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Abstract

Bilevel optimization problems, which are prob-
lems where two optimization problems are
nested, have more and more applications in
machine learning. In many practical cases,
the upper and the lower objectives correspond
to empirical risk minimization problems and
therefore have a sum structure. In this con-
text, we propose a bilevel extension of the cel-
ebrated SARAH algorithm. We demonstrate
that the algorithm requires O((n+m)

1
2 ε−1)

oracle calls to achieve ε-stationarity with
n + m the total number of samples, which
improves over all previous bilevel algorithms.
Moreover, we provide a lower bound on the
number of oracle calls required to get an ap-
proximate stationary point of the objective
function of the bilevel problem. This lower
bound is attained by our algorithm, making
it optimal in terms of sample complexity.

1 Introduction

In the last few years, bilevel optimization has become
an essential tool for the machine learning community
thanks to its numerous applications. Among them,
we can cite hyperparameter selection (Bengio, 2000;
Pedregosa, 2016; Franceschi et al., 2017; Lorraine et al.,
2020), implicit deep learning (Bai et al., 2019), neural
architecture search (Liu et al., 2019; Zhang et al.,
2021), data augmentation (Li et al., 2020; Rommel
et al., 2022) or meta-learning (Franceschi et al., 2018;
Rajeswaran et al., 2019). Bilevel optimization consists
in minimizing a function under the constraint that
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one variable minimizes another function. This can be
formalized as follows

min
x∈Rd

h(x) = F (z∗(x), x) ,

subject to z∗(x) ∈ argmin
z∈Rp

G(z, x) .
(1)

The function F is called the outer function and the
function G is the inner function. Likewise, we refer
to x as the outer variable and z as the inner variable.
The function h is the value function and it can be
minimized using gradient descent. To compute its
gradient, we use implicit differentiation which yields

∇h(x) = ∇2F (z
∗(x), x) +∇2

21G(z
∗(x), x)v∗(x) (2)

where v∗(x) is the solution of a linear system

v∗(x) = −
[
∇2

11G(z
∗(x), x)

]−1 ∇1F (z
∗(x), x) . (3)

When we have exact access to z∗(x), solving (1) boils
down to a smooth nonconvex optimization problem
which can be solved using solvers for single-level
problems. However, computing exactly z∗(x) and v∗(x)
is often too costly, and implicit differentiation-based
algorithms rely on approximations of z∗(x) and v∗(x)
rather than their exact value. Depending on the
precision of the different approximations, we are
not ensured that the approximate gradient used is
a descent direction. Results by Pedregosa (2016)
characterized the approximation quality for z∗(x) and
v∗(x) required to ensure convergence, opening the
door to various algorithms to solve bilevel optimization
problems (Lorraine et al., 2020; Ramzi et al., 2022).

In many applications of interest, the functions F and
G correspond to Empirical Risk Minimization (ERM),
and as a consequence have a finite sum structure

F (z, x) =
1

m

m∑
j=1

Fj(z, x), G(z, x) =
1

n

n∑
i=1

Gi(z, x) .

For instance, in hyperparameter selection, F is the
validation loss which is an average on the validation
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set and G is the training loss which is an average
on the training set. In single-level optimization, the
finite sum structure has been widely leveraged to pro-
duce fast first-order algorithms that provably converge
faster than gradient descent. Among them, we can cite
stochastic methods such as stochastic gradient descent
(SGD) (Robbins and Monro, 1951; Bottou, 2010) and
its variance-reduced variants such as SAGA (Defazio
et al., 2014), STORM (Cutkosky and Orabona, 2019)
or SPIDER/SARAH (Fang et al., 2018; Nguyen et al.,
2017) that use only a handful of samples at a time to
make progress. To get faster methods than full-batch
approaches, it is natural to extend these methods to the
bilevel setting. The main obstacle comes from the diffi-
culty of obtaining stochastic approximations of ∇h(x)
because of its structure (2) which involves a Hessian
inversion. Several strategies have been proposed to
overcome this obstacle, and some works demonstrate
that stochastic implicit differentiation-based algorithms
for solving (1) have the same complexity as single-level
analogous algorithms. For instance, ALSET from Chen
et al. (2021) and SOBA from Dagréou et al. (2022) have
the same convergence rate as SGD for nonconvex single-
level problems (Ghadimi and Lan, 2013; Bottou et al.,
2018). Also, Dagréou et al. (2022) show that SABA, an
adaptation of SAGA (Defazio et al., 2014), has an anal-
ogous sample complexity to its single-level counterparts
for nonconvex problems (Reddi et al., 2016).

Yet, in classical single-level optimization, it is known
that neither of these algorithms is optimal: the SARAH
algorithm (Nguyen et al., 2017) achieves a better sample
complexity of O(m

1
2 ε−1) withm the number of samples.

Furthermore, this algorithm is near-optimal (i.e. opti-
mal up to constant factors) because the lower bound
for single-level nonconvex optimization is Ω(m

1
2 ε−1) as

proved by Zhou and Gu (2019). It is natural to ask if
we can extend these results to bilevel optimization.

Contributions In Section 2, we introduce SRBA, an
adaptation of the SARAH algorithm to the bilevel set-
ting. We then demonstrate in Section 3 that, similarly
to the single-level setting, O

(
(n+m)

1
2 ε−1 ∨ (n+m)

)
oracle calls are sufficient to reach an ε-stationary point.
As shown in Table 1, it achieves the best-known com-
plexity in the regime n +m ≲ O(ε−2). In Section 4,
we analyze the lower bounds for such problems. We
show that we need at least Ω(m

1
2 ε−1) oracle calls to

reach an ε-stationary point (see Definition 3.1), hereby
matching the previous upper-bound in the case where
n ≍ m and ε ≤ m− 1

2 . SRBA is thus near-optimal in
that regime. Even though our main contribution is
theoretical, we illustrate the numerical performances
of the algorithm in Section 5.
Related work There are several strategies to solve
(1) with a stochastic method. The first one is the

value-function-based method which consists in recast-
ing Problem 1 as a single-level constrained optimiza-
tion problem as done with F2SA (Kwon et al., 2023)
or BOME (Ye et al., 2022). The second way is to
use first-order methods on h with approximate gradi-
ents. The approximate gradient of h can be estimated
using two approaches: iterative differentiation (ITD)
and approximate implicit differentiation (AID). On the
one hand, in ITD algorithms, the Jacobian of z∗ is
estimated by differentiating the different steps used to
compute an approximation of z∗. On the other hand,
AID algorithms leverage the implicit gradient given
by (2) replacing z∗ and v∗ by some approximations
z and v. In the class of ITD algorithms, Maclaurin
et al. (2015) propose to approximate the Jacobian of
the solution of the inner problem by differentiating
through the iterations of SGD with momentum. The
complexity of the hypergradient computation in ITD
solvers is studied in Franceschi et al. (2017); Grazzi
et al. (2020); Ablin et al. (2020). For AID algorithms,
Ghadimi and Wang (2018); Chen et al. (2021); Ji et al.
(2021) propose to perform several SGD steps in the in-
ner problem and then use Neumann approximations to
approximate v∗(x) defined in (3). A method consisting
of alternating steps in the inner and outer variables
was proposed in Hong et al. (2023). These methods
can be improved by using a warm start strategy for
the inner problem (Ji et al., 2021; Chen et al., 2021)
and for the linear system (Arbel and Mairal, 2022).
Some works adapt variance reduction methods to like
STORM (Cutkosky and Orabona, 2019; Khanduri et al.,
2021; Yang et al., 2021) or SAGA (Defazio et al., 2014;
Dagréou et al., 2022). We take a similar approach
and extend the SARAH variance reduction method to
the bilevel setting. Recent works propose to approxi-
mate the Jacobian of z∗ by stochastic finite difference
(Sow et al., 2022) or to use Bregman divergence-based
methods (Huang et al., 2022).

In single-level optimization, the problem of finding com-
plexity lower bound has been widely studied since the
seminal work of Nemirovsky and Yudin (1983). On the
one hand, Agarwal and Bottou (2015) provided a lower
bound to minimize strongly convex and smooth finite
sum with deterministic algorithms that have access
to individual gradients. These results were extended
to randomized algorithms for (strongly) convex finite
sum objective by Woodworth and Srebro (2016). On
the other hand, Carmon et al. (2020) provided a lower
bound for minimizing nonconvex functions with deter-
ministic and randomized algorithms. The nonconvex
finite sum case is treated in Fang et al. (2018); Zhou
and Gu (2019). In the bilevel case, Ji and Liang (2023)
showed a lower bound for deterministic algorithms.
However, this result is restricted to the case where the
value function h is convex or strongly convex, which
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Sample complexity Stochastic setting F G

StocBiO (Ji et al., 2021) Õ(ε−2) General expectation C1,1
L SC and C2,2

L

AmIGO (Arbel and Mairal, 2022) O(ε−2) General expectation C1,1
L SC and C2,2

L

MRBO (Yang et al., 2021) Õ(ε−
3
2 ) General expectation C1,1

L SC and C2,2
L

VRBO (Yang et al., 2021) Õ(ε−
3
2 ) General expectation C1,1

L SC and C2,2
L

SABA (Dagréou et al., 2022) O((n+m)
2
3 ε−1) Finite sum C2,2

L SC and C3,3
L

F2SA (Kwon et al., 2023) O(ε−
7
2 ) General expectation C2,2

L SC and C2,2
L

SRBA O((n+m)
1
2 ε−1) Finite sum C2,2

L SC and C3,3
L

Table 1: Comparison between the sample complexities and the Assumptions of some stochastic bilevel solvers. It
corresponds to the number of calls to gradient, Hessian-vector products, and Jacobian-vector product sufficient to
get an ε-stationary point. The tilde on the Õ hide a factor log(ε−1). "SC" means "strongly convex". Cp,kL means
p-times differentiable with Lipschitz kth order derivatives for k ≤ p.

is not the case with most ML-related bilevel problems.
Our results are instead in a nonconvex setting.

Notation The quantity A• refers to Az, Av, or Ax,
depending on the context. If f : Rp×Rd → R is a twice
differentiable function, we denote ∇if(z, x) its gradient
w.r.t. its ith variable. Its Hessian with respect to z is
denoted ∇2

11f(z, x) ∈ Rp×p and its cross derivative
matrix

(
∂2f

∂zi∂xj

)
i∈[p]
j∈[d]

is denoted ∇2
12f(z, x) ∈ Rp×d.

We denote ΠC the projection on a closed convex set C.

2 SRBA: a Near-Optimal Algorithm
for Bilevel Empirical Risk
Minimization

In this section, we introduce SRBA (Stochastic Recur-
sive Bilevel Algorithm), a novel algorithm for bilevel
empirical risk minimization which is provably near-
optimal for this problem. This algorithm is inspired
by the algorithms SPIDER (Fang et al., 2018) and
SARAH (Nguyen et al., 2017, 2022) which are known
for being near-optimal algorithms for nonconvex finite
sum minimization problems. It relies on a recursive
estimation of directions of interest, which is restarted
periodically. Proofs are deferred to the appendix.

2.1 Assumptions

Before presenting our algorithm, we formulate regular-
ity Assumptions on the functions F and G.

Assumption 2.1. For all j ∈ [m], Fj is twice differen-
tiable and LF0 -Lipschitz continuous. Its gradient is LF1 -
Lipschitz continuous and its Hessian is LF2 -Lipschitz
continuous.

Assumption 2.2. For all i ∈ [n], Gi is three times dif-
ferentiable. Its first, second, and third order derivatives
are respectively LG1 -Lipschitz continuous, LG2 -Lipschitz
continuous, and LG3 -Lipschitz continuous. For x ∈ Rd,
the function Gi( . , x) is µG-strongly convex.

The strong convexity and the smoothness with re-
spect to z hold for instance when we consider an
ℓ2-regularized logistic regression problem with non-
separable data. These regularity assumptions up to
first-order for F and second-order for G are standard
in the stochastic bilevel literature (Arbel and Mairal,
2022; Ji et al., 2021; Yang et al., 2021). The second-
order regularity for F and third-order regularity for G
are necessary for the analysis of the dynamics of v, as is
the case in Dagréou et al. (2022). As shown in Ghadimi
and Wang (2018, Lemma 2.2), these assumptions imply
the smoothness of h, which is a fundamental property
to get a descent.

Proposition 2.3. Under Assumptions 2.1 and 2.2,
the function h is Lh smooth for some Lh > 0 which is
precised in Appendix A.2.

Another consequence of Assumptions 2.1 and 2.2 is the
boundedness of the function v∗.

Proposition 2.4. Assume that Assumptions 2.1 and
2.2 hold. Then, for R =

LF
0

µG
it holds that for any

x ∈ Rd, we have ∥v∗(x)∥ ≤ R.

We denote Γ the closed ball centered in 0 with radius
R and ΠΓ the projection onto Γ. For (z, v, x) ∈ Rp ×
Rp × Rd, we denote Π(z, v, x) = (z,ΠΓ(v), x).

2.2 Hypergradient Approximation

The gradient of h given by (2) is intractable in practice
because it requires the perfect knowledge of z∗(x) and
v∗(x) which are usually costly to compute. As classi-
cally done in the stochastic bilevel literature (Ji et al.,
2021; Arbel and Mairal, 2022; Li et al., 2022), z∗(x) and
v∗(x) are replaced by approximate surrogate variables
z and v. The variable z is typically the output of one
or several steps of an optimization procedure applied to
G( . , x). The variable v can be computed by using Neu-
mann approximations or doing some optimization steps
on the quadratic v 7→ 1

2v
⊤∇2

11G(z, x)v +∇1F (z, x)⊤v.
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We consider the approximate hypergradient given by

Dx(z, v, x) = ∇2
21G(z, x)v +∇2F (z, x) .

The motivation behind this direction is that if we take
z = z∗(x) and v = v∗(x), we recover the true gradient,
that is Dx(z

∗(x), v∗(x), x) = ∇h(x). Proposition 2.5
from (Dagréou et al., 2022, Lemma 3.4) controls the
hypergradient approximation error by the distances
between z and z∗(x) and between v and v∗(x).
Proposition 2.5. Let x ∈ Rd. Assume that F is
differentiable and LF1 smooth with bounded gradient,
G is twice differentiable with Lipschitz gradient and
Hessian and G( . , x) is µG-strongly convex. Then there
exists a constant Lx such that

∥Dx(z, v, x)−∇h(x)∥2≤L2
x(∥z−z∗(x)∥2+∥v−v∗(x)∥2).

Thus, it is natural to make z and v move towards their
respective equilibrium values which are given by z∗(x)
and v∗(x). As a consequence, we also introduce the
directions Dz and Dx as follows

Dz(z, v, x) = ∇1G(z, x) ,

Dv(z, v, x) = ∇2
11G(z, x)v +∇1F (z, x) .

The interest of considering the directions Dz and Dv

is expressed in Proposition 2.6.
Proposition 2.6. Assume that G is strongly con-
vex with respect to its first variable. Then for
any x ∈ Rd, it holds Dz(z

∗(x), v∗(x), x) = 0 and
Dv(z

∗(x), v∗(x), x) = 0.

The directions Dz, Dv, and Dx can be written as sums
over the samples. Hence, following these directions
enables to adapt any classical algorithm suited for
single-level finite sum minimization to bilevel finite
sum minimization. In what follows, for two indices
i ∈ [n] and j ∈ [m], we consider the sampled directions
Dz,i,j , Dv,i,j and Dx,i,j defined by

Dz,i,j(z, v, x) = ∇1Gi(z, x) (4)

Dv,i,j(z, v, x) = ∇2
11Gi(z, x)v +∇1Fj(z, x) (5)

Dx,i,j(z, v, x) = ∇2
21Gi(z, x)v +∇2Fj(z, x) . (6)

When i and j are randomly sampled uniformly, these
directions are unbiased estimators of the true directions
Dz, Dv, and Dx. Yet, as in Nguyen et al. (2017), we
use them to recursively build biased estimators of the
directions that enable fast convergence.

