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EMBEDDABILITY BETWEEN ORDERINGS

AND THE GCH

A b s t r a c t. We provide some statements equivalent in ZFC to

GCH, and also to GCH above a given cardinal. These statements

express the validity of the notions of replete and well-replete car-

dinals, which are introduced and proved to be specially relevant to

the study of cardinal exponentiation. As a byproduct, a structure

theorem for linear orderings is proved to be equivalent to GCH:

for every linear ordering L, at least one of L and its converse is

universal for the smaller well-orderings.

.1 Preliminary Remarks

Two order-theoretic properties of cardinals, the repleteness and the well-

repleteness, are defined and the generalized continuum hypothesis (GCH)
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is proved to be equivalent to the validity of each of these properties. More

precisely, theorem 3.1 (section 3) shows that all cardinals are replete if and

only if GCH holds. Then, a strengthening of this concerning the validity

of GCH above a given cardinal is proved. Our theorem 3.3 closes section 3,

completely characterizing the replete cardinals in terms of the continuum

function. After that, theorem 4.1 (section 4) shows that a cardinal is replete

if and only if it is well-replete. As an immediate application, we have that

GCH is equivalent to the following structure hypothesis for linear orderings.

• (Universality hypothesis) For every linearly ordered set L, at least

one of L and its converse is universal for the smaller well-ordered sets

(i.e. those of cardinality less than |L|).

We say that a linear ordering is universal for a class of linearly ordered

sets if it embeds any such set. The universality hypothesis roughly says

that in order to arrange a set of points in a line one cannot bypass any of

the smaller well-orderings. It is trivially true in the finite realm and the

transposition of this regularity to the infinite amounts to GCH.

The equivalence between GCH and the validity of well-repleteness is

a natural continuation of the main theorem proved by Erdős and Rado in

[1] which, surprisingly, remained unnoticed up until now. Another theorem

due to Erdős and Rado is relevant in this paper, the partition theorem, and

a suitable form of it is recalled in section 3.

The combination of all our results is summarized in theorem 1.1. The

aim of this work is to bring some order-theoretic intuitions to GCH and

cardinal exponentiation, generally.

Theorem 1.1. The following are equivalent in ZFC:

• GCH

• Every cardinal is replete.

• Every cardinal is well-replete.

• For every linearly ordered set L, at least one of L and its converse is

universal for the smaller well-ordered sets
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.2 Replete and Well-Replete Cardinals

We use κ, λ, µ, ν and o as cardinal variables, and α, β and γ as ordinal

variables. The converse of an ordinal α is denoted by α∗, and similarly to

cardinals and linear orderings in general. We use α ↪→ L to denote the

existence of an embedding of α into L, and, similarly, α∗ ↪→ L denotes

the existence of an embedding of α∗ into L. Two notions that are used

throughout must be defined.

Definition 2.1. We say that κ is replete if for every cardinal λ < κ,

every linear ordering of cardinality κ contains a copy of λ or of λ∗. That

is, κ is replete if for each λ < κ, there is room for an increasing λ-sequence

or for a decreasing λ-sequence in every linear ordering of cardinality κ.

Definition 2.2. We say that κ is well-replete if for every ordinal α < κ,

every linear ordering of cardinality κ contains a copy of α or of α∗. That is,

κ is well-replete if for each α < κ, there is room for an increasing α-sequence

or for a decreasing α-sequence in every linear ordering of cardinality κ.

Remark 2.3. Recall that an uncountable cardinal κ is weakly compact

if and only if every linear ordering of cardinality κ contains a copy of κ or of

κ∗. As a consequence, both of the above defined properties are implied by

weak compactness. Also, they are both trivially valid up until ℵ0. Indeed, if

a linear ordering contains a copy of λ or of λ∗, then it contains, accordingly,

a copy of α or of α∗ for every α < λ. Therefore, if κ is finite, ω or weakly

compact, then it is well-replete, as it satisfies the stronger property that

every linear ordering of cardinality κ contains a copy of κ or of κ∗.

