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Abstract

Screening classifiers are increasingly used to iden-
tify qualified candidates in a variety of selection
processes. In this context, it has been recently
shown that if a classifier is calibrated, one can
identify the smallest set of candidates which con-
tains, in expectation, a desired number of quali-
fied candidates using a threshold decision rule.
This lends support to focusing on calibration as
the only requirement for screening classifiers. In
this paper, we argue that screening policies that
use calibrated classifiers may suffer from an un-
derstudied type of within-group unfairness—they
may unfairly treat qualified members within de-
mographic groups of interest. Further, we argue
that this type of unfairness can be avoided if classi-
fiers satisfy within-group monotonicity, a natural
monotonicity property within each group. Then,
we introduce an efficient post-processing algo-
rithm based on dynamic programming to min-
imally modify a given calibrated classifier so
that its probability estimates satisfy within-group
monotonicity. We validate our algorithm using
US Census survey data and show that within-
group monotonicity can often be achieved at a
small cost in terms of prediction granularity and
shortlist size.

1. Introduction
As many selection processes receive hundreds or even thou-
sands of applications, it has become increasingly common
to rely on automated screening tools to shortlist a tractable
set of promising candidates. These shortlisted candidates
then move forward in the selection process and are evaluated
in detail, possibly multiple times, until one or more qualified
candidates are selected. The benefits and harms posed by
automated screening have been investigated in many high-
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stakes domains, including medicine (Etzioni et al., 2003;
Shen et al., 2019), recruiting (Cowgill, 2018; Raghavan
et al., 2020) and content moderation (Gorwa et al., 2020).
In the machine learning literature, algorithmic screening
has been studied together with other high-stakes decision
making problems as a supervised learning problem (Corbett-
Davies et al., 2017; Kilbertus et al., 2020; Sahoo et al., 2021).
Under this view, algorithmic screening consists of designing
both a screening classifier, which estimates the probabi-
lity that a candidate is qualified, and a screening policy,
which shortlists candidates using the candidates’ probability
values estimated by the screening classifier. Only very re-
cently, a line of work has focused specifically on algorithmic
screening (Wang et al., 2022; Jin & Candès, 2022; Wang &
Joachims, 2023). Therein, Wang et al. (2022) argue that, to
increase the efficiency of the selection process without de-
creasing the quality of the shortlisted candidates, the focus
should be on screening policies that find the smallest short-
list of candidates containing a desired average number of
qualified candidates with high probability without making
any distributional assumptions on the candidates. Further,
this work has shown that, if the screening classifier is cali-
brated (Dawid, 1982), such distribution-free guarantees can
be achieved using threshold decision rules as screening poli-
cies, and the more granular the predictions of the classifier,
the smaller the shortlists provided by such policies.

In this work, our starting point is the realization that any
threshold decision rule that uses calibrated screening clas-
sifiers may be biased against qualified candidates within
demographic groups of interest. More specifically, it may
shortlist one or more candidates from a group who are less
likely to be qualified than one or more rejected candidates
from the same group. Unfortunately, this type of within-
group unfairness may perpetuate historical biases against
minority groups since it may preclude the best candidates
from the groups—the candidates who are more likely to
be qualified—to move forward in the selection process and
have a chance to be selected (Yang et al., 2019).

Our contributions. We first show that to avoid such within-
group unfairness, screening classifiers need to satisfy a nat-
ural monotonicity property within each of the groups of
interest, which we refer to as within-group monotonicity.
Then, we develop a set partitioning post-processing frame-
work to minimally modify any calibrated classifier such that
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it satisfies within-group monotonicity. Along the way, we
make the following contributions:

I. We show that the problem is NP-hard using a reduc-
tion from a variation of the partition problem (Karp,
1972), which we refer to as the equal average parti-
tion problem and prove it is NP-complete. However,
we identify a natural class of partitions—contiguous
partitions—under which the problem is tractable.

II. While the structure of our problem for contiguous par-
titions resembles isotonic regression (Barlow & Brunk,
1972), we show that the classical Pool Adjacent Vio-
lators (PAV) algorithm may fail even to find a locally
optimal solution.

III. We derive a dynamic programming algorithm for con-
tiguous partitions that is guaranteed to find an optimal
solution to our problem in polynomial time.

IV. We show that within-group calibration (Pleiss et al.,
2017) implies within-group monotonicity. However,
we show that it is often impossible to modify a classi-
fier to satisfy the former and, whenever possible, the
predictions of the resulting classifier are coarse.

Finally, we create multiple instances of a simulated scree-
ning process using US Census survey data to validate and
complement our methodological contributions and theore-
tical results. The results show that the probability that an
individual from a minority group suffers from within-group
unfairness may be significant and within-group monotonic-
ity can be achieved at a small cost in terms of prediction
granularity and shortlist size.

Related work. There is an extensive and rapidly growing
line of work addressing group bias and discrimination in
the machine learning literature (Hardt et al., 2016; Friedler
et al., 2016; Zafar et al., 2017; Kim et al., 2019; Beutel
et al., 2019b; Lahoti et al., 2020). This line of work has
applications in a variety of important domains, including
ranking (Celis et al., 2017; Yang & Stoyanovich, 2017;
Biega et al., 2018; Singh & Joachims, 2018; 2019), health
care (Garb, 1997; Williams & Mohammed, 2009), criminal
justice (Dieterich et al., 2016; W Flores et al., 2016; Angwin
et al., 2016; Feller et al., 2016; Chouldechova, 2017; Dressel
& Farid, 2018) and recommender systems (Sweeney, 2013;
Datta et al., 2014; Beutel et al., 2019a; Wang et al., 2021;
Prost et al., 2022). However, it has predominantly focused
on preventing discrimination across groups of interest, e.g.,
designing machine learning models whose predictive per-
formance (e.g., accuracy, false positive rate) is invariant
across groups. In contrast, we focus on preventing unfair-
ness within groups.

Within the above machine learning literature, there are a
few notable exceptions (Zehlike et al., 2017; Speicher et al.,

2018; Yang et al., 2019; García-Soriano & Bonchi, 2021;
Zehlike et al., 2022), which studied similar notions to within-
group monotonicity (in the context of ranking) and within-
group unfairness. Among them, the works by Zehlike et al.
(2017; 2022) and Speicher et al. (2018) are the most related
to ours. Zehlike et al. (2017; 2022) introduces a notion of
in-group monotonicity that is similar to ours. However, it
comprises only the top-k ranked candidates in a specific pool
of candidates (i.e., in our work, the shortlisted candidates),
rather than every candidate in a population of interest, and
unconditional quality scores, rather than group conditional
quality scores. Moreover, their formulation is fundamentally
different and their technical contributions are orthogonal to
ours. Speicher et al. (2018) addresses within-group unfair-
ness as a measure of how unequally members within a group
benefit from algorithmic decisions. In contrast, our notion
of within-group monotonicity asks for accurately ranking
individuals belonging to a group in terms of how worthy
they are of receiving a beneficial decision rather than equally
benefiting them. In this context, it is also worth highlighting
the notion of within-group calibration (Pleiss et al., 2017;
Kleinberg, 2018), which implies within-group monotonicity,
as discussed previously. Within-group calibration asks for
equally well-calibrated probability estimates across groups
so that a decision maker cannot use group membership to in-
terpret these estimates. However, in the context of screening,
our results show that within-group calibration may be an
unnecessarily strong requirement. Our work also relates to a
line of work devoted to the study of calibration in supervised
learning (Zadrozny & Elkan, 2001; 2002; Guo et al., 2017;
Kumar et al., 2018; Krishnan & Tickoo, 2020; Karandikar
et al., 2021). Here, the main focus has been the design of
classifiers with low calibration error using calibration-aware
training or post-hoc re-calibration. However, there have
been also very recent efforts to ensure calibration errors are
bias-free (Bröcker, 2011; Ferro & Fricker, 2012; Roelofs
et al., 2022). Here, we do not aim to minimize calibration
error but ensure a calibrated classifier satisfies within-group
monotonicity.

2. Screening, Calibration and Within-Group
Discrimination

Given a candidate with a feature vector x ∈ X , we as-
sume the candidate belongs to one demographic group of
interest z ∈ Z and can be qualified (y = 1) or unqua-
lified (y = 0) for the selection objective1,2. Next, let
f : X → Range(f ) ⊆ [0, 1] be a screening classifier
that maps a candidate’s feature vector x ∈ X to a qual-

1We do not require a candidate’s group membership z to be included in or be
inferable from their feature vector x.