2.3 SRBA: Stochastic Recursive Bilevel
Algorithm

In Algorithm 1, we present SRBA, a combination of
the idea of recursive gradient coming from (Fang et al.,

Algorithm 1 Stochastic Recursive Bilevel Algorithm
Input: initializations z0 ∈ Rp, x0 ∈ Rd, v0 ∈ Rp,
number of iterations T and q, step sizes ρ and γ.
Set ũ0 = (z0, v0, x0)
for t = 0, . . . , T − 1 do

Reset ∆: ∆t,0 = (ρDz(ũ
t), ρDv(ũ

t), γDx(ũ
t))

Update u: ut,1 = Π(ũt −∆t,0) ,
for k = 1, . . . , q − 1 do

Draw i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
∆t,k
z = ρ(Dz,i,j(u

t,k)−Dz,i,j(u
t,k−1)) +∆t,k−1

z

∆t,k
v = ρ(Dv,i,j(u

t,k)−Dv,i,j(u
t,k−1)) +∆t,k−1

v

∆t,k
x = γ(Dx,i,j(u

t,k)−Dx,i,j(u
t,k−1))+∆t,k−1

x

Update u: ut,k+1 = Π(ut,k −∆t,k)
end for
Set ũt+1 = ut+1,q

end for
Return (z̃T , ṽT , x̃T ) = ũT

2018; Nguyen et al., 2022) and the framework proposed
in (Dagréou et al., 2022). It relies on a recursive esti-
mation of each direction Dz, Dv, Dx which is updated
following the same strategy as SARAH. Let us denote
by ρ the step size of the update for the variables z and
v, and γ the step size for the update of the variable x.
We use the same step size for z and v because the prob-
lems of minimizing the inner function G and solving
the linear system (3) have the same conditioning driven
by ∇2

11G. For simplicity, we denote the joint variable
u = (z, v, x) and the joint directions weighted by the
step sizes ∆ = (ρDz, ρDv, γDx) = (∆z,∆v,∆x).

At iteration t, the estimate direction ∆ is initialized
by computing full batch directions:

∆t,0 = (ρDz(ũ
t), ρDv(ũ

t), γDx(ũ
t))

and a first update is performed by moving from ũt in the
direction −∆t,0. As done in Hu et al. (2022), we project
the variable v onto Γ to leverage the boundedness
property of v∗. Then, during the kth iteration of an
inner loop of size q − 1, two indices i ∈ [n] and j ∈ [m]
are sampled and the estimate directions are updated
according to Equations (7) to (9)

∆t,k
z = ρ(Dz,i,j(u

t,k)−Dz,i,j(u
t,k−1)) +∆t,k−1

z (7)

∆t,k
v = ρ(Dv,i,j(u

t,k)−Dv,i,j(u
t,k−1)) +∆t,k−1

v (8)

∆t,k
x = γ(Dx,i,j(u

t,k)−Dx,i,j(u
t,k−1)) +∆t,k−1

x (9)

where the sampled directions Dz,i,j , Dv,i,j and Dx,i,j

are defined by Equations (4) to (6). Then the joint
variable u is updated by

ut,k+1 = Π(ut,k −∆t,k) . (10)

Recall that the projection is only performed on the
variable v. The other variables z and x remain un-
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changed after the projection step. At the end of the
inner procedure, we set ũt+1 = ut,q.

In Algorithm 1, the variables z, v, and x are updated
simultaneously rather than alternatively. From a com-
putational perspective, this enables sharing the com-
mon computations between the different oracles and
doing the update of each variable in parallel. So there
is no sub-procedure to approximate the solution of the
inner problem and the solution of the linear system.

Note that in Yang et al. (2021), the authors propose
VRBO, another adaptation of SPIDER/SARAH for
bilevel problems. VRBO has a double loop structure
where the inner variable is updated by several steps
in an inner loop. In this inner loop, the estimates
of the gradient of G and the gradient of h are also
updated using SARAH’s update rules. SRBA has a
different structure. First, in SRBA, the inner variable z
is updated only once between two updates of the outer
variable instead of several times. Second, the solution
of the linear system evolves following optimization steps
whereas in VRBO a Neumann approximation is used.
Moreover, in Yang et al. (2021), the algorithm VRBO
is analyzed in the case where the functions F and G are
general expectations but not in the specific case of em-
pirical risk minimization, as done in Section 3. Finally,
VRBO requires three more parameters than SRBA: the
number of inner steps, the number of terms and the
scaling parameter in the Neumann approximations.

3 Theoretical Analysis of SRBA

In this section we provide the theoretical analysis of
Algorithm 1 leading to a final sample complexity in
O
(
(n+m)

1
2 ε−1 ∨ (n+m)

)
. The detailed proofs of

the results are deferred to the appendix. In Defini-
tion 3.1, we recall what is an ε-stationary point.

Definition 3.1. Let d a positive integer, f : Rd → R a
differentiable function and ε > 0. We say that a point
x ∈ Rd is an ε-stationary point of f if ∥∇f(x)∥2 ≤ ϵ.
In a stochastic context, we call ε-stationary point a
random variable x such that E[∥∇f(x)∥2] ≤ ε.

In this paper, the theoretical complexity of the algo-
rithms is given in terms of number of calls to oracle,
that is to say, the number of times the quantity

[∇Fj(z, x),∇Gi(z, x),∇2
11Gi(z, x)v,∇2

21Gi(z, x)v]
(11)

is queried for i ∈ [n], j ∈ [m], z ∈ Rp, v ∈ Rp and
x ∈ Rd. Note that in practice, although the second-
order derivatives of the inner functions ∇2

11Gi(z, x) ∈
Rp×p and ∇2

21Gi(z, x) ∈ Rd×p are involved, they
are never computed or stored explicitly. We rather
work with Hessian-vector products ∇2

11Gi(z, x)v ∈

Rp and Jacobian-vector products ∇2
21Gi(z, x)v ∈ Rd

which can be computed efficiently thanks to auto-
matic differentiation with a computational cost simi-
lar to the cost of computing the gradients ∇1Gi(z, x)
and ∇2Gi(z, x) Pearlmutter (1994). The cost of one
query (11) is therefore of the same order of magnitude
as that of computing one stochastic gradient.

3.1 Mean Squared Error of the Estimated
Directions

A strength of our method is its simple expression of
the estimation error of the directions coming from
the bias-variance decomposition provided by Nguyen
et al. (2017). Let us denote the estimate directions
Dt,k
z = ∆t,k

z /ρ, Dt,k
v = ∆t,k

v /ρ and Dt,k
x = ∆t,k

x /γ.
We also introduce the residuals

St,k• =

k∑
r=1

E[∥D•(u
t,r)−D•(u

t,r−1)∥2],

S̃t,k• =

k∑
r=1

E[∥Dt,r
• −Dt,r−1

• ∥2] .

We provide a link between the mean squared error
E[∥Dt,k

• −D•(u
t,k)∥2] and the residuals.

Proposition 3.2 (MSE of the estimate directions).
For any t ≥ 0 and k ∈ {1, . . . , q−1}, the estimate Dt,k

•
of the direction D•(u

t,k) satisfies

E[∥Dt,k
• −D•(u

t,k)∥2] = S̃t,k• − St,k• .

The above error has two components: the accumulation
of the difference between two successive full batch di-
rections and the accumulation of the difference between
two successive estimate directions.

3.2 Fundamental Lemmas

We establish descent lemmas which are key ingredients
to get the final convergence result. Lemma 3.3 charac-
terizes the dynamic of u on the inner problem. To do
so, we define the function ϕz as

ϕz(z, x) = G(z, x)−G(z∗(x), x) .

In the bilevel literature, direct control on the dis-
tance to optimum δt,kz ≜ E[∥zt,k − z∗(xt,k)∥2] is es-
tablished. Here, the biased nature of the estimate
direction Dt,k

z makes it hard to upper bound appropri-
ately the scalar product ⟨Dz(u

t,k)−Dt,k
z , zt,k−z∗(xt,k)⟩.

Therefore, we rather consider ϕt,kz . By combining the
smoothness property of ϕz and the bias-variance de-
composition provided in Proposition 3.2, we can show
some descent property on the sequence ϕt,kz defined
by ϕt,kz = E[ϕz(zt,k, xt,k)]. Before stating Lemma 3.3,
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let us define Gt,kv = 1
ρ

(
vt,k −ΠΓ(v

t,k − ρDt,k
v )
)

so that
vt,k+1 = vt,k − ρGt,kv . This is the actual update direc-
tion of v. If there were no projections, we would have
Gt,kv = Dt,k

v . Hence, it acts as a surrogate of Dt,k
v in

our analysis. We also define

V t,kz = E[∥Dt,k
z ∥2], V t,kv = E[∥Gt,kv ∥2],

V t,kx = E[∥Dt,k
x ∥2]

the variances and their respective sums over the inner
loop

Vt,kz =

k∑
r=1

E[∥Dt,r−1
z ∥2], Vt,kv =

k∑
r=1

E[∥Gt,r−1
v ∥2],

Vt,kx =

k∑
r=1

E[∥Dt,r−1
x ∥2] .

Lemma 3.3 (Descent on the inner level). Assume that
the step sizes ρ and γ verify γ ≤ Czρ for some positive
constant Cz specified in the appendix. Then it holds

ϕt,k+1
z ≤

(
1− µG

2
ρ
)
ϕt,kz − ρ

2
(1− Λzρ)V

t,k
z (12)

+ ρ3βzzVt,kz + γ2ρβzvVt,kv + γ2ρβzxVt,kx

+
Λz
2
γ2V t,kx +

γ2

ρ
βzxE[∥Dx(u

t,k)∥2]

for some positive constants Λz, βzz, βzx and βzx that
are specified in the appendix.

In (12) we recover a decrease of ϕt,kz by a factor (1−
ρµG). But the outer variable’s movement and the noise
make appear Dx(u

t,k) and the variance hindering the
convergence of z towards z∗(x).

For the variable v, the quantity we consider is

ϕv(v, x) = Ψ(z∗(x), v, x)−Ψ(z∗(x), v∗(x), x)

where Ψ(z, v, x) is defined as
Ψ(z, v, x) =

1

2
v⊤∇2

11G(z, x)v +∇1F (z, x)
⊤v .

The intuition behind considering this quantity is that
solving the linear system (3) is equivalent to minimizing
over v the function Ψ(z∗(x), v, x).
Lemma 3.4. Assume that the step sizes ρ and γ verify
ρ ≤ Bv and γ ≤ Cvρ for some positive constants Bv
and Cv specified in the appendix. Then it holds

ϕt,k+1
v ≤

(
1− ρµG

16

)
ϕt,kv − β̃vvρV

t
v + ρ3βvzVt,kz

+ 2ρ3βvvVt,kv + γ2ρβvxVt,kx + ραvzϕ
t,k
z

+
Λv
2
γ2E[∥Dt,k

x ∥2] + γ2

ρ
βvxE[∥Dx(u

t,k)∥2]

for some positive constants Λv, βvz, βvx, β̃vv and βvx
that are specified in the appendix.

Lemma 3.4 is similar to Lemma 3.3 with a term in
ϕt,kz taking into account the error of z∗(x)’s approxima-
tion. Its proof harnesses the generalization of Polyak-
Łojasiewicz inequality for composite functions intro-
duced in Karimi et al. (2016).

The following lemma is a consequence of the
smoothness of h. Let us denote the expected
values ht,k = E[h(xt,k)] and expected gradient
gt,k = E[∥∇h(xt,k)∥2].
Lemma 3.5. There exist constants βhz, βhv, βhx > 0
such that

ht,k+1 ≤ ht,k − γ

2
gt,k + γ

2L2
x

µG
(ϕt,kz + ϕt,kv ) + γρ2

+ ραvzϕ
t,k
z + γρ2βhvVt,kv + γ3βhxVt,kx

− γ

2

(
1− Lhγ

)
V t,kx .

This lemma shows that the control of the approximation
error ϕ• (Lemma 3.3 and Lemma 3.4) and the sum of
variances V• is crucial to get a decrease of E[h(xt,k)].

3.3 Complexity Analysis of SRBA

In Theorem 1, we provide the convergence rate of SRBA
towards a stationary point.

Theorem 1. Assume that Assumptions 2.1 and 2.2
hold. Assume that the step sizes verify ρ ≤ ρ and
γ ≤ min(γ, ξρ) for some constants ξ, ρ and γ specified
in appendix. Then it holds

1

Tq

T−1∑
t=0

q−1∑
k=0

E[∥∇h(xt,k)∥2] = O
(

1

qTγ

)
where O hides regularity constants that are indepen-
dent from n and m.

The proof combines classical proof techniques from the
bilevel literature and elements from SARAH’s analysis
(Nguyen et al., 2017, 2022). We introduce the Lyapunov
function L(ut,k) = ht,k+ψzϕ

t,k
z +ψvϕ

t,k
v where ψz and

ψv are non-negative constants chosen so that we have
the inequality L(ut,k+1) ≤ L(ut,k)− γ

4 g
t,k. Summing

and telescoping this inequality provides the result.

Note that increasing q allows a faster convergence in
terms of iterations but makes each iteration more ex-
pensive since the number of oracle calls per iteration
is (2n+ 3m) + 2× 5(q − 1). Thus, there is a trade-off
between the convergence rate and the overall complex-
ity. In Corollary 3.6, we state that the value of q that
gives the best sample complexity is O(n+m).
Corollary 3.6. Suppose that Assumptions 2.1 and
2.2 hold. If we take ρ = ρ(n + m)−

1
2 ,

γ = min(γ, ξρ)(n + m)−
1
2 and q = n + m, then
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O
(
(n+m)

1
2 ε−1 ∨ (n+m)

)
calls to oracles are suffi-

cient to find an ε-stationary point with SRBA.

This sample complexity is analogous to the sample
complexity of SARAH in the nonconvex finite-sum
setting. To the best of our knowledge, such a rate is
the best known for bilevel empirical risk minimization
problems in terms of dependency on the number of
samples n+m and the precision ε. This improves by a
factor (n+m)−

1
6 the previous result which was achieved

by SABA (Dagréou et al., 2022). As a comparison,
VRBO (Yang et al., 2021) achieves a sample complexity
in Õ(ε−

3
2 ). Note that, for large value of n+m we can

have actually (n +m)
1
2 ε−1 ≳ ε−2. This means that,

just like single-level SARAH, the complexity of SRBA
can be beaten by others when the number of samples is
too high with respect to the desired accuracy (actually
if n+m = Ω(ε−2)).

4 Lower Bound for Bilevel ERM

In this section, we derive a lower bound for bilevel
empirical risk minimization problems. This shows that
SRBA is a near-optimal algorithm for this class of
problems.

Function and Algorithm Classes We define the
function and algorithm classes we consider.

Definition 4.1. Let n,m two positive integers, LF1 and
µG two positive constants. The class of the smooth em-
pirical risk minimization problems denoted by CLF

1 ,µG

is the set of pairs of real-valued function families
((Fj)1≤j≤m, (Gi)1≤i≤n) defined on Rp × Rd such that
for all j ∈ [m], Fj is LF1 smooth and for all i ∈ [n], Gi
is twice differentiable and µG-strongly convex.

Note that we consider a class of nonconvex bilevel
problems. This class contains, the functions defining
the bilevel formulation of the datacleaning task.

For the algorithmic class, we consider algorithms that
use approximate implicit differentiation.

