPU, so in our
experiments in Section 4 we do not consider the time gain,
assuming that both layers are roughly equally fast, but focus
specifically on memory savings.

3

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

3. Optimal Piecewise-constant Approximation
Figure 1 shows examples of an optimized 3-bit piecewise-
constant approximation for several nonlinearity functions.
Finding the optimal approximation parameters (boundaries
of intervals and values on them) is a challenging task. We
propose to find them by minimizing the (weighted) L2 norm
of the error.

Consider function f : R → R and its derivative f ′. We
measure the quality of a piecewise constant approxima-
tion Equation (2) with a weighted L2 norm:

min
s,y

L(s,y), (3)

L(s,y) =

∫
R
(f ′(x)− q(x|s,y))2w(x)dx = (4)

k∑
i=1

∫ si+1

si

(f ′(x)− yi)
2w(x)dx, (5)

where w is some weight function reflecting our prior knowl-
edge of the activation function argument distribution. Prac-
tical choices of w may be either 1[x ∈ [A;B]] (with some
reasonable A and B, which should be large enough) which
makes integral Equation (3) tractable, or maybe, e.g., stan-
dard normal distribution.

L(s,y) is differentiable w.r.t. s and y, so optimal piecewise-
constant approximations can be found using standard
gradient-based optimization techniques. But the minimiza-
tion problem Equation (3) has many local minima that are
far from optimal. We suggest using dynamic programming
to get a good initial approximation that can be further fine-
tuned using gradient-based methods (but also can be used
as is because it is very accurate on its own).

Dynamic programming. We assume that the weighting
function w is chosen such that w(x) = 0 for x ̸∈ [A;B].
Consider the following auxiliary value:

DP(t, k) = min
y1:k,

s1:k+1,
s.t.s1=A,sk+1=t

∫ t

A

(f ′(x)− q(x|s,y))2w(x)dx,

t ∈ R, k ∈ N.

Essentially, DP(t, k) is the optimal piecewise constant ap-
proximation of size k for the given function f ′ on the inter-
val [A; t]. The recurrent formula for this value is:

DP(t, k + 1) = (6)

min
t′

{
DP(t′, k) +

∫ t

t′
(f ′(x)− y(t′, t))2w(x)dx

}
, (7)

y(t′, t) =

∫ t

t′
f ′(x)w(x)dx∫ t

t′
w(x)dx

, (8)

since a piecewise-constant approximation of size k + 1 con-
sists of a corresponding approximation of size k (first term)
plus one constant interval (second term). Here t′ chooses the
right bound of approximation of size k, and y(t′, t) stands
for the optimal value for the interval [t′; t] Equation (10).
Then the minimal value of L(s,y) of size k is equal to
DP(B, k).

To solve the minimization problem Equation (6), we suggest
considering the discretization of t: A = t0 < t1 < · · · <
tn = B and reducing the calculation of DP(t, k) to its
approximation only in the points of discretization:

DP(i, k) = min
j

{DP(j, k − 1) + T (j, i)} ,

T (j, i) =

∫ ti

tj

(f ′(x)− y(j, i))2w(x)dx,

y(j, i) =

∫ ti
tj

f ′(x)w(x)dx∫ ti
tj

w(x)dx
.

(9)

Equation (9) can be calculated in O(n2K) time and O(nK)
space, which is described in Appendix G in detail. Note,
that this routine should be evaluated only once, possibly
by the framework developers, and then used indefinitely.
This means that number of discretization points n can be
taken quite large, tens of thousands easily. That would
make the global solution of the discrete problem, given
in Equation (9) very close to the global solution of the
original problem Equation (3). We give precalculated Few-
bit approximations for many different pointwise nonlinearity
functions in our implementation at https://github.
com/skolai/fewbit.

4. Experiments
The goal of our experiments is not only to show that the
Few-bit nonlinearity approach provides memory savings dur-
ing neural network training without loss of the final model
quality. In addition, we want to experimentally prove that
this approach does not change the learning dynamic itself
because, in this case, its application in practice is almost
completely safe: there is a memory gain without loss of
speed or quality, and without risks of interference with other
training factors under study (hence, no additional search or
fitting of other hyperparameters is needed). To achieve this
goal, in addition to the main metrics of the trained model
(which depend on specific tasks and benchmarks), we also
compare the training loss and validation loss graphs during
the whole training process. Further, we show that 1-bit and
2-bit f-bit approximations are already almost the same as the
original nonlinearity layers. And the 3- and 4-bit Few-bit
approximations achieve the original quality of the model.

We test two of the most important and commonly used neu-
ral network architectures: convolutional neural networks

4

https://github.com/skolai/fewbit
https://github.com/skolai/fewbit

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

Table 1. RoBERTa-base on GLUE benchmark with different quantization budgets. Metric: mean accuracy/correlation (task-specific).
Averaged across five runs.

1-bit GELU 2-bits GELU 3-bits GELU 4-bits GELU Vanila GELU
stsb 0.906 (± 0.002) 0.907 (± 0.002) 0.910 (± 0.002) 0.909 (± 0.002) 0.909 (± 0.001)
mnli-mm 0.870 (± 0.001) 0.870 (± 0.002) 0.871 (± 0.002) 0.870 (± 0.001) 0.871 (± 0.002)
mrpc 0.880 (± 0.009) 0.884 (± 0.008) 0.884 (± 0.007) 0.885 (± 0.008) 0.882 (± 0.005)
cola 0.595 (± 0.016) 0.580 (± 0.014) 0.596 (± 0.015) 0.607 (± 0.014) 0.604 (± 0.013)
mnli 0.873 (± 0.001) 0.872 (± 0.002) 0.874 (± 0.001) 0.874 (± 0.002) 0.874 (± 0.001)
sst2 0.939 (± 0.003) 0.938 (± 0.003) 0.941 (± 0.004) 0.941 (± 0.003) 0.943 (± 0.002)
rte 0.752 (± 0.021) 0.756 (± 0.023) 0.780 (± 0.014) 0.771 (± 0.025) 0.771 (± 0.017)
qqp 0.914 (± 0.001) 0.915 (± 0.000) 0.916 (± 0.001) 0.916 (± 0.001) 0.916 (± 0.001)
qnli 0.925 (± 0.002) 0.925 (± 0.002) 0.926 (± 0.002) 0.927 (± 0.002) 0.927 (± 0.002)

