EchoFusion: tracking and reconstruction of objects in 4D freehand ultrasound imaging without external trackers

B Khanal, A Gomez, N Toussaint, S McDonagh… - Data Driven Treatment …, 2018 - Springer
Data Driven Treatment Response Assessment and Preterm, Perinatal, and …, 2018Springer
Ultrasound (US) is the most widely used fetal imaging technique. However, US images have
limited capture range, and suffer from view dependent artefacts such as acoustic shadows.
Compounding of overlapping 3D US acquisitions into a high-resolution volume can extend
the field of view and remove image artefacts, which is useful for retrospective analysis
including population based studies. However, such volume reconstructions require
information about relative transformations between probe positions from which the individual …
Abstract
Ultrasound (US) is the most widely used fetal imaging technique. However, US images have limited capture range, and suffer from view dependent artefacts such as acoustic shadows. Compounding of overlapping 3D US acquisitions into a high-resolution volume can extend the field of view and remove image artefacts, which is useful for retrospective analysis including population based studies. However, such volume reconstructions require information about relative transformations between probe positions from which the individual volumes were acquired. In prenatal US scans, the fetus can move independently from the mother, making external trackers such as electromagnetic or optical tracking unable to track the motion between probe position and the moving fetus. We provide a novel methodology for image-based tracking and volume reconstruction by combining recent advances in deep learning and simultaneous localisation and mapping (SLAM). Tracking semantics are established through the use of a Residual 3D U-Net and the output is fed to the SLAM algorithm. As a proof of concept, experiments are conducted on US volumes taken from a whole body fetal phantom, and from the heads of real fetuses. For the fetal head segmentation, we also introduce a novel weak annotation approach to minimise the required manual effort for ground truth annotation. We evaluate our method qualitatively, and quantitatively with respect to tissue discrimination accuracy and tracking robustness.
Springer