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S IS CONSTRUCTIVELY COMPLETE

Introduction

The logic S (Symmetric Propositional Relatedness Logic) was intro-

duced in the late 1970s by Richard Epstein, and thoroughly studied over

the subsequent decade by Epstein himself and his collaborators - a clear

outline of this work is presented in [2]. Epstein’s starting point was a se-

mantical analysis of the concept of subject matter relatedness among propo-

sitions, which eventually led to an axiomatization and a nonconstructive

completeness proof with respect to that semantics.

We shall provide the axiom system S devised by Epstein with a con-

structive completeness proof, extending thereby to the full system of propo-

sitional logic some of our results on first degree relatedness conditionals (cp.

[3]). For this purpose, however, we shall make use of Epstein’s semantics,

as well as of a syntactic counterpart of a normal form theorem, already

proved by Epstein in a semantic guise.

An Axiom System

The system S (cp. [2], p. 80) has a language L(S) containing a denu-

merable list of variables p1, p2, . . . and the connectives ¬, ∧, →.
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We use the following abbreviations:

A ∨ B =df ¬(¬A ∧ ¬B);

A ↔ B =df (A → B) ∧ (B → A);

R(A,B) =df A → (B → B).

The set WFF of formulas is defined as the smallest set containing the

variables and being closed under ¬, ∧, →. The axiom schemata and the

rules of S are the following (A, B are metavariables for elements of WFF):

A1. R(A,A)

A2. R(B,A) → R(A,B)

A3. R(A,¬B) ↔ R(A,B)

A4. R(A,B → C) ↔ R(A,B) ∨ R(A,C)

A5. R(A,B ∧ C) ↔ R(A,B → C)

A6. (A ∧ B) → A

A7. A → (B → (A ∧ B))

A8. (A ∧ B) → (B ∧ A)

A9. A ↔ ¬¬A

A10. (A → B) ↔ ¬(A ∧ ¬B) ∧ R(A,B)

A11. A → (¬(B ∧ A) → ¬B)

A12. ¬(A ∧ B) → (¬(C ∧ ¬B) → ¬(A ∧ C))

A13. ¬((C → D) ∧ (C ∧ ¬D))

R1.
A A → B

B

Lemma 1. The following rules are derived rules of S:

R2.
A → B¬B

¬A
(A6, A10, A11)

R3.
A ∧ B

A

A ∧ B

B
(A6, A8)

R4.
A

A ∨ B

B

A ∨ B
(A6, A9, R2)

R5.
A B

A ∧ B
(A7)
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R6.
A → B B → C

A → C
provided that ` R(A,C)

R7.
A

B → A
provided that ` R(B,A)

R8.
A ∧ (B ∨ C)

(A ∧ B) ∨ (A ∧ C)
(A6, A9, A10, A11, A12, A13)

R9.
A → B A → C

A → B ∧ C
(A4-5, A6, A10, R2, R5, R6, R8)

R10.
A ∧ (B ∧ C)

(A ∧ B) ∧ C
(A6, R5)

R11.
A → (B → C)

(A ∧ B) → C
provided that ` R(B,C) (A1-5, A6, A9, A10, R2,

R6, R10)

R12.
A → BA → (B → C)

A → C
provided that ` R(A,C)

Proof. Left to the reader, except for R6, R7, and R12, especially

important for our deduction theorem below.

Proof of R6. Suppose A → B and B → C. Then (A10, A6)

¬(A ∧ ¬B) and ¬(B ∧ ¬C). From the latter item, via A8 and R2, we get

¬(¬C ∧B). But ¬(¬C ∧B) → (¬(A∧¬B) → ¬(¬C ∧A)) is an instance of

A12. Applying R1 twice, we get ¬(¬C∧A), whence, by the same procedure

as before, ¬(A ∧ ¬C). But we assumed ` R(A,C) at the outset. By R5,

¬(A ∧ ¬C)∧R(A,C). Notice that ¬(A ∧¬C) ∧R(A,C) → (A → C) is an

instance of A10. Thus, by R1, A → C.