2In practice, one measures qualification using proxy variables, which need to be
chosen carefully not to perpetuate historical biases (Bogen & Rieke, 2018; Garr &
Jackson, 2019; Tambe et al., 2019).
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ity score f(x), where the higher the quality score f(x),
the more the classifier believes the candidate is qualified.
Then, given a pool of m candidates, a screening policy
π : [0, 1]m → P({0, 1}m) maps the candidates’ quality
scores to a probability distribution over shortlisting deci-
sions {si}i∈[m]. Here, each decision si specifies whether
the corresponding candidate is shortlisted (si = 1) or
is not shortlisted (si = 0). In high-stakes applications,
screening classifiers f are usually demanded to provide cal-
ibrated quality scores (Brier et al., 1950; Gneiting et al.,
2007; Gupta et al., 2020), i.e., f is calibrated iff, for every
a ∈ Range(f ), it holds that Pr(Y = 1 | f(X) = a) = a. In
this context, Wang et al. (2022) have recently shown that, if
the classifier f is calibrated, the optimal screening policy π∗

f

that is guaranteed to shortlist, in expectation, the smallest set
of candidates with a desired number of qualified candidates
with high probability is given by a simple threshold decision
rule that take shortlisting decisions as

si =


1 if f(xi) > tf ,

Bernoulli(θf ) if f(xi) = tf

0 otherwise,
(1)

where tf and θf depend on the classifier and data distribu-
tion. These results lend support to focusing on calibration as
the only requirement for screening classifiers. In this work,
we argue that screening policies given by threshold decision
rules using calibrated classifiers may suffer from an under-
studied type of unfairness—they may be biased against qual-
ified members within demographic groups. More formally,
the following proposition shows that any threshold deci-
sion rule may be biased against qualified members within
demographic groups3:

Proposition 2.1. Let π be a screening policy given by a
threshold decision rule using a calibrated classifier f with
threshold t. Assume there exist a, b ∈ Range(f ), with a <
t < b, and z ∈ Z such that P (Y = 1 | f(X) = a, Z =
z) > P (Y = 1 | f(X) = b, Z = z). Then, it holds that

EY∼PY |X,Z , S∼π [Y (1− S) | f(X) = a, Z = z]

> EY∼PY |X,Z , S∼π [Y S | f(X) = b, Z = z] .

The above result implies that there exist pools of applicants
for which an optimal policy using a calibrated classifier
may shortlist a candidate from a group who is less likely
to be qualified than a rejected candidate from the same
group. Importantly, the assumption under which the above
within-group unfairness appears is not just a theoretical
construct—it has been observed empirically in multiple
real-world domains whenever the group membership Z is a
spurious confounding factor that causes both X and Y (Wag-
ner, 1982; Pearl, 2000). The case in which the assumption

3All proofs can be found in the Appendix A.
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Figure 1. An illustrative example of within-group unfairness. Panel
(a) shows that candidates who are shortlisted (f(X) > tf ) are
more likely to be qualified (Y = 1) than those who are rejected
(f(X) < tf ). However, panels (b) and (c) show that, after condi-
tioning on their gender, candidates who are rejected (f(X) < tf )
are more likely to be qualified than those who are short listed
(f(X) > tf ). Qualified candidates are shown in color.

holds for every group z ∈ Z and any threshold decision
rule is known as Simpson’s paradox (Blyth, 1972). Refer to
Figure 1 for an illustrative example.

To avoid the above within-group unfairness, we introduce
and study within-group monotonicity:

Definition 2.2. Given a set of groups Z , a classifier f
is within-group monotone if, for any z ∈ Z and a, b ∈
Range(f ) such that a < b, Pr(Z = z | f(X) = a) > 0 and
Pr(Z = z | f(X) = b) > 0, it holds that

Pr (Y = 1 | f(X) = a, Z = z)

≤ Pr (Y = 1 | f(X) = b, Z = z) .

In what follows, we will design a post-processing framework
that, given a calibrated classifier, modifies it minimally so
that it is within-group monotone, as shown in Figure 2. As
a result, any screening policy given by a threshold decision
rule using the modified classifier will not suffer from within-
group unfairness. Here note that we favor a post-processing
approach, rather than an in-processing one, because post-
processing approaches can be applied to any black-box clas-
sifier without asking for retraining or introducing training
overhead (Hardt et al., 2016). Furthermore, in-processing
approaches commonly need access to the feature defining
group membership to ensure group-level fairness (Wood-
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Figure 2. Quality score values a = P (Y = 1 | f(X) = a) and
group conditional quality score values az = P (Y = 1 | f(X) =
a, Z = z) of a (approximately) calibrated screening classifier f
with finite range trained on US Census survey data and its within-
group monotone counterpart fB∗ found by our post-processing
framework. The demographic groups of interest Z are defined
using US citizen status and the hatched bars indicate within-group
monotonicity violations. Note that there exist no such violations
in fB∗ (second row).

worth et al., 2017), which may not be available to the classi-
fier due to privacy, legal or regulatory reasons. Whenever
it is clear from the context, we do not specify the set of
groups Z with respect to which a classifier is within-group
calibrated or monotone.

3. Set Partitioning Post-Processing Framework
Let f be a calibrated classifier with Range(f ) =
{a1, . . . , an} and Pr (f(X) = ai) = ρi. Here, note that
we focus on calibrated classifiers with finite range, i.e.,
|Range(f )| = n < ∞, since it is impossible to find non-
atomic calibrated classifiers from data4, even asymptoti-
cally (van der Gaag et al., 2004; Barber, 2020). Here,
assume that ai < aj for any i < j without loss of ge-
nerality. Further, for every demographic group of inter-
est z ∈ Z , let Pr (Y = 1 | f(X) = ai, Z = z) = ai,z and
Pr (Z = z | f(X) = ai) = ρz | i, and note that, by defini-
tion, we have that ai =

∑
z∈Z ρz | iai,z . Then, our goal is

to modify f minimally so that it is within-group monotone.

To this end, we first note that the classifier f induces a par-
tition of X into n disjoint regions or bins {X1, . . . ,Xn},
where each bin Xi is characterized by ai and ρi. Building

4Given a (non-atomic) classifier f , there exists a variety of methods to discretize
and calibrate its predictions (Zadrozny & Elkan, 2001; 2002; Gupta et al., 2020).
However, this is out of the scope of our work. Moreover, for ease of exposition, we
assume that f is perfectly calibrated and we have access to true value of the relevant
probabilities ρi, ai, ρz | i and ai,z . However, our methodology can be adapted to
work with approximately calibrated f and noisy probability estimates as long as the
estimation errors can be bounded (with high probability).

upon this observation, we look at the problem from the
perspective of set partitioning and seek to merge a small
number of these induced bins to achieve within-group mono-
tonicity. More formally, let P be the set of all partitions
of the bin indices {1, . . . , n}. Every B ∈ P is a parti-
tion of the bin indices into a collection of nonempty and
disjoint equivalence classes {A1, . . . ,A|B|}, which we call
cells. For each x ∈ X , denote the index of the bin it be-
longs to as i(x) = {i | f(x) = ai} and represent a cell
in B containing index i(x) by [i(x)]B, where we drop the
subscript B whenever it is clear from the context. Further,
we know that the equivalence relation ∼B implies that, for
all i(x′) ∈ [i(x)], we have that i(x) ∼B i(x′). Then, we
can use the partition5 B to define the modified classifier
fB : X → Range(fB) = {aA}A∈B, where

aA =

∑
j∈A ajρj∑
j∈A ρj

and fB(x) = a[i(x)].

Without loss of generality, we keep the cells induced by
the partition B in increasing order with respect to aA, i.e.,
aAi

≤ aAj
for any i < j. Next, note that, by definition, fB

is calibrated, i.e.,

Pr (Y = 1 | fB(X) = aA) =

∑
j∈A ajρj∑
j∈A ρj

= aA,

and we have that

Pr (Y = 1 | fB(X) = aA, Z = z) =

∑
j∈A ρjρz | jaj,z∑

j∈A ρjρz | j

:= aA,z.

Moreover, the larger the partition size abrB, the more fine-
grained the predictions of the classifier fB (Gneiting et al.,
2007; Wang et al., 2022). Therefore, we can naturally think
of reducing the problem to finding a partition B of maximum
size such that fB is within-group monotone6, i.e.,

maximize
B∈P

|B| subject to aAi,z ≤ aAj ,z

∀Ai,Aj ∈ B such that aAi < aAj ,∀z ∈ Z.

However, such a problem formulation presents difficulties in
terms of tractability and soundness. First, we cannot expect
to find such a partition in polynomial time:

Theorem 3.1. Given a calibrated classifier f , the problem
of finding the partition B ∈ P of maximum size such that
fB is within-group monotone is NP-hard.

To prove the above result in Appendix A.2, we first show
that, by finding the partition B of maximum size such that

5We use partition instead of partition on the bin indices whenever it is clear from
the context.

6Maximizing the size of the partition |B| is equivalent to minimizing the distance
d(f, fB) = n − |B|. Thus, fB∗ can be viewed as the closest within-group
monotone classifier fB under a prediction-only access model (Błasiok et al., 2022).
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fB is within-group monotone, we can decide whether there
exists a partition B′ of size |B′| = 2 such that fB′ is within-
group monotone. Then, we show that the latter decision
problem is NP-complete by a reduction from a variation
of the partition problem (Karp, 1972), which we refer to
as the equal average partition problem and prove it is NP-
complete.

Second, even if the partition size |B| is large, the shortlists
provided by threshold decision rules using fB may differ
greatly from those using f . The reason is that, in general,
we may end up merging very different bins to ensure mono-
tonicity within groups and, as a consequence, fB may rank
(pairs of) candidates strictly differently. More specifically,
fB may not satisfy the following monotonicity property with
respect to f :

Definition 3.2. A classifier f ′ is monotone with respect to
f if, for all f(x1), f(x2) ∈ Range(f ) such that f(x1) <
f(x2), it holds that f ′(x1) ≤ f ′(x2).

