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S IS CONSTRUCTIVELY COMPLETE

Introduction

The logic S (Symmetric Propositional Relatedness Logic) was intro-
duced in the late 1970s by Richard Epstein, and thoroughly studied over
the subsequent decade by Epstein himself and his collaborators - a clear
outline of this work is presented in [2]. Epstein’s starting point was a se-
mantical analysis of the concept of subject matter relatedness among propo-
sitions, which eventually led to an axiomatization and a nonconstructive

completeness proof with respect to that semantics.

We shall provide the axiom system S devised by Epstein with a con-
structive completeness proof, extending thereby to the full system of propo-
sitional logic some of our results on first degree relatedness conditionals (cp.
[3]). For this purpose, however, we shall make use of Epstein’s semantics,
as well as of a syntactic counterpart of a normal form theorem, already
proved by Epstein in a semantic guise.

An Axiom System

The system S (cp. [2], p. 80) has a language L£(S) containing a denu-
merable list of variables pi, po, ... and the connectives =, A, —.
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We use the following abbreviations:

AV B =4 7(mAN-B);
A~ B=4 (A— B)AN (B — A);
The set WFF of formulas is defined as the smallest set containing the

variables and being closed under —, A, —. The axiom schemata and the
rules of S are the following (A, B are metavariables for elements of WFF):

Al. R(A, A)

A2. R(B,A) — R(A, B)

A3. R(A,-B) < R(A,B)

A4. R(A,B — C) < R(A,B)V R(A,0)

A5. R(A,BNC) < R(A,B— ()
A6. (ANB)— A
A7T. A— (B— (AANB))
A8. (ANB)— (BAA)
A9. A ——A
A10. (A — B) < ~(AAN-B)AR(A,B)
All. A— (~(BANA)— —B)
Al12. =«(AAB) = (-(CAN-B)—~(ANC))
Al13. =((C — D) A (C A=D))

A A— B
1. —
R B
Lemma 1. The following rules are derived rules of S:
R2. A_)# (A6, A10, Al1)
ANB AANB
. A6, A
R3 " Iz (A6, A8)
A B
RA4. AVE AvE (A6, A9, R2)
A B
R5. (AT)
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A— B B-—=C

R6. 150 provided that - R(A, C)
A .

RT. 5 A provided that - R(B, A)
AN(BVCQO)

RS. A6, A9, A10, A11, A12, A13
(ANB)V(ANC) (A6, A9, ’ ’ ’ )
A—-B A—-C

RY. ~— (A4-5, A6, A10, R2, R5, R6, RS)
AN(BANC)

R10. ———— A6, R5
(ANB)ANC (46, R3)
A— (B—C(C) )
R11. m prov1ded that R(B,C) (A1—5, A6, A9, AIO, R2,
R6, R10)
A — BA B
Rig. A= BA=B=0) L ded that - R(4,C)
A—C

Proof. Left to the reader, except for R6, R7, and R12, especially
important for our deduction theorem below.

Proof of R6. Suppose A — B and B — C. Then (A10, A6)
—(A A =B) and =(B A =C). From the latter item, via A8 and R2, we get
—(=CAB). But 2(-CAB) — (=(AA-B) — =(—~C A A)) is an instance of
A12. Applying R1 twice, we get =(—C' A A), whence, by the same procedure
as before, =(A A =C). But we assumed - R(A,C) at the outset. By R5,
—(AAN-C)AR(A,C). Notice that =(AA-C)AR(A,C) — (A— C)is an
instance of A10. Thus, by R1, A — C.

Proof of R7. -AAB — —-A and BA—-A — —A A B are instances,
resp., of A6 and A8. By A1-A5 we get = R(B A —A,—A) and by R6, then,
B A=A — —=A. From our assumption A and A — ——A4 (A9), we derive
—-—-A by R1. Hence, by R2, =—A and B A A — —Ayield—~(B A -A).
But we assumed - R(B, A). By R5, =(B A =A) A R(B, A). Remark that
—(BAN-A)ANR(B,A) — (B — A) is an instance of A10. By RI1, we get
B — A.