Proof of R7. ¬A ∧ B → ¬A and B ∧ ¬A → ¬A ∧ B are instances,

resp., of A6 and A8. By A1-A5 we get ` R(B ∧ ¬A,¬A) and by R6, then,

B ∧ ¬A → ¬A. From our assumption A and A → ¬¬A (A9), we derive

¬¬A by R1. Hence, by R2, ¬¬A and B ∧ ¬A → ¬Ayield¬(B ∧ ¬A).

But we assumed ` R(B,A). By R5, ¬(B ∧ ¬A) ∧ R(B,A). Remark that

¬(B ∧ ¬A) ∧ R(B,A) → (B → A) is an instance of A10. By R1, we get

B → A.

Proof of R12. Assume A → B and A → (B → C). From A6, A10,

R6 we have (B → C) → ¬(B ∧¬C). From ` R(A,C) and A1-A5, we get `
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R(A,¬(B∧¬C)). Hence, from A → (B → C) and (B → C) → ¬(B∧¬C),

by R6, we get A → ¬(B∧¬C). Now, R9 gives us A → (B∧¬(B∧¬C)). But

B → (¬(B∧¬C) → ¬¬C) is an instance of A11. Since R(¬(B∧¬C),¬¬C)

is provable by A1-A5, by R11 we can derive B ∧ ¬(B ∧ ¬C) → ¬¬C and

(A9 and again R6) B ∧¬(B ∧¬C) → C. By transitivity, permissible since

` R(A,C), we get A → C.

Lemma 2. If A and B share a variable, then ` R(A,B).

Proof. Double induction on the number of connectives occurring

in A, resp. B. As usual, we call such a number the complexity of the

corresponding formula.

Base. If A = B = p, then R(A,B) = R(p, p) is an instance of A1.

Step. (i) Let us suppose that the theorem is true for A of complexity

1 (A = p) and B of complexity ≤ n. We distinguish the following cases:

(i.i) B = ¬C. Let us suppose that ¬C (hence, C) contains p. We have:

1. R(p,C) IH

2. R(p,C) → R(p,¬C) A3

3. R(p,¬C) 1, 2, R1

(i.ii) B = C → D. Let us suppose that C → D contains p. Then,

either C or D contains p. Assume it is C (the other case is similar):

1. R(p,C) IH

2. R(p,C) ∨ R(p,D) R4

3. R(p,C) ∨ R(p,D) → R(p,C → D) A4

4. R(p,C → D) 2, 3, R1

(i.iii) B = C ∧ D. Like in the preceding case, let us suppose that C

contains p. Steps 1-4 are the same as before. Then:

5. R(p,C → D) → R(p,C ∧ D) A5

6. R(p,C ∧ D) 4, 5, R1
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(ii) Let us suppose, now, that the theorem holds for A of complexity

≤ n and B whatsoever. We explicitly treat the case of negation - the other

ones are analogous. Well, assume that A = ¬C. If ¬C and B share a

variable, then so do C and B. hence:

1. R(C,B) IH

2. R(C,B) → R(B,C) A2

3. R(B,C) 1, 2, R1

4. R(B,C) → R(B,¬C) A3

5. R(B,¬C) 3, 4, R1

6. R(B,¬C) → R(¬C,B) A2

7. R(¬C,B) 5, 6, R1

Corollary. If A and C share a variable, the rule of transitivity:

R6’.
A → B B → C

A → C

holds unrestrictedly.

Proof. By Lemma 1 and Lemma 2.

Lemma 3. Suppose ` R(A,B). If B is deducible in S from G,A (in

the ordinary, classical sense), then A → B is deducible in S from Γ.

Proof. As usual for deduction theorems, we prove this lemma by

induction on the length of the deduction of B from Γ, A.

(i) B is an axiom.

1. B Ax.

2. R(A,B) Theor.

3. A → B 1, 2, R7

(ii) B is in Γ.

1. B Hyp.

2. R(A,B) Theor.
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3. A → B 1, 2, R7

(iii) B = A

1. A → ¬¬A A9

2. ¬¬A → A A9

3. R(A,A) A1

4. A → A 1, 2, 3, R6

(iv) B is obtained by R1 from C and C → B. By IH, there exists a

deduction of A → C and A → (C → B) from Γ.