To guarantee that fB is monotone with respect to f , we need
to restrict our attention to the set of contiguous partitions
B ⊆ P of {1, . . . , n}, i.e., for any B ∈ B, if i(x1) <
i(x2) < i(x3) and i(x1) ∼B i(x3), then it also holds that
i(x1) ∼B i(x2) and i(x2) ∼B i(x3). More formally, we
have the following result:

Proposition 3.3. Given a classifier f with Range(f ) =
{a1, . . . , an}, fB is monotone with respect to f iff B is a
contiguous partition on {1, . . . , n}.

Surprisingly, while |B| = 2n−1, we will show in the next
section that it is possible to find the optimal contiguous par-
tition B∗ = argmaxB∈B |B| such that fB∗ is within-group
monotone in polynomial time using dynamic programming.

4. Optimal Set Partitioning via Dynamic
Programming

Since the structure of our problem resembles isotonic re-
gression, one may think of using a simple variation of the
many times re-discovered Pool Adjacent Violators (PAV)
algorithm (Ayer et al., 1955; Eeden, 1958; Miles, 1959;
Bartholomew, 1959) to find the optimal (contiguous) parti-
tion. However, in what follows, we first show that the PAV
algorithm may not find the optimal partition—it is not even
guaranteed to find a partition satisfying an intuitive type of
local optimality. Then, building on the reasons why the PAV
algorithm may not find the optimal partition, we derive an
efficient algorithm based on dynamic programming that is
guaranteed to find the optimal partition.

4.1. Pool Adjacent Violators (PAV) Algorithm

In comparison with the original PAV algorithm, the only
difference is that, in our setting, one needs to check for

Algorithm 1 It returns a partition Bpav such that fBpav is
within-group monotone.

1: Input: {a1,z, . . . , an,z}z∈Z
2: Initialize: Bpav = {{1} , . . . , {n}}
3: while ∃Ai−1,Ai ∈ Bpav and z ∈ Z such that aAi,z <

aAi−1,z do
4: Bpav = Bpav \ {Ai−1,Ai}
5: Bpav = Bpav ∪ {Ai−1 ∪ Ai}
6: end while
7: return Bpav

monotonicity violations across multiple sets of conditional
predictors, one per group z ∈ Z , rather than only one set of
predictors. However, the main idea underpinning the PAV
algorithm remains the same, i.e., as long as there are mono-
tonicity violations between two adjacent cells, the algo-
rithm merges the corresponding cells into one. Algorithm 1
summarizes the overall procedure, which has complexity
O(n2 × |Z|) and is guaranteed to return a partition Bpav
such that fBpav is within-group monotone, as formalized by
the following Proposition:
Proposition 4.1. Algorithm 1 returns a partition Bpav ∈ B
such that the classifier fBpav is within-group monotone.

Unfortunately, while the original PAV algorithm does en-
joy global optimality guarantees for the isotonic regression
problem7 under multiple choices of loss functions (Yu &
Xing, 2016; Jordan et al., 2019), this is not true for our
problem. There exist many instances for which Algorithm 1
fails to find the optimal partition B∗, e.g., refer to Figure 6
in Appendix B.1. In fact, Algorithm 1 does not even enjoy
a type of intuitive local optimality guarantee based on the
notion of dominance (Wang et al., 2022):
Definition 4.2. Let f and f ′ be calibrated classifiers. Clas-
sifier f dominates f ′ if, for any x1, x2 ∈ X such that
f(x1) = f(x2), it holds that f ′(x1) = f ′(x2).

More specifically, if fB dominates fB′ , it can be shown that
the expected size of the shortlists provided by the optimal
screening policies using fB are not larger than those using
fB′ (Corollary 4.3, Wang et al. (2022)) and it clearly holds
that |B| ≥ |B′|. For example, let Range(f ) = {a1, a2, a3},
Z = {z1, z2} and ρiρz | i = 1

6 for all i ∈ {1, 2, 3} and
z ∈ Z . Further, let a1,z2 = a2,z1 = a3,z2 = α, a1,z1 = 2α,
a2,z2 = 3α and a3,z1 = 4α, where α ∈ [0, 0.25]. Then,
Algorithm 1 returns Bpav = {{1, 2, 3}}, however, fBpav is
dominated by fB, with B = {{1} , {2, 3}}, which is also
within-group monotone. Refer to Appendix A.5 for details.

The reason why Algorithm 1 may fail to find the optimal par-

7In the isotonic regression problem (Barlow & Brunk, 1972), given a set of
response variables {yi}i∈[n], the goal is to find a set of predictor values {xi}i∈[n],
with xi ≤ xi+1 for all i ∈ [n], such that

∑
i ℓ(xi, yi) is minimized, where

ℓ(xi, yi) is a loss measuring how well xi approximates yi.
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Algorithm 2 It returns the optimal partition B∗ such that
fB∗ is within-group monotone.

1: Input: {a1,z, . . . , an,z}z∈Z
2: Initialize: Bl,r = {} ∀l, r ∈ {2, . . . , n}, B1,r =

{1, . . . , r} ∀r ∈ {1, . . . , n}
3: for l ∈ {2, . . . , n} do
4: for r ∈ {l, . . . , n} do
5: Sl,r =

{
k|k < l, a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z

}
{Refer to Lemma. 4.3}

6: if Sl,r = ∅ then
7: Continue {In this case Bl,r = ∅}
8: end if
9: k∗ = argmaxk∈Sl,r

|Bk,l−1|
10: Bl,r = Bk∗,l−1 ∪ {{l, . . . , r}}
11: end for
12: end for
13: l∗ = argmaxi∈{1,...,n} |Bi,n|
14: return Bl∗,n

tition is that, whenever it tries to fix a monotonicity violation
between two adjacent cells Ai−1 and Ai, it does so by mer-
ging them. However, in our problem, the optimal fix may
require merging cells Ai and Ai+1. Building on this insight,
we will design an efficient algorithm based on dynamic
programming that provably finds the optimal partition.

4.2. An Optimal Dynamic Programming Algorithm

Our starting point is the following observation, which allows
us to break down the problem of finding the optimal partition
B∗ into several subproblems. Let Br be the set of conti-
guous partitions of the bin indices {1, . . . , r}, with r ≤ n,
and Bl,r ⊆ Br be the subset of those partitions such that,
for any B = {A1, . . . ,A|B|} ∈ Bl,r, it holds that A|B| =
{l, . . . , r} and fB∪B′ is within-group monotone on the re-
gion of the feature space defined by ∪i≤rXi, where B′ is any
partition of the bin indices {r + 1, . . . , n}8. Then, it clearly
holds that the optimal partition B∗ ∈ ∪n

l=1Bl,n and thus we
can break the problem of finding B∗ into n subproblems,
i.e., finding the optimal partition B∗

l,n = argmaxB∈Bl,n
|B|

within in each subset Bl,n. From now on, with a slight
abuse of notation, we will write fB instead of fB∪B′ when-
ever B′ refers to any partition of the bin indices not in B and
it is clear from the context.

Next, we realize that we can efficiently find the optimal
partition B∗

l,n in each subset Bl,n recursively using dynamic
programming. The key idea of the recursion is that any
partition B ∈ Bl,r needs to satisfy the following necessary
and sufficient conditions:

8Note that it may be impossible to satisfy both conditions simultaneously if, for
example, the Simpon’s paradox (Simpson, 1951) holds, i.e., for every group z ∈ Z
and every pair of indices i < j, we have that ai,z > aj,z . In those cases, we may
have that Bl,r = ∅ for all 1 < l ≤ r.

Lemma 4.3. Given any B ∈ Br, it holds that B ∈ Bl,r if
and only if ∃k < l such that B \{{l, . . . , r}} ∈ Bk,l−1 and
a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z .

Consequently, we can efficiently find all the partitions in
the subsets Bl,r iterating through l using the partitions in
the subsets Bk,l−1 with k < l. Finally, by construction, it
clearly holds that, if B∗

l,r = B′ ∪ {{l, . . . , r}}, with B′ ∈
Bk,l−1, is the optimal partition in Bl,r then B′ = B∗

k,l−1

is the optimal partition in Bk,l−1. As a result, at each step
of the recursion, we only need to store the optimal partition
B∗
l,r, not all partitions in Bl,r.

Algorithm 2 summarizes the overall procedure, which has
complexity O(n3 × |Z|) and is guaranteed to find the opti-
mal partition B∗, as formalized by the following theorem:

Theorem 4.4. Algorithm 2 returns B∗ = argmaxB∈B |B|
such that fB∗ is within-group monotone.

Remark In many domains, allowing for a pre-specified,
application-dependent level of within-group monotonicity
violations may be acceptable. Such tolerance levels, whether
global or group-specific, can easily be integrated into our
algorithm without introducing any computational overhead.
More specifically, let τz ∈ [0, 1] be the pre-specified max-
imum level of within-group monotonicity violations for
each group z ∈ Z , i.e., a classifier f needs to satisfy that
Pr(Y = 1|f(X) = a, Z = z) ≤ Pr(Y = 1|f(X) =
b, Z = z) + τz for all z ∈ Z and a < b. Then, one only
needs to modify the condition in line 5 in Algorithm 2 to
a{k,...,l−1},z ≤ a{l,...,r},z + τz ∀z ∈ Z . Here, note that this
modification does not add to the time or space complexity
of our algorithm. At the same time, a similar proof as the
proof of Theorem 4.4 shows that the algorithm can return
the partition of maximum size such that the classifier in-
duced by this partition is within-group monotone with a
slack of τz for all groups z ∈ Z . Note that such relaxations
will result in partitions of larger sizes or, equivalently, more
fine-grained classifiers and may be imposed by the domain
expert to tradeoff the prediction power and within-group
fairness.