Remark 2.4. The uniform versions of the two previous definitions are

easily seen to be equivalent to the given versions. For example, we can say

that κ is well-replete if and only if for every linear ordering L with cardi-

nality κ, any ordinal α < κ can be embedded in L or the converse α∗ of any

α < κ can be embedded in L. Indeed, if κ is well-replete and L is a linear or-

dering with cardinality κ, then {α < κ : α ↪→ L} ∪ {α < κ : α∗ ↪→ L} = κ.

Therefore, at least one of {α < κ : α ↪→ L} and {α < κ : α∗ ↪→ L} is un-

bounded in κ, which gives the desired conclusion.

Of course, if a cardinal is well-replete, then it is replete. Based on

the above remark, the proof of corollary 4.2 establishes the equivalence

between the universality hypothesis and the statement that every cardinal
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is well-replete. Our theorem 4.1 shows that these are also equivalent to the

statement that every cardinal is replete, which is equivalent to GCH by

theorem 3.1. Since these auxiliary statements are very useful, it is wise to

give names to them:

• (Repleteness hypothesis) Every cardinal is replete.

• (Well-repleteness hypothesis) Every cardinal is well-replete.

Recall that for cardinals κ, λ, µ and n < ω, the notation κ → (λ)nµ is

used as a shorthand way of saying that for every function f from [κ]n to

µ, there is a set X ⊆ κ with cardinality λ such that f restricted to [X]n is

constant. Such a set X is said to be homogeneous with respect to f .

Remark 2.5. If κ → (λ)22, then every linear ordering of cardinality κ

contains a copy of λ or of λ∗. In fact, let f : [κ]2 → {0, 1} be such that

f({x, y}) = 1 if x and y are related by the given linear ordering in the same

way as they are related by the natural ordering on κ, and f({x, y}) = 0

otherwise. If X ⊆ κ is a homogeneous set of cardinality λ, then X endowed

with the given linear ordering is a well-ordered set and contains a copy of

λ as an initial segment, or X endowed with the inverse of the given linear

ordering is a well-ordered set and contains a copy of λ as an initial segment.

.3 The Repleteness Hypothesis and GCH

The statement that every cardinal is replete impliesGCH. In fact, it is well-

known that for every infinite λ, the cardinal 2λ lexicographically ordered

does not contain an increasing λ+-sequence or a decreasing λ+-sequence.

(See Lemma 3.17, p. 328, in [3]). If 2λ is replete, then 2λ ≤ λ+. Hence,

the repleteness hypothesis implies GCH.

Before proving that, conversely, GCH implies the repleteness hypoth-

esis, recall the Erdős-Rado theorem. The following version is given in [3],

p. 327, theorem 3.13:

• If λ and µ are infinite cardinals, n ≥ 2, o < µ, and µ→ (λ)n−1
o , then

(supν<µ2ν)+ → (λ)no .
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If we set λ = µ, n = 2 and o = 2, then we get

(supν<λ2ν)+ → (λ)22.

This partition relation is used in the proof thatGCH implies the repleteness

hypothesis.

Theorem 3.1. (ZFC) The repleteness hypothesis is equivalent to GCH.

Proof. We need only to show that GCH implies the repleteness hy-

pothesis. Let κ be an infinite uncountable cardinal. We prove that κ is

replete assuming that GCH holds below κ, and this is enough, for ω and

all finite cardinals are already known to be well-replete.

Take λ < κ infinite and assume that GCH holds below λ. It follows

that

supν<λ2ν = supν<λν
+ = λ.

From Erdős-Rado, λ+ → (λ)22 so, by remark 2.5, every linear ordering of

cardinality λ+ contains a copy of λ or of λ∗. Since every linear ordering of

cardinality κ contains a linear subordering of cardinality λ+, every linear

ordering of cardinality κ contains a copy of λ or of λ∗. Therefore, κ is

replete. �

The previous theorem can be strengthened. Two local lemmas can be

easily extracted from the proof. The first one shows that a failure of GCH

gives a failure of repleteness. The second gives, conversely, that if κ is not

replete, then GCH fails for some λ < κ. Both are used below to strengthen

our result.