and transformer-based networks. We use standard popu-
lar open-source benchmarks with open hyperparameters
for training in order to demonstrate the behavior of the
Few-bit approach under drop-in replacement of standard
nonlinearities without any hyperparameter optimization or
specially selected training conditions. In Section 4.1, we
test the RoBERT-a transformer-based neural network on the
GLUE (Wang et al., 2019) benchmark, which includes 9
different NLP tasks. In Section 4.2, we test the training of
the generative ruDALL-e model in the task of modeling the
joint distribution of text and image tokens for the Russian
Emoji dataset. We use the GELU nonlinearity for both trans-
former architectures, as it is the main nonlinearity function
used in such models. In Section 4.3, we test the classical
ResNet18 architecture on the ImageNet dataset using the
open benchmark ffcv (Leclerc et al., 2022). In the classi-
cal ResNet architecture, we replace all ReLU nonlinearities
with one of GELU, SELU, or Swish to demonstrate that
the Few-bit approach works with a wide range of different
popular activation functions.

The main analogue of our Few-bit approach is the ActNN
method. In Section 4.4, we make a detailed comparison
with this method.

The code to reproduce all experiments is available
at https://github.com/skolai/fewbit, and all
hyperparameters for training are presented in Appendix F.

4.1 GLUE benchmark. In Table 1 we report results for
RoBERTa-base model (Liu et al., 2019) on GLUE bench-
mark (Wang et al., 2019) for standard GELU and 1-, 2-,
3- and 4-bits Few-bit GELU. 1- and 2-bit versions have
minor performance degradation, while 3- and 4-bits GELU
have no visible difference and closely match vanilla GELU
performance, which can be seen more clearly on the depen-
dence of the metric, averaged across all GLUE tasks, on
the number of bits in Few-bit approximation, represented
in Figure 7. The behavior of loss during training is depicted

in Figure 5: 3- and 4-bit versions are hardly distinguishable
from the standard GELU.

4.2 RuDALL-E. In Figure 4 we present the training dy-
namic of ruDALL-E1 Malevich (Ramesh et al., 2021) model
on Russian Emoji dataset. The dataset (Shonenkov et al.,
2021) contains 2749 unique emoji icons and 1611 unique
texts that were collected by web scrapping (the difference in
quantities is due to the fact that there are sets, within which
emojis differ only in color, moreover, some elements are
homonyms in Russian). ruDALL-E Malevich is a big multi-
modal pretrained transformer, which learns the conditional
distribution of images given some text string (more precisely
it autoregressively models the text and image tokens as a
single stream of data). ruDALL-E Malevich encoder part is
a 24-layer Transformer (Vaswani et al., 2017) model with
16 attention heads, 2048 hidden dimensions and standard
GELU nonlinearity, which in total has 1.3B parameters. It
works with 128 text tokens, which are prepared from the
text input using YTTM tokenizer2, and 1024 image tokens,
which are obtained after encoding the input image using
Sber-VQGAN3. Few-bit backward for ruDALL-E Malevich
shows the same behavior as for RoBERTa-base architecture:
1- and 2-bit versions, although coping with training perfectly
fine, demonstrates minor performance degradation, while
3- and 4-bit versions are indistinguishable from the original
GELU.

4.3 ResNet Architecture. We trained ResNet18
model (He et al., 2016) on ImageNet (Russakovsky et al.,
2015) benchmark (Leclerc et al., 2022) dataset with
ReLU replaced with GELU, Swish and SiLU nonlinearity

1Implementation is taken from https://github.com/
sberbank-ai/ru-dalle

2Implementation is taken from https://github.com/
VKCOM/YouTokenToMe

3Implementation is taken from https://github.com/
sberbank-ai/sber-vq-gan

5

https://github.com/skolai/fewbit
https://github.com/sberbank-ai/ru-dalle
https://github.com/sberbank-ai/ru-dalle
https://github.com/VKCOM/YouTokenToMe
https://github.com/VKCOM/YouTokenToMe
https://github.com/sberbank-ai/sber-vq-gan
https://github.com/sberbank-ai/sber-vq-gan

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

0 500 1000 1500 2000 2500

Step

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

Tr
ai

n
L

os
s

GELU
1-bit GELU
2-bit GELU
3-bit GELU
4-bit GELU

0 500 1000 1500 2000 2500

Step

3.5

3.6

3.7

3.8

3.9

V
al

id
L

os
s

GELU
1-bit GELU
2-bit GELU
3-bit GELU
4-bit GELU

Figure 4. Dynamic of loss values in finetuning of ruDALL-E Malevich with Few-bit GELU activations.

0 1000 2000 3000 4000

Iteration. (a)

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Tr
ai

ni
ng

L
os

s

GELU
1-bit GELU
2-bit GELU
3-bit GELU
4-bit GELU

3000 3500 4000 4500

Iteration. (b)

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

Tr
ai

ni
ng

L
os

s

GELU
1-bit GELU
2-bit GELU
3-bit GELU
4-bit GELU

0 1000 2000 3000 4000

Iteration. (c)

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

V
al

id
at

io
n

L
os

s

GELU
1-bit GELU
2-bit GELU
3-bit GELU
4-bit GELU

Figure 5. RoBERTa-base on QQP task from GLUE benchmark, averaged across 10 runs. (a): Training loss. (b): Training loss zoomed
into the last third of the training. (c): Validation loss.

functions. Graphs for Swish nonlinearity are shown
in Figure 6 and graphs for other nonlinearities are shown
in Figure 13 in Appendix F: 1- and 2- bits have minor
performance drop, while 3- and 4- bits are on par with
standard nonlinearity.