5. Within-Group Monotonicity vs
Within-Group Calibration

Within-group calibration, or calibration within groups9, re-
quires that the probability that a candidate is qualified is
independent of their group membership conditioned on
their quality score. More specifically, it is defined as fo-
llows (Pleiss et al., 2017; Kleinberg, 2018):

Definition 5.1. Given a set of groups Z , a classifier f

9There also exists a generalized, stronger notion of within-group calibration
called multicalibration (Hébert-Johnson et al., 2018; Jung et al., 2021), which requires
predictions to be calibrated within every group that can be identified within a specified
class of computations.

6



On the Within-Group Fairness of Screening Classifiers

Algorithm 3 It returns the optimal partition B∗
cal such that

fB∗
cal

within-group calibrated.

1: Input: {a1,z, . . . , an,z}z∈Z
2: Initialize: Bcal,i = {} ∀i ∈ {1, . . . , n}
3: if a1,z = a1 ∀z ∈ Z then
4: Bcal,1 = {{a1}}
5: end if
6: for r ∈ {2, . . . , n} do
7: Sr =

{
i ∈ {2, . . . , r} | a{i,...,r},z = a{i,...,r} ∀z ∈ Z

}
8: k∗ = argmaxk∈Sr

|Bcal,k−1|
9: if Bcal,k∗−1 ̸= ∅ then

10: Bcal,r = Bcal,k∗−1 ∪ {{k∗, . . . , r}}
11: else if a{1,...,r} = a{1,...,r},z ∀z ∈ Z then
12: Bcal,r = {{1, . . . , r}}
13: end if
14: end for
15: return Bcal,n

is within-group calibrated iff, for every z ∈ Z and a ∈
Range(f ) such that Pr(Z = z | f(X) = a) > 0, it holds
that Pr(Y = 1 | f(X) = a, Z = z) = a.

As discussed previously, within-group calibration implies
within-group monotonicity. Then, to minimally modify
a calibrated classifier f so that it becomes within-group
monotone, one may think of finding the optimal partition
B∗

cal = argmaxB∈B |B| such that fB is within-group cali-
brated. In what follows, we will first show that, perhaps
surprisingly, finding B∗

cal is computationally easier10 than
finding B∗. However, we will further show that, in many
cases, B∗

cal may not exist and, when it does exist, the size
of B∗

cal may be much smaller than the size of B∗, leading to
less fine-grained predictions.

To find the optimal B∗
cal, we proceed recursively. Let Br be

the set of contiguous partitions of the bin indices {1, . . . , r},
with r ≤ n. Then, iterating through r, we find the opti-
mal partitions B∗

cal,r = argmaxB∈Br
|B| such that fB∗

cal,r
is

within-group calibrated in ∪i≤rXi. In this case, the key idea
of the recursion is that any partition B ∈ Br such that fB is
within-calibrated on ∪i≤rXi needs to satisfy the following
necessary and sufficient condition:

Lemma 5.2. Given any B ∈ Br, it holds that fB is within-
calibrated on ∪i≤rXi if and only if ∃l < r such that
B\ {{l, . . . , r}} ∈ Bl−1 and fB\{{l,...,r}} is within-group
calibrated on ∪i≤l−1Xi and a{l,...,r},z = a{l,...,r} ∀z ∈ Z .

As a consequence, we can efficiently find all partitions B
in the subsets Br such that fB is within-group calibrated
iterating through r using the partitions B′ in the subsets Bl

10Using a similar proof technique as in Theorem 3.1, it can be proven that the
problem of finding the partition B ∈ P of maximum size such that fB is within-
group calibrated is NP-hard. Therefore, in general, the computational complexity is
not lower.

with l < r such that fB′ is within-group calibrated. Finally,
by construction, it clearly holds that if the optimal partition
B∗

cal,r = B′ ∪ {{l, . . . , r}}, with B′ ∈ Bl−1, is the optimal
partition in Br then B′ = B∗

cal,l−1 is the optimal partition
in Bl−1. As a result, at each step of the recursion, we only
need to store the optimal partition B∗

r , not all partitions
B ∈ Br such that fB is within-group calibrated, and reuse
it to find all B∗

r′ with r′ > r.

Algorithm 3 summarizes the overall procedure, which has
complexity O(n2 × |Z|) and is guaranteed to find the opti-
mal partition B∗

cal, if such a partition exists, as formalized
by the following theorem:
Theorem 5.3. Algorithm 3 returns B∗

cal = argmaxB∈B |B|
such that fB∗

cal
is within-group calibrated if such partition

exists or ∅ otherwise.

Unfortunately, there are many cases in which B∗
cal does not

exist, e.g., this will happen if f systematically undervalues
the probability that individuals from a group are qualified in
comparison with individuals from another group:
Proposition 5.4. Let Z = {z, z′}, ρz | i = ρz′ | i and ai,z <
ai,z′ for all i ∈ {1, . . . , n}. Then, there exists no B ∈ B
such that fB is within-group calibrated.

In the above situation, f may actually be within-group
monotone and thus |B∗| = n. Even if B∗

cal exists, there
are examples where |B∗| − |B∗

cal| = n− 1.

6. Experiments Using Survey Data
In this section, we create multiple instances of a simulated
screening process using US Census survey data11 to first
investigate how frequently within-group unfairness occurs in
a recruiting domain and then compare the partitions, as well
as induced screening classifiers, provided by Algorithms 1, 2
and 312.

Experimental setup. We use a dataset consisting of ∼3.2
million individuals from the US Census (Ding et al., 2021).
Each individual is represented by sixteen features and one
label y ∈ {0, 1} indicating whether the individual is em-
ployed (y = 1) or not (y = 0). For our experiments, we
think of employment as a (imperfect) proxy of qualifica-
tion13. The features contain demographic information such
as age, marital status or gender (Appendix B4, Ding et al.
(2021)). We run four sets of experiments where, in each of
them, we use a different feature (US citizen status, race, gen-
der, or disability record) to define the demographic groups

11An implementation of our algorithms and the data used in our experiments are
available at https://github.com/Networks-Learning/within-group-monotonicity.

12We ran all experiments on a machine equipped with 48 Intel(R) Xeon(R)
2.50GHz CPU cores and 256GB memory.

13Note that the label used as the proxy for qualification closely depends on the ap-
plication domain. In an academic hiring scenario, the label “Educational Attainment”
could serve as a proxy for qualification while “Years of Working Experience” might
be a better proxy in hiring scenarios for craft professions.
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Figure 3. Probability that an individual suffers from within-group unfairness. Panel (a) shows the probability pd | z that an individual from
group z may suffer from within-group unfairness against Pr(Z = z) for n = 15. Panel (b) shows the probability pd that an individual
may suffer from within-group unfairness. Panel (c) shows the probability pd | Dpool that an individual suffers from within-group unfairness
in a test pool Dpool of size m, averaged across all test pools, against n = |Range(f )|.

of interest Z . For space reasons, in this section, we focus
mainly on groups Z based on US citizenship status and race.
However, Appendix B.3 shows similar results for groups Z
defined based on gender and disability record.

For the experiments, we randomly split the dataset into two
equally-sized and disjoint subsets. We use the first subset
for training and calibration and the second subset for testing.
More specifically, for each experiment, we create the train-
ing and calibration sets Dtr and Dcal by picking 100,000 and
50,000 individuals at random (without replacement) from
the first subset. We use Dtr to train a logistic regression
model fLR

14 and use Dcal to both (approximately) calibrate
fLR using uniform mass binning (UMB) (Wang et al., 2022;
Zadrozny & Elkan, 2001), i.e., discretize its outputs to n
calibrated quality scores, and estimate the relevant proba-
bilities ρi, ai, ρz | i and ai,z needed by Algorithms 1, 2,
and 3. The resulting (approximately) calibrated classifier
serves as our screening classifier f . For testing, we create
a set {Di

pool}100i=1 of 100 pools, each with m = 100 indivi-
duals picked at random from the second subset, and create
(the smallest) shortlists with at least k qualified individuals
using the screening classifiers fBpav , fB∗ and fB∗

cal
induced

by the partitions found by Algorithms 1, 2 and 3, respec-
tively. Here, since we find that, in most experiments, no
within-group calibrated classifier exists, we allow fB∗

cal
to

be within-group ϵ-calibrated15 within Algorithm 3 and use
binary search to find the smallest ϵ ∈ (0, 1) such that fB∗

cal

exists16. Throughout the experiments, we estimate the ave-
rage and the standard error of the reported quantities by
repeating each experiment 100 times.

Within-group unfairness frequently occurs between in-
dividuals from minority groups, especially with fine-

14The classifier fLR achieves a test accuracy of ∼74% at predicting whether an
individual is qualified.

15Given a set of groups Z , a classifier f is within-group ϵ-calibrated iff, for every
z ∈ Z and a ∈ Range(f ) such that Pr(Z = z | f(X) = a) > 0, it holds that
|Pr(Y = 1 | f(X) = a, Z = z) − a| ≤ ϵ.