Proof of R12. Assume A — B and A — (B — C). From A6, A10,
R6 we have (B — C) — =(BA—=C). From F R(A,C) and A1-A5, we get -
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R(A,~(BA-C)). Hence, from A — (B — C) and (B — C) — =~(BA-C),
by R6, we get A — =(BA-C'). Now, R9 gives us A — (BA—=(BA-C)). But
B — (=(BA-C) — =) is an instance of A1l. Since R(—(BA-C),-~=C)
is provable by A1-A5, by R11 we can derive B A =(B A =C') — ==C and
(A9 and again R6) B A =(B A —=C') — C. By transitivity, permissible since
FR(A,C), we get A — C.

Lemma 2. If A and B share a variable, then - R(A, B).

Proof. Double induction on the number of connectives occurring
in A, resp. B. As usual, we call such a number the complexity of the

corresponding formula.
Base. If A= B = p, then R(A, B) = R(p,p) is an instance of Al.

Step. (i) Let us suppose that the theorem is true for A of complexity
1 (A =p) and B of complexity < n. We distinguish the following cases:

(ii) B = —C. Let us suppose that =C' (hence, C') contains p. We have:

1. R(p,C) IH
2. R(p,C) — R(p,~C) A3
3. R(p,~C) 1,2, Rl

(iil) B = C — D. Let us suppose that C' — D contains p. Then,
either C' or D contains p. Assume it is C' (the other case is similar):

1. R(p,C) TH

2. R(p,C)V R(p,D) R4

3. R(p,C)V R(p,D) — R(p,C — D) A4
4. R(p,C - D) 2,3, Rl

(iiii) B = C' A D. Like in the preceding case, let us suppose that C
contains p. Steps 1-4 are the same as before. Then:

5. R(p,C — D) — R(p,CAD) A5
6. R(p,CAD) 4,5 Rl
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(ii) Let us suppose, now, that the theorem holds for A of complexity

< n and B whatsoever. We explicitly treat the case of negation - the other

ones are analogous. Well, assume that A = —~C. If =C and B share a

variable, then so do C' and B. hence:

R6’.

NS otk w =

R(C,B) IH
R(C,B) - R(B,C) A2
R(B,C) 1,2, Rl
R(B,C) — R(B,~C) A3
R(B,-C) 3,4,Rl
R(B,~C) — R(~=C,B) A2
R(-C,B) 5,6, RI

Corollary. If A and C share a variable, the rule of transitivity:

A—B B-—C
A—C

holds unrestrictedly.

Proof. By Lemma 1 and Lemma 2.

Lemma 3. Suppose - R(A, B). If B is deducible in S from G, A (in

the ordinary, classical sense), then A — B is deducible in S from T'.

Proof. As usual for deduction theorems, we prove this lemma by

induction on the length of the deduction of B from I, A.

1.

2
3

[\V]

(i) B is an axiom.

B Ax.

. R(A, B) Theor.

. A— B 1, 2, R7
(ii) Bisin T

. B Hyp.

. R(A, B) Theor.
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A—B 1,2, RT7

(i) B= A

A—-=A A9

——A—A A9

R(A,A) Al
A=A 1,2, 3 R6

(iv) B is obtained by R1 from C and C' — B. By IH, there exists a

deduction of A — C and A — (C — B) from I'.

n

.A—-C IH

n+l A— (C — B) TH
n+2 R(A,B) Theor.
n+3 A— B n, n+1, n+2, R12

A straightforward consequence of Lemma 2 and Lemma 3 is the fol-

lowing

L,
L.

T1.
T2.
T3.
T4.

R13.