. . .

n. A → C IH

n+1 A → (C → B) IH

n+2 R(A,B) Theor.

n+3 A → B n, n+1, n+2, R12

A straightforward consequence of Lemma 2 and Lemma 3 is the fol-

lowing

Corollary. If A and B share a variable, and B is deducible in S from

Γ, A (in the ordinary, classical sense), then A → B is deducible in S from

Γ.

Now, let us list some theses and some more derived rules of S:

T1. A → A (A9)

T2. ¬A ∨ A (T1, A8, A9, A10)

T3. A ∧ B → B (R3)

T4. A → A ∧ (B ∨ ¬B) (T2, T4)

R13.
A → B

¬B → ¬A
(R2, A1-5)

T5. (A → B) → (¬B → ¬A) (R13)

T6. A → A ∨ B
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B → A ∨ B (R4)

R14.
A → C B → C

A ∨ B → C
(R9, R13)

T7. A ↔ A ∧ A (A6, T1, R9)

T8. A ∨ A ↔ A (T1, T6, R14)

T9. A ∨ B ↔ B ∨ A (T6, R14)

T10. A ∧ (B ∧ C) ↔ (A ∧ B) ∧ C (R8)

T11. A ∨ (B ∨ C) ↔ (A ∨ B) ∨ C (T6, R14)

T12. ¬(A∧B) ↔ ¬A∨¬B¬(A∨B) ↔ ¬A∧¬B (A6, A9, T3, T6, R9,

R13, R14)

T13. (A ∨ B) ∧ C → (A ∧ C) ∨ (B ∧ C) (A8, R8)

T14. (A ∧ B) ∨ C ↔ (A ∨ C) ∧ (B ∨ C) (A9, T13)

T15. A ↔ (A∧p1∧. . .∧pn∧R(p1, p2)∧. . .∧R(pn−1, pn))∨(A∧¬p1∧p2∧. . .∧

pn∧R(p1, p2)∧. . .∧R(pn−1, pn))∨(A∧p1∧¬p2∧. . .∧pn∧R(p1, p2)∧. . .∧

R(pn−1, pn))∨. . .∨(A∧¬p1∧. . .∧¬pn∧¬R(p1, p2)∧. . .∧¬R(pn, pn−1))

(right to left: A6, R14; left to right: A8, T2, R5, T9, T10, T11, T13,

T14)

A ↔ (A∨ p1 ∨ . . .∨ pn ∨R(p1, p2)∨ . . .∨R(pn−1, pn))∧ (A∨¬p1 ∨ p2 ∨

. . .∨pn∨R(p1, p2)∨ . . .∨R(pn−1, pn))∧ (A∨p1∨¬p2∨ . . .∨pn∨R(p1, p2)∨

. . .∨R(pn−1, pn))∧. . .∧(A∨¬p1∨. . .∨¬pn∨¬R(p1, p2)∨. . .∨¬R(pn, pn−1))

(right to left: T6, R9; left to right: A8, A9, T2, R5, T9, T11, T12,

T13, T14)

T16. (A ↔ B) → (¬A ↔ ¬B) (A6, T3, T5, R9)

T17. ((A ↔ B) ∧ (C ↔ D)) → (A ∧ C ↔ B ∧ D) (A6, A7)

T18. ((A ∨ B) ∧ (A → C) ∧ (B → C)) → C (A6, R14)

To prove such theorems, use Lemma 3 (and its corollary) and the

clues provided aside. T15 (rather clumsy in its appearance, indeed) is a

generalized relatedness counterpart of such classical tautologies as A ↔

(A ∧ p) ∨ (A ∧ ¬p) and A ↔ (A ∨ p) ∧ (A ∨ ¬p). Both conjunctions and

disjunctions are associated to the left when brackets are omitted.
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A standard unrestricted replacement theorem is not available in S (cp.