4.4 ActNN. As a baseline, we use another quantization
scheme ActNN (Chen et al., 2021). It works in a much
wider spectrum of situations, as it can quantize not only
pointwise nonlinearity layers but also all kinds of linear
layers (convolutional and dense layers), normalization lay-
ers and pooling layers. Without going deep into details,
ActNN divides the saved tensor H into chunks hi where
each chunk is of an equal size G. Then, given the quan-
tization budget of b bits, each chunk hi is normalized:
ui = 2b(hi − min{hi})/(max{hi} − min{hi}), and its
randomly quantized version ūi is saved: ūi = ⌈ui⌉ with
probability u − ⌊ui⌋, ⌊ui⌋ otherwise. Random rounding
is performed in order to guarantee that the quantization is

unbiased. For each group, two additional values min{hi}
and max{hi} are saved as well, but for the group size of
G = 256 it is only 0.125 additional bits per element, which
we ignore in our following tests.

ActNN by construction does not take into account the global
behavior of the nonlinearity derivative. We argue that for
nonlinearity layers, it is very crucial, and thus our preopti-
mized quantization scheme is preferable. To confirm that,
we consider ActNN behavior on the QQP task from the
GLUE benchmark with respect to different quantization
budgets and compare it with our method (Figure 9 and Ta-
ble 2). In general, our method with 1 bit less budget works
the same or better than ActNN, which is very important in
the low-bit setting.

In Figure 10 we compare ActNN and Few-bit for ResNet18
architecture on the ImageNet dataset for SELU nonlinearity,
while results for GELU and Swish nonlinearities can be
found in Figure 14 in Appendix F. Aggregated top-1 ac-

6

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

0 20 40 60 80

Epoch. (a)

3 × 10
0

4 × 10
0

Tr
ai

ni
ng

lo
ss

Swish
1-bit Swish
2-bit Swish
3-bit Swish
4-bit Swish

65 70 75 80 85

Epoch. (b)

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Tr
ai

ni
ng

lo
ss

Swish
1-bit Swish
2-bit Swish
3-bit Swish
4-bit Swish

1-bit 2-bit 3-bit 4-bit

(c)

0.720

0.722

0.724

0.726

0.728

0.730

To
p-

1
ac

cu
ra

cy

Swish
Few-bit SWISH

Figure 6. ResNet18 with ReLU replaced with Swish nonlinearity trained on Imagenet. (a): Training loss. (b): Training loss zoomed into
the last third of the training. (c): Final validation top-1 accuracy. All graphs are averaged across three runs with different seeds. Error bars
denote minimum and maximum values.

1-bit 2-bit 3-bit 4-bit

0.850

0.851

0.852

0.853

0.854

0.855

A
ve

ra
ge

m
et

ri
c

Few-bit GELU
Standard GELU

Figure 7. Task-specific metric, averaged across all tasks in GLUE
benchmark. The blue line is dependence on the number of bits
in the Few-bit GELU and the dashed red line is the standard
GELU. With 3 bits approximation, we already match unaltered
nonlinearity quality.

1-bit 2-bit 3-bit 4-bit

0.975

0.980

0.985

0.990

0.995

1.000

R
el

at
iv

e
To

p-
1

A
cc

ur
ac

y

Few-bit
ActNN
Standard
Nonlinearity

Figure 8. Relative top-1 accuracy for ResNet18 network on Ima-
geNet dataset, averaged across three nonlinearities: GLUE, SELU,
and Swish. For each nonlinearity approximation, top-1 accu-
racy (Few-bit approximation and ActNN approach) was measured
relative to the top-1 accuracy of the model with corresponding
unaltered nonlinearity.

curacy for all activation functions is presented in Figure 8.
Our method steadily outperforms ActNN which is espe-
cially noticeable for the 1-bit regime: ActNN experiences a
strong downgrade of accuracy, while Few-bit Backward has
a much closer performance to standard nonlinearities. This
means that one-bit Few-bit backward can be used in cases
when it is very important to reduce memory consumption
by a neural network.

ActNN Our
1-bit 0.8880 (±0.0008) 0.9080 (±0.0006)
2-bit 0.9072 (±0.0005) 0.9097 (±0.0006)
3-bit 0.9106 (±0.0003) 0.9114 (±0.0007)
4-bit 0.9113 (±0.0006) 0.9114 (±0.0005)

Table 2. Accuracy on QQP task from GLUE benchmark for ActNN
and Few-bit (Our). Averaged across 5 runs.

5. Related Work
The reduction of the memory footprint is an important topic.
To save memory during training, in addition to working with
stored activations, we can also compress the memory used
to store the model’s parameters. Quantization (Bondarenko
et al., 2021; Bengio et al., 2013; Banner et al., 2019; Ja-
cob et al., 2018; Nagel et al., 2021; Krishnamoorthi, 2018)
limits the admissible values of weights to some small finite
set. Thus, less memory is needed for storage. The low-rank
representation of weights (Hrinchuk et al., 2020; Phan et al.,
2020; Gusak et al., 2019; 2021; Cui et al., 2020; Novikov
et al., 2018; Lebedev et al., 2015) assumes some internal
structure of model weights and saves memory by explicitly
using this structure with low-rank methods from linear alge-
bra. Low-precision learning and low-precision optimizers
focus on using the lower-precision floats to store weights,

7

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

0 1000 2000 3000 4000

Iteration. (a)

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Tr
ai

ni
ng

L
os

s
GELU
Our 1-bit GELU
ActNN 1-bit GELU
Our 2-bit GELU
ActNN 2-bit GELU
Our 3-bit GELU
ActNN 3-bit GELU
Our 4-bit GELU
ActNN 4-bit GELU

3000 3500 4000 4500

Iteration. (b)

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Tr
ai

ni
ng

L
os

s

GELU
Our 1-bit GELU
ActNN 1-bit GELU
Our 2-bit GELU
ActNN 2-bit GELU
Our 3-bit GELU
ActNN 3-bit GELU
Our 4-bit GELU
ActNN 4-bit GELU

0 1000 2000 3000 4000

Iteration. (c)

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

V
al

id
at

io
n

L
os

s

GELU
Our 1-bit GELU
ActNN 1-bit GELU
Our 2-bit GELU
ActNN 2-bit GELU
Our 3-bit GELU
ActNN 3-bit GELU
Our 4-bit GELU
ActNN 4-bit GELU

Figure 9. Comparison of RoBERTa-base on QQP task from GLUE benchmark with ActNN quantization and Few-bit approximation.
Averaged across ten runs. (a): Training loss. (b): Training loss zoomed into the last third of the training. (c): Validation loss.