Definition 4.2. Given initial points z0, v0, x0, a lin-
ear bilevel algorithm A is a measurable mapping such
that for any ((Fj)1≤j≤m, (Gi)1≤i≤n) ∈ CLF

1 ,µG ,
the output of A((Fj)1≤j≤m, (Gi)1≤i≤n) is a sequence
{(zt, vt, xt, it, jt)}t≥0 of points (zt, vt, xt) and random
variables it ∈ [n] and jt ∈ [m] such that for all t ≥ 0

zt+1 ∈ z0+Span{∇1Gi0(z
0, x0), . . . ,∇1Git(z

t, xt)}
vt+1 ∈ v0+Span{∇2

11Gi0(z
0, x0)v0 +∇1Fj0(z

0, x0),

. . . ,∇2
11Git(z

t, xt)vt +∇1Fjt(z
t, xt)}

xt+1 ∈ x0+Span{∇2
21Gi0(z

0, x0)v0 +∇2Fj0(z
0, x0),

. . . ,∇2
21Git(z

t, xt)vt +∇2Fjt(z
t, xt)}.

This algorithm class includes popular stochastic bilevel
first-order algorithms, such as AmIGO (Arbel and
Mairal, 2022), FSLA (Li et al., 2022), SOBA, and
SABA (Dagréou et al., 2022). Moreover, despite the
projection step, SRBA is part of this algorithm class
since the projection of a vector onto Γ is actually just
a rescaling.

Main Theorem Problem (1) is actually a smooth
nonconvex optimization problem. The lower complex-
ity bound for nonconvex finite sum problem has been
studied in Fang et al. (2018); Zhou and Gu (2019).
In particular, they show that the number of gradient
calls needed to get an ε-stationary point for a smooth
nonconvex finite sum is at least O(m

1
2 ε−1), where m

is the number of terms in the finite sum.

Intuitively, we expect the lower complexity bound to
solve (1) to be larger. Indeed, bilevel problems are
harder than single-level problems because a bilevel
problem involves the resolution of several subproblems
to progress in its resolution. Theorem 2 formalizes this
intuition by showing that the classical single-level lower
bound is also a lower bound for bilevel problems.

Theorem 2. For any linear bilevel algorithm A, and
any LF , n, ∆, ε, p such that ε ≤ (∆LFm−1)/103,
there exists a dimension d = O(∆ε−1m

1
2LF ), an ele-

ment ((Fj)1≤j≤m, (Gi)1≤i≤n) ∈ CLF
1 ,µG such that the

value function h defined as in (1) satisfies h(x0) −
infx∈Rd h(x) ≤ ∆ and in order to find x̂ ∈ Rd such that
E[∥∇h(x̂)∥2] ≤ ε, A needs at least Ω(m

1
2 ε−1) calls to

oracles of the form (11).

The proof is an adaptation of the proof of Zhou and
Gu (2019, Theorem 4.7). We take as outer function
F defined by F (z, x) =

∑m
j=1 f(U

(j)z) where f is the
“worst-case function” used by Carmon et al. (2021),
U = [U (j), . . . , U (m)]⊤ is an orthogonal matrix and
G(z, x) = 1

2∥z − x∥2. We leverage the fact that
∥∇f(y)∥2 > K as long as the two last coordinates
of y are zero for some known constant K. Then we
use the “zero chain property” to bound the number of
indices j such the two last components of U (j)xt are
zero at a given iteration t, implying ∥∇h(xt)∥2 > ϵ

when t is smaller than O(m
1
2 ε−1).

As a comparison to the existing lower bound for bilevel
optimization in Ji and Liang (2023), we consider ran-
domized algorithms and do not assume the value func-
tion h to be convex or strongly convex.

5 Numerical Experiments

Even though our contribution is mostly theoretical,
we run several experiments to highlight to compare
the proposed algorithm with state-of-the-art stochastic
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bilevel solvers. We compare our method to AmIGO
(Arbel and Mairal, 2022), F2SA (Kwon et al., 2023),
MRBO (Yang et al., 2021), VRBO (Yang et al., 2021),
StocBiO (Ji et al., 2021) and SABA (Dagréou et al.,
2022). They are run on a synthetic problem with
quadratic functions and on a hyperparameter selection
problem for ℓ2-regularized logistic regression with the
dataset IJCNN11. A more detailed description of the
experiments is available in Appendix C and an addi-
tional experiment the datacleaning task is available in
Appendix D.

Experiments on quadratics To evaluate the perfor-
mance of stochastic bilevel optimizers in a controlled
setting, we perform a benchmark on quadratic loss
functions described in Appendix C. Here F and G
are quadratic jointly in (z, x), allowing us to choose
freely the conditioning of F , G, and h. We take for the
Hessian and cross derivative matrices of each sample,
the empirical correlation of random vectors drawn with
a prescribed covariance matrix. The generation process
is detailed in Appendix C. In Figure 1, we report the
norm of the gradient of the value function function
with respect to time. Our first observation is that
among all the methods, SRBA and SABA converge
the fastest. These two solvers share two key ingredi-
ents: variance reduction and warm-starting. Variance
reduction makes the variance of the gradient estimate
go to zero without using decreasing step sizes. The
warm-starting strategy in both the approximation of
z∗(xt) and the approximation of v∗(xt) enables get-
ting an estimator of ∇h(xt) which is asymptotically
unbiased, without requiring an increasing number of
inner iterations or batch-size. Note that solvers using
Neumann iterations (VRBO, MRBO, stocBiO) fail to
converge because Neumann iterations provide a biased
estimate of v∗(x). Moreover, AmiIGO and stocBiO
evolve slowly after some iterations because they require
vanishing step sizes to converge. Finally, SRBA is
faster than SABA, which is consistent with the theory.

Hyperparameter selection We also run an ex-
periment on hyperparameter selection problem for ℓ2-
regularized logistic regression with the IJCNN1 dataset.
SRBA shows good performances in the experiment,
both in speed and accuracy. It is competitive with
other state-of-the-art methods AmIGO and SABA,
while going faster than Amigo and requiring less mem-
ory than SABA. VRBO –another extension of SARAH
for bilevel problems– is slower in all problems. This
is due to the burden of computing the approximate
hypergradient at each inner iteration without updat-
ing the outer parameter. We can also notice that in
the experiment on IJCNN1, the slowest method are

1https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html

method implementing Neumann approximations to ap-
proximate v∗(x). Note that this last experiment does
not include F2SA because we find that on this problem,
the norm of the iterates of F2SA goes towards infinity.
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Figure 1: Comparison of the behavior of SRBA with
other stochastic bilevel solvers. For each experiment,
the solvers are run with 10 different seeds and the me-
dian performance over these seeds is reported. The
shaded area corresponds to the performances between
the 20% and the 80% percentiles. The performances
are reported with respect to wall-clock time. Top:
Experiments on quadratic functions. We report the
gradient norm of the value function. Bottom: Hy-
perparameter selection with the IJCNN1 dataset.

6 Conclusion

In this paper, we have introduced SRBA, an algo-
rithm for bilevel empirical risk minimization. We have
demonstrated that the sample complexity of SRBA
is O((n+m)

1
2 ε−1) for any bilevel problem where the

inner problem is strongly convex. Then, we have demon-
strated that any bilevel empirical risk minimization al-
gorithm has a sample complexity of at least O(m

1
2 ε−1)

on some problems where the inner problem is strongly
convex. This demonstrates that SRBA is optimal, up
to constant factors, and that bilevel ERM is as hard
as single-level nonconvex ERM.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html


Mathieu Dagréou, Thomas Moreau, Samuel Vaiter, Pierre Ablin

References

Pierre Ablin, Gabriel Peyré, and Thomas Moreau.
Super-efficiency of automatic differentiation for func-
tions defined as a minimum. In International Con-
ference on Machine Learning (ICML), 2020.

Alekh Agarwal and Léon Bottou. A Lower Bound for
the Optimization of Finite Sums. In International
Conference on Machine Learning (ICML), 2015.

Michael Arbel and Julien Mairal. Amortized Implicit
Differentiation for Stochastic Bilevel Optimization.
In International Conference on Learning Represen-
tations (ICLR), 2022.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep
Equilibrium Models. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2019.

Yoshua Bengio. Gradient-Based Optimization of Hy-
perparameters. Neural Computation, 12(8):1889–
1900, 2000. ISSN 0899-7667, 1530-888X. doi:
10.1162/089976600300015187.

Léon Bottou. Large-Scale Machine Learning with
Stochastic Gradient Descent. In International Con-
ference on Computational Statistics (COMPSTAT),
pages 177–186, 2010.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Op-
timization methods for large-scale machine learning.
Siam Reviews, 60(2):223–311, 2018.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron
Sidford. Lower bounds for finding stationary points I.
Mathematical Programming, 184(1-2):71–120, 2020.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron
Sidford. Lower bounds for finding stationary points
II: First-order methods. Mathematical Programming,
185(1-2):315–355, 2021.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the
Gap: Tighter Analysis of Alternating Stochastic Gra-
dient Methods for Bilevel Problems. In Advances in
Neural Information Processing Systems (NeurIPS),
2021.

Ashok Cutkosky and Francesco Orabona. Momentum-
based variance reduction in non-convex SGD. In
Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and
Thomas Moreau. A framework for bilevel optimiza-
tion that enables stochastic and global variance re-
duction algorithms. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2022.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.
SAGA: A Fast Incremental Gradient Method With
Support for Non-Strongly Convex Composite Objec-
tives. In Advances in Neural Information Processing
Systems (NeurIPS), 2014.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong
Zhang. SPIDER: Near-Optimal Non-Convex Opti-
mization via Stochastic Path Integrated Differential
Estimator. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2018.

Luca Franceschi, Michele Donini, Paolo Frasconi, and
Massimiliano Pontil. Forward and Reverse Gradient-
Based Hyperparameter Optimization. In Interna-
tional Conference on Machine Learning (ICML),
2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Ric-
cardo Grazzi, and Massimilano Pontil. Bilevel Pro-
gramming for Hyperparameter Optimization and
Meta-Learning. In International Conference on Ma-
chine Learning (ICML), 2018.

Saeed Ghadimi and Guanghui Lan. Stochastic first-
and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23
(4):2341–2368, 2013.

Saeed Ghadimi and Mengdi Wang. Approximation
Methods for Bilevel Programming. arXiv preprint
arXiv:1802.02246, 2018.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil,
and Saverio Salzo. On the iteration complexity of
hypergradient computation. In Hal Daumé III and
Aarti Singh, editors, International Conference on
Machine Learning (ICML), 2020.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuo-
ran Yang. A Two-Timescale Stochastic Algorithm
Framework for Bilevel Optimization: Complexity
Analysis and Application to Actor-Critic. SIAM
Journal on Optimization, 33(1):147–180, 2023.

Quanqi Hu, Yongjian Zhong, and Tianbao Yang. Multi-
block Min-max Bilevel Optimization with Applica-
tions in Multi-task Deep AUC Maximization. In
Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Feihu Huang, Junyi Li, Shangqian Gao, and Heng
Huang. Enhanced Bilevel Optimization via Breg-
man Distance. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Kaiyi Ji and Yingbin Liang. Lower Bounds and Accel-
erated Algorithms for Bilevel Optimization. Journal
of Machine Learning Research, 24(22):1–56, 2023.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel
Optimization: Convergence Analysis and Enhanced
Design. In International Conference on Machine
Learning (ICML), 2021.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Lin-
ear Convergence of Gradient and Proximal-Gradient
Methods Under the Polyak-\Lojasiewicz Condi-
tion. In European Conference on Machine Learning
(ECML), 2016.



A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To
Wai, Zhaoran Wang, and Zhuoran Yang. A Near-
Optimal Algorithm for Stochastic Bilevel Optimiza-
tion via Double-Momentum. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and
Robert Nowak. A Fully First-Order Method for
Stochastic Bilevel Optimization. In International
Conference on Machine Leaning (ICML), 2023.

Junyi Li, Bin Gu, and Heng Huang. A Fully Single Loop
Algorithm for Bilevel Optimization without Hessian
Inverse. In Proceedings of the Thirty-sixth AAAI
Conference on Artificial Intelligence, AAAI’22, 2022.

Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy
Hospedales, Neil M. Robertson, and Yongxin Yang.
DADA: Differentiable Automatic Data Augmenta-
tion. arXiv preprint arXiv:2003.03780, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
DARTS: Differentiable Architecture Search. In In-
ternational Conference on Learning Representations
(ICLR), 2019.

Jonathan Lorraine, Paul Vicol, and David Duvenaud.
Optimizing Millions of Hyperparameters by Implicit
Differentiation. In International Conference on Ar-
tificial Intelligence and Statistics (AISTAT), pages
1540–1552, 2020.

Dougal Maclaurin, David Duvenaud, and Ryan P.
Adams. Gradient-based Hyperparameter Optimiza-
tion through Reversible Learning. In International
Conference on Machine Learning (ICML), 2015.

Thomas Moreau, Mathurin Massias, Alexandre Gram-
fort, Pierre Ablin, Pierre-Antoine Bannier Benjamin
Charlier, Mathieu Dagréou, Tom Dupré la Tour,
Ghislain Durif, Cassio F. Dantas, Quentin Klopfen-
stein, Johan Larsson, En Lai, Tanguy Lefort, Benoit
Malézieux, Badr Moufad, Binh T. Nguyen, Alain
Rakotomamonjy, Zaccharie Ramzi, Joseph Salmon,
and Samuel Vaiter. Benchopt: Reproducible, effi-
cient and collaborative optimization benchmarks. In
Advances in Neural Information Processing Systems
(NeurIPS), 2022.
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(b) The license information of the assets, if appli-
cable. Not applicable

(c) New assets either in the supplemental material
or as a URL, if applicable. Yes

(d) Information about consent from data
providers/curators. Not applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable
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Appendix A contains the necessary lemmas and proofs of Section 3. Appendix B contains the proof of the lower
bound for stochastic bilevel optimization. Appendix C details the setting of the numerical experiments. Finally,
Appendix D contains two more experiments on hyperparameter selection and datacleaning tasks.

A Convergence analysis of SRBA

A.1 Proof of Proposition 2.6

Proof. Let x ∈ Rd. Since G( . , x) is differentiable and z∗(x) minimizes G( . , x), the first order optimality condition
ensures ∇1G(z

∗(x), x) = 0 = Dz(z
∗(x), v∗(x), x). Since G is strongly convex with respect to z, the Hessian

∇2
11G(z

∗(x), x) is invertible. As a consequence, the equation in v

Dv(z
∗(x), v, x) = ∇2

11G(z
∗(x), x)v +∇1F (z

∗(x), x) = 0 (13)

admits a unique solution given by v∗(x).

A.2 Smoothness constant of h

We can find in Ghadimi and Wang (2018, Lemma 2.2) the following value for the smoothness constant of h

Lh = LF1 +
2LF1 L

G
2 + (LF0 )

2LG2
µG

+
LG11L

G
1 L

F
0 + LG1 L

G
2 L

F
0 + (LG1 )

2LF1
µ2
G

+
(LG1 )

2LG2 L
F
0

µ3
G

.