[2], p. 81). Nonetheless, we are now in a position to prove the following:

Theorem 1. (Restricted replacement) Let D[A/B] be obtained by

simultaneously replacing zero or more occurrences of A by B in D. More-

over, assume that R(A,C) ↔ R(B,C) for every subformula C of D. Then

` A ↔ B ⇒` D → D[A/B].

Proof. Induction on the complexity of D.

(i) D = p. First case: A 6= p. In such a case, D → D[A/B] is nothing else

than p → p, an instance of T1. Second case: A = p. Then D = p = A.

Therefore, from ` p ↔ B we are allowed to infer ` p → p/B.

(ii) D = ¬E. We use the IH and T16.

(iii) D = E ∧ F . We use the IH, R5 and T17.

(iv) D = E → F . We must show that ` A ↔ B ⇒` (E → F ) →

(E[A/B] → F [A/B]) under the assumption R(A,C) ↔ R(B,C).

First case: A appears neither in E nor in F , or else no occurrence of

A in either formula is replaced by B. Then E[A/B] → F [A/B] = E → F ,

and (E → F ) → (E[A/B] → F [A/B]) is an instance of T1.

Second case: A appears in both E and F , and some occurrence thereof

is actually replaced in both formulas. By A10, A6 and R6’, (E → F ) →

¬(E ∧ ¬F ); but, using the IH and the same principles as in cases (ii) and

(iii), we have that ¬(E∧¬F ) → ¬(E[A/B]∧¬F [A/B]). If we want to apply

R6 to the preceding formulas and get (E → F ) → ¬(E[A/B] ∧ ¬F [A/B]),

we need to know that ` R(E → F,¬(E[A/B] ∧ ¬F [A/B])). But A → B

is provable by hypothesis: hence so is R(A,B). Remember that, by our

assumption, E → F contains A and some occurrence thereof is actually

replaced by B. Then, repeatedly using A1-A5, we have that R(E → F,B)

is provable, and, by A1-A5 again, so is R(E → F,¬(E[A/B] ∧ ¬F [A/B])).

By R6’, then, we can deduce (E → F ) → ¬(E[A/B] ∧ ¬F [A/B]).

Likewise, by A10, A6 and R6’ we get (2) (E → F ) → R(E,F ). More-

over, let γ1(A), . . . , γn(A) be exactly those subformulas of F where some

occurrences of A are to be replaced by B in F [A/B], and let δ1, . . . , δm be
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the remaining subformulas of F . Then, repeatedly resorting to A2-A5, we

achieve:

(3) R(E,F ) → R(E, γ1(A))∨ . . .∨R(E, γn(A))∨R(E, δ1)∨ . . .∨R(E, δm),

whence, using A2-A5, T9, T11 and R6’ (first to ”ungroup” formulas,

then to ”regroup” them, possibly utilizing T8 to cancel redundancies):

(4) R(E,F ) → R(E,A) ∨ R(E,G),

where G is a disjunction (or, for that matter, a conjunction) of sub-

formulas of F with no (to-be-replaced) occurrence of A therein. Moreover,

by our assumption,

(5) R(E,A) → R(E,B),

and from (5), by A2-A5 and R6’,

(6) R(E,A) → R(E,F [A/B]).

By A2-A5 again,

(7) R(E,G) → R(E,F [A/B]).

Then, collecting together (2)-(7), via R6’ and T18 we have that

(8) (E → F ) → R(E,F [A/B]).

Carrying out the previous reasoning with respect to E → F [A/B], we

are allowed to deduce R(E[A/B], F [A/B]), whence, by R6,

(9) (E → F ) → R(E[A/B], F [A/B]),

which in turn yields, together with (1), by R9 and A10,

(10) (E → F ) → (E[A/B] → F [A/B]).

The remaining cases are treated similarly.

As a consequence of the theorem, we have unrestricted admissibility

of the replacement rule if A and B contain the same variables p1, . . . , pn.

In fact, starting from R(p1, C) ∨ . . . ∨ R(pn, C), by A1-A5, T8, T9, T11,

R6’ and Theorem 1 we compound both formulas out of their atoms and

eventually get R(A,C) ↔ R(B,C).