1-bits 2-bits 3-bits 4-bits

(a)

2.25

2.30

2.35

2.40

2.45

Tr
ai

ni
ng

lo
ss

SELU
Few-bit
ActNN

1-bits 2-bits 3-bits 4-bits

(b)

0.690

0.695

0.700

0.705

0.710

0.715

To
p-

1
ac

cu
ra

cy

SELU
Few-bit
ActNN

1-bits 2-bits 3-bits 4-bits

(c)

0.8850

0.8875

0.8900

0.8925

0.8950

0.8975

0.9000

0.9025

To
p-

5
ac

cu
ra

cy

SELU
Few-bit
ActNN

Figure 10. Comparison of ActNN SELU with Few-bit SELU (Our) for ResNet18 architecture on ImageNet dataset. (a) Training loss.
(b) Top-1 accuracy. (c) Top-5 accuracy. Our method with 1-bit already matches unaltered nonlinearity performance and significantly
outperforms 1-bit ActNN.

optimization parameters, and model gradients. All of these
approaches are complementary to the proposed one and can
be used together.

Checkpointing (Beaumont et al., 2019; 2021; Chen et al.,
2016) methods save memory by the cost of more calcula-
tions. It stores a fewer number of activations and repeats
the calculation of the rest from the saved checkpoints. Of-
floading methods (Beaumont et al., 2020) send the saved
activations to the computer’s RAM and load them back to
the video memory on the backward passes, which also saves
GPU memory at the cost of host-device communication
time.

ActNN (Chen et al., 2021) is a framework for quantizing
stored activations adaptively on the fly. In contrast to our
work, it allows quantizing not only layers of element-by-
element activations but also many others, including convo-
lutional, normalization, and linear layers. However, this
method depends on the distribution of elements of quan-
tizable tensors, and because of that, its performance may
degrade. On the other hand, our approach selects data-

agnostic optimal quantization, which in practice turns out
to be sufficient and easier to use.

6. Conclusion
We have proposed a method to reduce memory consumption
during the training of deep neural network models by storing
less information for a backward pass in the element-wise ac-
tivation functions. For effective training, there is no need to
calculate the derivative of the activation functions precisely,
but only its piecewise-constant approximation is sufficient.
This makes it possible to save not the entire input tensor
at each application of the activation function, but only the
interval number in the piecewise-constant approximation.
Experiments show that for a wide class of models and prob-
lems, storing only 3 bits of information per tensor element
does not lead to degradation of the learning quality and train-
ing speed and saves about 20 percent of memory. We have
proposed an efficient algorithm for constructing an optimal
piecewise-constant approximation. The proposed drop-in re-
placements for popular activation functions (ReLU, GELU,

8

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

Swish, Sigmoid, and others) do not depend on the neural net-
work model, the problem to be solved, or the peculiarities of
data distribution. The replacement of the original activation
functions by the proposed method can be performed at any
training stage (both for models trained from scratch and for
pre-trained models for subsequent fine-tuning) and does not
require any changes in the training pipelines. An efficient
CUDA implementation of the proposed method, together
with pre-computed piecewise-constant approximations for
many popular activation functions, is available for PyTorch
at the GitHub repository4.

Acknowledgements
The work was supported by the Analytical cen-
ter under the RF Government (subsidy agreement
000000D730321P5Q0002, Grant No. 70-2021-00145
02.11.2021).

References
Banner, R., Nahshan, Y., and Soudry, D. Post train-

ing 4-bit quantization of convolutional networks for
rapid-deployment. In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 7948–
7956, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/
c0a62e133894cdce435bcb4a5df1db2d-Abstract.
html.

Beaumont, O., Eyraud-Dubois, L., Herrmann, J., Joly, A.,
and Shilova, A. Optimal checkpointing for heterogeneous
chains: how to train deep neural networks with limited
memory. CoRR, abs/1911.13214, 2019. URL http:
//arxiv.org/abs/1911.13214.

Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Op-
timal GPU-CPU offloading strategies for deep neural
network training. In Malawski, M. and Rzadca, K.
(eds.), Euro-Par 2020: Parallel Processing - 26th In-
ternational Conference on Parallel and Distributed Com-
puting, Warsaw, Poland, August 24-28, 2020, Proceed-
ings, volume 12247 of Lecture Notes in Computer Sci-
ence, pp. 151–166. Springer, 2020. doi: 10.1007/
978-3-030-57675-2_10. URL https://doi.org/
10.1007/978-3-030-57675-2_10.

Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Efficient
combination of rematerialization and offloading for train-

4Source code repository can be found at https://github.
com/skolai/fewbit

ing dnns. Advances in Neural Information Processing
Systems, 34, 2021.

Bengio, Y., Léonard, N., and Courville, A. C. Estimating
or propagating gradients through stochastic neurons for
conditional computation. CoRR, abs/1308.3432, 2013.
URL http://arxiv.org/abs/1308.3432.

Bondarenko, Y., Nagel, M., and Blankevoort, T. Under-
standing and overcoming the challenges of efficient trans-
former quantization. In Moens, M., Huang, X., Specia, L.,
and Yih, S. W. (eds.), Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 7-11 November, 2021, pp. 7947–7969. Associa-
tion for Computational Linguistics, 2021. doi: 10.18653/
v1/2021.emnlp-main.627. URL https://doi.org/
10.18653/v1/2021.emnlp-main.627.

Chen, J., Zheng, L., Yao, Z., Wang, D., Stoica, I., Mahoney,
M. W., and Gonzalez, J. Actnn: Reducing training mem-
ory footprint via 2-bit activation compressed training. In
Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pp. 1803–
1813. PMLR, 2021. URL http://proceedings.
mlr.press/v139/chen21z.html.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Train-
ing deep nets with sublinear memory cost. CoRR,
abs/1604.06174, 2016. URL http://arxiv.org/
abs/1604.06174.