16Refer to Appendix B.2 for additional experiments on within-group ϵ-calibration.

grained classifiers. We start by estimating the probabi-
lity pd | z that an individual from a demographic group
of interest z ∈ Z may suffer from within-group unfair-
ness, i.e., pd | z = 1

Pr(Z=z)

∑
i∈{1,...,n} ρiρz | ivi, where

vi = I [∃aj ∈ Range(f ) | ai < aj ∧ ai,z > aj,z]. Figure 3a
summarizes the results for a screening classifier f with
n = 15 bins. We find that individuals who belong to mi-
nority groups are much more likely to suffer from within-
group unfairness than those who belong to a majority
group. For example, the probability that an individual
who is not a US citizen may suffer from within-group un-
fairness is pd | z > 0.3 while it is almost impossible that
an individual born in the US is treated unfairly within its
group. Further, we investigate to what extent the probability
pd =

∑
z∈Z P (Z = z)pd | z that an individual may suffer

from within-group unfairness depends on the number of
bins n of f . Figure 3b shows that the more fine-grained
a classifier is, the higher the probability that an individual
may suffer from within-group unfairness, e.g., for n ≤ 10,
pd < 0.05 while, for n = 40, pd > 0.12 across all sets of
groups Z . Since the accuracy of a calibrated classifier is
related to how fine-grained its predictions are (Wang et al.,
2022), the above finding suggests that high accuracy may
have a cost in terms of within-group unfairness.

Our results so far show that the probability that individu-
als may suffer from within-group unfairness is significant.
Next, we estimate the probability pd | Dpool that, in a test
pool Dpool of size m, an individual does suffer from within-
group unfairness, i.e., pd | Dpool = 1

m

∑
x∈Dpool

vx, where
vx = I

[
∃x′ ∈ Dpool | ai(x) < ai(x′) ∧ ai(x),z > ai(x′),z

]
.

Figure 3c shows that, on average across all test pools, the
probability pd | Dpool follows the same trend as pd, however, it
is slightly lower in value because each of the test pools is not
representative of the entire population. However, note that,
as m → ∞, one can readily conclude that pd | Dpool → pd.

Algorithm 2 consistently provides larger partitions,
which result in more fine-grained classifiers and smaller

8
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Figure 4. Size of the partitions Bpav, B∗ and B∗
cal returned by Algo-

rithms 1, 2 and 3, respectively (higher is better).

shortlists, than Algorithms 1 and 3. We experiment with
several screening classifiers f with a varying number of
bins n and compare the size of the partitions B provided
by each of the algorithms, i.e., the number of bins of the
modified classifiers fB. Figure 4 shows that the optimal
partition B∗ is always greater in size than the partitions
B∗

cal and Bpav. Moreover, it also shows that, as n increases,
the growth in the size of the partitions B∗ and Bpav dimi-
nishes because the occurrence of within-group unfairness
increases, as shown in Figure 3. Further, we use both the
original classifier f and the modified classifiers fB∗ , fBpav

and fB∗
cal

to shortlist the minimum number of individuals
among those in each of the simulated test pools {Bi

pool} such
that, in expectation, there are at least k qualified shortlisted
individuals per pool. To this end, for each test pool and
classifier, we sort the candidates in decreasing order with
respect to the corresponding quality score and, starting from
the first, we keep shortlisting individuals in order until the
sum of the quality scores reaches k (Appendix, A.3, Wang
et al. (2022)). Figure 5 shows that the shortlists created
using fB∗ are consistently smaller than those created using
fBpav and fB∗

cal
for k = 5. Moreover, it also shows that the

price to pay for achieving within-group monotonicity, i.e.,
the difference in size between the shortlists created using
f and fB∗ , is small. We found qualitatively similar results
for other k values. Appendix B.1 takes a closer look at the
(group conditional) score values of f , fB∗ , fBpav and fB∗

cal
.

Remark. Note the shortlists created using fB∗ will be larger
than those created using f and this imposes more burden
on the decision maker in selecting the desired number of
qualified candidates (e.g., they have to interview more can-
didates). However, it ensures none of the members within
demographic groups are unfairly treated. Therefore, it shifts
the costs of using a poor screening classifier from the appli-
cants to the decision-maker. If |B∗| is too small, it may be
a sign that the decision maker has to reconsider using f as
the screening classifier.
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Figure 5. Size of the shortlists created using both the original clas-
sifier f and the modified classifiers fB∗ , fBpav and fB∗

cal
for k = 5

(lower is better).

7. Conclusions
In this work, we have first shown that optimal screening
policies using calibrated classifiers may suffer from an un-
derstudied type of within-group unfairness. Then, we have
developed a polynomial time algorithm based on dynamic
programming to minimally modify any given calibrated
classifier so that it satisfies within-group monotonicity, a
natural monotonicity property that prevents the occurrence
of within-group unfairness. Finally, we have shown that
within-group monotonicity can be achieved at a small cost
in terms of prediction granularity and shortlist size.

Our work opens up many interesting avenues for future
work. For example, it would be interesting to design classi-
fiers that are within-group monotone with respect to every
group that can be identified within a specified class of com-
putations (Hébert-Johnson et al., 2018). Moreover, in some
scenarios, it might be sufficient to control the probability
that an individual suffers from within-group unfairness. Fur-
ther, it would be important to investigate how within-group
monotonicity interacts with group fairness (Hardt et al.,
2016; Zafar et al., 2017). In addition, it would be interesting
to investigate how frequently within-group unfairness occurs
in other domains such as medicine or content moderation.
Finally, it would be interesting to design post-processing al-
gorithms using a sample access model (Błasiok et al., 2022),
rather than a prediction-only access model, and optimize
other quality measures different from the partition size.
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A. Proofs
A.1. Proof of Proposition 2.1

By definition, the threshold decision rule π outputs S = 0 if f(X) = a and S = 1 if f(X) = b. As a result, it immediately
follows that:

EY∼PY |X,Z , S∼π [Y (1− S) | f(X) = a, Z = z] = EY∼PY |X,Z
[Y | f(X) = a, Z = z]

> EY∼PY |X,Z
[Y | f(X) = b, Z = z] = EY∼PY |X,Z , S∼π [Y S | f(X) = b, Z = z] .

A.2. Proof of Theorem 3.1

We call a partition B ∈ P valid if fB is within-group monotone. We first show that, by finding a valid partition B of
maximum size, we can decide whether there exists a valid partition B′ of size |B′| = 2. Assume the valid partition B of
maximum size has size |B| = m. Then, if m ≥ 2, we can conclude that such a partition exists using Lemma A.1 and, if
m < 2, no such partition exists because B is the valid partition of maximum size. Now, since we prove in Lemma A.2 that
this decision problem is NP-complete, we can directly conclude that the problem of finding the valid partition of maximum
size is NP-hard.
Lemma A.1. Assume the valid partition B of maximum size has size |B| = k. Then for every k′ ∈ {1, . . . , k − 1}, there
exist a valid partition B′ such that |B′| = k′.

Proof. By Proposition 3.3, we have that any contiguous partition B′ on {1, . . . , |B|} is monotone with respect to fB.
Furthermore, due to the same proposition, B′ is also monotone with respect to the set {aAi,z}i∈{1,...,|B|} for all z ∈ Z .
Since B is valid, we have that {aAi,z}i∈{1,...,|B|} is increasing for all z ∈ Z . As a result, B′ is a valid partition. Thus, for
any k′ ∈ {1, . . . , k − 1}, we have that the contiguous partition B′ =

{
A1,A2, . . . ,A|B|−k′−1,∪j∈{0,...,k′}A|B|−j

}
is valid

and |B′| = k′. This concludes the proof.

Lemma A.2. The problem of deciding whether there exists a valid partition B such that |B| = 2 is NP-complete.

Proof. First it is easy to see that, given a partition B, we can check whether the partition is valid and has size |B| = 2 in
polynomial time. Therefore, the problem belongs to NP.

Now, to show the problem is NP-complete, we perform a reduction from a variation of the classical partition problem (Karp,
1972), which we refer to as the equal average partition problem. The equal average partition problem seeks to decide whether
a set of n positive integers S = {s1, . . . , sn} can be partitioned into two subsets of equal average. In Theorem A.3, we
prove that the equal average partition problem is NP-complete, a result which may be of independent interest17.

Without loss of generality, we assume si ∈ [0, 1] for all si ∈ S18 and, si ≤ sj if i < j. For every si ∈ S, we set
ai,z1 = si, ai,z2 = 1 − si, ρi = 1

n , ρz1 | i = α, ρz2 | i = 1 − α for α ∈ (0.5, 0.75]. Note that we will have that
ai = αsi + (1− α)(1− si) = (2α− 1)si + (1− α) ∈ [0, 1]. Note first that for any A ∈ B

aA,z1 =

∑
j∈A ρjρz1 | jaj,z1∑

j∈A ρjρz1 | j
=

∑
j∈A

α
naj,z1∑

j∈A
α
n

=

∑
j∈A aj,z1

|A| = 1−
∑

j∈A(1− aj,z1)

|A| = 1− aA,z2 . (2)

, and

aA =

∑
j∈A((2α− 1)aj,z1 + 1− α)

|A| = (2α− 1)

∑
j∈A aj,z1

|A| + 1− α = (2α− 1)aA,z1 + 1− α (3)

Note that, whenever we have that aA,z1 ≤ aA′,z1 , it will also hold that aA < aA′ as 2α− 1 > 0.

