A universal point set for 2-outerplanar graphs
P Angelini, T Bruckdorfer, M Kaufmann… - … Symposium on Graph …, 2015 - Springer
International Symposium on Graph Drawing, 2015•Springer
A point set is universal for a class if every graph of has a planar straight-line embedding on
S. It is well-known that the integer grid is a quadratic-size universal point set for planar
graphs, while the existence of a sub-quadratic universal point set for them is one of the most
fascinating open problems in Graph Drawing. Motivated by the fact that outerplanarity is a
key property for the existence of small universal point sets, we study 2-outerplanar graphs
and provide for them a universal point set of size.
S. It is well-known that the integer grid is a quadratic-size universal point set for planar
graphs, while the existence of a sub-quadratic universal point set for them is one of the most
fascinating open problems in Graph Drawing. Motivated by the fact that outerplanarity is a
key property for the existence of small universal point sets, we study 2-outerplanar graphs
and provide for them a universal point set of size.
Abstract
A point set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq \mathbb {R}^2$$\end{document} is universal for a class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G$$\end{document} if every graph of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{G}$$\end{document} has a planar straight-line embedding on S. It is well-known that the integer grid is a quadratic-size universal point set for planar graphs, while the existence of a sub-quadratic universal point set for them is one of the most fascinating open problems in Graph Drawing. Motivated by the fact that outerplanarity is a key property for the existence of small universal point sets, we study 2-outerplanar graphs and provide for them a universal point set of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \log n)$$\end{document}.
Springer