Cui, C., Zhang, K., Daulbaev, T., Gusak, J., Oseledets,
I. V., and Zhang, Z. Active subspace of neural net-
works: Structural analysis and universal attacks. SIAM
J. Math. Data Sci., 2(4):1096–1122, 2020. doi: 10.1137/
19M1296070. URL https://doi.org/10.1137/
19M1296070.

Dettmers, T., Lewis, M., Shleifer, S., and Zettlemoyer,
L. 8-bit optimizers via block-wise quantization. CoRR,
abs/2110.02861, 2021. URL https://arxiv.org/
abs/2110.02861.

Gao, Y., Liu, Y., Zhang, H., Li, Z., Zhu, Y., Lin, H., and
Yang, M. Estimating gpu memory consumption of deep
learning models. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineer-
ing, pp. 1342–1352, 2020.

Gusak, J., Kholyavchenko, M., Ponomarev, E., Mar-
keeva, L., Blagoveschensky, P., Cichocki, A., and Os-
eledets, I. V. Automated multi-stage compression of

9

https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-Abstract.html
http://arxiv.org/abs/1911.13214
http://arxiv.org/abs/1911.13214
https://doi.org/10.1007/978-3-030-57675-2_10
https://doi.org/10.1007/978-3-030-57675-2_10
https://github.com/skolai/fewbit
https://github.com/skolai/fewbit
http://arxiv.org/abs/1308.3432
https://doi.org/10.18653/v1/2021.emnlp-main.627
https://doi.org/10.18653/v1/2021.emnlp-main.627
http://proceedings.mlr.press/v139/chen21z.html
http://proceedings.mlr.press/v139/chen21z.html
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
https://doi.org/10.1137/19M1296070
https://doi.org/10.1137/19M1296070
https://arxiv.org/abs/2110.02861
https://arxiv.org/abs/2110.02861

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

neural networks. In 2019 IEEE/CVF International Con-
ference on Computer Vision Workshops, ICCV Work-
shops 2019, Seoul, Korea (South), October 27-28, 2019,
pp. 2501–2508. IEEE, 2019. doi: 10.1109/ICCVW.
2019.00306. URL https://doi.org/10.1109/
ICCVW.2019.00306.

Gusak, J., Daulbaev, T., Ponomarev, E., Cichocki, A., and
Oseledets, I. Reduced-order modeling of deep neural
networks. Computational Mathematics and Mathematical
Physics, 61(5):774–785, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep resid-
ual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/
10.1109/CVPR.2016.90.

Hendrycks, D. and Gimpel, K. Bridging nonlinearities and
stochastic regularizers with gaussian error linear units.
CoRR, abs/1606.08415, 2016. URL http://arxiv.
org/abs/1606.08415.

Hrinchuk, O., Khrulkov, V., Mirvakhabova, L., Orlova,
E. D., and Oseledets, I. V. Tensorized embedding layers.
In Cohn, T., He, Y., and Liu, Y. (eds.), Findings of the As-
sociation for Computational Linguistics: EMNLP 2020,
Online Event, 16-20 November 2020, volume EMNLP
2020 of Findings of ACL, pp. 4847–4860. Association
for Computational Linguistics, 2020. doi: 10.18653/v1/
2020.findings-emnlp.436. URL https://doi.org/
10.18653/v1/2020.findings-emnlp.436.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A. G., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, pp. 2704–
2713. Computer Vision Foundation / IEEE Computer
Society, 2018. doi: 10.1109/CVPR.2018.00286. URL
http://openaccess.thecvf.com/content_
cvpr_2018/html/Jacob_Quantization_
and_Training_CVPR_2018_paper.html.

Krishnamoorthi, R. Quantizing deep convolutional net-
works for efficient inference: A whitepaper. CoRR,
abs/1806.08342, 2018. URL http://arxiv.org/
abs/1806.08342.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I. V., and
Lempitsky, V. S. Speeding-up convolutional neural net-
works using fine-tuned cp-decomposition. In Bengio,
Y. and LeCun, Y. (eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL http://arxiv.org/abs/1412.
6553.

Leclerc, G., Ilyas, A., Engstrom, L., Park, S. M., Salman,
H., and Madry, A. ffcv. https://github.com/
libffcv/ffcv/, 2022. commit xxxxxxx.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019. URL http://arxiv.org/
abs/1907.11692.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y.,
van Baalen, M., and Blankevoort, T. A white paper on
neural network quantization. CoRR, abs/2106.08295,
2021. URL https://arxiv.org/abs/2106.
08295.

Novikov, A., Trofimov, M., and Oseledets, I. Exponential
machines. Bulletin of the Polish Academy of Sciences:
Technical Sciences, pp. 789–797, 2018.

Ojika, D., Patel, B., Reina, G. A., Boyer, T., Martin, C., and
Shah, P. Addressing the memory bottleneck in AI model
training. arXiv preprint arXiv:2003.08732, 2020.

Phan, A. H., Sobolev, K., Sozykin, K., Ermilov, D., Gusak,
J., Tichavský, P., Glukhov, V., Oseledets, I. V., and
Cichocki, A. Stable low-rank tensor decomposition
for compression of convolutional neural network. In
Vedaldi, A., Bischof, H., Brox, T., and Frahm, J. (eds.),
Computer Vision - ECCV 2020 - 16th European Con-
ference, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part XXIX, volume 12374 of Lecture Notes in
Computer Science, pp. 522–539. Springer, 2020. doi:
10.1007/978-3-030-58526-6_31. URL https://doi.
org/10.1007/978-3-030-58526-6_31.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C.,
Radford, A., Chen, M., and Sutskever, I. Zero-shot
text-to-image generation. In Meila, M. and Zhang, T.
(eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 8821–8831. PMLR, 2021.
URL http://proceedings.mlr.press/v139/
ramesh21a.html.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M. S., Berg, A. C., and Fei-Fei, L. Ima-
genet large scale visual recognition challenge. Int. J.
Comput. Vis., 115(3):211–252, 2015. doi: 10.1007/
s11263-015-0816-y. URL https://doi.org/10.
1007/s11263-015-0816-y.