Now, assume a valid partition B with |B| = 2 exists and B = {A1,A2}. Without loss of generality, assume aA1,z1 ≤ aA2,z1 .
Since B is a valid partition, we should have also that aA1,z2 ≤ aA2,z2 , furthermore,

aA1,z1 ≤ aA2,z1 ⇒ 1− aA1,z1 ≥ 1− aA2,z1 ⇒ aA1,z2 ≥ aA2,z2 (4)

17Given the similarity of the equal average partition problem to the classical partition problem, we would have expected to find a proof
of NP-completeness elsewhere. However, we failed to find such a proof in previous work.

18We can always divide every element in S by the largest member of S to ensure elements fall in [0, 1].
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Since it simultaneously holds that aA1,z2 ≥ aA2,z2 and aA1,z2 ≤ aA2,z2 , a valid partition B with |B| = 2 exists if and only
if aA1,z2 = aA2,z2 and hence aA1,z1 = aA2,z1 . As aA1,z1 is the average of sj for j ∈ A1 and aA2,z1 is the average of sj
for j ∈ A2 the partition B can partition S into two subsets of equal average.

We now prove that if no valid partition B with |B| = 2 exists, there is no way of partitioning S into two subsets of
equal average. For the sake of contradiction, assume S can be partitioned into S1 and S2 with equal averages κ. Define
A1 = {i | si ∈ S1} and A2 = {j | sj ∈ S2}. Now if we build an instance of our problem based on S as described
before and set B = {A1,A2} (clearly we have that B is a partition of {1, . . . , n}) we have that aA1,z1 = aA2,z1 = κ,
aA1,z2 = aA2,z2 = 1− κ (refer to Eq. 2) and aA1

= aA2
= (2α− 1)κ+ (1− α) (refer to Eq. 3). As a result, we have that

B is a valid partition of size 2 which is a contradiction. This concludes the proof.

Theorem A.3. Given a set of n positive integers, the problem of deciding whether it can be partitioned into two non-empty
subsets of equal average is NP-complete.

Proof. First it is easy to see that, given two subsets, we can evaluate in polynomial time their averages and check whether
they are equal or not. Therefore, the problem belongs to NP.

In the remainder of the proof, we will perform a reduction from the equal cardinality partition problem, which is known to
be NP-complete, to the equal average partition problem. In the original problem, we are given a set of n positive integers S ,
where n is an even number. The objective is to decide whether there exist two subsets S1,S2 ⊆ S such that S1 ∪ S2 = S
and S1 ∩ S2 = ∅, with |S1| = |S2| and

∑
i∈S1

i =
∑

j∈S2
j.

Now, we will transform an arbitrary instance of that problem into an instance of the equal average partition problem. Let the
set of integers be S ′ = S ∪ {nσ, nσ}, where σ =

∑
k∈S k. It is easy to see that the average of S ′ is equal to (2n+1)σ

n+2 .

We will start by showing that, if we can decide positively about that instance of the equal average partition problem, we can
also decide positively about the original instance of the equal cardinality partition problem. Assume there exists a partition
of S ′ into two sets S ′

1, S ′
2, with equal averages. As an intermediate result, we will show that the two copies of the number

nσ cannot belong to the same set S ′
1 or S ′

2. For the sake of contradiction, and without loss of generality, assume that both
copies belong to S ′

1.

In the case where S ′
1 = {nσ, nσ}, it holds that

∑
i∈S′

1
i

|S′
1|

= nσ and
∑

i∈S′
2
j

|S′
2|

= σ
n , which is a contradiction, since the two

quantities cannot be equal because of n ≥ 2. In cases where S ′
1 contains at least one more element, since S ′

2 ̸= ∅, we get

that
∑

i∈S′
1
i

|S′
1|

= 2nσ+κ
2+l , with 0 < κ < σ and 1 ≤ l ≤ n− 1, and

∑
j∈S′

2
j

|S′
2|

= σ−κ
n−l . It follows that

1

n− l
≤ 1 ⇒ σ − κ

n− l
≤ σ − κ ⇒

∑
j∈S′

2
j

|S ′
2|

< σ
(∗)⇒
∑

j∈S′
2
j

|S ′
2|

<
(2n+ 1)σ

n+ 2
⇒
∑

j∈S′
2
j

|S ′
2|

<

∑
k∈S′ k

|S ′| ,

where (∗) holds because n > 1. According to Lemma A.4, the last inequality leads to a contradiction. With that, we can
conclude that one copy of nσ belongs to S ′

1 and the other one belongs to S ′
2.

Let S1, S2 be such that S ′
1 = {nσ} ∪ S1 and S ′

2 = {nσ} ∪ S2. We will now show that S1 and S2 are a solution to the
original instance of the equal cardinality partition problem, i.e., |S1| = |S2| and

∑
i∈S1

i =
∑

j∈S2
j. It is trivial to see that

S1,S2 have to be non-empty, otherwise the averages of S ′
1 and S ′

2 would differ. Since S ′
1, S ′

2 are a partition of S ′ with equal
averages and because of Lemma A.4, we know that

nσ +
∑

i∈S1
i

1 + |S1|
=

nσ +
∑

j∈S2
j

1 + |S2|
=

(2n+ 1)σ

n+ 2
. (5)

For the sake of contradiction, assume that either |S1| ≠ |S2| or
∑

i∈S1
i ̸=∑j∈S2

j. For brevity, we will focus only on the
two following cases, as any other case leads easily to a contradiction:

• |S1| < |S2| and
∑

i∈S1
i <

∑
j∈S2

j: Since S1, S2 are such that S1 ∪ S2 = S, it holds that∑
j∈S2

j −
∑
i∈S1

i < σ
(∗)⇒ (2n+ 1)σ

n+ 2
(1 + |S2|)− nσ − (2n+ 1)σ

n+ 2
(1 + |S1|) + nσ < σ ⇒

(2n+ 1)σ

n+ 2
(|S2| − |S1|) < σ ⇒ (2n+ 1)(|S2| − |S1|) < (n+ 2)

(∗∗)⇒ 2n+ 1 < n+ 2 ⇒ n < 1,
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where (∗) follows from Equation 5, and (∗∗) holds because |S2|−|S1| ≥ 1. The last inequality is clearly a contradiction.

• |S1| > |S2| and
∑

i∈S1
i >

∑
j∈S2

j: The proof is the symmetric version of the proof in the previous case.

Therefore, we can conclude that S1 and S2 are a solution to the original problem, i.e., they are a partition of S with equal
cardinality and equal sums.

Lastly, we will show that, if there is no partition of S ′ with equal averages, there can be no equal cardinality partition of S
with equal sums. For the sake of contradiction, assume there exist S1, S2 with |S1| = |S2| and

∑
i∈S1

i =
∑

j∈S2
j. Then,

let S ′
1 = {nσ} ∪ S1 and S ′

2 = {nσ} ∪ S2. It is easy to see that∑
i∈S′

1
i

|S ′
1|

=
nσ +

∑
i∈S1

i

1 + |S1|
=

nσ +
∑

j∈S2
j

1 + |S2|
=

∑
i∈S′

2
i

|S ′
2|

, (6)

which is a contradiction, since it means that S ′
1 and S ′

2 are a partition of S ′ with equal averages.

Following the above procedure, we can decide whether the original instance of the equal-cardinality problem has a solution
or not. As a consequence, the problem of deciding whether a set of positive integers can be partitioned into two subsets of
equal average is NP-complete.

Lemma A.4. A set of integers S can be partitioned into two non-empty sets S1, S2 with equal averages
∑

i∈S1
i

|S1| =
∑

j∈S2
j

|S2| ,

iff
∑

i∈S1
i

|S1| =
∑

k∈S k

|S| , with |S1| ⊂ |S|.

Proof. First, assume there is such a partition of S into S1, S2, with equal averages. It holds that∑
i∈S1

i

|S1|
=

∑
k∈S k −∑i∈S1

i

|S| − |S1|
⇒ (|S| − |S1|)

∑
i∈S1

i = |S1|
(∑

k∈S

k −
∑
i∈S1

i

)
⇒ |S|

∑
i∈S1

i = |S1|
∑
k∈S

k

⇒
∑

i∈S1
i

|S1|
=

∑
k∈S k

|S| ,

where S1 ⊂ S because S2 ̸= ∅.

Now, assume there exists a set S1 ⊂ S, such that
∑

i∈S1
i

|S1| =
∑

k∈S k

|S| and let S2 = S \ S1. It is easy to see that∑
j∈S2

j

|S2|
=

∑
k∈S k −∑i∈S1

i

|S| − |S1|
=

∑
k∈S k − |S1|

|S|
∑

k∈S k

|S|
(
1− |S1|

|S|

) =

∑
k∈S k

|S| ,

and therefore, the sets S1, S2 consist a partition of S with equal averages.

