Radiation, entanglement and islands from a boundary local quench
Lorenzo Bianchi, Stefano De Angelis, Marco Meineri
SciPost Phys. 14, 148 (2023) · published 8 June 2023
- doi: 10.21468/SciPostPhys.14.6.148
- Submissions/Reports
Abstract
We study the entanglement and the energy density of the radiation emitted after a local quench in a boundary conformal field theory. We use the operator product expansion (OPE) to predict the early- and late-time behavior of the entanglement entropy and we find, under mild assumptions, a universal form for the leading term, which we test on some treatable two-dimensional examples. We also derive a general upper bound on the entanglement, valid along the full time evolution. In two dimensions, the bound is computed analytically, while in higher dimensions it is evaluated at early and late time via the OPE. These CFT predictions are then compared with a doubly-holographic setup where the CFT is interpreted as a reservoir for the radiation produced on an end-of-the-world brane. After finding the gravitational dual of a boundary local quench, we compute the time evolution of the holographic entanglement entropy, whose late-time behavior is in perfect agreement with the CFT predictions. In the brane+bath picture, unitarity of the time evolution is preserved thanks to the formation of an island. The holographic results can be recovered explicitly from the island formula, in the limit where the tension of the brane is close to the maximal value.
Cited by 6
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Lorenzo Bianchi,
- 3 Stefano De Angelis,
- 4 Marco Meineri
- 1 Università degli Studi di Torino / University of Turin [UNITO]
- 2 Istituto Nazionale di Fisica Nucleare Sezione di Torino / INFN Sezione di Torino
- 3 Queen Mary University of London [QMUL]
- 4 Université de Genève / University of Geneva [UNIGE]
- European Commission [EC]
- Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (through Organization: Ministero dell'Istruzione, dell'Università e della Ricerca / Ministry of Education, Universities and Research [MIUR])
- Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung / Swiss National Science Foundation [SNF]