Подписаться
Neeraj Joshi
Neeraj Joshi
Department of Mathematics, Indian Institute of Technology Delhi
Подтвержден адрес электронной почты в домене iitd.ac.in - Главная страница
Название
Процитировано
Процитировано
Год
Multi-stage point estimation of the mean of an inverse Gaussian distribution
A Chaturvedi, SR Bapat, N Joshi
Sequential Analysis 38 (1), 1-25, 2019
102019
Multi-stage procedures for the minimum risk and bounded risk point estimation of the location of negative exponential distribution under the modified LINEX loss function
A Chaturvedi, SR Bapat, N Joshi
Sequential Analysis 38 (2), 135-162, 2019
92019
On improved accelerated sequential estimation of the mean of an inverse Gaussian distribution
N Joshi, SR Bapat
Communications in Statistics-Theory and Methods 51 (17), 6127-6143, 2022
72022
Purely Sequential and k-Stage Procedures for Estimating the Mean of an Inverse Gaussian Distribution
A Chaturvedi, SR Bapat, N Joshi
Methodology and Computing in Applied Probability 22 (3), 1193-1219, 2020
52020
Sequential Minimum Risk Point Estimation of the Parameters of an Inverse Gaussian Distribution
A Chaturvedi, SR Bapat, N Joshi
American Journal of Mathematical and Management Sciences 39 (1), 20-40, 2020
52020
Sequential estimation of an Inverse Gaussian mean with known coefficient of variation
A Chaturvedi, SR Bapat, N Joshi
Sankhya B 84 (1), 402-420, 2022
32022
Two-stage and sequential procedures for estimation of powers of parameter of a family of distributions
A Chaturvedi, SR Bapat, N Joshi
Sequential Analysis 40 (2), 170-197, 2021
32021
Optimal estimation of reliability parameter for inverse Pareto distribution with application to insurance data
N Joshi, SR Bapat, RN Sengupta
International Journal of Quality & Reliability Management 41 (7), 1811-1837, 2024
22024
Estimation of fixed-accuracy confidence interval of the stress–strength reliability for inverse Pareto distribution using two-stage sampling technique
N Joshi, SR Bapat, RN Sengupta
Sequential Analysis 43 (1), 79-102, 2024
22024
On Fixed-Accuracy Confidence Intervals for the Parameters of Lindley Distribution and Its Extensions
SR Bapat, N Joshi, AK Shukla
Austrian Journal of Statistics 52 (2), 104-115, 2023
22023
Sequential point estimation procedures for the parameter of a family of distributions
A Chaturvedi, S Chattopadhyay, SR Bapat, N Joshi
Communications in Statistics-Simulation and Computation 50 (9), 2678-2704, 2021
22021
A class of accelerated sequential procedures with applications to estimation problems for some distributions useful in reliability theory
N Joshi, SR Bapat, AK Shukla
Communications for Statistical Applications and Methods 28 (5), 563-582, 2021
22021
A k-stage procedure for estimating the mean vector of a multivariate normal population
A Chaturvedi, SR Bapat, N Joshi
Sequential Analysis 38 (3), 369-384, 2019
22019
Multi-stage estimation methodologies for an inverse Gaussian mean with known coefficient of variation
N Joshi, SR Bapat, AK Shukla
American Journal of Mathematical and Management Sciences 41 (4), 334-349, 2022
12022
Second-order approximations for a multivariate analog of Behrens-Fisher problem through three-stage procedure
A Chaturvedi, SR Bapat, N Joshi
Communications in Statistics-Theory and Methods 49 (14), 3466-3480, 2020
12020
Two-stage and purely sequential minimum risk point estimation of the scale parameter of a family of distributions under modified LINEX loss plus sampling cost
N Joshi, SR Bapat, RN Sengupta
Metrika, 2024
2024
Optimal estimation of the length-biased inverse Gaussian mean with a case study on Eastern Tropical Pacific dolphins
SR Bapat, N Joshi
Environmental and Ecological Statistics 31 (3), 675-689, 2024
2024
Sequential estimation for the multiple linear regression models with balanced loss functions
RN Sengupta, SR Bapat, N Joshi
Sequential Analysis 43 (2), 211-232, 2024
2024
On a class of purely sequential procedures with applications to estimation and ranking and selection problems
N Joshi, SR Bapat
Sequential Analysis 40 (4), 482-500, 2021
2021
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–19