A.3. Proof of Proposition 3.3

We first prove the sufficient condition, i.e., we prove that, if fB is monotone with respect to f , then B is a contiguous partition
on {1, . . . n}. The proof is by contradiction. Assume B is not a contiguous partition, i.e., there exists x1, x2, x3 ∈ X
such that i(x1) < i(x2) < i(x3) and i(x1) ∼B i(x3) while i(x1) ̸∼B i(x2). If a[i(x1)] > a[i(x2)], then fB(x1) > fB(x2),
however, since f(x1) < f(x2), this leads to a contradiction with the monotonicity assumption. On the other hand, if
a[i(x1)] < a[i(x2)], then fB(x3) < fB(x2) since i(x1) ∼B i(x3) and thus a[i(x3)] < a[i(x2)], however, this leads again to a
contradiction with the monotonicity assumption. This proves that B must be a contiguous partition.

Next, we prove the necessary condition, i.e., we prove that, if B is a contiguous partition on {1, . . . n}, then fB is monotone
with respect to f . For any x1, x2 ∈ X such that f(x1) < f(x2), we have that:

fB(x1) = a[i(x1)] =

∑
l∈[i(x1)]

alρl∑
l∈[i(x1)]

ρl
≤
∑

l∈[i(x2)]
alρl∑

l∈[i(x2)]
ρl

= a[i(x2)] = fB(x2).

where the inequality is due to Lemma A.5 below and the fact that the weighted average of a set of numbers is lower and
upper bounded by the smallest and largest element of the set respectively.
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Lemma A.5. Let f be a classifier with Range(f ) = {a1, . . . , an}, B be a contiguous partition on {1, . . . , n} and x1, x2 ∈ X .
If i(x1) < i(x2) and i(x1) ̸∼B i(x2), then, for every k ∈ [i(x1)] and k′ ∈ [i(x2)], it holds that k < k′.

Proof. To prove the lemma, we just need to prove that the largest index in [i(x1)] is smaller than the smallest index in [i(x2)].
The proof is by contradiction. Let l = max{k | k ∈ [i(x1)]} and s = min{k | k ∈ [i(x2)]} and assume that l > s. Then, it
cannot simultaneously hold that i(x1) = l and i(x2) = s since we have that i(x1) < i(x2). Assume first that i(x1) ̸= l,
and take x3, x4 ∈ X such that i(x3) = s and i(x4) = l. If i(x3) < i(x1), then it holds that i(x3) < i(x1) < i(x2),
however, since i(x2) ∼B i(x3) and i(x1) ̸∼B i(x2), this leads to a contradiction with the assumption that B is contiguous.
If i(x3) > i(x1), then it holds that i(x1) < i(x3) < i(x4), however, since i(x1) ∼B i(x4) while i(x3) ̸∼B i(x4), this also
leads to a contradiction with the assumption that B is contiguous. If one assumes instead that i(x1) = l, a similar reasoning
using i(x2) and i(x4) leads to a contradiction too. This completes the proof.

A.4. Proof of Proposition 4.1

We prove by contradiction. Assume there exist violations of within-group monotonicity. We first define the nearest violating
triplet, (l, r, z), as:

(l, r, z) = argmin
{(i,j,z) | i,j∈Range(fB),i<j,z∈Z}

|j − i| such that aAi,z > aAj ,z

If r = l+1 then it contradicts with the assumption that no monotonicity violations occur between adjacent cells. If r ̸= l+1,
there exists i ∈ Range(fB) such that l ≤ i ≤ r and it does not happen simultaneously that i = l and i = r. Then it should
hold that aAl,z ≤ aAi,z ≤ aAr,z since otherwise either of (l, i, z) or (i, r, z) is the nearest violating triplet. In this case
however, aAl,z ≤ aAr,z which is a contradiction with it being a violating triplet. As a result, no such triplet can exist and fB
is within-group monotone.

A.5. Proof of Lack of Local Optimality of the Pool Adjacent Violators (PAV) Algorithm

Let Range(f ) = {a1, a2, a3}, Z = {z1, z2} and ρiρz | i =
1
6 for all i ∈ {1, 2, 3} and z ∈ Z . Further, let a1,z2 = a2,z1 =

a3,z2 = α, a1,z1 = 2α, a2,z2 = 3α and a3,z1 = 4α, where α ∈ [0, 0.25]. First, we note that, by construction, it holds
that a1 = 3

2α < a2 = 2α < a3 = 5
2α. Now, since a1,z1 > a2,z1 , Algorithm 1 first merges these two bins, then, since

a{1,2},z2 > a{3},z2 , it merges all the three bins together and finally it terminates, returning B = {{1, 2, 3}}. However,
since it holds that a1,z1 < a{2,3},z1 and a1,z2 < a{2,3},z2 , it clearly holds that the partition B′ = {{1} , {2, 3}} induces a
classifier fB′ that is within-group monotone and it readily follows that fB′ dominates fB.

A.6. Proof of Lemma 4.3

We first prove the sufficient condition, i.e., we prove, for any B ∈ Bl,r, ∃k < l such that B \ {{l, . . . , r}} ∈ Bk,l−1 and
a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z . Let B′ = B \ {{l, . . . , r}}. To this end, we start by proving by contradiction that ∃k < l
such that B′ ∈ Bk,l−1. Since the partition B covers {1, . . . , r}, we have that the last cell of B′ contains bin l − 1. Assume
B′ ̸∈ ∪l−1

k=1Bk,l−1. Then, there must exist A,A′ ∈ B′ and z ∈ Z such that aA < aA′ and aA,z > aA,z′ . However, since
B′ ⊂ B, it also holds that A,A′ ∈ B and fB cannot be within-group monotone on ∪i≤rXi, leading to a contradiction.
Therefore, it must hold that B′ ∈ ∪l−1

k=1Bk,l−1. Now, to prove that, if B′ ∈ ∪l−1
k=1Bk,l−1 and B ∈ Bl,r, then it must hold

that a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z , we resort to Lemma A.6.

We next prove the necessary condition, i.e., we prove that, given any B ∈ Br, if ∃k < l such that B \{{l, . . . , r}} ∈ Bk,l−1

and a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z then B ∈ Bl,r. Let B′ = B \ {{l, . . . , r}}. Since B′ ∈ Bk,l−1, we know that no
violations of within-group monotonicity occurs on ∪i≤l−1Xi. Now, we prove that there are no violations of within-group
monotonicity between {l, . . . , r} and any A ∈ B′. By assumption, we know that there are not violations of within-group
monotonicity between {l, . . . , r} and {k, . . . , l − 1}. Then, we prove by contradiction that there are not violations between
{l, . . . , r} and any A ∈ B′ \ {{k, . . . , l − 1}}. For any A ∈ B′ \ {{k, . . . , l − 1}}, it follows from Proposition 3.3
that aA < a{k,...,l−1} and aA < a{l,...,r}. Now, assume there exists A ∈ B′ \ {{k, . . . , l − 1}}, z ∈ Z such that
aA,z > a{l,...,r},z . Since, by assumption, we have that a{k,...,l−1},z ≤ a{l,...,r},z , it should hold that a{k,...,l−1},z < aA,z ,
which contradicts with the assumption that B′ ∈ Bk,l−1, leading to a contradiction. This proves that B ∈ Bl,r.

Lemma A.6. Let B = B′ ∪ {{l, . . . , r}} ∈ Bl,r and B′ ∈ Bk,l−1 with k < l. Then, it must hold that a{k,...,l−1},z ≤
a{l,...,r},z ∀z ∈ Z .
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Proof. Since B′ ∈ Bk,l−1, we know that {k, . . . , l − 1} ∈ B′. Moreover, it follows from Proposition 3.3 that fB is
monotone with respect to f and hence, since k < l and k ̸∼B l, we have that a{k,...,l−1} < a{l,...,r}. Further, since B ∈ Bl,r,
we have that, for every A,A′ ∈ B such that aA < aA′ , it holds that aA,z ≤ aA′,z for all z ∈ Z . Thus, it also holds that
a{k,...,l−1},z ≤ a{l,...,r},z for all z ∈ Z .

A.7. Proof of Theorem 4.4

To prove that Algorithm 2 returns the optimal partition B∗, we just need to prove that, for each l, r ∈ {1, . . . , n}, the
partition Bl,r the algorithm finds is optimal, i.e., Bl,r = B∗

l,r. In what follows, we prove this by induction. For the base cases,
we have that B1,r = {{1, . . . , r}} are clearly optimal since B1,r only contains {{1, . . . , r}} for all r ∈ {1, . . . , n}. As the
induction hypothesis, assume that, for any l′ < l and r′ < r, the partition Bl′,r′ the algorithm finds is optimal. Moreover, let
Sl,r =

{
k | k < l, a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z

}
. Then, for (l, r), we need to show that Bl,r = Bk∗,l−1∪{{l, . . . , r}},

with k∗ = argmaxk∈Sl,r
|Bk,l−1|, is optimal.