10

https://doi.org/10.1109/ICCVW.2019.00306
https://doi.org/10.1109/ICCVW.2019.00306
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://doi.org/10.18653/v1/2020.findings-emnlp.436
https://doi.org/10.18653/v1/2020.findings-emnlp.436
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1412.6553
http://arxiv.org/abs/1412.6553
https://github.com/libffcv/ffcv/
https://github.com/libffcv/ffcv/
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://doi.org/10.1007/978-3-030-58526-6_31
https://doi.org/10.1007/978-3-030-58526-6_31
http://proceedings.mlr.press/v139/ramesh21a.html
http://proceedings.mlr.press/v139/ramesh21a.html
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

Shonenkov, A., Bakshandaeva, D., Dimitrov, D., and
Nikolich, A. Emojich - zero-shot emoji generation
using russian language: a technical report. CoRR,
abs/2112.02448, 2021. URL https://arxiv.org/
abs/2112.02448.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. In Guyon, I., von Luxburg, U.,
Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan,
S. V. N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 5998–
6008, 2017. URL https://proceedings.
neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.
html.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. In
7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

11

https://arxiv.org/abs/2112.02448
https://arxiv.org/abs/2112.02448
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

A. Detailed examples of Few-bit approximations for popular nonlinearity layers

−10 −5 0 5 10

0.00

0.25

0.50

0.75

1.00
GELU
derivative
1-bit GELU

−10 −5 0 5 10

0.00

0.25

0.50

0.75

1.00
GELU
derivative
2-bit GELU

−10 −5 0 5 10

0.00

0.25

0.50

0.75

1.00
GELU
derivative
3-bit GELU

−10 −5 0 5 10

0.00

0.25

0.50

0.75

1.00
GELU
derivative
4-bit GELU

−10 −5 0 5 10

0.00

0.25

0.50

0.75

1.00
Swish
derivative
1-bit Swish

−10 −5 0 5 10

0.00

0.25

0.50

0.75

1.00
Swish
derivative
2-bit Swish

−10 −5 0 5 10

0.00

0.25

0.50

0.75

1.00
Swish
derivative
3-bit Swish

−10 −5 0 5 10

0.00

0.25

0.50

0.75

1.00
Swish
derivative
4-bit Swish

−10 −5 0 5 10

0.00

0.05

0.10

0.15

0.20

0.25 Sigmoid
derivative
1-bit Sigmoid

−10 −5 0 5 10

0.00

0.05

0.10

0.15

0.20

0.25 Sigmoid
derivative
2-bit Sigmoid

−10 −5 0 5 10

0.00

0.05

0.10

0.15

0.20

0.25 Sigmoid
derivative
3-bit Sigmoid

−10 −5 0 5 10

0.00

0.05

0.10

0.15

0.20

0.25 Sigmoid
derivative
4-bit Sigmoid

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0 Tanh
derivative
1-bit Tanh

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0 Tanh
derivative
2-bit Tanh

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0 Tanh
derivative
3-bit Tanh

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0 Tanh
derivative
4-bit Tanh

−10 −5 0 5 10

0.0

0.5

1.0

1.5

SELU
derivative
1-bit SELU

−10 −5 0 5 10

0.0

0.5

1.0

1.5

SELU
derivative
2-bit SELU

−10 −5 0 5 10

0.0

0.5

1.0

1.5

SELU
derivative
3-bit SELU

−10 −5 0 5 10

0.0

0.5

1.0

1.5

SELU
derivative
4-bit SELU

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0 Softplus
derivative
1-bit Softplus

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0 Softplus
derivative
2-bit Softplus

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0 Softplus
derivative
3-bit Softplus

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0 Softplus
derivative
4-bit Softplus

Figure 11. 1- to 4-bit approximations of popular nonlinearty layers.

12

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

B. Detailed memory measurements for different models
We provide memory measurements for different model architectures in Table Appendix B. "Model size" is the total memory
used for storing model parameters (without model gradients and optimizator statistics). "All activations size" is the total
memory used by tensors, saved for backward pass. "Nonlinearity activations size" is the part of all activations used only by
nonlinearity layers. "Percentage saving" is memory saved on all activation using our method compared to full precision
non-linearities, and percentage value in the "Maximum Batch Size" row is the increase in the batch size achievable by using
our method compared to full precision non-linearities, taken in ideal circumstances. Maximum batch size is calculated with
the assumption, that four model copies are stored on the device (model parameters, model gradients and optimizer statistics
like two moments stored by Adam optimizer) for GPU with 32G memory.

Model
Size
(Mb)

All
Act.
Size
(Mb)

Nonlin.
Act.
Size
(Mb)

Standard
Nonlin.

Max
batch
size

1-bit
Max
batch
size

2-bit
Max
batch
size

3-bit
Max
batch
size

4-bit
Max
batch
size

ResNet-18 44.6 40.0 11.5 813 1127 (+38.6%) 1113 (+36.9%) 1100 (+35.3%) 1086 (+33.6%)
ResNet-50 99.2 156.8 47.9 206 293 (+42.2%) 289 (+40.3%) 285 (+38.3%) 281 (+36.4%)
ResNet-101 171.4 234.5 73.4 136 196 (+44.1%) 193 (+41.9%) 190 (+39.7%) 188 (+38.2%)
ResNet-152 232.3 328.2 104.9 97 140 (+44.3%) 138 (+42.3%) 136 (+40.2%) 134 (+38.1%)
DenseNet-121 30.9 243.8 79.1 133 195 (+46.6%) 192 (+44.4%) 189 (+42.1%) 186 (+39.8%)
DenseNet-161 112.4 458.8 147.0 70 102 (+45.7%) 100 (+42.9%) 99 (+41.4%) 97 (+38.6%)
DenseNet-169 54.7 296.3 95.3 109 159 (+45.9%) 157 (+44.0%) 155 (+42.2%) 152 (+39.4%)
DenseNet-201 77.4 382.2 123.9 84 123 (+46.4%) 122 (+45.2%) 120 (+42.9%) 118 (+40.5%)
Efficient Net B0 20.4 112.4 32.4 290 403 (+39.0%) 398 (+37.2%) 393 (+35.5%) 388 (+33.8%)
Efficient Net B3 47.5 218.6 59.5 149 202 (+35.6%) 200 (+34.2%) 197 (+32.2%) 195 (+30.9%)
Efficient Net B7 256.3 674.8 179.3 47 63 (+34.0%) 62 (+31.9%) 61 (+29.8%) 61 (+29.8%)
VGG 11 507.2 100.9 37.0 304 472 (+55.3%) 464 (+52.6%) 456 (+50.0%) 448 (+47.4%)
VGG 16 528.2 163.8 68.5 187 314 (+67.9%) 307 (+64.2%) 301 (+61.0%) 295 (+57.8%)
VGG 19 548.4 178.8 75.0 171 288 (+68.4%) 281 (+64.3%) 275 (+60.8%) 270 (+57.9%)
RoBERTa-base 480.7 185.6 36.0 166 204 (+22.9%) 203 (+22.3%) 201 (+21.1%) 200 (+20.5%)
RoBERTa-large 1355.6 482.1 96.0 56 70 (+25.0%) 69 (+23.2%) 69 (+23.2%) 68 (+21.4%)
GPT2 491.0 297.1 146.2 103 198 (+92.2%) 192 (+86.4%) 187 (+81.6%) 182 (+76.7%)