A.3 Proof of Proposition 3.2

Proof. Let t > 0 and k ∈ [q − 1]. For k = 0, we directly have E[∥Dt,k
• − D•(u

t,k)∥2] = 0. For k ≥ 1 and
r ∈ {1, . . . , k}, the bias/variance decomposition of Dt,r

• reads

Et,r[∥Dt,r
• −D•(u

t,r)∥2] = Et,r[∥Dt,r
• −Dt,r−1

• +D•(u
t,r−1)−D•(u

t,r)∥2]
+ ∥D•(u

t,r) +D•(u
t,r−1)−Dt,r−1

• −D•(u
t,r)∥2

= Et,r[∥Dt,r
• −Dt,r−1

• − (D•(u
t,r−1)−D•(u

t,r))∥2]
+ ∥Dt,r−1

• −D•(u
t,r−1)∥2

The term Et,r[∥Dt,r
• −Dt,r−1

• − (D•(u
t,r−1)−D•(u

t,r))∥2] is the variance of Dt,r
• −Dt,r−1

• , and then can written
as

Et,r[∥Dt,r
• −Dt,r−1

• − (D•(u
t,r−1)−D•(u

t,r))∥2] = Et,r[∥Dt,r
• −Dt,r−1

• ∥2]
− ∥D•(u

t,r)−D•(u
t,r−1)∥2

Plugging this in the previous inequality and taking the total expectation leads to

E[∥Dt,r
• −D•(u

t,r)∥2] = E[∥Dt,r
• −Dt,r−1

• ∥2]− E[∥D•(u
t,r)−D•(u

t,r−1)∥2]
+ E[∥Dt,r−1

• −Dt,r−1
• (ut,r−1)∥2]

Summing for r ∈ {1, . . . , k} and telescoping gives the final result (taking into account that Dt,0
• = D•(u

t,0)):

E[∥Dt,k
• −D•(u

t,k)∥2] =
k∑
r=1

E[∥Dt,r
• −Dt,r−1

• ∥2]−
k∑
r=1

E[∥D•(u
t,r)−D•(u

t,r−1)∥2] .
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A.4 Technical lemmas

Lemma A.1. There exists constant Lz∗ and Lv∗ such that for any x1, x2 ∈ Rd, we have

∥z∗(x1)− z∗(x2)∥ ≤ Lz∗∥x1 − x2∥ and ∥v∗(x1)− v∗(x2)∥ ≤ Lv∗∥x1 − x2∥

Proof. The Jacobian of z∗ reads dz∗(x) = [∇2
11G(z

∗(x), x)]−1∇2
12G(z

∗(x), x). By µG-strong convexity and
LG1 -smoothness of G, we have ∥dz∗(x)∥ ≤ LG

1

µG
which implies that z∗ is Lz∗ -Lipschtiz with Lz∗ =

LG
1

µG
.

For v∗ we do the computation directly:

∥v∗(x1)− v∗(x2)∥ = ∥[∇2
11G(z

∗(x1), x1)]
−1∇1F (z

∗(x1), x1)

− [∇2
11G(z

∗(x2), x2)]
−1∇1F (z

∗(x2), x2)∥
≤ ∥[∇2

11G(z
∗(x1), x1)]

−1(∇1F (z
∗(x1), x1)−∇1F (z

∗(x2), x2))∥
+ ∥([∇2

11G(z
∗(x1), x1)− [∇2

11G(z
∗(x2), x2)]

−1]−1∇1F (z
∗(x2), x2)∥

≤
(
LF1
µG

+
LG2 L

F
0

µ2
G

)
∥(z∗(x1), x1)− (z∗(x2), x2)∥

≤
(
LF1
µG

+
LG2 L

F
0

µ2
G

)
(∥z∗(x1)− z∗(x2)∥+ ∥x1 − x2∥)

≤
(
1 +

LG1
µG

)(
LF1
µG

+
LG2 L

F
0

µ2
G

)
∥x1 − x2∥

Then taking Lv∗ =
(
1 +

LG
1

µG

)(
LF

1

µG
+

LG
2 L

F
0

µ2
G

)
concludes the proof.

Lemma A.2. Let us consider the update directions Dt,k
z = ∆t,k

z /ρ, Dt,k
v = ∆t,k

v /ρ and Dt,k
x = ∆t,k

x /γ where
∆t,k
z , ∆t,k

v and ∆t,k
x verify Equations (7) to (9). Then it holds

E[∥Dt,k
z −Dz(u

t,k)∥2] ≤
k∑
r=1

LG1 (ρ
2E[∥Dt,r−1

z ∥2] + γ2E[∥Dt,r−1
z ∥2])

E[∥Dt,k
v −Dv(u

t,k)∥2] ≤ 4ρ2
(
(LG2 R)

2 + (LF1 )
2
) k∑
r=1

E[∥Dt,r−1
z ∥2] + 4ρ2(LG1 )

2
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ2
(
(LG2 R)

2 + (LF1 )
2
) k∑
r=1

E[∥Dt,r−1
x ∥2]

E[∥Dt,k
x −Dx(u

t,k)∥2] ≤ 4ρ2
(
(LG2 R)

2 + (LF1 )
2
) k∑
r=1

E[∥Dt,r−1
z ∥2] + 4ρ2(LG1 )

2
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ2
(
(LG2 R)

2 + (LF1 )
2
) k∑
r=1

E[∥Dt,r−1
x ∥2] .

Proof. Direction Dz

We start from Proposition 3.2.

E[∥Dt,k
z −Dz(u

t,k)∥2] = E[∥Dt,k
z −∇1G(z

t,k, xt,k)∥2]

=

k∑
r=1

E[∥Dt,r
z −Dt,r−1

z ∥2]−
k∑
r=1

E[∥∇1G(z
t,r, xt,r)−∇1G(z

t,r−1, xt,r−1)∥2]

≤
k∑
r=1

E[∥Dt,r
z −Dt,r−1

z ∥2]

≤
k∑
r=1

LG1 (ρ
2E[∥Dt,r−1

z ∥2] + γ2E[∥Dt,r−1
z ∥2])
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where the last inequality comes from the smoothness of each Gi.

Direction Dv For Dv, the proof is almost the same. Proposition 3.2 gives us

E[∥Dt,k
v −Dv(u

t,k)∥2] ≤
k∑
r=1

E[∥Dt,r
v −Dt,r−1

v ∥2] .

Then, using the boundedness of v and regularity of each Gi and Fj , we have

E[∥Dt,r
v −Dt,r−1

v ∥2] ≤ 2(E[∥∇2
11Gi(z

t,r, xt,r)vt,r −∇2
11Gi(z

t,r−1, xt,r−1)vt,r−1∥2]
+ E[∥∇2Fj(z

t,r, xt,r)−∇2Fj(z
t,r−1, xt,r−1)∥2])

≤ 4(E[∥∇2
11Gi(z

t,r, xt,r)(vt,r − vt,r−1)∥2]
+ E[∥(∇2

11Gi(z
t,r, xt,r)−∇2

11Gi(z
t,r−1, xt,r−1))vt,r−1∥2]

+ (LF1 )
2(γ2E[∥Dt,r−1

z ∥] + ρ2E[∥Dt,r−1
x ∥2]))

≤ 4((LG1 )
2ρ2E[∥Gt,r−1

v ∥2]
+ (LG2 )

2R2(ρ2E[∥Dt,r−1
z ∥] + γ2E[∥Dt,r−1

x ∥2])
+ (LF1 )

2(ρ2E[∥Dt,r−1
z ∥] + γ2E[∥Dt,r−1

x ∥2]))
≤ 4ρ2

(
(LG2 R)

2 + (LF1 )
2
)
E[∥Dt,r−1

z ∥2] + 4ρ2(LG1 )
2E[∥Gt,r−1

v ∥2]
+ 4γ2

(
(LG2 R)

2 + (LF1 )
2
)
E[∥Dt,r−1

x ∥2] .

Direction Dx The proof is the same as the proof for Dv.

A.5 Proof of Lemma 3.3

Let ϕz(z, x) = G(z, x) − G(z∗(x), x) the inner suboptimality gap. The proof of Lemma 3.3 is based on the
smoothness of ϕz, which is the object of the following lemma.
Lemma A.3. The function ϕz has Λz-Lipschitz continuous gradient on Rp × Rd, for some constant Λz.

Proof. For any (z, x) ∈ Rp × Rd, we have

∇1ϕz(z, x) = ∇1G(z, x) and ∇2ϕz(z, x) = ∇2G(z, x)−∇2G(z
∗(x), x) .

Let us consider (z, x) ∈ Rp × Rd and (z′, x′) ∈ Rp × Rd. Since ∇G is LG1 -Lipschitz continuous, we have directly

∥∇1ϕz(z, x)−∇1ϕz(z
′, x′)∥ ≤ LG1 ∥(z, x)− (z′, x′)∥ .

Moreover, we have

∥∇2ϕz(z, x)−∇2ϕz(z
′, x′)∥ ≤ ∥∇2G(z, x)−∇2G(z

′, x′)∥
+ ∥∇2G(z

∗(x), x)−∇2G(z
∗(x′), x′)∥

≤ LG1 ∥(z, x)− (z′, x′)∥+ LG1 ∥(z∗(x), x)− (z∗(x′), x′)∥
≤ LG1 ∥(z, x)− (z′, x′)∥+ LG1 (∥z∗(x)− z∗(x′)∥+ ∥x− x′∥) .

From Lemma A.1, z∗ is L∗ Lipschitz continuous, so

∥∇2ϕz(z, x)−∇2ϕz(z
′, x′)∥ ≤ LG1 ∥(z, x)− (z′, x′)∥+ LG1 (∥z∗(x)− z∗(x′)∥+ ∥x− x′∥)

≤ LG1 ∥(z, x)− (z′, x′)∥+ LG1 (L∗ + 1)∥x− x′∥
≤ LG1 (Lz∗ + 2)∥(z, x)− (z′, x′)∥ .

As a consequence

∥∇ϕz(z, x)−∇ϕz(z′, x′)∥ ≤ ∥∇1ϕz(z, x)−∇1ϕz(z
′, x′)∥+ ∥∇2ϕz(z, x)−∇2ϕz(z

′, x′)∥
≤ LG1 (Lz∗ + 3)∥(z, x)− (z′, x′)∥ .

Hence, ϕz is Λz smooth with Λz = LG1 (Lz∗ + 3).
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We can now turn to the proof of Lemma 3.3.

Proof. The smoothness of ϕz provides us the following upper bound

ϕz(z
t,k+1, xt,k+1) ≤ ϕz(z

t,k, xt,k)− ρ⟨Dt,k
z ,∇1G(z

t,k, xt,k)⟩+ Λz
2
ρ2∥Dt,k

z ∥2 (14)

− γ⟨Dt,k
x ,∇2G(z

t,k, xt,k)−∇2G(z
∗(xt,k), xt,k)⟩+ Λz

2
γ2∥Dt,k

x ∥2 .

Using the equality ⟨a, b⟩ = 1
2 (∥a∥

2 + ∥b∥2 − ∥a− b∥2), we get

−⟨Dt,k
z ,∇1G(z

t,k, xt,k)⟩+ Λz
2
ρ∥Dt,k

z ∥2 =
1

2
(∥Dt,k

z −∇1G(z
t,k, xt,k)∥2 (15)

− ∥∇1G(z
t,k, xt,k)∥2 − (1− Λzρ) ∥Dt,k

z ∥2) .

Plugging Equation (15) into Equation (14) and tacking the expectation conditionally to the past iterates yields

Et,k[ϕt,k+1
z ] ≤ ϕt,kz +

ρ

2
Et,k[∥Dt,k

z −∇1G(z
t,k, xt,k)∥2] (16)

− ρ

2
∥∇1G(z

t,k, xt,k)∥2 − ρ

2
(1− Λzρ)Et,k[∥Dt,k

z ∥2]

− γ⟨Et,k[Dt,k
x ],∇2G(z

t,k, xt,k)−∇2G(z
∗(xt,k), xt,k)⟩+ Λz

2
γ2Et,k[∥Dt,k

x ∥2] .

From Young inequality, we have for any c > 0

⟨Et,k[Dt,k
x ],∇2G(z

t,k, xt,k)−∇2G(z
∗(xt,k), xt,k)⟩ ≤ 1

2c
∥Et,k[Dt,k

x ]∥2 (17)

+
c

2
∥∇2G(z

t,k, xt,k)−∇2G(z
∗(xt,k), xt,k)∥2

The smoothness of G and strong convexity give us

∥∇2G(z
t,k, xt,k)−∇2G(z

∗(xt,k), xt,k)∥2 ≤ LG1 ∥zt,k − z∗(xt,k)∥2 ≤ 2LG1
µG

ϕz(z
t,k, xt,k) (18)

Let us denote L′ =
LG

1

µG
. Plugging Inequalities (17) and (18) into Equation (16) yields

Et,k[ϕz(zt,k+1, xt,k+1)] ≤ (1 + cL′γ)ϕz(z
t,k+1, xt,k+1)− ρ

2
Et,k[∥∇1G(z

t,k, xt,k)∥2] (19)

+
ρ

2
Et,k[∥Dt,k

z −∇1G(z
t,k, xt,k)∥2]− ρ

2
(1− Λzρ)Et,k[∥Dt,k

z ∥2]

+
γ

2c
∥Et,k[Dt,k

x ]∥2 + Λz
2
γ2Et,k[∥Dt,k

x ∥2]

From Lemma A.2, we have

E[∥Dt,k
z −∇1G(z

t,k, xt,k)∥2] ≤
k∑
r=1

LG1 (ρ
2E[∥Dt,r−1

z ∥2] + γ2E[∥Dt,r−1
z ∥2]) .

Taking the total expectation and plugging the previous inequality into Equation (19) yields

ϕt,k+1
z ≤ (1 + cL′γ)ϕt,k +

LG1
2

k∑
r=1

(ρ3E[∥Dt,r−1
z ∥2] + γ2ρE[∥Dt,r−1

x ∥2]) (20)

− ρ

2
E[∥∇1G(z

t,k, xt,k)∥2]− ρ

2
(1− Λzρ)E[∥Dt,k

z ∥2]

+
γ

2c
E[∥E[Dt,k

x ]∥2] + Λz
2
γ2E[∥Dt,k

x ∥2]
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Since G is µG-strongly convex with respect to z, Polyak-Łojasiewicz inequality holds:

∥∇1G(z
t,k, xt,k)∥2 ≥ 2µGϕz(z

t,k, xt,k)

As a consequence, Equation (20) becomes

ϕt,k+1
z ≤ (1 + cL′γ − µGρ)ϕ

t,k +
LG1
2

k∑
r=1

(ρ3E[∥Dt,r−1
z ∥2] + γ2ρE[∥Dt,r−1

x ∥2])

− ρ

2
(1− Λzρ)E[∥Dt,k

z ∥2] + γ

2c
E[∥E[Dt,k

x ]∥2] + Λz
2
γ2E[∥Dt,k

x ∥2]

Taking c = µGρ
2L′γ yields

ϕt,k+1
z ≤

(
1− µG

2
ρ
)
ϕt,k +

LG1
2

k∑
r=1

(ρ3E[∥Dt,r−1
z ∥2] + γ2ρE[∥Dt,r−1

x ∥2])

− ρ

2
(1− Λzρ)E[∥Dt,k

z ∥2] + L′

µG

γ2

ρ
E[∥E[Dt,k

x ]∥2] + Λz
2
γ2E[∥Dt,k

x ∥2]

For the term E[∥Et,k[Dt,k
z ]∥2], we have

E[∥Et,k[Dt,k
x ]∥2] = E[∥Dx(z

t,k, vt,k, xt,k)−Dx(z
t,k−1, vt,k−1, xt,k−1) +Dt,k−1

x ∥2]
= E[∥Dx(z

t,k, vt,k, xt,k)−Dx(z
t,k−1, vt,k−1, xt,k−1)− E[Dt,k−1

x ]∥2]
+ E[∥Dt,k−1

x − E[Dt,k−1
x ]∥2]

= E[∥Dx(z
t,k, vt,k, xt,k)∥2] (21)

+ E[∥Dt,k−1
x −Dx(z

t,k−1, vt,k−1, xt,k−1)∥2] .

Using Lemma A.2, we get

E[∥Dt,k−1
x −Dx(u

t,k−1)∥2] ≤ 4ρ2
(
(LG2 R)

2 + (LF1 )
2
) k−1∑
r=1

E[∥Dt,r−1
z ∥2]

+ 4ρ2(LG1 )
2
k−1∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ2
(
(LG2 R)

2 + (LF1 )
2
) k−1∑
r=1

E[∥Dt,r−1
x ∥2] .