1. If 2λ is replete, then 2λ = λ+.

2. If (supν<λ2ν)+ ≤ κ for every λ < κ, then κ is replete.

Let κ be an infinite cardinal. We say that GCH holds above κ if

2λ = λ+, for every λ ≥ κ. If every µ ≥ κ++ is replete, then GCH holds

above κ. Indeed, if λ ≥ κ, then 2λ ≥ κ+. If 2λ = κ+, then λ ≤ κ, hence

λ = κ and 2λ = λ+. Otherwise, 2λ ≥ κ++, and 2λ is replete. From (1)

above, 2λ = λ+ also holds in this case.

Conversely, if GCH holds above κ, then every µ ≥ κ++ is replete.

Indeed, the assumption that GCH holds above κ implies that for every

λ < µ, either λ ≤ κ and
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(supν<λ2ν)+ ≤ (2λ)+ ≤ (2κ)+ = κ++ ≤ µ,

or λ > κ and

(supν<λ2ν)+ = (supκ≤ν<λ2ν)+ = (supκ≤ν<λν
+)+ ≤ λ+ ≤ µ.

Either way, (supν<λ2ν)+ ≤ µ. From local lemma (2) above, µ is replete.

Therefore, we have proved a stronger version of theorem 3.1, parame-

terized by an infinite cardinal κ:

Theorem 3.2. (ZFC) Every µ ≥ κ++ is replete if and only if GCH

holds above κ.

If κ = ℵ0, theorem 3.1 is recovered, for ℵ1, ℵ0 and the finite cardinals

are obviously replete. Also, a complete characterization of repleteness in

terms of the continuum function can be given as a further application of

our lemmas.

Theorem 3.3. (ZFC) An infinite cardinal κ is replete if and only if

given µ < κ and ν < µ, it holds that 2ν < κ.

Proof. First notice that if there are µ < κ and ν < µ such that 2ν ≥ κ,

then no κ-sized subordering of the lexicographic order on 2ν embeds µ, and

κ is not replete in this case. The converse implication is proved in two

separate cases, using that κ is either a limit or a successor cardinal.

If κ is a limit cardinal for which the condition holds, then it is a strong

limit. From (2) above, it directly follows that if κ is strong limit, then κ is

replete.

Now, assume that κ is an infinite successor cardinal, κ = λ+, and that

the condition holds, that is, 2ν < κ for every ν < λ. This means that

2ν ≤ λ for every ν < λ, and (supν<λ2ν)+ ≤ λ+ = κ. From (2) above, κ is

replete. �

.4 The Equivalence between Repleteness and

Well-Repleteness

In view of the previous section, in order to complete the proof that GCH,

the repleteness hypothesis and the well-repleteness hypothesis are equiva-

lent, it is enough to prove that repleteness implies well-repleteness. Our
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proof relies on the following standard result from the theory of linear or-

derings, as expounded in [2], section 5.3. Recall that a linear ordering is

κ-dense if any (nonempty) open interval has cardinality κ.

• Let κ be an infinite regular cardinal. Every linear ordering with car-

dinality κ admits an embedding of κ or κ∗, or a κ-dense subordering.

(See 3.5., chapter 5, page 140 in [2].)

Theorem 4.1. (ZFC) A cardinal is replete if and only if it is well-

replete. Therefore, the repleteness hypothesis and the well-repleteness hy-

pothesis are equivalent.

Proof.

It is enough to prove that for every cardinal κ, if κ is replete, then it is

well-replete. This is trivial if κ is either finite or a limit cardinal.

Let κ be a replete successor cardinal, and let λ be such that κ is the

successor of λ.

Let L be a linear ordering with cardinality κ. From the above mentioned

result, we may assume without loss of generality that L is κ-dense. In this

case, the cardinality of every (nonempty) open interval of L is κ.

Let P (α) be the property α < κ→ ∀I ⊆ L,α ↪→ I, where I denotes an

open interval of L and α ↪→ I means I embeds α.

Let Q(α) be the property α < κ → ∀I ⊆ L,α∗ ↪→ I, where I denotes

an open interval of L and α∗ ↪→ I means I embeds α∗.