13

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

C. Numerical Results for Dynamic Programming

1-bit 2-bits 3-bits 4-bits
ReLU 0.0 - - -
GELU 0.1410 0.0406 0.0119 0.0031
Swish 0.2150 0.0479 0.0170 0.0045
Sigmoid 0.0181 0.0038 0.0009 0.0002
Tanh 0.1584 0.0319 0.0073 0.0017
SELU 0.2554 0.1010 0.0184 0.0039
Softplus 0.2902 0.0541 0.0121 0.0029

Table 3. Numerical values of error Equation (3) with uniform weight on interval [-10; 10].

14

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

D. Experiment Setups
D.1. GLUE

Benchmark implementation is based on opensource Huggingface5 implementation 6 and is available at https://github.
com/skolai/fewbit.

The following parameters were used:

Task
Batch
Size

Learning
rate

Number
of epochs

Warmup
length

Cola 32 0.00002 10 320
MNLI 32 0.00001 10 7432

MNLI-MM 32 0.00001 10 7432
MRPC 16 0.00001 10 137
QNLI 32 0.00001 10 1986
QQP 32 0.00001 10 28318
RTE 16 0.00002 10 122
SST2 32 0.00002 10 1256
STSB 16 0.00002 10 214

Common parameters are:

Parameter Value
Optimizer Adam
Adam β1 0.9
Adam β2 0.98
Adam ϵ 1e-6
Weight Decay 0.1
Float Precision fp16

D.2. ResNet

We use open source FFCV (Leclerc et al., 2022) Imagenet benchmark7 with ResNet18 parameters for one A100
Nvidia GPU https://github.com/libffcv/ffcv-imagenet/blob/main/rn18_configs/rn18_88_
epochs.yaml.

D.3. RuDALL-E

We used open source implementation that can be found at https://github.com/sberbank-ai/ru-dalle.

All experiments have following setup: training size 2474, valid size 275, loss image weight 1000, frozen MLP and attention
layers, batch size 40, start lr 4e-7, max lr 1e-5, final lr 2e-8, warmup 0.1, 8bit-Adam (Dettmers et al., 2021), weight decay
0.2, betas (0.9, 0.98), eps 1e-6, gradient checkpointing 24, trained for 6h using 1xA100.

5huggingface.co
6https://github.com/huggingface/transformers/blob/main/examples/pytorch/

text-classification/run_glue.py
7https://github.com/libffcv/ffcv-imagenet

15

https://github.com/skolai/fewbit
https://github.com/skolai/fewbit
https://github.com/libffcv/ffcv-imagenet/blob/main/rn18_configs/rn18_88_epochs.yaml
https://github.com/libffcv/ffcv-imagenet/blob/main/rn18_configs/rn18_88_epochs.yaml
https://github.com/sberbank-ai/ru-dalle
huggingface.co
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py
https://github.com/libffcv/ffcv-imagenet

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

E. Combination of ActNN and Fewbit
ActNN method is more general and can be applied to the broader class of layers, while our method only focus on one class
of layers – pointwise nonlinearities. In the cases when it is not enough and more memory saving is required it is possible to
join these two methods and to use Fewbit for pointwise nonlinearities and ActNN for everything else. Such a combination
should work better than pure ActNN, since Fewbit works better than ActNN for pointwise nonlinearity layers. To check
this hypothesis we train ResNet18 on CIFAR10 dataset. We replace standard ReLU pointwise nonlinearity with GELU,
compress all layers except GELU with 4-bit ActNN (since 2-bit ActNN is too much of a compression and model diverges)
and GELU layers are compressed with either 2-bit ActNN or 2-bit Fewbit. On Figure 12 you can see training loss and
accuracy. ActNN + Fewbit for pointwise nonlinearities works slightly better than pure ActNN, as expected.

(a)

(b)

Figure 12. ResNet18 on CIFAR10 dataset. All ReLUs are replaced with GELU. All layers except pointwise nonlinearities compress their
activations saved for backward with 4-bit ActNN. GELUs compress their activations saved for backward with either 2-bit ActNN (orange)
or 2-bit Fewbit (blue). ResNet18 without any compresssion is depicted with green. (a): Training loss and accuracy for the whole training
course. (b): Training loss and accuracy zoomed to the last half of the training course. ActNN + Fewbit for pointwise nonlinearities works
slightly better than pure ActNN.