Remark that, in the proof of Theorem 1, we used the additional stipu-

lation that R(A,C) ↔ R(B,C) for every subformula C of D nowhere but in
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the inductive step D = E → F . Hence, we immediately have the following

lemma. Let A be an implicative formula iff it has the form B → C. Then,

Lemma 4. (Truth-functional replacement) Let C be a formula con-

taining some occurrences of the formula A, and let C[A/B] be obtained

by replacing one or more occurrences of A by B in C. Moreover, suppose

that the replaced occurrences of A are not subformulas of any implicative

subformula of C. Then ` A ↔ B ⇒` C ↔ C[A/B].

Normal forms

Let us now introduce some terminology.

A truth and relatedness (T&R) atom is a variable in /L(S), or the

negation of a variable in /L(S), or a formula having the form R(p, q) (where

p and q are variables in /L(S)) or the negation of such.

A T&R primitive conjunction is a generalized conjunction of T&R

atoms.

A T&R setup in p1, . . . , pn (we borrow this term from [1]) is a T&R

primitive conjunction B1 ∧ . . . ∧ Bm s.t.:

(i) B1 ∧ . . . ∧ Bm contains at most the variables p1, . . . , pn;

(ii) its T&R atoms are alphabetically ordered, the alphabetical order being

given by p1,¬p1, p2,¬p2, . . . , pn,¬pn, R(p1, p2),¬R(p1, p2), R(p1, p3),

. . . , R(pn, pn−1),¬R(pn, pn−1);

(iii) there are no repetitions of T&R atoms (i.e. for i, j ≤ m, i 6= j ⇒ Bi 6=

Bj);

(iv) if i ≤ n, j ≤ m and pi occurs in B1 ∧ . . . ∧ Bm, R(pi, pi) 6= Bj ;

(v) if i, j ≤ n and for some k ≤ mBk = R(pi, pj), then for every l ≤

mBl 6= R(pj , pi).

A T&R state description in p1, . . . , pn is a complete and consistent

T&R setup in p1, . . . , pn, i.e. a T&R setup such that for every i, j ≤

n, i 6= j, exactly one of pi,¬pi (exactly one of R(pi, pj),¬R(pi, pj)) occurs

as conjunct therein.
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A T&RP - (respectively S-, D-) disjunctive normal form in p1, . . . , pn

is a generalized disjunction of T&R primitive conjunctions (resp. setups in

p1, . . . , pn, state descriptions in p1, . . . , pn).

A T&R perfect tautology in p1, . . . , pn is a ”combinatorially complete”

T&RD−disjunctive normal form in p1, . . . , pn, i.e. a generalized disjunction

A1 ∨ . . .∨A2n+n(n−1)/2 where, if Bi is arbitrarily chosen from the set pi,¬pi

and Bj is arbitrarily chosen from the set R(pk, pl),¬R(pk, pl), k 6= l, then,

for every i, j, k, l and for every such possible choice, there exists an x ≤

2n+n(n−1)/2 s.t. (let indexed conjunction be introduced as usual) Ax =

(∧i≤n(Bi)) ∧ (∧j≤n(n−1)/2(Bj)).

Henceforth, whenever no risk of ambiguity is impending, we shall drop

the prefix ”T&R”, as well as brackets and commas in formulas of the form

R(p, q).

As a first result we have:

Lemma 5. Every perfect tautology is provable in S.

Proof. Let A be a perfect tautology in p1, . . . , pn. Then, by T2 we

have that, for every i, j, k ≤ n, j 6= k, ` pi ∨¬pi,` Rpjpk ∨¬Rpjpk. Then,

in virtue of R5, ` (∧i ≤ n(pi∨¬pi))∧(∧j, k ≤ n(Rpjpk∨¬Rpjpk)). There-

fore, to attain our conclusion, we apply several times A9 and the ”normal

form” theorems T7-T14, as well as instances of replacement permitted by

Theorem 1 and Lemma 4.

A semantic normal form theorem for S was proved by Epstein ([2], p.