Tb
T6

Corollary. If A and B share a variable, and B is deducible in S from
A (in the ordinary, classical sense), then A — B is deducible in S from

Now, let us list some theses and some more derived rules of S

A— A (A9)

—AV A (T1, A8, A9, A10)
AANB— B (R3)

A— AN(BV-B) (T2, T4)

A— B
_— 2. Al-
-B — —A (R ’ 5)

(A= B)— (-B—-4)  (R13)
A= AVB
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B— AVB (R4)
R4, 2 ZVCB i 2 ¢ (Ro, R13)
T7. A~ ANA (A6, T1, R9)
T8. AVA«— A (T1, T6, R14)
T9. AVB«— BV A (T6, R14)
T10. AN(BAC)«— (AANB)ANC (R8)
T11. AV(BVC(C)«< (AvB)VvC (T6, R14)

T12. =(AAB) < AV -B-(AVB) < -AAN-B (A6, A9, T3, T6, R9,
R13, R14)

T13. (AVB)AC — (ANC)V (BAC) (A8, RB)

T14. (ANB)VC « (AVC)AN(BVCO) (A9, T13)

T15. A< (AApIA.. . APpAR(P1,p2) A . AR(Pr—1,0n))V(AANTDPLAD2A. . A
PrARP1,p2)A. - AR(Pr—1,Pn))V(AAPLATP2A. . AP AR(p1, P2)A. . A
R(pn—1,0n))V.. . V(AA=DINA. . .A=py A2 R(p1, p2) A . . A= R(Dpy Pr—1))
(right to left: A6, R14; left to right: A8, T2, R5, T9, T10, T11, T13,

T14)

Ao (AVpLV...Vpa VR(p1,p2) V...V R(pn—1,pn)) A (AV =p1 Vo V
VPV R(p1,p2) V.. .V R(Pn—1,p0)) AN(AVp1V=p2 V...V p, V R(p1,p2) V
o VR(p—1,00)) A A(AV—D1V.. VD VoR(p1,p2) V.. .V R(DnyPr-1))

(right to left: T6, R9; left to right: A8, A9, T2, R5, T9, T11, T12,
T13, T14)

T16. (A< B) — (A < —B) (A6, T3, T5, R9)

T17. (A< B)A(C < D)) — (AANC < BAD) (A6, AT)

T18. (AVB)A(A—C)AN(B—C(C))—C (A6, R14)

To prove such theorems, use Lemma 3 (and its corollary) and the
clues provided aside. T15 (rather clumsy in its appearance, indeed) is a
generalized relatedness counterpart of such classical tautologies as A «
(AANp)V(AA-p)and A — (AVp) A(AV —p). Both conjunctions and
disjunctions are associated to the left when brackets are omitted.
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A standard unrestricted replacement theorem is not available in S (cp.
[2], p. 81). Nonetheless, we are now in a position to prove the following:

Theorem 1. (Restricted replacement) Let D[A/B] be obtained by
simultaneously replacing zero or more occurrences of A by B in D. More-
over, assume that R(A,C) < R(B,C) for every subformula C' of D. Then
- A< B =D — D|A/B.

Proof. Induction on the complexity of D.

(i) D = p. First case: A # p. In such a case, D — D[A/B] is nothing else
than p — p, an instance of T1. Second case: A =p. Then D =p = A.
Therefore, from F p < B we are allowed to infer - p — p/B.

(i) D = —-FE. We use the IH and T16.
(iii) D =FE A F. We use the IH, R5 and T17.

(iv) D = E — F. We must show that - A <« B =+ (F — F) —
(E[A/B] — F[A/B]) under the assumption R(A,C) < R(B,C).
First case: A appears neither in £ nor in F, or else no occurrence of

A in either formula is replaced by B. Then E[A/B| — F[A/B] = FE — F,

and (E — F) — (E[A/B] — F[A/B]) is an instance of T1.

Second case: A appears in both F and F', and some occurrence thereof
is actually replaced in both formulas. By A10, A6 and R6’, (F — F) —
—(E A =F); but, using the IH and the same principles as in cases (ii) and
(iii), we have that ~(EA—F) — =(E[A/B]A—-F[A/B]). If we want to apply
R6 to the preceding formulas and get (F — F') — —~(E[A/B] A —-F[A/B)),
we need to know that - R(E — F,—~(E[A/B] A —-F[A/B])). But A — B
is provable by hypothesis: hence so is R(A, B). Remember that, by our
assumption, ¥ — F contains A and some occurrence thereof is actually
replaced by B. Then, repeatedly using A1-A5, we have that R(F — F, B)
is provable, and, by A1-A5 again, so is R(E — F,~(E[A/B] AN —~F[A/B])).
By R6’, then, we can deduce (E — F) — —(E[A/B] A —~F[A/B]).

