Multi-stage point estimation of the mean of an inverse Gaussian distribution A Chaturvedi, SR Bapat, N Joshi Sequential Analysis 38 (1), 1-25, 2019 | 10 | 2019 |
Multi-stage procedures for the minimum risk and bounded risk point estimation of the location of negative exponential distribution under the modified LINEX loss function A Chaturvedi, SR Bapat, N Joshi Sequential Analysis 38 (2), 135-162, 2019 | 9 | 2019 |
On improved accelerated sequential estimation of the mean of an inverse Gaussian distribution N Joshi, SR Bapat Communications in Statistics-Theory and Methods 51 (17), 6127-6143, 2022 | 7 | 2022 |
Purely Sequential and k-Stage Procedures for Estimating the Mean of an Inverse Gaussian Distribution A Chaturvedi, SR Bapat, N Joshi Methodology and Computing in Applied Probability 22 (3), 1193-1219, 2020 | 5 | 2020 |
Sequential Minimum Risk Point Estimation of the Parameters of an Inverse Gaussian Distribution A Chaturvedi, SR Bapat, N Joshi American Journal of Mathematical and Management Sciences 39 (1), 20-40, 2020 | 5 | 2020 |
Sequential estimation of an Inverse Gaussian mean with known coefficient of variation A Chaturvedi, SR Bapat, N Joshi Sankhya B 84 (1), 402-420, 2022 | 3 | 2022 |
Two-stage and sequential procedures for estimation of powers of parameter of a family of distributions A Chaturvedi, SR Bapat, N Joshi Sequential Analysis 40 (2), 170-197, 2021 | 3 | 2021 |
Optimal estimation of reliability parameter for inverse Pareto distribution with application to insurance data N Joshi, SR Bapat, RN Sengupta International Journal of Quality & Reliability Management 41 (7), 1811-1837, 2024 | 2 | 2024 |
Estimation of fixed-accuracy confidence interval of the stress–strength reliability for inverse Pareto distribution using two-stage sampling technique N Joshi, SR Bapat, RN Sengupta Sequential Analysis 43 (1), 79-102, 2024 | 2 | 2024 |
On Fixed-Accuracy Confidence Intervals for the Parameters of Lindley Distribution and Its Extensions SR Bapat, N Joshi, AK Shukla Austrian Journal of Statistics 52 (2), 104-115, 2023 | 2 | 2023 |
Sequential point estimation procedures for the parameter of a family of distributions A Chaturvedi, S Chattopadhyay, SR Bapat, N Joshi Communications in Statistics-Simulation and Computation 50 (9), 2678-2704, 2021 | 2 | 2021 |
A class of accelerated sequential procedures with applications to estimation problems for some distributions useful in reliability theory N Joshi, SR Bapat, AK Shukla Communications for Statistical Applications and Methods 28 (5), 563-582, 2021 | 2 | 2021 |
A k-stage procedure for estimating the mean vector of a multivariate normal population A Chaturvedi, SR Bapat, N Joshi Sequential Analysis 38 (3), 369-384, 2019 | 2 | 2019 |
Multi-stage estimation methodologies for an inverse Gaussian mean with known coefficient of variation N Joshi, SR Bapat, AK Shukla American Journal of Mathematical and Management Sciences 41 (4), 334-349, 2022 | 1 | 2022 |
Second-order approximations for a multivariate analog of Behrens-Fisher problem through three-stage procedure A Chaturvedi, SR Bapat, N Joshi Communications in Statistics-Theory and Methods 49 (14), 3466-3480, 2020 | 1 | 2020 |
Two-stage and purely sequential minimum risk point estimation of the scale parameter of a family of distributions under modified LINEX loss plus sampling cost N Joshi, SR Bapat, RN Sengupta Metrika, 2024 | | 2024 |
Optimal estimation of the length-biased inverse Gaussian mean with a case study on Eastern Tropical Pacific dolphins SR Bapat, N Joshi Environmental and Ecological Statistics 31 (3), 675-689, 2024 | | 2024 |
Sequential estimation for the multiple linear regression models with balanced loss functions RN Sengupta, SR Bapat, N Joshi Sequential Analysis 43 (2), 211-232, 2024 | | 2024 |
On a class of purely sequential procedures with applications to estimation and ranking and selection problems N Joshi, SR Bapat Sequential Analysis 40 (4), 482-500, 2021 | | 2021 |