To this end, we first show that fBl,r
is within-group monotone on ∪i≤rXi, i.e., Bl,r ∈ Bl,r. We have that, by the induction

hypothesis, Bk∗,l−1 ∈ Bk∗,l−1 and, by definition, k∗ ∈ Sl,r. Then, it follows directly from Lemma 4.3 that fB ∈ Bl,r.
Next, we show that Bl,r = argmaxB∈Bl,r

|B|. Using again Lemma 4.3, we have that, for any B ∈ Bl,r, it holds that
B = B′ ∪ {{l, . . . , r}}, with B′ ∈ Bk,l−1, for some k ∈ Sl,r. As a result, since |B′ ∪ {{l, . . . , r}}| = |B′|+ 1, it suffices
to find B′ = argmaxB′′∈∪k∈Sl,r

Bk,l−1
|B′′|. Now, by the induction hypothesis, we know that, for each Bk,l−1, Bk,l−1 is

the optimal partition. Then, since k∗ = argmaxk∈Sl,r
|Bk,l−1|, we can conclude that Bl,r is optimal.

A.8. Proof of Lemma 5.2

We first prove the sufficient condition, i.e., we prove that, given any B ∈ Br, if it holds that fB is within-group calibrated
on ∪i≤rXi then ∃l < r such that B\ {{l, . . . , r}} ∈ Bl−1 and fB\{{l,...,r}} is within-group calibrated on ∪i≤l−1Xi and
a{l,...,r},z = a{l,...,r} for all z ∈ Z . Let B′ = B \ {{l, . . . , r}}. Since B covers {1, . . . , r}, then it holds that B′ covers
{1, . . . , l − 1} and hence B′ ∈ Bl−1. Since B′ ⊂ B and fB is within-group calibrated on ∪i≤rXi, then it holds that fB′ is
within-group calibrated on ∪i≤l−1Xi. Finally, since {l, . . . , r} ∈ B, it also holds that a{l,...,r},z = a{l,...,r}.

Next, we prove the necessary condition, i.e., given any B ∈ Br, if ∃l < r such that B\ {{l, . . . , r}} ∈ Bl−1 and
fB\{{l,...,r}} is within-group calibrated on ∪i≤l−1Xi and a{l,...,r},z = a{l,...,r} ∀z ∈ Z then fB is within-group calibrated
on ∪i≤rXi. We need to show that, for every A ∈ B, it holds that aA,z = aA. Let B′ = B \ {{l, . . . , r}}. For every z ∈ Z ,
it holds by assumption that aA,z = aA ∀A ∈ B′ and a{l,...,r},z = a{l,...,r}. As a result, fB is within-group calibrated on
∪i≤rXi.

A.9. Proof of Theorem 5.3

To prove that Algorithm 3 returns the optimal B∗
cal, if a solution exists, we just need to prove that, for every r ∈ {1, . . . , n},

the partition Bcal,r the algorithm finds is optimal, i.e., Bcal,r = B∗
cal,r. In what follows, we prove this by induction.

For the base case (r = 1), we have that Bcal,1 = {{a1}} iff, for all z ∈ Z with ρz | 1 > 0, it holds that a1,z = a1. This is
clearly optimal since B1 only contains {{a1}}. Otherwise, it holds that Bcal,1 = ∅. As the induction hypothesis, assume
that, for any r′ < r, the partition Bcal,r′ the algorithm finds is either the optimal partition or, if there is no solution, an empty
partition. Moreover, let Sr =

{
i ∈ {2, . . . , r} | a{i,...,r},z = a{i,...,r} ∀z ∈ Z

}
. Then, for r, we distinguish between two

cases. If Bcal,r′ is empty for all r′ < r, we again distinguish between two cases. If a{1,...,r} ̸= a{1,...,r},z ∀z ∈ Z , it means
that Bcal,r = {{1, . . . , r}} is the only partition in Br that is within-group calibrated and thus it is optimal. Otherwise, we
can conclude that no partition B ∈ Br is within-group calibrated and thus Bcal,r = ∅. Now, if Bcal,r′ is not empty for some
r′ < r, we need to show that Bcal,r = Bcal,k∗−1 ∪ {{k∗, . . . , r}}, with k∗ = argmaxk∈Sr

|Bcal,k−1|, is optimal.

To this end, we first show that fBcal,r is within-group calibrated on ∪i≤rXi. Using the induction hypothesis and the fact
that k∗ ≤ r, we have that Bcal,k∗−1 is the optimal partition in Bk∗−1. As a result, it follows from Lemma 5.2 that fBcal,r

is within-group calibrated on ∪i≤rXi. Next, we show that Bcal,r = argmaxB∈Br
|B| among those partitions B such that

fB is within-group calibrated. Using again Lemma 5.2, we have that, for any B such that fB is within-group calibrated, it
holds that B = B′ ∪ {{k, . . . , r}}, with B′ ∈ Bk−1, for some k ∈ Sr. As a result, since |B| = |B′|+ 1, it suffices to find
B′ = argmaxB′′∈∪k∈SrBk−1

|B′′| such that fB′′ is within-group calibrated. Now, by the induction hypothesis, we know
that, for each Bk−1, Bk−1 is the optimal partition. Then, since k∗ = argmaxk∈Sr

|Bcal,k−1|, we can conclude that Bcal,r is
optimal.
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A.10. Proof of Proposition 5.4

We prove by contradiction. Assume there exists a B ∈ B such that fB is within-group calibrated. Then, for every A ∈ B, it
must hold that aA,z = aA,z′ = aA. Consider an arbitrary cell A ∈ B. We have that

aA,z =

∑
j∈A ρjρz | jaj,z∑

j∈A ρjρz | j

(i)
=

∑
j∈A ρjρz′ | jaj,z∑

j∈A ρjρz′ | j

(ii)
<

∑
j∈A ρjρz′ | jaj,z′∑

j∈A ρjρz′ | j
= aA,z′

where (i) follows from the fact that ρz | i = ρz′ | i for all i ∈ Range(f ) and (ii) follows from the fact that, by assumption,
ai,z < ai,z′ for all i ∈ {1, . . . , n}. As an immediate consequence, we have that aA,z < aA < aA,z′ , contradicting the
within-group calibration property.
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B. Additional Experiments
B.1. Screening Classifiers Induced by the Partitions Found by Algorithms 1, 2 and 3

In this section, we take a closer look at all the quality score values a = Pr(Y = 1 | f(X) = a) and group conditional score
values az = Pr(Y = 1 | f(X) = a, Z = z) of both the original classifier f and the modified classifiers fB induced by
the partitions B found by Algorithms 1, 2 and 3. Figure 6 summarizes the results for one experiment with a classifier f
with n = 15, which reveal several interesting findings. As expected, fB∗ and fBpav are within-group monotone and fB∗ is
more fine-grained than fBpav , i.e., |B∗| ≥ |Bpav|. However, the minimum value of ϵ such that fB∗

cal
exists is not always low

enough for fB∗
cal

to be within-group monotone. Moreover, we find that, for f , fB∗ and fBpav , the difference among group
conditional score values az for a given quality score values a is often significant. As a result, one should be cautious about
comparing candidates from different groups z and instead utilize group-dependent decision thresholds (Wang et al., 2022) to
implement more equitable hiring practices such as the Rooney rule (Collins, 2007), which requires that, when hiring for a
given position, at least one (or more) candidate(s) from each minority group should be interviewed. In this context, it is also
worth noting that, while using fB∗

cal
would mitigate such differences, our results show that this would reduce dramatically the

granularity of the predictions. We found qualitatively similar results for different n values.
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Figure 6. Quality score values a = P (Y = 1 | f(X) = a) and group conditional quality score values az = P (Y = 1 | f(X) = a, Z =
z) of the screening classifier f and the modified classifiers fBpav , fB∗ , and fB∗

cal
induced by the partitions found by Algorithms 1, 2 and 3,

respectively. In the first and last rows, the hatched bars indicate within-group monotonicity violations and, in the last row, we report the
smallest ϵ value such that a within-group ϵ-calibrated classifier fB∗

cal
exists.
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B.2. Additional Experiments On Within-Group ϵ-Calibration

In this section, we investigate how the smallest ϵ such that a within-group ϵ-calibrated classifier fB∗
cal

exists varies against the
number of bins n of the screening classifier f . Figure 7 shows that, for each set of groups Z , ϵ remains relatively constant with
respect to n, however, the greater the difference across group conditional quality scores az = P (Y = 1 | f(X) = a, Z = z),
the greater the value of ϵ that is needed to obtain a within-group ϵ-calibrated classifier, as one may have perhaps expected.
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Figure 7. Minimum value of ϵ such that a within-group ϵ-calibrated fB∗
cal

exists against the number of bins n of the screening classifier f .

B.3. Experimental Results for Other Groups Z
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Figure 8. Probability pd | z that an individual from group z may suffer from within-group unfairness against Pr(Z = z) for n = 15.
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Figure 9. Quality of the partitions Bpav, B∗, and B∗
cal returned by Algorithms 1, 2 and 3, respectively, for screening classifiers f with an

increasing number of bins n. Panel (a) shows the size |B| of the partitions provided by each algorithm (higher is better). Panel (b) shows
the size of the shortlists created using the classifiers fB induced by each partition B (lower is better).
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Figure 10. Quality score values a = P (Y = 1 | f(X) = a) and group conditional quality score values az = P (Y = 1 | f(X) = a, Z =
z) of the screening classifier f and the modified classifiers fBpav , fB∗ , and fB∗

cal
induced by the partitions found by Algorithms 1, 2 and 3,

respectively. In the first row, the hatched bars indicate within-group monotonicity violations and, in the last row, we report the smallest ϵ
value such that a within-group ϵ-calibrated classifier fB∗

cal
exists.
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