Putting all together yields

ϕt,k+1
z ≤

(
1− µG

2
ρ
)
ϕt,k − ρ

2
(1− Λzρ)E[∥Dt,k

z ∥2] + Λz
2
γ2E[∥Dt,k

x ∥2] (22)

+
L′

µG

γ2

ρ
E[∥Dt,k

x (ut,k)∥2] + 4(LG1 )
2 L

′

µG
γ2ρ

k∑
r=1

E[∥Gt,r−1
v ∥2]

+ ρ

[
ρ2
LG1
2

+
4(LG2 R)

2L′

µG
γ2 +

4(LF1 )
2L′

µG
γ2
] k∑
r=1

E[∥Dt,r−1
z ∥2]

+ γ2
[
ρ
LG1
2

+ 4(LG2 R)
2 L

′

µG

γ2

ρ
+ 4(LF1 )

2 L
′

µG

γ2

ρ

] k∑
r=1

E[∥Dt,r−1
x ∥2]

By assumption, γ ≤ Czρ, with Cz =
√

µGLG
1

8L′((LG
2 R)2+(LF

1 )2)
therefore
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ϕt,k+1
z ≤

(
1− µG

2
ρ
)
ϕt,kz − ρ

2
(1− Λzρ)E[∥Dt,k

z ∥2] + Λz
2
γ2E[∥Dt,k

x ∥2]

+
L′

µG

γ2

ρ
E[∥Dt,k

x (ut,k)∥2] + ρ3LG1

k∑
r=1

E[∥Dt,r−1
z ∥2]

+ 4(LG1 )
2 L

′

µG
γ2ρ

k∑
r=1

E[∥Gt,r−1
v ∥2] + γ2ρLG1

k∑
r=1

E[∥Dt,r−1
x ∥2]

≤
(
1− µG

2
ρ
)
ϕt,k − ρ

2
(1− Λzρ)V

t,k
z +

Λz
2
γ2V t,kx + βzx

γ2

ρ
E[∥Dt,k

x (ut,k)∥2]

+ ρ3βzzVt,kz + γ2ρβzvVt,kv + γ2ρβzxVt,kx

with βzz = LG1 , βzv =
4(LG

1 )2L′

µG
, βzx = LG1 and βzx = L′

µG
.

A.6 Proof of Lemma 3.4

Recall that we denote Ψ(z, v, x) = 1
2v

⊤∇2
11G(z, x)v + ∇1F (z, x)

⊤v and ϕv(v, x) = Ψ(z∗(x), v, x) −
Ψ(z∗(x), v∗(x), x). As for Lemma 3.3, the key property we need is the smoothness of ϕv. The derivatives
of ϕv involve the third derivative of G. For a tensor T ∈ Rp1×p2×p3 and a vector a ∈ Rp3 we denote (T |a) the
matrix in Rp1×p2 defined by:

(T |a) =

[
p3∑
k=1

Ti,j,kak

]
1≤i≤p1
1≤j≤p2

.

Lemma A.4. The function ϕv has Λv-Lipschitz continuous gradient on Γ× Rd, for some constant Λv.

Proof. For any (v, x) ∈ Γ× Rd, we have

∇1ϕv(v, x) = Dv(z
∗(x), v, x)

and

∇2ϕv(v, x) = (dz∗(x))⊤
[
1

2
(∇3

111G(z
∗(x), x)|v)v − 1

2
(∇3

111G(z
∗(x), x)|v∗(x))v∗(x)

+∇2
11F (z

∗(x), x)v −∇2
11F (z

∗(x), x)v∗(x)
]

+

[
1

2
(∇3

211G(z
∗(x), x)|v)v − 1

2
(∇3

211G(z
∗(x), x)|v∗(x))v∗(x)

+∇2
21F (z

∗(x), x)v −∇2
21F (z

∗(x), x)v∗(x)
]
.

Let us consider (v, x) ∈ Γ× Rd and (v′, x′) ∈ Γ× Rd. We have

∥∇1ϕv(v, x)−∇1ϕv(v
′, x′)∥ ≤ ∥∇2

11G(z
∗(x), x)v −∇2

11G(z
∗(x′), x′)v′∥

+ ∥∇1F (z
∗(x), x)−∇1F (z

∗(x′), x′)∥

For the first term,

∥∇2
11G(z

∗(x), x)v −∇2
11G(z

∗(x′), x′)v′∥ ≤ ∥∇2
11G(z

∗(x), x)(v − v′)∥
+ ∥(∇2

11G(z
∗(x), x)−∇2

11G(z
∗(x′), x′))v′∥

+ ∥∇2
11G(z

∗(x′), x′)(v − v′)∥
≤ 2LG1 ∥v − v′∥+ LG2 (Lz∗ + 1)∥v′∥∥x− x′∥
≤ [2LG1 + LG2 (Lz∗ + 1)R]∥(v, x)− (v′, x′)∥
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For the second terms, we use the smoothness of F and the Lipschitz continuity of z∗ (Lemma A.1):

∥∇1F (z
∗(x), x)−∇1F (z

∗(x′), x′)∥ ≤ LF1 ∥(z∗(x), x)− (z∗(x′), x′)∥
≤ LF1 (∥z∗(x)− z∗(x′)∥+ ∥x− x′∥)
≤ LF1 (Lz∗ + 1)∥x− x′∥
≤ LF1 (Lz∗ + 1)∥(x, v)− (x′, v′)∥ .

As a consequence
∥∇1ϕv(v, x)−∇1ϕv(v

′, x′)∥ ≤ Λ1∥(v, x)− (v′, x′)∥ (23)

with
Λ1 = LF1 (Lz∗ + 1) + 2LG1 + LG2 (Lz∗ + 1)R . (24)

To prove the Lipschitz continuity of ∇2ϕv, we remark that ∇3
111G, ∇3

211G are Lipschitz and bounded by assumption.
(v 7→ v) is Lipschitz and bounded on Γ. Also by Lemma A.1, z∗ and v∗ are Lipschitz and bounded. Finally, dz∗
is bounded (Lemma A.1) and Lipschitz according to Chen et al. (2021)[Lemma 9]. As a consequence, ∇2ϕv is
Λ2-Lpischitz for some constant Λ2 > 0. Hence, ∇ϕv is Λv-Lipschitz continuous with Λv = Λ1 + Λ2.

Lemma A.5. Let t > 0. For k ∈ [q − 1], we have

0 ≤ −
〈
1

ρ
(vt,k+1 − vt,k) +Dt,k

v , vt,k+1 − vt,k
〉

Proof. The function ιΓ being convex (since Γ is convex), let us consider its sub-differential

∂ιγ(v) = {η ∈ Rp,∀v′ ∈ Rp, ιΓ(v′) ≥ ιΓ(v) + ⟨η, v′ − v⟩}

By definition

vt,k+1 = argmin
v

(ιΓ(v) +
1

2ρ
∥v − (vt,k − ρDt,k

v )∥2) .

Using Fermat’s rule, we get

−1

ρ
(vt,k+1 − vt,k)−Dt,k

v ∈ ∂ιΓ(v
t,k+1) .

We can use the definition of the sub-differential with η = − 1
ρ (v

t,k+1 − vt,k)−Dt,k
v to get

ιΓ(v
t,k+1)︸ ︷︷ ︸
=0

≤ ιΓ(v
t,k)︸ ︷︷ ︸

=0

−
〈
1

ρ
(vt,k+1 − vt,k) +Dt,k

v , vt,k+1 − vt,k
〉

.

We can now turn to the proof of Lemma 3.4.

Proof. The smoothness of ϕv provides us the following upper bound

ϕv(v
t,k+1, xt,k+1) ≤ ϕv(v

t,k, xt,k) + ⟨ΠΓ(v
t,k − ρDt,k

v )− vt,k, Dv(z
∗(xt,k), vt,k, xt,k)⟩ (25)

+
Λv
2
ρ2∥ΠΓ(v

t,k − ρDt,k
v )− vt,k∥2

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .
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Let us denote ∆t,k
Π = ΠΓ(v

t,k − ρDt,k
v )−ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k)). Adding and subtracting

⟨ΠΓ(v
t,k − ρDv(z

∗(xt,k), vt,k, xt,k)− vt,k, Dv(z
∗(xt,k), vt,k, xt,k)⟩

+
Λv
2
∥ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k)− vt,k∥2

yields

ϕv(v
t,k+1, xt,k+1) ≤ ϕv(v

t,k, xt,k) + ⟨∆t,k
Π , Dv(z

∗(xt,k), vt,k, xt,k)⟩ (26)

+
Λv
2
∥ΠΓ(v

t,k − ρDv(z
∗(xt), vt,k, xt,k))− vt,k∥2

+ ⟨ΠΓ(v
t,k − ρDv(z

∗(xt,k), vt,k, xt,k))− vt,k, Dv(z
∗(xt,k), vt,k, xt,k)⟩

+
Λv
2
∥∆t,k

Π ∥2 + Λv⟨∆t,k
Π ,ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k⟩

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .

Taking ρ ≤ 1
Γv

gives

ϕv(v
t,k+1, xt,k+1) ≤ ϕv(v

t,k, xt,k) + ⟨∆t,k
Π , Dv(z

∗(xt,k), vt,k, xt,k)⟩ (27)

+
1

2ρ
∥ΠΓ(v

t,k − ρDv(z
∗(xt), vt,k, xt,k))− vt,k∥2

+ ⟨ΠΓ(v
t,k − ρDv(z

∗(xt,k), vt,k, xt,k))− vt,k, Dv(z
∗(xt,k), vt,k, xt,k)⟩

+
Λv
2
∥∆t,k

Π ∥2 + Λv⟨∆t,k
Π ,ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k⟩

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .

Let ιΓ the indicator function of the convex set Γ. Similarly to Karimi et al. (2016, Equation 13) we define for any
α > 0 and v ∈ Rp

DιΓ(v, x, α) = −2α min
v′∈Rp

[
⟨∇1ϕv(v, x), v

′ − v⟩+ α

2
∥v′ − v∥2 + ιΓ(v

′)− ιΓ(v)
]
.

Hence, for v ∈ Γ and x ∈ Rd, we have

−ρ
2
DιΓ

(
v, x,

1

ρ

)
= ⟨ΠΓ(v − ρDv(z

∗(x), v, x))− v,Dv(z
∗(x), v, x)⟩

+
1

2ρ
∥ΠΓ(v − ρDv(z

∗(x), v, x))− v∥2 .

Therefore, Equation (27) can be written as

ϕv(v
t,k+1, xt,k+1) ≤ ϕv(v

t,k, xt,k)− ρ

2
DιΓ

(
vt,k, xt,k,

1

ρ

)
+ ⟨∆t,k

Π , Dv(z
∗(xt,k), vt,k, xt,k)⟩

+
Λv
2
∥∆t,k

Π ∥2 + Λv⟨∆t,k
Π ,ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k⟩

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .

By strong convexity of ϕv with respect top v and smoothness, we have DιΓ(vt,k, xt,k,Λv) ≥ 2µGϕv(v
t,k, xt,k).

According to Karimi et al. (2016, Lemma 1), DιΓ(vt,k, xt,k, •) is an increasing function. As a consequence, since
Λv ≤ 1

ρ , we have DιΓ
(
vt,k, xt,k, 1ρ

)
≥ 2µGϕv(v

t,k, xt,k). This leads to

ϕv(v
t,k+1, xt,k+1) ≤ (1− ρµG)ϕv(v

t,k, xt,k) + ⟨∆t,k
Π , Dv(z

∗(xt,k), vt,k, xt,k)⟩ (28)

+
Λv
2
∥∆t,k

Π ∥2 + Λv⟨∆t,k
Π ,ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k⟩

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .



A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization

The non-expansiveness of ΠΓ yields

∥∆t,k
Π ∥ ≤ ρ∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥ (29)

and

∥ΠΓ(v
t,k − ρDv(z

∗(xt,k), vt,k, xt,k)− vt,k︸︷︷︸
∈Γ

∥ = ∥ΠΓ(v
t,k − ρDv(z

∗(xt,k), vt,k, xt,k))−ΠΓ(v
t,k)∥

≤ ρ∥Dv(z
∗(xt,k), vt,k, xt,k)∥ . (30)

Moreover, using Equation (29) and Young Inequality, we have for any c > 0

⟨∆t,k
Π , Dv(z

∗(xt,k), vt,k, xt,k)⟩ ≤ c

2
∥∆Π∥2 +

1

2c
∥Dv(z

∗(xt,k), vt,k, xtk,)∥2

≤ cρ2

2
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2

+
1

2c
∥Dv(z

∗(xt,k), vt,k, xtk,)−Dv(z
∗(xt,k), v∗(xt,k), xtk,)︸ ︷︷ ︸

=0

∥2

≤ cρ2

2
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2 (31)

+
LG1
µGc

ϕv(v
t,k, xt,k)

Plugging Equation (31) into Equation (28) with c = 2LG
1

µ2
Gρ

yields

ϕv(v
t,k+1, xt,k+1) ≤

(
1− ρµG

2

)
ϕv(v

t,k, xt,k) +
LG1 ρ

µ2
G

∥Dt,k
v −Dv(z

∗(xt,k), vt,k, xt,k)∥2 (32)

+
Λv
2
∥∆t,k

Π ∥2 + Λv⟨∆t,k
Π ,ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k⟩

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .

Using Equation (29), Equation (30) and Young Inequality for d > 0 yields

⟨∆t,k
Π ,ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k⟩ ≤ d

2
∥∆t,k

Π ∥2

+
1

2d
∥ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k∥2

≤ dρ2

2
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2 (33)

+
ρ2

2d
∥Dv(z

∗(xt,k), vt,k, xt,k)∥2

≤ dρ2

2
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2 (34)

+
LG1 ρ

2

µGd
ϕv(v

t,k, xt,k) .

Plugging Equation (34) into Equation (32) with d =
4LG

1 Λv)ρ

µ2
G

gives

ϕv(v
t,k+1, xt,k+1) ≤

(
1− ρµG

4

)
ϕv(v

t,k, xt,k) (35)

+

[
LG1 ρ

µ2
G

+
2LG1 Λ

2
vρ

3

µ2
G

]
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2

+
Λv
2
∥∆t,k

Π ∥2

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .
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Using once again (29), we get

ϕv(v
t,k+1, xt,k+1) ≤

(
1− ρµG

4

)
ϕv(v

t,k, xt,k) (36)

+

[
LG1 ρ

µ2
G

+
2LG1 Λ

2
vρ

3

µ2
G

+
Λvρ

2

2

]
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .

By Lemma A.5, we have for any α > 0

0 ≤ −α
〈
1

ρ
(vt,k+1 − vt,k) +Dt,k

v , vt,k+1 − vt,k
〉

.

By adding this to Equation (36), we get

ϕv(v
t,k+1, xt,k+1) ≤

(
1− ρµG

4

)
ϕv(v

t,k, xt,k) (37)

− α

ρ
∥vt,k+1 − vt,k∥2 − α⟨Dt,k

v , vt,k+1 − vt,k⟩

+

[
LG1 ρ

µ2
G

+
2LG1 Λ

2
vρ

3

µ2
G

+
Λvρ

2

2

]
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .

We can control −
〈
Dt,k
v , vt,k+1 − vt,k

〉
by Cauchy-Schwarz and Young for some c, d, e, f > 0

−
〈
Dt,k
v , vt,k+1 − vt,k

〉
= −

〈
Dv(z

∗(xt,k), vt,k, xt,k),ΠΓ(v
t,k − ρDv(z

∗(xt,k), vt,k, xt,k)− vt,k
〉

−
〈
Dv(z

∗(xt,k), vt,k, xt,k),∆t,k
Π

〉
−
〈
Dt,k
v −Dv(z

∗(xt,k), vt,k, xt,k),ΠΓ(v
t,k − ρDv(z

∗(x)))− vt,k
〉

−
〈
Dt,k
v −Dv(z

∗(xt,k), vt,k, xt,k),∆t,k
Π

〉
≤ c

2
∥Dv(z

∗(xt,k), vt,k, xt,k)∥2

+
1

2c
∥ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k∥2

+
d

2
∥Dv(z

∗(xt,k), vt,k, xt,k)∥2 + 1

2d
∥∆t,k

Π ∥2

+
e

2
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2

+
1

2e
∥ΠΓ(v

t,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k∥2

+
f

2
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2 + 1

2f
∥∆t,k

Π ∥2

≤
(
c+ d

2
+ ρ2

(
1

2c
+

1

2e

))
∥Dv(z

∗(xt,k), vt,k, xt,k)∥2

+

(
e+ f

2
+ ρ2

(
1

2d
+

1

2f

))
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2

≤
(
c+ d

2
+ ρ2

(
1

2c
+

1

2e

))
2LG1
µG

ϕv(v
t,k, xt,k)

+

(
e+ f

2
+ ρ2

(
1

2d
+

1

2f

))
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2

Let us take c = d = e = f = ρ. We get

−
〈
Dt,k
v , vt,k+1 − vt,k

〉
≤ 4LG1

µG
ρϕv(v

t,k, xt,k) + 2ρ∥Dt,k
v −Dv(z

∗(xt,k), vt,k, xt,k)∥2 . (38)
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Then, by plugging the last Inequality in Equation (37) and setting α =
µ2
G

32LG
1

, we end up with

ϕv(v
t,k+1, xt,k+1) ≤

(
1− µG

8
ρ
)
ϕv(v

t,k, xt,k)− α

ρ
∥vt,k+1 − vt,k∥2

+ ρ

[
LG1
µ2
G

+
µ2
G

16LG1
+

Λvρ

2
+

2LG1 Λ
2
vρ

2

µ2
G

]
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2

≤
(
1− µG

8
ρ
)
ϕv(v

t,k, xt,k)− µ2
G

32LG1
ρ∥Gt,kv ∥2

+ ρ

[
LG1
µ2
G

+
µ2
G

16LG1
+

Λvρ

2
+

2LG1 Λ
2
vρ

2

µ2
G

]
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .

Since ρ ≤ Bv ≜
[
LG

1

µ2
G
+

µ2
G

16LG
1

]
min

(
2
Λv
, µG√

2LG
1 Λv

)
yields

ϕv(v
t,k+1, xt,k+1) ≤

(
1− µG

8
ρ
)
ϕv(v

t,k, xt,k)− µ2
G

32LG1
ρ∥Gt,kv ∥2

+ 3ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
∥Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2

≤
(
1− µG

8
ρ
)
ϕv(v

t,k, xt,k)− µ2
G

32LG1
ρ∥Gt,kv ∥2 (39)

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
∥Dt,k

v −Dv(u
t,k)∥2

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
∥Dv(u

t,k)−Dv(z
∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2∥Dt,k

x ∥2 .

Tacking the expectation conditionally to the past iterates yields

Et,k[ϕv(vt,k+1, xt,k+1)] ≤
(
1− µG

8
ρ
)
ϕv(v

t,k, xt,k)− µ2
G

32LG1
ρEt,k[∥Gt,kv ∥2] (40)

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
Et,k[∥Dt,k

v −Dv(u
t,k)∥2]

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
Et,k[∥Dv(u

t,k)−Dv(z
∗(xt,k), vt,k, xt,k)∥2]

− γ⟨Et,k[Dt,k
x ],∇2ϕv(v

t,k, xt,k)⟩+ Λv
2
γ2Et,k[∥Dt,k

x ∥2] .

From Young inequality, we have for any c > 0

⟨Et,k[Dt,k
x ],∇2ϕv(v

t,k, xt,k)⟩ ≤ c−1∥Et,k[Dt,k
x ]∥2 + c∥∇2ϕv(v

t,k, xt,k)∥2 . (41)

Moreover, using the Lipschitz continuity of z∗, of ∇2
11G and ∇F and the fact that v and v∗ are bounded, we have

∥∇2ϕv(v, x)∥ ≤ ∥dz ∗ (x)∥
[∥∥∥∥12(∇3

111G(z
∗(x), x)|v)v − 1

2
(∇3

111G(z
∗(x), x)|v∗(x))v∗(x)

∥∥∥∥
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+∥∇2
11F (z

∗(x), x)v −∇2
11F (z

∗(x), x)v∗(x)∥
]

+ ∥1
2
(∇3

211G(z
∗(x), x)|v)v − 1

2
(∇3

211G(z
∗(x), x)|v∗(x))v∗(x)∥

+ ∥∇2
21F (z

∗(x), x)v −∇2
21F (z

∗(x), x)v∗(x)∥

≤ L∗

[∥∥∥∥12(∇3
111G(z

∗(x), x)|v − v∗(x))v − 1

2
(∇3

111G(z
∗(x), x)|v∗(x))(v − v∗(x))

∥∥∥∥
+LF2 ∥v − v∗(x)∥

]
+

∥∥∥∥12(∇3
211G(z

∗(x), x)|v − v∗(x))v − 1

2
(∇3

211G(z
∗(x), x)|v∗(x))(v − v∗(x))

∥∥∥∥
+ LF2 ∥v − v∗(x)∥

≤ L∗

[∥∥∥∥12(∇3
111G(z

∗(x), x)|v − v∗(x))v

∥∥∥∥
+

∥∥∥∥12(∇3
111G(z

∗(x), x)|v∗(x))(v − v∗(x))

∥∥∥∥+ LF2 ∥v − v∗(x)∥
]

+

∥∥∥∥12(∇3
211G(z

∗(x), x)|v − v∗(x))v

∥∥∥∥
+

∥∥∥∥12(∇3
211G(z

∗(x), x)|v∗(x))(v − v∗(x))

∥∥∥∥+ LF2 ∥v − v∗(x)∥

≤ L∗

[
LG2
2

(∥v∥+ ∥v∗(x)∥)∥v − v∗(x))∥+ LF2 ∥v − v∗(x)∥
]

+
LG2
2

(∥v∥+ ∥v∗(x)∥)∥v − v∗(x))∥+ LF2 ∥v − v∗(x)∥

≤ (L∗ + 1)
[
LG2 R+ LF2

]
∥v − v∗(x)∥ .

On the other hand, we have by strong convexity

∥v − v∗(x)∥2 ≤ 2

µG
ϕv(v, x) .

As a consequence, we have

∥∇2ϕv(v
t,k, xt,k)∥2 ≤ L′′ϕv(v

t,k, xt,k) (42)

with L′′ =
2(L∗+1)2[LG

2 R+LF
2 ]

2

µG
.

Plugging Inequalities (41) and (42) into (40) yields

Et,k[ϕv(vt,k+1, xt,k+1)] ≤
(
1− µG

8
ρ+ cL′′γ

)
ϕv(v

t,k, xt,k)− µ2
G

32LG1
ρEt,k[∥Gt,kv ∥2]

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
Et,k[∥Dt,k

v −Dv(u
t,k)∥2]

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
Et,k[∥Dv(u

t,k)−Dv(z
∗(xt,k), vt,k, xt,k)∥2]

+
γ

c
∥Et,k[Dt,k

x ]∥2 + Λv
2
γ2Et,k[∥Dt,k

x ∥2] .

The Lipschitz continuity of ∇2
11G and ∇1F and the boundedness of v give us

∥Dv(u
t,k)−Dv(z

∗(xt,k), vt,k, xt,k)∥2 ≤
(
∥∇2

11G(z
t,k, xt,k)vt,k −∇2

11G(z
∗(xt,k), xt,k)vt,k∥

+∥∇1F (z
t,k, xt,k)−∇1F (z

∗(xt,k), xt,k)∥
)2

≤ (LG2 R+ LF1 )
2∥zt,k − z∗(xt,k)∥2

≤ 2(LG2 R+ LF1 )
2

µG
ϕz(z

t,k, xt,k) .
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As a consequence

Et,k[ϕv(vt,k+1, xt,k+1)] ≤
(
1− µG

8
ρ+ cL′′γ

)
ϕv(v

t,k, xt,k)− µ2
G

32LG1
ρEt,k[∥Gt,kv ∥2] (43)

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
Et,k[∥Dt,k

v −Dv(u
t,k)∥2]

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
2(LG2 R+ LF1 )

2

µG
ϕz(z

t,k, xt,k)

+
γ

c
∥Et,k[Dt,k

x ]∥2 + Λv
2
γ2Et,k[∥Dt,k

x ∥2] .

From Lemma A.2, we have

E[∥Dt,k
v −Dv(u

t,k)∥2] ≤ 4ρ2
(
(LG2 R)

2 + (LF1 )
2
) k∑
r=1

E[∥Dt,r−1
z ∥2] + 4ρ2(LG1 )

2
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ2
(
(LG2 R)

2 + (LF1 )
2
) k∑
r=1

E[∥Dt,r−1
x ∥2]

Taking the total expectation and plugging the previous inequality in Equation (43) yields

ϕt,k+1
v ≤

(
1− µG

8
ρ+ cL′′γ

)
ϕt,kv − µ2

G

32LG1
ρEt,k[∥Gt,kv ∥2]

+ 24ρ3
(
(LG2 R)

2 + (LF1 )
2
)(LG1

µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[∥Dt,r−1
z ∥2]

+ 24ρ3(LG1 )
2

(
LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 24ργ2
(
(LG2 R)

2 + (LF1 )
2
)(LG1

µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[∥Dt,r−1
x ∥2]

+

[
LG1
µ2
G

+
µ2
G

16LG1

]
12(LG2 R+ LF1 )

2

µG
ρϕt,kz

+
γ

c
E[∥[Et,kDt,k

x ]∥2] + Λv
2
γ2E[∥Dt,k

x ∥2] .

Taking c = µGρ
16L′′γ yields

ϕt,k+1
v ≤

(
1− µG

16
ρ
)
ϕt,kv − µ2

G

32LG1
ρEt,k[∥Gt,kv ∥2]

+ 24ρ3
(
(LG2 R)

2 + (LF1 )
2
)(LG1

µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[∥Dt,r−1
z ∥2]

+ 24ρ3(LG1 )
2

(
LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 24ργ2
(
(LG2 R)

2 + (LF1 )
2
)(LG1

µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[∥Dt,r−1
x ∥2]

+

[
LG1
µ2
G

+
µ2
G

16LG1

]
12(LG2 R+ LF1 )

2

µG
ρϕt,kz

+
16L′′

µG

γ2

ρ
E[∥[Et,kDt,k

x ]∥2] + Λv
2
γ2E[∥Dt,k

x ∥2] .
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Combining Equation (21) and Lemma A.2 yields

ϕt,k+1
v ≤

(
1− µG

16
ρ
)
ϕt,kv − µ2

G

32LG1
ρEt,k[∥Gt,kv ∥2]

+ 8ρ
(
(LG2 R)

2 + (LF1 )
2
) [

3

(
LG1
µ2
G

+
µ2
G

16LG1

)
ρ2 +

8L′′

µG
γ2
] k∑
r=1

E[∥Dt,r−1
z ∥2]

+ 8ρ(LG1 )
2

[
3

(
LG1
µ2
G

+
µ2
G

16LG1

)
ρ2 +

8L′′

µG
γ2
] k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 8γ2
(
(LG2 R)

2 + (LF1 )
2
) [

3

(
LG1
µ2
G

+
µ2
G

16LG1

)
γ +

8L′′

µG

γ2

ρ

] k∑
r=1

E[∥Dt,r−1
x ∥2]

+

[
LG1
µ2
G

+
µ2
G

16LG1

]
12(LG2 R+ LF1 )

2

µG
ρϕt,kz

+
16L′′

µG

γ2

ρ
E[∥Dx(u

tk,)∥2] + Λv
2
γ2E[∥Dt,k

x ∥2] .

By assumption, γ ≤ Cvρ with Cv =
√

µG

8L′′

(
LG

1

µ2
G
+

µ2
G

16LG
1

)
, therefore

ϕt,k+1
v ≤

(
1− µG

16
ρ
)
ϕt,kv − µ2

G

32LG1
ρEt,k[∥Gt,kv ∥2]

+ 32ρ3
(
(LG2 R)

2 + (LF1 )
2
)(LG1

µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[∥Dt,r−1
z ∥2]

+ 32ρ3(LG1 )
2

(
LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 32γ2ρ
(
(LG2 R)

2 + (LF1 )
2
)(LG1

µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[∥Dt,r−1
x ∥2]

+

[
LG1
µ2
G

+
µ2
G

16LG1

]
12(LG2 R+ LF1 )

2

µG
ρϕt,kz

+
16L′′

µG

γ2

ρ
E[∥Dx(u

tk,)∥2] + Λv
2
γ2E[∥Dt,k

x ∥2] .

We get finally

ϕt,k+1
v ≤

(
1− ρµG

16

)
ϕt,kv − β̃vvρV

t
v + ρ3βvzVt,kz + 2ρ3βvvVt,kv + γ2ρβvxVt,kx

+ ραvzϕ
t,k
z +

Λv
2
γ2E[∥Dt,k

x ∥2] + γ2

ρ
βvxE[∥Dx(u

t,k)∥2]

with βvz = βvx = 32
(
(LG2 R)

2 + (LF1 )
2
) (LG

1

µ2
G
+

µ2
G

16LG
1

)
, βvv = (LG1 )

2
(
LG

1

µ2
G
+

µ2
G

16LG
1

)
, βvx = 16L′′

µG
, β̃vv =

µ2
G

32LG
1

and αvz =
[
LG

1

µ2
G
+

µ2
G

16LG
1

]
12(LG

2 R+LF
1 )2

µG
.

A.7 Proof of Lemma 3.5

Proof. The smoothness of h (Proposition 2.3) gives us

h(xt,k+1) ≤ h(xt,k)− γ⟨∇h(xt,k), Dt,k
x ⟩+ γ2

Lh

2
∥Dt,k

x ∥2 .
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Then, we use the identity ⟨a, b⟩ = 1
2 (∥a∥

2 + ∥b∥2 − ∥a− b∥2) to get

h(xt,k+1) ≤ h(xt,k)− γ

2
∥∇h(xt,k)∥2 − γ

2
∥Dt,k

x ∥2 + γ

2
∥∇h(xt,k)−Dt,k

x ∥2 + γ2
Lh

2
∥Dt,k

x ∥2

≤ h(xt,k)− γ

2
∥∇h(xt,k)∥2 − γ

2
∥Dt,k

x ∥2 + γ∥∇h(xt,k)−Dx(u
t,k)∥2

+ γ∥Dx(u
t,k)−Dt,k

x ∥2 + γ2
Lh

2
∥Dt,k

x ∥2 .

Then taking the expectation gives and using Proposition 2.5 yields

ht,k+1 ≤ ht,k − γ

2
gt,k + γE[∥∇h(xt,k)−Dx(u

t,k)∥2]

+ γE[∥Dx(u
t,k)−Dt,k

x ∥2]− γ

2

(
1− Lhγ

)
E[∥Dt,k

x ∥2]

≤ ht,k − γ

2
gt,k + γL2

x(E[∥zt,k − z∗(xt,k)∥2] + E[∥vt,k − v∗(xt,k)∥2])

+ γE[∥Dx(u
t,k)−Dt,k

x ∥2]− γ

2

(
1− Lhγ

)
E[∥Dt,k

x ∥2] .

The µG-strong convexity of G( . , x) ensures that ∥z − z∗(x)∥2 ≤ 2
µG
ϕz(z, x) and ∥v − v∗(x)∥2 ≤ 2

µG
ϕv(v, x).

As a consequence

ht,k+1 ≤ ht,k − γ

2
gt,k + γ

2L2
x

µG
(ϕt,kz + ϕt,kv ) + γE[∥Dx(z

t,k, vt,k, xt,k)−Dt,k
x ∥2]

− γ

2

(
1− Lhγ

)
E[∥Dt,k

x ∥2] .

From Lemma A.2, we have

E[∥Dt,k
x −Dx(u

t,k)∥2] ≤ 4ρ2
(
(LG2 R)

2 + (LF1 )
2
) k∑
r=1

E[∥Dt,r−1
z ∥2] + 4ρ2(LG1 )

2
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ2
(
(LG2 R)

2 + (LF1 )
2
) k∑
r=1

E[∥Dt,r−1
x ∥2] .