79). We now extend his result to a purely syntactic normal form theorem.

Theorem 2. (S-disjunctive normal form) If A ∈ WFF , there exists

an S-disjunctive normal form B, containing exactly the same variables as

A, s.t. ` A ↔ B.

Proof. We first show that (1) for every wff there is a P-disjunctive

normal form provably equivalent to the former; we shall then proceed to

demonstrate that (2) every P-disjunctive normal form can be strengthened
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to an S-disjunctive normal form still preserving provable equivalence. (1)

and (2), conjoined, yield Theorem 2.

(Proof of 1) Induction on the complexity of formulas.

Base. If A = p, then p ↔ p ∧ (p ∨ ¬p) ∧ (Rpp ∨ ¬Rpp) is an instance

of T15 (second version). Applying T13, R6’, and Theorem 1 to it, we get

` p ↔ (p ∧ p ∧ Rpp) ∨ (p ∧ p ∧ ¬Rpp) ∨ (p ∧ ¬p ∧ Rpp) ∨ (p ∧ ¬p ∧ ¬Rpp).

Step.

(i) A = ¬B. Left to the reader (clue: use A9, T12, and Theorem 1).

(ii) A = B∧C. Just one more exercise (use A8, T9-T11, T13 and Theorem

1).

(iii) A = B → C. By IH, there exist P-dnfs B∗, C∗ s.t. ` B ↔ B∗,`

C ↔ C∗. We shall show that there is a P-dnf provably equivalent to

B∗ → C∗ - whence, as B and B∗ (resp. C and C∗) contain by IH the

same variables, applying Theorem 1 we are able to infer that such a

formula is provably equivalent to B → C.

1) ` B∗ → C∗ ↔ (¬B∗ ∨ C∗) ∧ R(B∗, C∗) [A10].

2) ` (¬B∗∨C∗)∧R(B∗, C∗) ↔ (¬B∗∨C∗)∧R(B1∨. . .∨Bn, C1∨. . .∨Cm)

[Def.].

3) ` (¬B∗ ∨ C∗) ∧ R(B1 ∨ . . . ∨ Bn, C1 ∨ . . . ∨ Cm) ↔ (¬B∗ ∨ C∗) ∧

(R(B1, C1 ∨ . . .∨Cm)∨ . . .∨R(Bn, C1 ∨ . . .∨Cm)) [A3-A5, Theo.

1].

4) ` (¬B∗ ∨C∗)∧ (R(B1, C1 ∨ . . .∨Cm)∨ . . .∨R(Bn, C1 ∨ . . .∨Cm)) ↔

(¬B∗ ∨ C∗) ∧ (R(B1, C1) ∨ . . . ∨ R(B1, Cn) ∨ . . . ∨ R(Bn, C1) ∨ . . . ∨

R(Bn, Cm)) [A3-A5, Theo. 1].

Now, let Bi = bi1 ∧ . . .∧ bij , Ck = ck1 ∧ . . .∧ ckl; likewise, let D be the

formula (R(b11, c11)∨ . . . ∨R(b1j , c11)∨ . . . ∨R(b1j , c1k)∨ . . . ∨R(bij , ckl)).

The proof goes on as follows:

5) ` (¬B∗ ∨ C∗) ∧ (R(B1, C1) ∨ . . . ∨R(B1, Cn) ∨ . . . ∨ R(Bn, C1) ∨ . . . ∨

R(Bn, Cm)) ↔ (¬B∗ ∨ C∗) ∧ D [A3-A5, Theo. 1].

6) ` (¬B∗ ∨ C∗) ∧ D ↔ (¬B∗ ∧ D) ∨ (C∗ ∧ D) [T13, Theo. 1].
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7) ` (¬B∗∧D)∨ (C∗∧D) ↔ ((¬B)∗∧D)∨ (C∗∧D) [A9, T12, T13,

Theo. 1],

where (¬B)∗ is what you get by repeatedly resorting to distribution

after having ”thrust” negation into B∗ via De Morgan (used twice). Let

B′
1, . . . , B

′
m be the disjuncts thus obtained.

