Probabilistic autoencoder

V Böhm, U Seljak - arXiv preprint arXiv:2006.05479, 2020 - arxiv.org
Probabilistic PCA adds a probabilistic structure by learning … Autoencoders (AE) minimize the
reconstruction error in a … Here, we introduce the Probabilistic Autoencoder (PAE) that learns …

Factor analysis, probabilistic principal component analysis, variational inference, and variational autoencoder: Tutorial and survey

B Ghojogh, A Ghodsi, F Karray, M Crowley - arXiv preprint arXiv …, 2021 - arxiv.org
… , probabilistic Principal Component Analysis (PCA), variational inference, and Variational
Autoencoder (… Probabilistic PCA is then explained, as a special case of factor analysis, and its …

Deep learning-based probabilistic autoencoder for residential energy disaggregation: An adversarial approach

H Çimen, Y Wu, Y Wu, Y Terriche… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
… is a probabilistic autoencoder that consists of an encoder, a decoder, and a discriminator
network [25]. The probabilistic … This approach transforms a basic autoencoder into a generative …

A Probabilistic Autoencoder for Type Ia Supernova Spectral Time Series

G Stein, U Seljak, V Böhm, G Aldering… - The Astrophysical …, 2022 - iopscience.iop.org
probabilistic autoencoder is constructed in two separate stages. First, we train a conditional
autoencoder … After the autoencoder is trained we construct a normalizing flow to map from the …

[HTML][HTML] Probabilistic autoencoder-based bridge damage assessment using train-induced responses

MZ Sarwar, D Cantero - Mechanical Systems and Signal Processing, 2024 - Elsevier
… This paper introduces a methodology for assessing bridge conditions using a probabilistic
temporal autoencoder (PTAE). The proposed approach effectively extracts features and …

Probabilistic deep autoencoder for power system measurement outlier detection and reconstruction

Y Lin, J Wang - IEEE Transactions on Smart Grid, 2019 - ieeexplore.ieee.org
… of the bad data, such as variational autoencoder [4] and generative … Therefore, it is essential
to propose new probabilistic … approach with a probabilistic deep autoencoder (PDAE) is …

Generative probabilistic novelty detection with adversarial autoencoders

S Pidhorskyi, R Almohsen… - Advances in neural …, 2018 - proceedings.neurips.cc
… kind, we take a probabilistic approach and effectively compute … Second, we improve the
training of the autoencoder network. An … we learn an adversarial autoencoder network with two …

Stochastic Wasserstein autoencoder for probabilistic sentence generation

H Bahuleyan, L Mou, H Zhou… - arXiv preprint arXiv …, 2018 - arxiv.org
… The variational autoencoder (VAE) imposes a probabilistic distribution (typically Gaussian) …
In this paper, we propose to use the Wasserstein autoencoder (WAE) for probabilistic sen…

Generative probabilistic wind speed forecasting: A variational recurrent autoencoder based method

Z Zheng, L Wang, L Yang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
… In this paper, a novel framework for probabilistic wind speed forecasting (PWSF) from the
generative perspective based on variational recurrent autoencoders (VRAEs) was proposed. …

Latent adversarial regularized autoencoder for high-dimensional probabilistic time series prediction

J Zhang, Q Dai - Neural Networks, 2022 - Elsevier
… a novel probabilistic model called latent adversarial regularized autoencoder, abbreviated
as … capability of autoencoders in extracting higher-level non-linear features. Through flexible …