As a consequence

ht,k+1 ≤ ht,k − γ

2
gt,k + γ

2L2
x

µG
(ϕt,kz + ϕt,kv )

+ 4γρ2
(
(LG2 R)

2 + 2(LF1 )
2
) k∑
r=1

E[∥Dt,r−1
z ∥2] + 4γρ2(LG1 )

2
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ3
(
(LG2 R)

2 + 2(LF1 )
2
) k∑
r=1

E[∥Dt,r−1
x ∥2]− γ

2

(
1− Lhγ

)
E[∥Dt,k

x ∥2]

≤ ht,k − γ

2
gt,k + γ

2L2
x

µG
(ϕt,kz + ϕt,kv ) + γρ2βhzVt,kz + γρ2βhvVt,kv

+ γ3βhxVt,kx − γ

2

(
1− Lhγ

)
E[∥Dt,k

x ∥2]

with βhz = 4
(
(LG2 R)

2 + 2(LF1 )
2
)
, βhv = 4(LG1 )

2 and βhx = 4
(
(LG2 R)

2 + 2(LF1 )
2
)
.

A.8 Proof of Theorem 1 and Corollary 3.6

The constants involved in Theorem 1 are

ψz =
1

16βzx
, ψv = min

[
1

16βvx
,
αzvµG
12

ψz

]
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ρ = min

√ ψz
12q(ψzβzz + ψvβzv)

,

√
1

6Λz
,

√
1

12qβvv
,

√
β̃vv
3Λv

, Bv

 ,

ξ = min

[
Cz, Cv, 1,

ψvµ
2
G

16L2
x

,

√
µG

8βvx
,
ψzµ

2
G

24L2
x

,

√
µG

12βzx

]
,

γ = min

√ 1

12q(ψzβzx + ψvβvx)
,

√
1

12qβhx
,

1

6(Lh + ψzΛz + ψvΛv)
,

√
ψvβ̃vv

6q(βhv + ψzβvz)
,

√
ψz

12qβhz

 .

Proof. The proof is a classical Lyapunov analysis. Consider the following Lyapunov function Lt,k = ht,k+ψzϕ
t,k
z +

ψvϕ
t,k
v for some positive constants ψz and ψv. We use use Lemmas 3.3 to 3.5 to upper bound Lt,k − Lt,k+1.

We have

Lt,k+1 − Lt,k ≤ −γ
2
gt,k + (ψzβzx + ψvβvx)

γ2

ρ
E[∥Dx(u

t,k)∥2] (44)

+

(
2L2

x

µG
γ − ψz

µG
2
ρ+ ψvαzvρ

)
ϕt,kz +

(
2L2

x

µG
γ − ψv

µG
16
ρ

)
ϕt,kv

+

(
ψz

Λz
2
ρ2 − ψz

1

2
ρ

)
V t,kz − ψvβ̃vvρV

t,k
v

+

(
Lh

2
γ2 + ψz

Λz
2
γ2 + ψv

Λv
2
γ2 − γ

2

)
V t,kx

+
(
βhzργ

2 + ψzβzzρ
3 + ψvβzvρ

3
)
Vt,kz

+
(
βhvργ

2 + ψzβvzγ
2ρ+ ψvβvvρ

3
)
Vt,kv

+
(
βhxγ

3 + ψzβzxγ
2ρ+ ψvβvxρ

3
)
Vt,kx .

We bound E[∥Dx(u
t,k)∥2] crudely by using Proposition 2.5

E[∥Dx(u
t,k)∥2] ≤ 2E[∥∇h(xt,k)∥2] + 2E[∥Dx(u

t,k)−∇h(xt,k)∥2]
≤ 2gt,k + 2(E[∥zt,k − z∗(xt,k)∥2] + E[∥vt,k − v∗(xt,k)∥2])

≤ 2gt,k +
4

µG
(ϕt,kz + ϕt,kv ) .



A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization

Summing in (44) for k = 0, . . . , q − 1 yields

Lt,q − Lt,0 ≤ −
(
γ

2
− 2ψzβzx

γ2

ρ
− 2ψvβvx

γ2

ρ

) q−1∑
k=0

gt,k (45)

+

(
2L2

x

µG
γ − ψz

µG
2
ρ+ ψvαzvρ+ ψzβzx

γ2

ρ

) q−1∑
k=0

ϕt,kz

+

(
2L2

x

µG
γ − ψv

µG
16
ρ+ ψvβvx

γ2

ρ

) q−1∑
k=0

ϕt,kv − ψzβ̃vvρ

q−1∑
k=0

V t,kz

+

(
ψv

Λv
2
ρ2 − ψv

1

2
ρ

) q−1∑
k=0

V t,kv +

(
Lh

2
γ2 + ψz

Λz
2
γ2 + ψv

Λv
2
γ2 − γ

2

) q−1∑
k=0

V t,kx

+
(
βhzργ

2 + ψzβzzρ
3 + ψvβzvρ

3
) q−1∑
k=0

Vt,kz

+
(
βhvργ

2 + ψzβvzγ
2ρ+ ψvβvvρ

3
) q−1∑
k=0

Vt,kv

+
(
βhxγ

3 + ψzβzxγ
2ρ+ ψvβvxρ

3
) q−1∑
k=0

Vt,kx .

Since we have
q−1∑
k=0

Vt,k• =

q−1∑
k=0

k∑
r=1

E[∥Dt,r−1
• ∥2] =

q−1∑
r=1

q−1∑
k=r

E[∥Dt,r−1
• ∥2]

=

q−1∑
r=1

(q − r)E[∥Dt,r−1
• ∥2] ≤ q

q−1∑
k=1

E[∥Dt,k−1
• ∥2]

we get

Lt,q − Lt,0 ≤ −
(
γ

2
− 2ψzβzx

γ2

ρ
− 2ψvβvx

γ2

ρ

) q−1∑
k=0

gt,k (46)

+

(
2L2

x

µG
γ − ψz

µG
2
ρ+ ψvαzvρ+ ψzβzx

γ2

ρ

) q−1∑
k=0

ϕt,kz

+

(
2L2

x

µG
γ − ψv

µG
2
ρ+ ψvβvx

γ2

ρ

) q−1∑
k=0

ϕt,kv

+

(
ψz

Λz
2
ρ2 − ψz

1

2
ρ+ q

(
βhzργ

2 + ψzβzzρ
3 + ψvβzvρ

3
)) q−1∑

k=0

V t,kz

+

(
ψv

Λv
2
ρ2 − ψvβ̃vvρ+ q

(
βhvργ

2 + ψzβvzγ
2ρ+ ψvβvvρ

3
)) q−1∑

k=0

V t,kv

+

(
Lh

2
γ2 + ψz

Λz
2
γ2 + ψv

Λv
2
γ2 − γ

2
+ q

(
βhxγ

3 + ψzβzxγ
2ρ+ ψvβvxργ

2
)) q−1∑

k=0

V t,kx .

Since ρ ≤ ρ ≤ min
[√

ψz

12q(ψzβzz+ψvβzv)
,
√

1
6Λz

]
and γ ≤ γ ≤

√
ψz

12qβhz
, we have

ψz
Λz
2
ρ2 − ψz

1

2
ρ+ q

(
βhzργ

2 + ψzβzzρ
3 + ψvβzvρ

3
)
< 0 . (47)
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Moreover, the conditions ρ ≤ ρ ≤ min

[√
β̃vv

6qβvv
,
√

β̃vv

3Λv

]
and γ ≤ γ ≤

√
ψvβ̃vv

6q(βhv+ψzβvz)
, ensure that

ψv
Λv
2
ρ2 − ψvβ̃vvρ+ q

(
βhvργ

2 + ψzβvzγ
2ρ+ ψvβvvρ

3
)
< 0 . (48)

The conditions ρ ≤ ρ ≤
√

1
12q(ψzβzx+ψvβvx)

and γ ≤ γ ≤ min
[√

1
12q(ψzβzx+ψvβvx)

,
√

1
12qβhx

, 1
6(Lh+ψzΛz+ψvΛv)

]
yield

Lh

2
γ2 + ψz

Λz
2
γ2 + ψv

Λv
2
γ2 − γ

2
+ q

(
βhxγ

3 + ψzβzxγ
2ρ+ ψvβvxργ

2
)
< 0 . (49)

The condition γ ≤ ξρ ≤ min

[
ψvµ

2
G

16L2
x
,
√

µG

8βvx

]
ρ ensures

2L2
x

µG
γ − ψv

µG
2
ρ+ ψvβvx

γ2

ρ
≤ 0 (50)

By definition, we have ψv ≤ αzvµG

12 ψz and by assumptions γ ≤ ξρ ≤ min

[
ψzµ

2
G

24L2
x
,
√

µG

12βzx

]
ρ. As a consequence

2L2
x

µG
γ − ψz

µG
2
ρ+ ψvαzvρ+ ψzβzx

γ2

ρ
< 0 . (51)

Plugging Inequalities (47) to (51) into Equation (46) gives

Lt,q − Lt,0 ≤ −
(
γ

2
− 2ψzβzx

γ2

ρ
− 2ψvβvx

γ2

ρ

) q−1∑
k=0

gt,k .

Since ψz = ρ

16βzx

and ψv ≤ ρ

16βvx

and γ2

ρ ≤ ξ ≤ 1, we get

Lt,q − Lt,0︸ ︷︷ ︸
Lt+1,0−Lt,0

≤ −γ
4

q−1∑
k=0

gt,k .

Summing, telescoping and dividing by Tq gives

1

Tq

T−1∑
t=0

q−1∑
k=0

gt,k ≤ 4

Tqγ

(
h0,0 − h∗ + ψzϕ

0,0 + ψvϕ
0,0]
)︸ ︷︷ ︸

Γ0

.

From Theorem 1 we deduce Corollary 3.6.

Proof. Let us take ρ = ρ(n+m)−
1
2 , γ = min(ξρ, γ) and q = n+m. Then Theorem 1 holds:

1

Tq

T−1∑
t=0

q−1∑
k=0

gt,k ≤ 4

Tqγ
Γ0 .

with Γ0 = O(1). To get an ε-stationary solution, we set T ≥ 4
qγΓ

0ε−1 ∨ 1 = O
(

1
qγε ∨ 1

)
. One iteration has

Θ(q) = Θ(n+m) oracle complexity. As a consequence, the sample complexity to get an ε-stationary point is
O
(
(n+m)

1
2 ϵ−1 ∨ (n+m)

)
.
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B Lower bound for bilevel problems (proof of Theorem 2)

The proof of Theorem 2 is an adaptation of the proof of (Zhou and Gu, 2019, Theorem 4.7) from single-level to
bilevel problems. We build the outer function from the worst-case instance of (Zhou and Gu, 2019, Theorem 4.7)
and we add a bilevel component by using as inner function the function G defined by G(z, x) = µG

2 ∥z − x∥2. We
start by introducing the different tools used in this proof.

B.1 Preliminary results

In what follows, we provide the building blocks of our worst-case instance. The proof uses the following quadratic
function presented by (Nesterov, 2018).
Definition B.1. Let d ∈ N>0, ξ ∈ [0 , +∞) and ζ ≤ 1. We define Q(.; ξ, d) : Rd → R by

Q(x; ξ, d) =
ξ

2
(x1 − 1)2 +

1

2

d−1∑
k=1

(xk+1 − xk)
2 .

Proposition B.2 proposition comes directly from (Zhou and Gu, 2019, Proposition 3.5). The first part of the
proposition gives us the regularity of Q. In the second part shows that a function defined as Q(U × · ; ξ, d) +∑q
p=1 g(⟨up, · ⟩) verifies the so-called "zero-chain property" Carmon et al. (2020): if Ux ∈ Span(u1, . . . , uk),

then we gain a non zero coordinate by calling the gradient ∇ [Q (U × · ; ξ, d) +
∑q
p=1 g(⟨up, · ⟩)](x). In other

words, that makes us progress in the problem resolution.
Proposition B.2. For d ∈ N>0, ξ ∈ [0 , +∞) and ζ ≤ 1. The following holds:

1. Q( · ; ξ, d) is convex and 4-smooth.

2. Let q ∈ N>0, U = [u1, . . . , ud]
⊤ ∈ Rd×q such that UU⊤ = I and for k ≤ d, U (≤k) = [u1, . . . , uk, 0, . . . , 0]

⊤ ∈
Rd×q. Let g : R → R differentiable such that g′(0) = 0. Then for any x ∈ Rq such that Ux = U (≤k)x, then

∇

[
Q(U × · ; ξ, d) +

d∑
p=1

g(⟨up, · ⟩)

]
(x) ∈ Span(u1, . . . , uk, uk+1) .

Proof. Let x ∈ Rq such that Ux = U (≤k)x. For 0 ≥ k ≤ d, we denote

Rk,d = {v ∈ Rd, vk+1 = · · · = vd = 0} .

Let us write Q(x; ξ, d) = 1
2x

⊤Ax+ b⊤x+ c with

A =



1 + ξ −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1


∈ Rd×d ,

b = ξ(1, 0, . . . , 0)⊤ and c = ξ
2 (1, 0, . . . , 0)

⊤.

On the one hand it is known from (Nesterov, 2018, Lemma 2.5.1) that if v ∈ Rk,d,

∇Q(v; ξ, d) ∈ Rk+1,d

As a consequence,
∇Q(Ux; ξ, d) = ∇Q(U (≤k)x︸ ︷︷ ︸

∈Rk,d

; ξ, d) ∈ Rk+1,d

and
∇[Q(U × · ; ξ, d)](x) = U⊤∇Q(Ux; ξ, d) ∈ Span(u1, . . . , uk+1) .
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On the other hand,

∇

[
d∑
p=1

g(⟨up, · ⟩)

]
(x) =

d∑
p=1

g′(⟨up, x⟩)up =
k∑
p=1

g′(⟨up, x⟩)up ∈ Span(u1, . . . , uk+1) .

Thus

∇

[
Q(U × · ; ξ, d) +

d∑
p=1

g(⟨up, · ⟩)

]
(x) ∈ Span(u1, . . . , uk, uk+1) .

However, the function Q is convex. That is why we also use the function Γ introduced in Carmon et al. (2021).
As explained in Carmon et al. (2021), this function is essential to lower bound the gradient of our worst wase
instance.
Definition B.3. Let d ∈ N>0. We define Γ( · ; d) : Rd+1 → R by

Γ(x; d) = 120

d∑
k=1

∫ xk

1

t2(t− 1)

1 + t2
dt .

An important property of Γ shown in (Carmon et al., 2021, Lemma 2) is the smoothness of the function Γ.
Proposition B.4. There exists a constant c > 0 such that Γ( · ; d) is c-smooth.

Now we introduce the function fnc we use to build our worst-case instance. This function comes from (Zhou and
Gu, 2019, Definition 3.5). It is the sum of the quadratic function defined by B.1 and the nonconvex component
given by Definition B.3.
Definition B.5. For α > 0 and d ∈ N>0, fnc( · ;α, d) : Rd+1 → R is defined a

fnc(x;α, d) = Q(x;
√
α, d+ 1) + αΓ(x) .

The essential properties of fnc come from (Carmon et al., 2021, Lemmas 2, 3, 4). The first part provides the
regularity properties of fnc. The second part bounds the distance between fnc( · ;α, d) and the optimal value of
the function. The third part will be key to the overall proof. In words, it states that as long x ∈ Rd+1 has its two
last components equal to zero, the norm of the gradient of fnc( · ;α, d) is higher than a constant controlled by α.
As a consequence, if α is properly chosen, as soon as xd = xd+1 = 0, we are ensured that ∥∇fnc(x;α, d)∥ ≥ ϵ.
Proposition B.6. For α ∈ [0 , 1], it holds

1. −αc ⪯ ∇2fnc ⪯ 4 + αc.

2. fnc(0;α, d)− infx fnc(x;α, d) ≤
√
α
2 + 10αd.

3. For x ∈ Rd+1 such that xd = xd+1 = 0, ∥∇fnc(x;α, d)∥ ≥ α
3
4

4 .

From now we denote
O(a, b) = {U ∈ Ra×b, UU⊤ = Ia} .