16

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

F. More Plots for Experiments

0 25 50 75

Epoch
(a) Training loss

3 × 10
0

4 × 10
0

Swish
1-bit Swish
2-bit Swish
3-bit Swish
4-bit Swish

70 80

Epoch
(b) Training loss

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65 Swish
1-bit Swish
2-bit Swish
3-bit Swish
4-bit Swish

1-bit 2-bit 3-bit 4-bit

(c) Top-1 accuracy on validation

0.720

0.722

0.724

0.726

0.728

0.730 Swish
Few-bit Swish

1-bit 2-bit 3-bit 4-bit

(c) Top-5 accuracy on validation

0.905

0.906

0.907

0.908

0.909

0.910

0.911
Swish
Few-bit Swish

0 25 50 75

Epoch
(d) Training loss

3 × 10
0

4 × 10
0

SELU
1-bit SELU
2-bit SELU
3-bit SELU
4-bit SELU

70 80

Epoch
(e) Training loss

2.40

2.45

2.50

2.55

2.60

2.65

2.70

2.75
SELU
1-bit SELU
2-bit SELU
3-bit SELU
4-bit SELU

1-bit 2-bit 3-bit 4-bit

(f) Top-1 accuracy on validation

0.714

0.715

0.716

0.717

0.718

0.719 SELU
Few-bit SELU

1-bit 2-bit 3-bit 4-bit

(f) Top-5 accuracy on validation

0.9005

0.9010

0.9015

0.9020

0.9025

SELU
Few-bit SELU

0 25 50 75

Epoch
(g) Training loss

3 × 10
0

4 × 10
0

GELU
1-bit GELU
2-bit GELU
3-bit GELU
4-bit GELU

70 80

Epoch
(h) Training loss

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65 GELU
1-bit GELU
2-bit GELU
3-bit GELU
4-bit GELU

1-bit 2-bit 3-bit 4-bit

(i) Top-1 accuracy on validation

0.721

0.722

0.723

0.724

0.725

0.726

0.727

0.728

GELU
Few-bit GELU

1-bit 2-bit 3-bit 4-bit

(i) Top-5 accuracy on validation

0.907

0.908

0.909

0.910

0.911

0.912

GELU
Few-bit GELU

Figure 13. ResNet18 with ReLU replaced with Swish, SELU and GELU nonlinearity trained on Imagenet. (a): Training loss. (b):
Training loss zoomed into the last third of the training. (c): Final validation top-1 accuracy. All graphs are averaged across three runs with
different seeds. Error bars denote minimum and maximum values.

17

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

1-bits 2-bits 3-bits 4-bits

(a)

2.150

2.175

2.200

2.225

2.250

2.275

2.300

Tr
ai

ni
ng

lo
ss

GELU
Few-bit
ActNN

1-bits 2-bits 3-bits 4-bits

(b)

0.7125

0.7150

0.7175

0.7200

0.7225

0.7250

0.7275

To
p-

1
ac

cu
ra

cy

GELU
Few-bit
ActNN

1-bits 2-bits 3-bits 4-bits

(c)

0.902

0.904

0.906

0.908

0.910

0.912

To
p-

5
ac

cu
ra

cy

GELU
Few-bit
ActNN

1-bits 2-bits 3-bits 4-bits

(a)

2.25

2.30

2.35

2.40

2.45

Tr
ai

ni
ng

lo
ss

SELU
Few-bit
ActNN

1-bits 2-bits 3-bits 4-bits

(b)

0.690

0.695

0.700

0.705

0.710

0.715

To
p-

1
ac

cu
ra

cy

SELU
Few-bit
ActNN

1-bits 2-bits 3-bits 4-bits

(c)

0.8850

0.8875

0.8900

0.8925

0.8950

0.8975

0.9000

0.9025

To
p-

5
ac

cu
ra

cy
SELU
Few-bit
ActNN

1-bits 2-bits 3-bits 4-bits

(a)

2.125

2.150

2.175

2.200

2.225

2.250

2.275

2.300

Tr
ai

ni
ng

lo
ss

Swish
Few-bit
ActNN

1-bits 2-bits 3-bits 4-bits

(b)

0.7150

0.7175

0.7200

0.7225

0.7250

0.7275

0.7300

To
p-

1
ac

cu
ra

cy

Swish
Few-bit
ActNN

1-bits 2-bits 3-bits 4-bits

(c)

0.904

0.906

0.908

0.910

To
p-

5
ac

cu
ra

cy

Swish
Few-bit
ActNN

Figure 14. Comparison of ActNN GELU, SELU and Swish with Few-bit GELU, SELU and Swish (Our) for ResNet18 architecture on
ImageNet dataset. (a) Training loss. (b) Top-1 accuracy. (c) Top-5 accuracy. Our method with 1-bit already matches unaltered nonlinearity
performance and significantly outperform 1-bit ActNN.

18

Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction

G. Dynamic Programming
It is easy to see that the optimal value of y for L(s,y) in Equation (3) with given s is:

yi(s) =

∫ si+1

si
w(x)f ′(x)dx∫ si+1

si
w(x)dx

. (10)

Consider Equation (9): both y(j, i) and T (j, i) can be calculated in advance using analytical formulas (if possible) or
numerically for the corresponding 1-dimensional integrals. After that, the full array of DP(i, k) can be calculated in
O(n2K) time and O(n2) space, where K is the required number of constant intervals in the approximation Equation (2).
Please note that this optimization has to be performed only once, so n can be chosen quite large thus the result would be
very close to the global minimum.

Note that the space complexity can be reduced to O(n) by adding three auxilliary arrays F 2,W and FW and rewrit-
ing Equation (9):

F 2(i) =

∫ ti

A

f ′2(x)w(x)dx,

W (i) =

∫ ti

A

w(x)dx,

FW (i) =

∫ ti

A

f ′(x)w(x)dx,

y(j, i) = (FW (j)− FW (i))/(W (j)−W (i)),

T (j, i) = F 2(i)− F 2(j)− y(j, i)2(W (i)−W (j)).

(11)

We can see that ultimately only O(n) one-dimensional integrals have to be stored, and everything else can be easily evaluated
in O(1) time on the spot. The one-dimensional integrals can be calculated numerically in O(n) time and space complexity
as well:

F 2(i+ 1) = F 2(i) +

∫ ti+1

ti

f ′2(x)w(x)dx,

W (i+ 1) = W (i) +

∫ ti+1

ti

w(x)dx,

FW (i+ 1) = FW (i) +

∫ ti+1

ti

f ′(x)w(x)dx.

(12)

Numerical results. In Figure 1, we provide some 3-bit examples for popular activation functions obtained with de-
scribed method, and more fewbit approximations can be seen in Figure 11. In Table 3 we provide numerical values of
error Equation (3).

19