If ∀α(P (α)∧Q(α)), then we are done. Suppose that ∃α¬(P (α)∧Q(α)),

and let β be the least such ordinal.

Case (i): Suppose that ¬P (β).

Let I ⊆ L be an interval such that I does not embed β. Since P (γ)

holds for every γ < β, we have that β must be regular. Indeed, otherwise,

I would embed the cofinality of β, and hence it would embed an increasing

sequence whose limit is β, for every ordinal below β can be embedded in

every interval of L. From that, I would embed β.

Therefore, β = cf(β) and β is a cardinal. Being a cardinal below κ, β

is at most λ, for κ = λ+.

Since κ is replete and I is a linear ordering with cardinality κ, we have

that λ ↪→ I or λ∗ ↪→ I. Since β is contained in λ and I does not embed β,

it follows that I does not embed λ. Therefore, λ∗ ↪→ I and β∗ ↪→ I.
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Let R(α) be the property α < κ → ∀J ⊆ I, α∗ ↪→ J , where J denotes

an open interval contained in I. If ∀αR(α), then we are done. Suppose

that ∃α¬R(α), and let γ be the least such ordinal. Let J ⊆ I be such that

J is a subinterval of I that does not embed γ∗. Being an interval of L, the

cardinality of J is κ.

From the choice of β, every ordinal below β satisfies property Q. So

every ordinal below β satisfies property R, for Q implies R for every ordinal.

Therefore, β ≤ γ. Again, γ must be regular. Otherwise, J would embed

the converse of the cofinality of γ, and hence it would embed a decreasing

sequence whose limit is γ∗, for the converse of every ordinal below γ can be

embedded in every subinterval of I (and of J). From that, J would embed

γ∗. Therefore, γ is regular, it is a cardinal, and it is at most λ.

However, κ is replete and J is a linear ordering with cardinality κ. It

follows that λ ↪→ J or λ∗ ↪→ J . In the first case, we would have that

β ↪→ λ ↪→ J ↪→ I, contradicting that I does not embed β. In the second

case, we would have γ∗ ↪→ λ∗ ↪→ J , contradicting that J does not embed

γ∗. Therefore, R(α) holds for every α, and L embeds the converse of every

ordinal below κ.

Case (ii): Suppose that ¬Q(β).

Symmetrically, we conclude that S(α) holds for every α, where S(α)

denotes the property α < κ → ∀J ⊆ I, α ↪→ J . In this case, L embeds

every ordinal below κ.

In any case, the linear ordering L embeds every ordinal below κ or the

converse of every ordinal below κ. We conclude that every linear ordering

with cardinality κ embeds every ordinal below κ or the converse of every

ordinal below κ, and κ is well-replete. �

We have proved that GCH is equivalent to the well-repleteness hypoth-

esis. From this, it is immediate that GCH is equivalent to the the statement

that for every linear ordering L, for every well-ordering W , if the cardinal-

ity of L is greater than that of W , then L admits an embedding of W or

its converse. Moreover, we have the equivalence between GCH and the

universality hypothesis, which is another purely order-theoretic principle

displaying the uniformity of the usual axioms of ZFC:
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Corollary 4.2. (ZFC) The universality hypothesis is equivalent to

GCH.

Proof. It is enough to prove that the universality hypothesis is equiv-

alent to the well-repleteness hypothesis. Recall, from remark 2.4, that κ

is well-replete if and only if for each linear ordering L with cardinality

κ, it holds that κ = {α < κ : α ↪→ L} or κ = {α < κ : α∗ ↪→ L}. There-

fore, the well-repleteness hypothesis is equivalent to the statement that for

each linear ordering L, it holds that |L| = {α < |L| : α ↪→ L} or |L| =

{α < |L| : α∗ ↪→ L}. This statement is equivalent to the universality hy-

pothesis. For the first alternative (|L| = {α < |L| : α ↪→ L}) amounts to L

being universal for the smaller well-orderings, and the second alternative

(|L| = {α < |L| : α∗ ↪→ L}) amounts to L∗ being universal for the smaller

well-orderings. �
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