Likewise, by A10, A6 and R6’ we get (2) (E — F) — R(E, F). More-
over, let v1(A),...,7(A) be exactly those subformulas of F' where some
occurrences of A are to be replaced by B in F[A/B], and let d1,...,0,, be
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the remaining subformulas of F'. Then, repeatedly resorting to A2-A5, we
achieve:

(3) R(E,F) — R(E,v1(A))V...VR(E,v,(A)VR(E,6,)V...VR(E, ),
whence, using A2-A5, T9, T11 and R6’ (first to "ungroup” formulas,
then to ”regroup” them, possibly utilizing T8 to cancel redundancies):
(4) R(E,F) — R(E,A)V R(E,G),
where G is a disjunction (or, for that matter, a conjunction) of sub-

formulas of F' with no (to-be-replaced) occurrence of A therein. Moreover,
by our assumption,

(5) R(E,A) — R(E,B),
and from (5), by A2-A5 and R6’,
(6) R(E,A) — R(E,F[A/B]).
By A2-A5 again,
(7) R(E,G) — R(E,F[A/B]).
Then, collecting together (2)-(7), via R6” and T18 we have that
(8) (B — F) — R(E, F[A/B]).
Carrying out the previous reasoning with respect to £ — F[A/B], we
are allowed to deduce R(E[A/B], F[A/B]), whence, by R6,
(9) (F— F) — R(E[A/B], F[A/B]),
which in turn yields, together with (1), by R9 and A10,
(10) (E — F) — (E[A/B] — F[A/B]).
The remaining cases are treated similarly.

As a consequence of the theorem, we have unrestricted admissibility
of the replacement rule if A and B contain the same variables p1,...,p,.
In fact, starting from R(py,C) V...V R(p,,C), by A1-A5 T8, T9, T11,
R6’ and Theorem 1 we compound both formulas out of their atoms and
eventually get R(A,C) < R(B,C).

Remark that, in the proof of Theorem 1, we used the additional stipu-
lation that R(A, C) « R(B, C) for every subformula C of D nowhere but in
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the inductive step D = F — F. Hence, we immediately have the following
lemma. Let A be an implicative formula iff it has the form B — C. Then,

Lemma 4. (Truth-functional replacement) Let C' be a formula con-
taining some occurrences of the formula A, and let C[A/B] be obtained
by replacing one or more occurrences of A by B in C. Moreover, suppose
that the replaced occurrences of A are not subformulas of any implicative
subformula of C. Then + A «— B =+ C < C[A/B].

Normal forms

Let us now introduce some terminology.

A truth and relatedness (T&R) atom is a variable in /L(S), or the
negation of a variable in /L(S), or a formula having the form R(p, ¢) (where
p and ¢ are variables in /L(S)) or the negation of such.

A T&R primitive conjunction is a generalized conjunction of T& R
atoms.

A T&R setup in py,...,p, (we borrow this term from [1]) is a T&R
primitive conjunction By A ... A By, s.t.:

(i) By A ... A By, contains at most the variables p1,...,pp;

(ii) its T& R atoms are alphabetically ordered, the alphabetical order being
given by p1,-p1,p2, 72, .-+, Pns Pns B(P1,p2), ~R(p1,p2), R(p1,ps),
ooy R(pn,pr—1)s ~R(Pns pn—1);

(iii) there are no repetitions of T& R atoms (i.e. for i,7 < m,i # j = B; #
Bj);

(iv) if i <mn,j <m and p; occurs in By A ... A By, R(pi, p;i) # Bj;

(v) if 4,7 < n and for some k < mBj = R(p;,p;), then for every [ <
mBy # R(pj,pi).