The following Lemma adapted from Zhou and Gu (2019) is fundamental for our lower bound proof.

Lemma B.7. Let d,m ∈ N>0 and U ∈ O((d+1)m, (d+1)m). We denote U =

U
(1)

...
U (m)

 with U (i) ∈ O(d+1, (d+

1)m). Let {hj}j∈[m] with hj(x) = fnc(U
(j)x;α, d) and h = 1

m

∑m
j=1 hj . Let x ∈ R(d+1)m and y(j) = U (j)x ∈ Rd+1.

Let I = {j ∈ [m], y
(i)
d = y

(i)
d+1 = 0}. Then it holds

∥∇h(x)∥2 ≥ α
3
2 |I|

16m2
.
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Proof. We have

∥∇h(x)∥2 =

∥∥∥∥∥∥ 1

m

d∑
j=1

∇hj(x)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

m

m∑
j=1

(U (j))⊤∇fnc(U (j)x;α, d)

∥∥∥∥∥∥
2

=
1

m2

∥∥∥∥∥∥
m∑
j=1

(U (j))⊤∇fnc(U (j)x;α, d)

∥∥∥∥∥∥
2

+
2

m2

m∑
j,l=1
j ̸=l

∇fnc(U (j)x;α, d)⊤U (l)(U (j))⊤∇fnc(U (j)x;α, d)

=
1

m2

m∑
j=1

∥∥∥(U (j))⊤∇fnc(U (j)x;α, d)
∥∥∥2

where the last equality comes from the fact that for j ̸= l, U (l)(U (j))⊤ = 0 since U ∈ O ((d + 1)m, (d+ 1)m).
Now, using the third part of Proposition B.6, we get

∥∇h(x)∥2 ≥ 1

m2

∑
j∈I

∥∥∥(U (j))⊤∇fnc(U (j)x;α, d)
∥∥∥2

≥ 1

m2

∑
j∈I

∥∥∥∇fnc(U (j)x;α, d)
∥∥∥2

≥ α
3
2 |I|

16m2
.

B.2 Main proof

Now we are ready to prove Theorem 2.

Proof. We consider U ∈ O((T + 1)m, (T + 1)m) and we denote

U =

U
(1)

...
U (m)


with U (j) = (u

(j)
1 , . . . , u

(j)
T+1)

⊤ ∈ O(T + 1, (T + 1)m).

For j ∈ [m], we choose F j : R(T+1)m+(T+1)m → R defined by

F j(z, x) = fnc(U
(j)z;α, T )

and we set F = 1
m

∑m
j=1 F j . We also define for i ∈ [n] Gi(z, x) = 1

2∥z − x∥2, G = 1
n

∑n
i=1Gi, z

∗(x) =

argminz G(z, x) and h(x) = F (z∗(x), x) = fnc(U
(j)x;α, T ). By Proposition B.6, F j is 4 + αc

m smooth, and Gi is
1-smooth and 1-strongly convex.

We have
h(0)− inf

x
h(x) ≤

√
α+ 10αT .
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We finally consider Fj(z, x) = λFF j(z/β, x/β), Gi(z, x) = λGGi(z/β, x/β). As a consequence, we have z∗(x) =
argminG = z∗(x) and h(x) = F (z∗(x), x). We also consider a fixed indices sequence (it, jt). We set

α = min
{
1,
m

c

}
, λF =

160mϵ

LF1 α
3/2

, β =
√
5λF /LF1 , λG = β2µG, T =

∆LF1
1760mϵ

√
α .

We can check that each Fj is LF1 -smooth, and each Gi is µG-strongly convex. Assuming ϵ ≤ ∆LF1 α/(1760m)
ensures that h(0)− infx h(x) ≤ ∆ (we can check that h(0) = λFh(0) and inf h = λF inf h).

Let us assume without loss of generality that the algorithm at initialization we have z0 = v0 = x0 = 0 and
consider (zt, vt, xt) the output of an algorithm with the known sequence (it, jt).

Given our inner function and the fact that ∇2F (z, x) = 0 for any (z, x) ∈ R(m+1)d+(m+1)d, we have

zt+1 ∈ Span(z0 − x0, . . . , zt − xt) (52)

vt+1 ∈ Span(v0 +∇1Fj0(z
0, x0), . . . , vt +∇1Fjt(z

t, xt)) (53)

xt+1 ∈ Span(v0, . . . , vt) . (54)

Since v0 = 0, we have by Equation (53) v1 ∈ Span(∇1Fj0(z
0, x0)) and by induction

vt+1 ∈ Span(∇1Fj0(z
0, x0), . . . ,∇1Fjt(z

t, xt)) .

Therefore, using Equation (54), we have

xt+1 ∈ Span(∇1Fj0(z
0, x0), . . . ,∇1Fjt(z

t, xt)) .

Since z0 = 0, by Equation (52), z1 ∈ Span(x0) and by induction

zt+1 ∈ Span(x0, . . . , xt) .

As a consequence,

xt ∈ Span(∇1Fj0(Span(x
0), x0), . . . ,∇1Fjt(Span((x

s)s≤t), x
t)) .

Let us denote y(j,t) = U (j)xt. Since x0 = 0, y(j0,0) = 0 and by the second part of Proposition B.2, x1 ∈ Span(u
(j0)
1 ).

Now we assume that for all s ≤ t we have

xs ∈ Span(u
(j0)
1 , . . . , u(j0)s , . . . , u

(js−1)
1 , . . . , u(js−1)

s ) .

There exist scalars α1, . . . , αr, β1,1, β2,1, β2,2, . . . , βt,1, . . . , βt,t such that

xt+1 =

t∑
r=1

αr∇1Fjr

(
r∑
s=1

βr,sx
s, xr

)
.

Let Xr =
∑r
s=1 βr,sx

s. For r ∈ {1, . . . , t}, we have by induction hypothesis

Xr ∈ Span(u
(j0)
1 , . . . , u(j0)r , . . . , u

(jr−1)
1 , . . . , u(jr−1)

r ) .

By orthogonality, we have

Span(u
(j0)
1 , . . . , u(j0)r , . . . , u

(jr−1)
1 , . . . , u(jr−1)

r ) ⊥ Span(u
(jr)
r+1, . . . , u

(jr)
T+1) .

As a consequence
U (jr)Xr = (⟨u(jr)1 , Xr⟩, . . . , ⟨u(jr)r , Xr⟩, 0, . . . , 0) .

We can use Proposition B.2 to say

∇1Fjr (X
r, xr) ∈ Span(u

(jr)
1 , . . . , u

(jr)
r+1) ⊂ Span(u

(j0)
1 , . . . , u(j0)r , u

(j0)
r+1, . . . , u

(jr)
1 , . . . , u

(jr)
r+1) .
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And we get finally
xt+1 ∈ Span(u

(j0)
1 , . . . , u

(j0)
t , u

(j0)
t+1, . . . , u

(jt)
1 , . . . , u

(jt)
t+1) .

By induction, for any t, we have

xt ∈ Span(u
(j0)
1 , . . . , u

(j0)
t , . . . , u

(jt)
1 , . . . , u

(jt)
t︸ ︷︷ ︸

at most mt vectors

)

and so
xt ⊥ Span((u

(j)
1 , . . . , u

(j)
T+1)j∈[m]\{j0,...,jt}, (u

(j)
t+1, . . . , u

(j)
T+1)j∈{j0,...,jt}) .

As a consequence, for t ≤ m
2 T , let I = {j, y(j,t)T = y

(j,t)
T+1 = 0} with y(j,t) = U (j)xt. Since t ≤ m

2 T , we have |I| ≤ m
2

and by Lemma B.7, we have
∥∇h(xt)∥ ≥ ϵ .

If we define T ((xt)t, h) = inf{t ∈ N, ∥∇h(xt)∥2 ≤ ϵ}, we just showed that for the fixed sequence (it, jt), we have

T ((xt)t, h) ≥
m

2
T = Ω(

√
mϵ−1) .

The right-hand side being independent from the sequence (it, jt), for t ≤ m
2 T , we have

E[∥∇h(xt)∥2] > ϵ

where the expectation is taken over the random choice of i0, . . . , it−1, j0, . . . , jt−1.

C Details on the experiments

We performed the experiments with the Python package Benchopt (Moreau et al., 2022)2. For each experiment,
we use minibatches instead of single samples to estimate oracles because it is more efficient in practice. We use a
batch size of 64 for the stochastic inner and outer oracles. All the experiments were performed on processors
AMD EPYC 7742 (4 CPUs/experiment).

C.1 Benchmark on quadratics

For this benchmark, we consider

F (z, x) =
1

m

m∑
j=1

Fj(z, x), G(z, x) =
1

n

n∑
i=1

Gi(z, x) .

The functions Fj and Gi are defined as

Fj(z, x) =
1

2
z⊤AFj

z z +
1

2
x⊤AFj

x + xBFjz + (dFj
z )⊤z + (dFj

x )⊤x

Gi(z, x) =
1

2
z⊤AGi

z z +
1

2
x⊤AGi

x + xBGiz + (dGi
z )⊤z + (dGi

x )⊤x

with A
Fj
z , AGi

z ∈ Rp×p, AFj
x , AGi

x ∈ Rd×d, BFj , BGi ∈ Rd×p, dFj
z , dGi

z ∈ Rp and d
Fj
x , dGi

x ∈ Rd. The vectors dFj
x ,

dGi
x are drawn randomly according to a normal distribution N (0, Id). The vectors dFj

z , dGi
z are drawn randomly

according to a normal distribution N (0, Ip). For the Hessian matrices with respect to z, we generate AGi
z so

that 1
n

∑n
i=1A

Gi
z = A for a symetric positive definite matrix A with spectrum in [0.1, 1]. To do so, we generate

xi ∼ N (0, Ip) and set AGi
z =

√
Axi(

√
Axi)

⊤. We proceed similarly for AFj
z , AGi

z , AFj
x . For BGi , we want

1
n

∑n
i=1B

Gi = B for a prescribed matrix B ∈ Rd×p such that ∥B∥ = 0.1. Let B = UΣV ⊤ the singular values
decomposition of B. To get BGi , we generate xi ∼ N (0, Ip) and set BGi = (V Σxi)(Uxi)

⊤. We proceed similarly
for BFj . In our experiment, we take n = 32768 and m = 1024. To select the parameters of the solvers, we

2The code of the benchmark is available at https://github.com/benchopt/benchmark_bilevel and the results are
displayed in https://benchopt.github.io/results/benchmark_bilevel.html.

https://github.com/benchopt/benchmark_bilevel
 https://benchopt.github.io/results/benchmark_bilevel.html
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perform a grid search. More precisely, for each solver, we take the inner step size in the form of αt−a where
a is the theoretical decrease rate of each solver and α is chosen in {0.01, 0.1}. The outer step size is taken as
α
r t

−b where b is the theoretical decrease rate and r is chosen in {0.1, 1, 10, 100}. For the two-loops algorithms
(i.e. StocBiO, VRBO, AmIGO), the number of inner steps is set to 10 after a manual search. In the methods
implementing Neumann approximations (MRBO, VRBO, StocBiO), the number of terms in the Neumann series
is also set to 10 and the scaling parameter η is set to 0.5. To get the fastest convergence, we keep for each
solver the set of parameters that give the best decrease of h on the 100 first epochs. The period of full batch
computation of VRBO and SRBA q is parametrized as q = an+mb where b = 64 is the batch size and a is chosen
in {2−6, 2−3, 2−1, 23, 26}. For F2SA, we take λ0 = 1 and δt = αt−

1
7 with α chosen in {0.01, 0.1, 1}.

C.2 Hyperparameter selection with IJCNN1

We solve a regularization selection problem for an ℓ2-regularized logistic regression problem. Here, we assume that
we have a regularization parameter per feature. We have ntrain = 49, 990 training samples (dtraini , ytraini )i∈[ntrain]

and nval = 91, 701 validation samples (dvali , yvali )i∈[ntrain] coming from the IJCNN13 dataset. Mathematically, it
boils down to solve Problem (1) with F and G given by

F (θ, λ) =
1

nval

nval∑
j=1

φ(yvalj ⟨dvalj , θ⟩)

G(θ, λ) =
1

ntrain

ntrain∑
i=1

φ(ytraini ⟨dtraini , θ⟩) + 1

2

p∑
k=1

eλkθ2k

where φ is the logistic loss defined by φ(u) = log(1 + e−u). The inner and outer step sizes are set to 0.05.

To make our comparison, we select the parameters of each solver with an extensive grid search. More precisely, for
each solver, we take the inner step size in the form of αt−a where a is the theoretical decrease rate of each solver
and α is chosen in {2−5, 2−4, 2−3, 2−2}. The outer step size is taken as α

r t
−b where b is the theoretical decrease

rate and r is chosen in {10−2, 10−1.5, 10−1, 10−0.5, 100}. For the two-loops algorithms (i.e. StocBiO, VRBO,
AmIGO), the number of inner steps is set to 10 after a manual search. In the methods implementing Neumann
approximations (MRBO, VRBO, StocBiO), the number of terms in the Neumann series is also set to 10 and the
scaling parameter η is set to 0.5. To get the fastest convergence, we keep for each solver the set of parameters
that give the best decrease of h on the 100 first epochs. The period of full batch computation of VRBO and
SRBA q is parametrized as q = an+mb where b = 64 is the batch size and a is chosen in {2−6, 2−3, 2−1, 23, 26, 29}.
For F2SA, we take λ0 = 1 and δt = αt−

1
7 with α chosen in {0.01, 0.1, 1}.

D Additional experiment: Datacleaning task

We run an additional experiment. For each experiment, the parameters of the solvers are chosen by an extensive
grid search. Then we select the curve that gives the best validation accuracy for each solver and finally plot the
corresponding test error on Figure D.1.

The third experiment is the datacleaning task. It aims to train a multiclass classifier while having some training
samples with noisy labels. On the one hand we have ntrain = 20, 000 training labelled samples (dtraini , ytraini )i∈[ntrain]

with potentially corrupted labels with probability pc (in the experiments pc = 0.5). On the other hand, we have a
validation set (dvalj , yvalj )j∈[nval] of nval = 5, 000 samples where all the samples are clean. We also have 10, 000
clean test samples. The datacleaning problem consists in learning a classifier on all these samples by giving less
weight to corrupted labels. It can be cast as a bilevel optimization problem like (1) where the function F and G
are given by

F (θ, λ) =
1

nval

nval∑
j=1

ℓ(θdvalj , yvalj )

G(θ, λ) =
1

ntrain

ntrain∑
i=1

σ(λi)ℓ(θd
train
i , ytraini ) + Cr∥θ∥2

31https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Figure D.1: Comparison of stochastic bilevel solvers. Each solver is run on 10 random seeds and the lines show
the median performances. The shaded area corresponds to the performances between the 20% and the 80%
percentiles. Test error on the datacleaning task with the MNIST dataset with a corruption rate 0.5.

where θ ∈ RC×p, λ ∈ Rntrain , ℓ is the cross entropy loss and σ is the sigmoid function defined by σ(λ) = 1
1+e−λ ∈

(0 , 1].

We run this experiment on the MNIST dataset. We used 20, 000 training samples, 5, 000 validation samples, and
10, 000 test samples. The parameter Cr is set to 0.2 after a manual search to get the best performance. For the
tuning of the step sizes of each method, we set (ρt, γt) = (αt−a, βt−b) where (a, b) are the rate provided by the
analysis of each method, α is chosen among 4 values between 10−3 and 100 spaced on a logarithmic scale. The
scaling parameter β is set to β

r where r is chosen among 6 values between 10−5 and 100 spaced on a logarithmic
scale. The other parameters are chosen in the same way as the IJCNN1 experiments (see Appendix C.2).

We plot the test error on the Figure D.1 (right). On the one hand, SRBA reaches the best final value. On the
other hand, in terms of speed, it is the second fastest after SABA. The other methods are slower and reach a
worse final accuracy.
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