8) ` ((¬B)∗ ∧ D) ∨ (C∗ ∧ D) ↔ (B′
1 ∧ D) ∨ . . . ∨ (B′

m ∧ D) ∨ (C1 ∧ D) ∨

. . . ∨ (Cm ∧ D) [T13].

By applying T13 to (B ′
1∧D)∨. . .∨(B′

m∧D)∨(C1∧D)∨. . .∨(Cm∧D),

we have that ((¬B)∗∧D)∨(C∗∧D) is provably equivalent to a P-dnf in the

same variables. Then, by 1)-8) and R6’, B∗ → C∗ is provably equivalent

to a P-dnf as well.

bf (Proof of 2). Given a wff A, in virtue of the first part of this

theorem, there exists a P-dnf A∗ = B1 ∨ . . . ∨ Bn, with exactly the same

variables as A, which is provably equivalent to it. We shall single out an

S-dnf A∗∗ in the same variables which is provably equivalent to A∗ - and

this will suffice, as we can apply restricted transitivity.

We ”tinker” with A∗, namely with each one of the Bi’s, as follows.

(A) First, by A8 and T10, we arrange its atoms in alphabetical ordering;

we thus get a B′
i which is (due to Theorem 1) still provably equivalent

to Bi.

(B) Next, we do away with redundancies, applying T7. A further recourse

to Theorem 1 guarantees that B ′
i = Bi[A ∧ A/A] is still equivalent to

Bi.

(C) Then, we resort to the theorem:

(T19) A → (B ↔ (A ∧ B)) (A2, A4, A7, A10, T2, T6, T11,

R9)

whence, by A1 and R1, we are allowed to conclude that ` Bi ↔

Rpp ∧ Bi. Provided that the variable p occurs in Bi, then, we can erase

Rpp therein (the proviso is needed to comply with the requirements of

Theorem 1).
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(D) In a similar fashion, by A2, we rub out Rqp if Bi contains Rpq.

Let B′
i be, for every Bi, the result of the previous adjustments. By our

construction, B′
i is a setup containing the same variables as Bi and provably

equivalent to it. Thus, appealing to restricted replacement, we have that

A∗ is provably equivalent to A∗[Bi/B
′
i]. Carrying out the forementioned

procedure as many times as necessary, we get our conclusion.

Semantics

We shall limit ourselves to just a few hints with regard to the general

semantics of S; for more details, the reader is referred to the extensive and

exhaustive treatment of [2].

Let PV be the set of propositional variables in /L(S) and let v : PV →

0, 1. Moreover let R
PV ⊂ PV 2 be a reflexive and symmetric relation which

is extended to R ⊂ WFF 2 by means of:

R1. R(A,B) iff R(¬A,B)

R2. R(A,B ∧ C) iff R(A,B → C)

R3. R(A,B) iff R(B,A)

R4. R(A,A)

R5. R(A,B ∧ C) iff R(A,B) or R(A,C)

A valuation VR : WFF → 0, 1 is inductively defined as:

VR(p) = v(p);

VR(¬A), VR(A ∧ B) are calculated with the aid of the classical truth

tables for ¬ and ∧ ;

VR(A → B) = 1 if R(A,B) and (VR(A) = 0 or VR(B) = 1); = 0

otherwise.

We define:

VR |= A (A true in VR) iff VR(A) = 1;

|=S A (A S-logically true) iff VR |= A for every VR .

Recall that:
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Theorem 3. (Soundness) If `S A, then |=S A.

Proof. Induction on the length of proofs.

We now have at our disposal the necessary ingredients to ”cook” our:

Theorem 4. (Completeness) If |=S A, then `S A.

Proof. As usual, we shall prove the contrapositive. Thus, suppose

not ` A. Let A∗ = A1∨ . . .∨Am be the S-dnf in p1, . . . , pn whose existence,

and provable equivalence to A, is guaranteed by Theorem 2. Of course, we

have that not ` A∗ and moreover, for i ≤ m, not ` Ai (if it were otherwise,

by T6 we should have ` A∗, whence ` A).