A T&R state description in pq,...,p, is a complete and consistent
T&R setup in py,...,pn, i.e. a T&R setup such that for every 7,5 <
n,i # j, exactly one of p;, —p; (exactly one of R(p;,p;), ~R(p;,p;)) occurs

as conjunct therein.
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A T&RP- (respectively S-, D-) disjunctive normal form in pq,...,p,
is a generalized disjunction of T'& R primitive conjunctions (resp. setups in

P1,-..,Pn, State descriptions in py,...,py).

A T&R perfect tautology in p1,...,p, is a ”combinatorially complete”
T& RD—disjunctive normal form in pq, ..., p,, i.e. a generalized disjunction
A1V ...V Agninn-1/2 Where, if B; is arbitrarily chosen from the set p;, —p;
and B; is arbitrarily chosen from the set R(py,p1), ~R(pk,p1), k # 1, then,
for every i,j,k,l and for every such possible choice, there exists an x <
2ntn(n=1)/2 gt (let indexed conjunction be introduced as usual) A, =
(Ni<n(Bi)) A (Aj<n(n-1)/2(Bj))-

Henceforth, whenever no risk of ambiguity is impending, we shall drop
the prefix "T& R”, as well as brackets and commas in formulas of the form

R(p, q).

As a first result we have:
Lemma 5. Every perfect tautology is provable in S.

Proof. Let A be a perfect tautology in p1,...,p,. Then, by T2 we
have that, for every 7,5,k <n, j # k, = p; V —p;, Rpjpi V " Rp;pi. Then,
in virtue of R5, F (A7 < n(p; V—pi)) A(Aj, k < n(Rpjpr V—-Rp;pi)). There-
fore, to attain our conclusion, we apply several times A9 and the "normal
form” theorems T7-T14, as well as instances of replacement permitted by
Theorem 1 and Lemma 4.

A semantic normal form theorem for S was proved by Epstein ([2], p.

79). We now extend his result to a purely syntactic normal form theorem.

Theorem 2. (S-disjunctive normal form) If A € WFF, there exists
an S-disjunctive normal form B, containing exactly the same variables as
A, st. HFA«— B.

Proof. We first show that (1) for every wif there is a P-disjunctive
normal form provably equivalent to the former; we shall then proceed to
demonstrate that (2) every P-disjunctive normal form can be strengthened
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to an S-disjunctive normal form still preserving provable equivalence. (1)
and (2), conjoined, yield Theorem 2.

(Proof of 1) Induction on the complexity of formulas.

Base. If A = p, then p < p A (pV —p) A (Rpp V —Rpp) is an instance
of T15 (second version). Applying T13, R6’, and Theorem 1 to it, we get
Fp < (pApARpp)V (pApA—Rpp)V (pA—pARpp)V (pA—pA—-Rpp).

Step.

(i) A= —B. Left to the reader (clue: use A9, T12, and Theorem 1).
(i) A= BAC. Just one more exercise (use A8, T9-T11, T13 and Theorem

1).

(ili) A = B — C. By IH, there exist P-dnfs B*,C* s.t. - B < B* -

C < C*. We shall show that there is a P-dnf provably equivalent to

B* — C* - whence, as B and B* (resp. C' and C*) contain by IH the

same variables, applying Theorem 1 we are able to infer that such a
formula is provably equivalent to B — C.

1) F B* — C* « (-B* v C*) A R(B*,C*) [A10].

2) F (=B*VC*)AR(B*,C*) < (nB*VC*)AR(B1V...VB,,C1V...VCy)
[Def.].

3) F (=B*VC*)AR(By V...V B,,C; V...V Cy) < (WB*VC*) A
(R(B1,C1V...VCp)V...VR(B,,C1 V...V Cp)) [A3-A5, Theo.
1].

4) F (=B*VC*)AN(R(B1,C1V...VCp)V...VR(B,,C1 V...VCp)) <
(=B*V C*) AN(R(B1,C1) V...V R(B1,C,) V...V R(B,,C;) V...V
R(B,,Cpn)) [A3-A5, Theo. 1].

Now, let B; = bj1 A... Ab;j,Cp = cp1 A ... Acy; likewise, let D be the
formula (R(bu, 011) V...V R(blj, 611) V...V R(blj, Clk) V...V R(bij, Ckl))-
The proof goes on as follows:

5) F (=B*VC*)A(R(B1,C1)V...VR(B1,C,) V...V R(Bp,C1) V...V
R(B,,Cp)) < (-B*VC*)AD [A3-A5, Theo. 1].
6) F (~B*VC*)AD < (~B*AD)V(C*AD)  [T13, Theo. 1].
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7) F(=B*AND)V(C*AD) < ((=B)*AND)V(C*AD) [A9, T12, T13,
Theo. 1],
where (—=B)* is what you get by repeatedly resorting to distribution
after having ”thrust” negation into B* via De Morgan (used twice). Let
Bi,..., B/, be the disjuncts thus obtained.
8) F((=B)* AND)V(C*AND)« (BiAD)V ...V (B, AND)V(Ci AD)V
...V (Cn AND) [T13].

By applying T13 to (B{AD)V...V(B,,AD)V(CiAD)V...V(C,AD),
we have that ((=B)*AD)V(C*AD) is provably equivalent to a P-dnf in the
same variables. Then, by 1)-8) and R6’, B* — C* is provably equivalent
to a P-dnf as well.

bf (Proof of 2).  Given a wif A, in virtue of the first part of this
theorem, there exists a P-dnf A* = B; V...V B, with exactly the same
variables as A, which is provably equivalent to it. We shall single out an
S-dnf A** in the same variables which is provably equivalent to A* - and
this will suffice, as we can apply restricted transitivity.

We 7tinker” with A*, namely with each one of the B;’s, as follows.

(A) First, by A8 and T10, we arrange its atoms in alphabetical ordering;
we thus get a B, which is (due to Theorem 1) still provably equivalent
to B;.

(B) Next, we do away with redundancies, applying T7. A further recourse
to Theorem 1 guarantees that B = B;[A A A/A] is still equivalent to
B;.

(C) Then, we resort to the theorem:

(T19) A— (B« (AAB)) (A2, A4, A7, A10, T2, T6, T11,
R9)

whence, by Al and R1, we are allowed to conclude that - B; <
Rpp A B;. Provided that the variable p occurs in B;, then, we can erase
Rpp therein (the proviso is needed to comply with the requirements of
Theorem 1).
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(D) In a similar fashion, by A2, we rub out Rgp if B; contains Rpq.

Let B] be, for every B;, the result of the previous adjustments. By our
construction, B} is a setup containing the same variables as B; and provably
equivalent to it. Thus, appealing to restricted replacement, we have that
A* is provably equivalent to A*[B;/B}]. Carrying out the forementioned

procedure as many times as necessary, we get our conclusion.

Semantics

We shall limit ourselves to just a few hints with regard to the general
semantics of S; for more details, the reader is referred to the extensive and
exhaustive treatment of [2].

Let PV be the set of propositional variables in /L(S) and let v : PV —
0,1. Moreover let RV C PV? be a reflexive and symmetric relation which
is extended to 8 C W FF? by means of:

R1. (A, B) iff R(-A, B)
R2. R(A,BAC)iff R(A,B — C)
R3. R(A, B) iff R(B, A)
R4. R(A, A)
(

R5. R(A,BAC) iff R(A, B) or R(A,C)

33

A wvaluation Vig : WFFE — 0,1 is inductively defined as:

Var(p) = v(p);
Vir(—A), V(A A B) are calculated with the aid of the classical truth
tables for — and A ;

V(A — B) = 1 if R(A,B) and (Vir(A) = 0 or Vr(B) = 1); =0
otherwise.

We define:

Vi E A (A true in Viy) iff Vig(4) = 1;
s A (A S-logically true) iff Viy = A for every Vg .

Recall that:
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Theorem 3. (Soundness) If g A, then =g A.

Proof. Induction on the length of proofs.