If a conjunctive complementary pair is defined as a formula of the form

p∧¬p(Rpq∧¬Rpq), then, generally speaking, some of the Ai’s will contain

conjunctive complementary pairs (ccps), whereas other ones will not. For

the sake of simplicity, let us fix an i and suppose that for j ≤ i, Aj contains

some ccp, whereas for j > i Aj does not. It is then clear that, for every

j ≤ i and for every VR , VR(Aj) = 0.

Let now k > i. Then

Ak = (p1) ∧ (¬p1) ∧ . . . ∧ (pn) ∧ (¬pn) ∧ (Rp1p2) ∧ (¬Rp1p2) ∧ . . . ∧

(Rpnpn−1) ∧ (¬Rpnpn−1),

where bracketed items are possibly missing. We now need to complete

Ak in order to make it a state description. We know that, because of our

hypothesis on ccps, for each pair pi,¬pi (resp. Rpipj ,¬Rpipj), not both the

first and the second element occur in Ak. If neither does (i.e., intuitively

speaking, if Ak says nothing about whether it is the case that pi or about

whether pi and pj are related to each other), we integrate the missing items

by T15 (first version), replacing Ak by Ak1 ∨ . . . ∨ Akh in such a way that

exactly one element of each ”missing” pair occurs in each disjunct. Lemma

4, then, ensures mutual intersubstitutability of Ak and Ak1 ∨ . . . ∨ Akh.
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Example. Let p ∧ ¬r ∧ ¬Rpq ∧ Rpr be a setup in p, q, r. Applying

T15 we get (p ∧ ¬r ∧ ¬Rpq ∧ Rpr ∧ q ∧ Rqr) ∨ (p ∧ ¬r ∧ ¬Rpq ∧ Rpr ∧ q ∧

¬Rqr)∨(p∧¬r∧¬Rpq∧Rpr∧¬q∧¬Rqr)∨(p∧¬r∧¬Rpq∧Rpr∧¬q∧Rqr).

After we’ve got this thing done (and after we have ”tidied up” via A8,

T7-T11), we have a disjunction C, intersubstitutable with Ai+1 ∨ . . .∨Am

at least in cases provided for by Lemma 4, in which each Ck is now a

state description in p1, . . . , pn having the form B1 ∧ . . .∧Bn ∧Bn+1 ∧ . . .∧

Bn+n(n−1)/2, where: for i ≤ n Bi is either pi or ¬pi, for i > n Bi has the

form Rpjpk (¬Rpjpk).

Now construct the valuation FR (F stands for False) as follows: if the

kth conjunct of the kth disjunct of C is p (¬p), set f(p) = 0 (1); if it is Rpq

(¬Rpq), set R(p, q) = 0 (1). It may of course happen that, if the number

of disjuncts in C is greater than n + n(n − 1)/2, our procedure is at some

time ”blocked”, i.e. there is a Ch such that, depending on the values thus

far assigned, FR(Ch) = 1.

Example. Let C be (p∧ q ∧Rpq)∨ (¬p∧ q ∧Rpq)∨ (p∧¬q ∧Rpq)∨

(¬p ∧ ¬q ∧ ¬Rpq). The number of disjuncts is 4 > 3 = 2 + 2x1/2. By our

construction, f(p) = f(q) = R(p, q) = 0. Then FR(¬p ∧ ¬q ∧ ¬Rpq) = 1.

If this is the case, reassign values considering for instance the k + 1th

conjunct of the kth disjunct, until you get an ”unblocked” valuation. That

you will never thrust yourself into a blind alley is guaranteed by Lemma 5,

according to which perfect tautologies are provable in S (and if C were

such, then A∗ would be such as well, against our hypothesis).

Summing up: by our construction, FR(C) = 0; then, in virtue of

Theorem 3, FR(Ai+1∨. . .∨Am) = 0; therefore, since for every VR , VR(A1∨

. . . ∨ Ai) = 0, we have that FR(A1 ∨ . . . ∨ Ai) = 0 and thus FR(A∗) = 0.

Again, Theorem 3 ensures that FR(A) = 0.
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