We now have at our disposal the necessary ingredients to ”cook” our:
Theorem 4. (Completeness) If =g A, then Fg A.

Proof. As usual, we shall prove the contrapositive. Thus, suppose
not - A. Let A* = A1 V...V A,, be the S-dnfin p4,...,p, whose existence,
and provable equivalence to A, is guaranteed by Theorem 2. Of course, we
have that not = A* and moreover, for i < m, not - A; (if it were otherwise,
by T6 we should have - A*, whence - A).

If a conjunctive complementary pair is defined as a formula of the form
pA—p(RpgA\—Rpq), then, generally speaking, some of the A;’s will contain
conjunctive complementary pairs (ccps), whereas other ones will not. For
the sake of simplicity, let us fix an ¢ and suppose that for j < i, A; contains
some ccp, whereas for j > 7 A; does not. It is then clear that, for every
j < i and for every Vg , Vir(4,) = 0.

Let now k£ > 4. Then

Ap = (p1) A (=p1) Ao A(pn) A (5pn) A (Bpip2) A (mRpip2) Ao A
(Bpnpn—1) A (= Rpppn—1);

where bracketed items are possibly missing. We now need to complete
Ag in order to make it a state description. We know that, because of our
hypothesis on ccps, for each pair pi, —pi (resp. Rp;pj, ~Rp;p;), not both the
first and the second element occur in Ag. If neither does (i.e., intuitively
speaking, if A says nothing about whether it is the case that p; or about
whether p; and p; are related to each other), we integrate the missing items
by T15 (first version), replacing Ay by Ak V...V Ak in such a way that
exactly one element of each "missing” pair occurs in each disjunct. Lemma

4, then, ensures mutual intersubstitutability of Ay and Agy V...V Agp.
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Example. Let p A =r A =Rpg A Rpr be a setup in p, ¢, . Applying
T15 we get (p A—r A—=Rpg A\ Rpr Aq A\ Rqr)V (p A—r AN—=Rpg A\ Rpr A q A\
- Rqr)V (pA—rA=Rpg\ Rpr A—~qA—Rqr)V (pA—rA—Rpg A Rpr A—q A\ Rqr).

After we've got this thing done (and after we have ”tidied up” via A8,
T7-T11), we have a disjunction C, intersubstitutable with A;1; V...V A,
at least in cases provided for by Lemma 4, in which each C} is now a
state description in pq,...,p, having the form Bi A...AB, ABpt1 A... A
By tn(n-1)/2, where: for i <n B; is either p; or —p;, for i > n B; has the
form Rp;p, (—Rp;p)-

Now construct the valuation Fypy (F' stands for False) as follows: if the
kth conjunct of the kth disjunct of C'is p (—p), set f(p) = 0 (1); if it is Rpq
(=Rpq), set R(p,q) = 0 (1). It may of course happen that, if the number
of disjuncts in C' is greater than n + n(n — 1)/2, our procedure is at some
time ”blocked”, i.e. there is a C}, such that, depending on the values thus

far assigned, Fin(Cj) = 1.

Example. Let C be (p AgA Rpq)V (—=pAgA Rpq)V (p A—g A Rpq)V
(=p A =g A = Rpq). The number of disjuncts is 4 > 3 = 2 + 2x1/2. By our
construction, f(p) = f(q) = R(p,q) = 0. Then Fyn(—p A ~¢ A —Rpq) = 1.

If this is the case, reassign values considering for instance the k + 1th
conjunct of the kth disjunct, until you get an ”unblocked” valuation. That
you will never thrust yourself into a blind alley is guaranteed by Lemma 5,
according to which perfect tautologies are provable in S (and if C' were
such, then A* would be such as well, against our hypothesis).

Summing up: by our construction, Fx(C) = 0; then, in virtue of
Theorem 3, Fix(A;11V...VA,,) = 0; therefore, since for every Vi , Vig(41V
...V A;) =0, we have that Fx(A; V...V A;) = 0 and thus Fr(A*) = 0.
Again, Theorem 3 ensures that Fn(A4) = 0.
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